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Abstract

We present an analytical option pricing formula for the European options, in which the

price dynamics of a risky asset follows a mean-reverting process with a time-dependent

parameter. The process can be adapted to describe a seasonal variation in price such

as in agricultural commodity markets. An analytical solution is derived based on the

solution of a partial differential equation, which shows that a European option price

can be decomposed into two terms: the payoff of the option at the initial time and

the time-integral over the lifetime of the option driven by a time-dependent parameter.

Finally, results obtained from the formula have been compared with Monte Carlo

simulations and a Black–Scholes-type formula under various kinds of long-run mean

functions, and some examples of option price behaviours have been provided.

2020 Mathematics subject classification: primary 91G20; secondary 35Q91.
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1. Introduction

In this paper we consider a mean-reverting process (St)t≥0 under a probability space

(Ω,F ,Q), described by the stochastic differential equation (SDE)

dSt = κ(µ(t) − ln St)St dt + σSt dWt, (1.1)

where κ > 0 is the speed of the reversion, µ : [0,∞)→ R represents the long-run mean

function of the process,σ is the volatility, and Wt is a standard Brownian motion driven

on a filtration (Ft)t≥0 generated by the process.

The process satisfying model (1.1) generally represents the spot price of assets

that exhibit mean reversion with both seasonal and nonseasonal behaviours, especially
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agricultural commodities, livestock, energy and manufactured metal. For a simple case

of constant long-run mean functions, the model describes the price of nonseasonal

mean-reverting assets, known as the one-factor Schwartz model. Schwartz [21] showed

that it was suitable for the empirical price data of mean-reverting assets such as crude

oil and copper. For a more complicated case, the seasonality of mean-reverting asset

prices can be described by a periodic time-dependent long-run mean function µ(t) in

the model. In addition, the model (1.1) was used to describe the short-term interest

rate by Black and Karasinski [2], called the Black–Karasinski model or extended

exponential Vasicek model [4].

Since all asset prices usually have fluctuations, financial derivatives such as futures

and options are often used as tools to prevent risks for practitioners such as risk

managers, investors and farmers. One of the most popular financial derivatives used

for hedging the risks from price fluctuations is the European option [11], a financial

contract which gives the buyer the right, but not the obligation, to buy (sell) an

underlying asset at a predetermined price on a specific date. The option that gives

the right to buy (sell) is called a call (put) option. The predetermined price of an

underlying asset is called the strike price and the specific date is called the expiration

date.

To enter a long or short position for an option, a premium or an option value must

be determined under a particular assumption, known as the arbitrage-free condition. In

other words, the price of an option must be fair for both seller and buyer. Consequently,

the determination of the price for options is an important problem for researchers in

the field of economics and mathematics [1, 3, 6, 8, 14, 22, 25].

Let v(S, t; φ) be the value of a European option on an underlying asset spot price S

at time t ≤ T with a strike price K and an expiration date T, where φ = −1 for a call

option and φ = 1 for a put option. It is well known that under the risk-neutral measure,

the fair value of the European option is

v(S, t; φ) = e−r(T−t)EQ[(φK − φST )+|Ft], (1.2)

where r is the constant risk-free interest rate.

The basic methods to approximate the European option value (1.2), such as Monte

Carlo simulations and multinomial tree models, usually take considerable computation

time.

Under model (1.1), we can show that the solution at the expiration time T with given

initial time t is

ST = Se−κ(T−t)

t exp
{
σ2

2κ
(e−κ(T−t) − 1) + κe−κT

∫ T

t

µ(u)eκu du + σe−κT
∫ T

t

eκu dWu

}
,

(1.3)

which has a log-normal distribution. One can compute the option price (1.2) by using

the characteristic function approach (see [25] for more details); however, the formula

obtained is in the form of an improper integral which is not easy to simplify and may

take a long time to evaluate.
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From the dynamics of the log-normal asset price, one can directly derive a

closed-form formula for (1.2) by using the normal distribution property with the

probability density function (PDF) of ln(ST ). In this way, the formula obtained is

similar to the Black–Scholes formula, where the more general mean and variance

depend on the time to expiry; we refer to the resulting formula as a Black–Scholes-type

formula. Although this probabilistic approach is effective for European options and

the derivation is not complicated, it is not easy to apply and extend the idea for a

more complicated option such as the American option, where the exercise time is not

known [12].

Alternatively, one powerful method that can handle both types of option is the

partial differential equation (PDE) approach, where the problem of expectation is

transformed into a PDE problem via the Feynman–Kac theorem [15]. For the European

option, Chiu et al. [6] used asymptotic expansions to approximate the solution of

a PDE, under which the process follows a more general mean-reverting model with

stochastic volatility. For the American option (on stocks), the reader can consult Kim

[13], Underwood and Wang [23], and Carr et al. [5] for more details. Moreover, the

PDE approach based on the Feynman–Kac theorem [15] was applied to price volatility

derivatives as proposed in [7, 16–20, 24].

In the PDE approach, by applying the Feynman–Kac theorem [15] to model (1.1),

the value of the European option (1.2) can be obtained from the solution of the PDE

∂v(S, t; φ)

∂t
+
σ2S2

2

∂2v(S, t; φ)

∂S2
+ κ(µ(t) − ln S)S

∂v(S, t; φ)

∂S
− rv(S, t; φ) = 0, (1.4)

for S > 0 and 0 ≤ t < T , subject to the terminal condition

v(S, T; φ) = (φK − φS)+, S ≥ 0. (1.5)

In this paper we propose a method for solving the PDE (1.4), subject to the terminal

condition (1.5), in order to derive an analytical formula for pricing European options

on the underlying asset whose prices follow model (1.1). To solve the PDE, we

separate the solution into two parts, and apply the Fourier transform and method of

characteristics to obtain the solution. The obtained formula can be expressed as the

sum of the initial payoff of the option and the time-integral over the lifetime of the

option.

The PDE approach developed in this paper has two main advantages: first, one can

easily apply and modify the technique for more complicated pricing problems, for

example, to obtain analytical formula for the American options under model (1.1); and

second, the decomposition of the solution can be used to approximate the option price

using the known initial payoff and the approximation of the integral term.

The rest of this paper is organized as follows. Section 2 provides details on deriving

an analytical formula for pricing European options on a mean-reverting asset whose

prices satisfy the model (1.1). Section 3 gives the derivation of the Black–Scholes-type

formula, and demonstrates numerical results of the option values computed from the

formula under various kinds of long-run mean functions. Comparisons of our results
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with Monte Carlo simulations and the Black–Scholes-type formula, and the behaviours

of option prices, are also illustrated in this section. Section 4 concludes.

2. An integral representation for European options

In this section we give an integral representation formula for pricing the European

option on a mean-reverting asset whose prices satisfy model (1.1). In addition, the

put–call parity formula for the European option is provided.

In order to derive our formula, we need the boundary conditions for v(S, t; φ)

provided in the following lemma.

LEMMA 2.1. Assume that the underlying asset spot price (St)t≥0 follows model (1.1)

with integrable function µ : [0, T]→ R. Then

lim
S→0

v(S, t;−1) = lim
S→∞

v(S, t; 1) = 0, (2.1)

for 0 ≤ t < T.

PROOF. Let Xt = ln St. By Itô’s lemma, model (1.1) can be written as the extended

Vasicek model [10]

dXt = κ(α(t) − Xt) dt + σ dWt, (2.2)

where α(t) = µ(t) − σ2/2κ, and the solution of (2.2) is

Xt = X0e−κt + κe−κt
∫ t

0

α(u)eκu du + σe−κt
∫ t

0

eκu dWu.

Hence, the solution to (1.1) is

St = Se−κt

0 exp
{
σ2

2κ
(e−κt − 1) + κe−κt

∫ t

0

µ(u)eκu du + σe−κt
∫ t

0

eκu dWu

}
.

It is easy to see from integrability of µ that the term

σ2

2κ
(e−κt − 1) + κe−κt

∫ t

0

µ(u)eκu du + σe−κt
∫ t

0

eκu dWu

is bounded for all 0 ≤ t < T . Thus, the condition

St → 0 for some 0 ≤ t < T implies ST → 0 as well. (2.3)

By (1.2), for 0 ≤ t < T ,

lim
S→0

v(S, t;−1) = lim
S→0

e−r(T−t)EQ[(ST − K)+|Ft]

= e−r(T−t)EQ[(ST − K)+|ST → 0]

= 0. (2.4)
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Similar to (2.3), the condition

St → ∞ for some 0 ≤ t < T implies ST → ∞.

Similar to (2.4), limS→∞ v(S, t; 1) = limS→∞ e−r(T−t)EQ[(K − ST )+|Ft] = 0. �

The analytical formula for European options is now derived by solving the PDE

(1.4) subject to the terminal condition (1.5) as described in the following theorem.

THEOREM 2.2. Assume that µ : [0, T]→ R is integrable. Then the value of a European

option v(S, t; φ) on the asset spot price S at time t ≤ T with a strike price K and an

expiration date T is represented by

v(S, t; φ) = ũ(S, T − t; φ) + (φK − φS)+, (2.5)

where

ũ(S, τ; φ) =

∫ τ

0

{K(H1 + φH2N[φd1(ρ)]) + Se−κρM(H3 + φH4N[φd2(ρ)])} dρ, (2.6)

with

H1 =
σ
√
κe(κ−r)ρ−d2

1
(ρ)/2

2
√
π
√

e2κρ − 1
,

H2 = −re−rρ,

H3 = −
σ
√
κ

2
√
π

(
√

e2κρ − 1)e−d2
2
(ρ)/2,

H4 = (r − κµ(T − τ + ρ))eκρ + κ ln S +
σ2

2
(1 − e−κρ) + κϕ(ρ),

M = exp
(
− (r + κ)ρ − σ

2

4κ
(1 − e−κρ)2

+ e−κρϕ(ρ)
)
,

d1(ρ) =

√
2κ

σ
√

e2κρ − 1

{
ln

K

S
+

(
σ2

2κ
+ ln K

)
(eκρ − 1) − ϕ(ρ)

}
,

d2(ρ) = d1(ρ) − σ
√

1 − e−2κρ

√
2κ

,

ϕ(ρ) = κeκτ
∫ τ

τ−ρ
µ(T − w)e−κw dw,

and N[·] as the cumulative distribution function (CDF) of the standard normal

distribution.

PROOF. For ease of notation, we write v(S, t) for v(S, t; φ) in the proof. This proof is

divided into three parts: (i) conversion and Fourier transform; (ii) inversion; and (iii)

solution.
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(i) Conversion and Fourier transform.

Note that the domain of the European option value v(S, t) is

{(S, t) | 0 < S < ∞, 0 ≤ t ≤ T}.

First, we change variables as follows:

τ := T − t, x := − ln S, µ̃(τ) := µ(t), E(x, τ) := v(S, t). (2.7)

Then the new domain is {(x, τ) | x ∈ R, 0 ≤ τ ≤ T}. By the chain rule,

∂v(S, t)

∂t
= −∂E(x, τ)

∂τ
,
∂v(S, t)

∂S
= −1

S

∂E(x, τ)

∂x
,

∂2v(S, t)

∂S2
=

1

S2

∂2E(x, τ)

∂x2
+

1

S2

∂E(x, τ)

∂x
.

Substituting into (1.4), we obtain a new PDE

LE(x, τ) = 0, x ∈ R, 0 < τ ≤ T , (2.8)

where

L = ∂
∂τ
− σ

2

2

∂2

∂x2
+

(
− σ

2

2
+ κµ̃(τ) + κx

)
∂

∂x
+ r.

By (2.7), the terminal condition (1.5) becomes the initial condition

E(x, 0) = (φK − φe−x)+, (2.9)

and the boundary conditions (2.1) become

lim
x→∞

E(x, τ) = 0 if φ = −1,

lim
x→−∞

E(x, τ) = 0 if φ = 1. (2.10)

To solve the PDE (2.8) subject to (2.9)–(2.10), we apply ideas of Underwood

and Wang [23] by setting

E(x, τ) = u(x, τ) + g(x), x ∈ R, 0 ≤ τ ≤ T , (2.11)

where

g(x) = (φK − φe−x)+. (2.12)

Substituting (2.11) into (2.8) and (2.9)–(2.10), we have the new PDE

Lu(x, τ) = f (x, τ), x ∈ R, 0 < τ ≤ T , (2.13)

where

f (x, τ) = −Lg(x), (2.14)

with the initial condition

u(x, 0) = 0, (2.15)
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and the boundary condition

lim
φx→−∞

u(x, τ) = lim
φx→−∞

(E(x, τ) − g(x)) = − lim
φx→−∞

(φK − φe−x)+ = 0. (2.16)

We now apply the Fourier transform to solve (2.13), subject to conditions

(2.15)–(2.16). The Fourier transform in x of a function h(x, τ) is defined by

H(ξ, τ) = F [h(x, τ)] =
1
√

2π

∫ ∞

−∞
h(x, τ)eiξx dx,

and note that

F
[
∂h(x, τ)

∂x

]
= −iξH(ξ, τ), F

[
∂2h(x, τ)

∂x2

]
= −ξ2H(ξ, τ),

F
[
x
∂h(x, τ)

∂x

]
= −ξ ∂H(ξ, τ)

∂ξ
− H(ξ, τ).

Using these facts and taking the Fourier transform of the PDE (2.13) and the

initial condition (2.15), we obtain a first-order linear PDE

∂U(ξ, τ)

∂τ
− κξ ∂U(ξ, τ)

∂ξ
+ A(ξ, τ)U(ξ, τ) = F(ξ, τ) (2.17)

for ξ ∈ R, 0 < τ ≤ T , with the initial condition

U(ξ, 0) = F [u(x, 0)] = 0, (2.18)

where F(ξ, τ) := F [f (x, τ)] and

A(ξ, τ) =
σ2

2
ξ2 +

(
σ2

2
− κµ̃(τ)

)
iξ + r − κ. (2.19)

To solve this PDE, we apply the method of characteristics. We set

ξ ≡ ξ(s), τ ≡ τ(s), U(ξ, τ) ≡ U(ξ(s), τ(s)) ≡ U(s), (ξ(0), τ(0)) = (ξ0, 0)

with parametric equations

τ(s) = s, ξ(s) = ξ0e−κτ(s)
= ξ0e−κs,

where s is a parameter. Then the PDE (2.17) becomes a first-order linear

ordinary differential equation

dU(s)

ds
+ A(ξ0e−κs, s)U(s) = F(ξ0e−κs, s). (2.20)

Solving (2.20) yields

U(s) = e−
∫ s

0
A(ξ0e−κz,z) dz

{ ∫ s

0

e
∫ τ̂

0
A(ξ0e−κz,z) dzF(ξ0e−κτ̂, τ̂) dτ̂ + U(0)

}
. (2.21)
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Substituting s = τ and ξ0 = ξe
κτ back into (2.21) and using the initial condition

(2.18), we have

U(ξ, τ) = e−
∫ τ

0
A(ξeκτ−κz,z) dz

{ ∫ τ

0

e
∫ τ̂

0
A(ξeκτ−κz,z) dzF(ξeκτ−κτ̂, τ̂) dτ̂ + U(ξ0, 0)

}

=

∫ τ

0

eB̂(ξ,τ,τ̂)−B̂(ξ,τ,τ)F(ξeκτ−κτ̂, τ̂) dτ̂

=

∫ τ

0

F1(ξ, τ, τ̂)F(ξeκ(τ−τ̂), τ̂) dτ̂, (2.22)

where

B̂(ξ, τ, y) =

∫ y

0

A(ξeκτ−κz, z) dz, and F1(ξ, τ, τ̂) = eB̂(ξ,τ,τ̂)−B̂(ξ,τ,τ).

From (2.19),

B̂(ξ, τ, y) =
σ2e2κτ(1 − e−2κy)

4κ
ξ2 +

σ2

2κ
iξeκτ(1 − e−κy)

− κiξeκτ
∫ y

0

µ̃(z)e−κz dz + (r − κ)y,

and

F1(ξ, τ, τ̂) = exp
{
(r − κ)(τ̂ − τ) + σ

2(1 − e2κ(τ−τ̂))

4κ
ξ2

+ iξ

(
σ2(1 − eκ(τ−τ̂))

2κ
+ κeκτ

∫ τ

τ̂

µ̃(z)e−κz dz

)}
. (2.23)

(ii) Inversion.

Note that, when h = F −1[H(ξ)], the scaling property of Fourier transform gives

F −1[H(cξ)] =
1

|c|h
(
x

c

)
(2.24)

for every c ∈ R\{0}. From (2.24) and the convolution property,

F −1[H1(ξ)H2(cξ)] =
1
√

2π
(F −1[H1(ξ)] ∗ F −1[H2(cξ)])

=
1

|c|
√

2π

∫ ∞

−∞
h1(x − z)h2

(
z

c

)
dz (2.25)
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for every c ∈ R\{0}, h1 = F −1[H1(ξ)], and h2 = F −1[H2(ξ)]. By applying (2.25)

with c = eκ(τ−τ̂) and taking the inverse transform of (2.22),

u(x, τ) = F −1[U(ξ, τ)] =

∫ τ

0

F −1[F1(ξ, τ, τ̂)F(ξeκ(τ−τ̂), τ̂)] dτ̂

=
1
√

2π

∫ τ

0

eκ(τ̂−τ)
∫ ∞

−∞
f1(x − z, τ, τ̂)f (zeκ(τ̂−τ), τ̂) dz dτ̂, (2.26)

where f1(x, τ, τ̂) = F −1[F1(ξ, τ, τ̂)]. From the integral of the Gaussian function

∫ ∞

−∞
e−ây2

+b̂y+ĉ dy = eb̂2/4â+ĉ

√
π

â
,

equation (2.23) yields

f1(x, τ, τ̂) = F −1[F1(ξ, τ, τ̂)] =
1
√

2π

∫ ∞

−∞
F1(ξ, τ, τ̂)e−iξx dξ

=

√
2κ e(r−κ)(τ̂−τ)

σ
√

e2κ(τ−τ̂) − 1

× exp
{−{(σ2/2κ)(1 − eκ(τ−τ̂)) + κeκτ

∫ τ
τ̂
µ̃(w)e−κw dw − x}2

σ2(e2κ(τ−τ̂) − 1)/κ

}
,

(2.27)

when

â =
σ2(e2κ(τ−τ̂) − 1)

4κ
, b̂ = i

(
σ2(1 − eκ(τ−τ̂))

2κ
+ κeκτ

∫ τ

τ̂

µ̃(w)e−κw dw − x

)
,

and ĉ = (r − κ)(τ̂ − τ). From (2.12), we can write

g(x) = (φK − φe−x)1{φx≥−φ ln K}(x), (2.28)

where 1{φx≥−φ ln K}(·) is the indicator function [9]. Thus

∂g(x)

∂x
= φe−x1{φx≥−φ ln K}(x),

∂2g(x)

∂x2
= Kδ(x + ln K) − φe−x1{φx≥−φ ln K}(x), (2.29)

where δ(·) is the Dirac delta function. By substituting (2.28)–(2.29) into (2.14),

f (x, τ) =
σ2K

2
δ(x + ln K) + φ((r − κµ̃(τ) − κx)e−x − rK)1{φx≥−φ ln K}(x). (2.30)

Using (2.27) and (2.30), we rewrite (2.26) in the form

u(x, τ) =

∫ τ

0

∫ ∞

−∞
f3(x − z, τ, τ̂)f2(z, τ, τ̂) dz dτ̂, (2.31)
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where

f2(z, τ, τ̂) = er(τ̂−τ)f (zeκ(τ̂−τ), τ̂)

=
σ2Ke(r−κ)(τ̂−τ)

2
δ(z + eκ(τ−τ̂) ln K) + φ((r − κµ̃(τ̂))er(τ̂−τ)−zeκ(τ̂−τ)

− κze(r+κ)(τ̂−τ)−zeκ(τ̂−τ) − rKer(τ̂−τ))1{φz≥−φeκ(τ−τ̂) ln K}(z), (2.32)

f3(x, τ, τ̂) =
e(κ−r)(τ̂−τ)
√

2π
f1(x, τ, τ̂)

=
1
√

2π

(
σ
√

e2κ(τ−τ̂) − 1
√

2κ

)−1

× exp
{−{x + (σ2/2κ)(eκ(τ−τ̂) − 1) − κeκτ

∫ τ
τ̂
µ̃(w)e−κw dw}2

2(σ
√

e2κ(τ−τ̂) − 1/
√

2κ)2

}
.

(2.33)

(iii) Solution.

Note that
∫ ∞

−∞
h(z)1{φz≥φm}(z) dz = lim

φn→∞
φ

∫ n

m

h(z) dz (2.34)

for any integrable function h, and m ∈ R. From (2.31)–(2.33), by applying

(2.34) to (2.32), we can write the solution in the form

u(x, τ) =

∫ τ

0

(I1 + I2 + I3 + I4) dτ̂, (2.35)

where

I1 =

∫ ∞

−∞

σ2Ke(r−κ)(τ̂−τ)

2
δ(z + eκ(τ−τ̂) ln K) f3(x − z, τ, τ̂) dz, (2.36)

I2 = lim
φn→∞

∫ n

−eκ(τ−τ̂) ln K

(r − κµ̃(τ̂))er(τ̂−τ)−zeκ(τ̂−τ) f3(x − z, τ, τ̂) dz, (2.37)

I3 = − lim
φn→∞

∫ n

−eκ(τ−τ̂) ln K

κze(r+κ)(τ̂−τ)−zeκ(τ̂−τ) f3(x − z, τ, τ̂) dz,

I4 = − lim
φn→∞

∫ n

−eκ(τ−τ̂) ln K

rKer(τ̂−τ)f3(x − z, τ, τ̂) dz.

For convenience, we denote


a = eκ(τ−τ̂), b =
σ2

2κ
(eκ(τ−τ̂) − 1) − κeκτ

∫ τ

τ̂

µ̃(w)e−κw dw,

c =
σ
√

e2κ(τ−τ̂) − 1
√

2κ
, m = −eκ(τ−τ̂) ln K.

(2.38)
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From (2.33), (2.36) and (2.38),

I1 =
σ2Ke(r−κ)(τ̂−τ)

2
f3(x + eκ(τ−τ̂) ln K, τ, τ̂) =

σ2Ke(r−κ)(τ̂−τ)

2
f3(x − m, τ, τ̂)

=
σ2K

2c
√

2π
exp
{
(r − κ)(τ̂ − τ) − 1

2

(
x − m + b

c

)2}
. (2.39)

By (2.33), (2.37) and (2.38),

I2 = (r − κµ̃(τ̂))er(τ̂−τ)J2, (2.40)

where

J2 = lim
φn→∞

∫ n

m

e−z/af3(x − z, τ, τ̂) dz

= lim
φn→∞

(
1

c
√

2π

∫ n

m

exp
{
− z

a
− 1

2

(
x − z + b

c

)2}
dz

)

= exp
{−x − b + c2/2a

a

}

× lim
φn→∞

(
1

c
√

2π

∫ n

m

exp
{
− 1

2

(
z − x − b + c2/a

c

)2}
dz

)
(2.41)

= exp
{−x − b + c2/2a

a

}
lim
φn→∞

(
1
√

2π

∫ (n−x−b+c2/a)/c

(m−x−b+c2/a)/c

e−y2/2 dy

)
. (2.42)

Recall that the CDF of the standard normal distribution is defined by

N[z] :=
1
√

2π

∫ z

−∞
e−y2/2 dy. (2.43)

Applying (2.43) to (2.42) yields

J2 = φ exp
{−x − b + c2/2a

a

}
N
[
− φ
(
m − x − b + c2/a

c

)]
. (2.44)

Thus,

I2 = φ(r − κµ̃(τ̂)) exp
{
r(τ̂ − τ) + −x − b + c2/2a

a

}

× N
[
− φ
(
m − x − b + c2/a

c

)]
. (2.45)

Similarly to the way we obtain (2.40)–(2.41), we set

I3 = −
κer(τ̂−τ)

a
lim
φn→∞

∫ n

m

ze−z/af3(x − z, τ, τ̂) dz

= − κ
a

exp
{
r(τ̂ − τ) + −x − b + c2/2a

a

}
J3, (2.46)
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where

J3 = lim
φn→∞

[
1

c
√

2π

∫ n

m

z exp
{
− 1

2

(
z − x − b + c2/a

c

)2}
dz

]
. (2.47)

Similar to (2.42), applying (2.43) and setting h = −x − b + c2/a in (2.47), we

have

J3 = lim
φn→∞

[
1

c
√

2π

∫ n

m

(z + h) exp
{
− 1

2

(
z + h

c

)2}
dz

− h

c
√

2π

∫ n

m

exp
{
− 1

2

(
z + h

c

)2}
dz

]

=
c
√

2π
exp
{
− 1

2

(
m + h

c

)2}
− φhN

[
− φ
(
m + h

c

)]
. (2.48)

Substituting (2.48) into (2.46) yields

I3 = −
κc

a
√

2π
exp
{
r(τ̂ − τ) + −x − b + c2/2a

a
− 1

2

(
m − x − b + c2/a

c

)2}

− φκ
(
x + b − c2/a

a

)
exp
{
r(τ̂ − τ) + −x − b + c2/2a

a

}

× N
[
− φ
(
m − x − b + c2/a

c

)]
. (2.49)

Similarly to (2.44), using the normal distribution function and (2.33), we obtain

I4 = −φrKer(τ̂−τ)N
[
− φ
(
m − x − b

c

)]
. (2.50)

Collecting (2.35), (2.39), (2.45), and (2.49)–(2.50) after combining I2 and I3,

we obtain

u(x, τ) =

∫ τ

0

{
σ2K

2c
√

2π
exp
{
(r − κ)(τ̂ − τ) − 1

2

(
x − m + b

c

)2}

− φrKer(τ̂−τ)N
[
φ

(
x − m + b

c

)]

− κc

a
√

2π
exp
{
r(τ̂ − τ) + −x − b + c2/2a

a
− 1

2

(
x − m + b − c2/a

c

)2}

+ φ

(
r − κµ̃(τ̂) + κ

(−x − b + c2/a

a

))

× exp
{
r(τ̂ − τ) + −x − b + c2/2a

a

}
N
[
φ

(
x − m + b − c2/a

c

)]}
dτ̂.

(2.51)
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Substituting x = − ln S and (2.38) back into (2.51) yields

ũ(S, τ) = u(x, τ)

=

∫ τ

0

{K(H̃1 + φH̃2N[φd̃1(τ̂)]) + Seκ(τ̂−τ) M̃(H̃3 + φH̃4N[φd̃2(τ̂)])} dτ̂,

(2.52)

where

H̃1 =
σ
√
κe(r−κ)(τ̂−τ)−d̃2

1
(τ̂)/2

2
√
π
√

e2κ(τ−τ̂) − 1
,

H̃2 = −rer(τ̂−τ),

H̃3 = −
σ
√
κ

2
√
π

(
√

e2κ(τ−τ̂) − 1)e−d̃2
2
(τ̂)/2,

H̃4 = (r − κµ̃(τ̂))eκ(τ−τ̂) + κ ln S +
σ2

2
(1 − eκ(τ̂−τ)) + κϕ̃(τ̂),

M̃ = exp
{
(r + κ)(τ̂ − τ) − σ

2

4κ
(1 − eκ(τ̂−τ))2

+ eκ(τ̂−τ)ϕ̃(τ̂)
}
,

d̃1(τ̂) =

√
2κ

σ
√

e2κ(τ−τ̂) − 1

[
ln

K

S
+

(
σ2

2κ
+ ln K

)
(eκ(τ−τ̂) − 1) − ϕ̃(τ̂)

]
,

d̃2(τ̂) = d̃1(τ̂) − σ
√

1 − e2κ(τ̂−τ)
√

2κ
,

ϕ̃(τ̂) = κeκτ
∫ τ

τ̂

µ̃(w)e−κw dw.

From the equations (2.7), (2.11)–(2.12), (2.52), µ̃(w) = µ(T − w) and ρ = τ − τ̂,
we have

v(S, t) = u(x, τ) + (φK − φe−x)+ = ũ(S, T − t) + (φK − φS)+,

where ũ(S, τ) is defined as ũ(S, τ; φ) in (2.6).

This completes the proof of Theorem 2.2. �

REMARK 2.3. The decomposition of formula (2.5) as the sum of the integral and the

known initial payoff in the second term can provide the bound for the option prices if

one can estimate the integral term.

REMARK 2.4. The same technique used for obtaining Theorem 2.2 can be also applied

to derive an analytical formula for the American option price for assets under the

process (1.1), since the PDEs controlling both European and American option prices

are similar, except for their domains and some additional boundary conditions of

American option.
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The following corollary describes the put–call parity for European option based on

the result of Theorem 2.2.

COROLLARY 2.5. Let p(S, t) = v(S, t; 1) and c(S, t) = v(S, t;−1) denote the put and call

option functions, respectively. Then

p(S, t) + S = c(S, t) + Ke−r(T−t)
+ upc(S, T − t), (2.53)

where

upc(S, τ) =

∫ τ

0

Se−κρMH4 dρ,

with M and H4 defined in Theorem 2.2.

REMARK 2.6. Note that the put–call parity for the European option of the underlying

asset following (1.1) is different from that of Black–Scholes formula (for stocks) with

the addition of the last term upc(S, T − t) in (2.53).

From Theorem 2.2, we note that formula (2.5) can be applied with any inte-

grable long-run mean function. In the next section we compare the results com-

puted from the formula obtained with those from Monte Carlo simulations and the

Black–Scholes-type formula in various kinds of long-run mean functions. Moreover,

the behaviours of European option prices are demonstrated and discussed.

3. Numerical results and discussions

In this section we provide numerical results of option prices computed from the

analytical formula (2.5) under some cases of long-run mean functions. This section

is divided into two parts. In Section 3.1 the accuracy of the results computed from

our analytical formula (2.5) is compared with Monte Carlo simulations and the

Black–Scholes-type formula. Examples of option price behaviours are illustrated and

discussed in Section 3.2.

In this section, we use the following parameters: strike price K = 40; expiration date

T = 1; volatility σ = 0.5; and five cases of long-run mean functions (constant, linear,

smooth periodic, piecewise differentiable and piecewise continuous periodic). The

graphs and descriptions of these long-run mean functions µ : [0, 1]→ R are displayed

in Figure 1.

3.1. Comparisons with Monte Carlo simulations and Black–Scholes-type

formula To verify the results from our analytical formula, we compare them

with the standard benchmark approaches such as Monte Carlo simulations and the

Black–Scholes-type formula, since they are quite accurate and simple to perform.
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(a) Constant (b) Linear (c) Smooth periodic

(d) Piecewise differentiable (e) Piecewise continuous periodic

FIGURE 1. Five cases of long-run mean functions.

In our comparisons, we compute call and put option prices (1.2) on the underlying

asset prices S at the initial time t = 0,

v(S, 0; φ) = e−rTEQ[(φK − φST )+|S0 = S], (3.1)

by varying the asset spot price S with the fixed initial time t = 0, where φ = −1 for call

options and φ = 1 for put options. The other parameters are the risk-free interest rate

r = 0.05 and speed of reversion κ = 0.05.

3.1.1. Monte Carlo (MC) simulations. Our MC simulations for computing (3.1)

employ the simple Euler–Maruyama discretization based on a simple simulation of

the mean-reverting process following (1.1), namely,

Sti = Sti−1
+ κ(µ(ti−1) − ln Sti−1

)Sti−1
∆t + σSti−1

√
∆t Zti ,

where Zt is a standard normal random variable. We generate sample paths of St on

[0, T], using the time-step ∆t = 0.01 with 100 000 sample paths.

3.1.2. Black–Scholes-type (BS-type) formula. Suppose that at the initial time t, the

initial asset price St = S. To compute the option value (1.2), one can directly use the

definition of expectation with the PDF of the asset log-price at time T, XT = ln ST .
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From (1.3), XT can be represented by

XT =(ln S)e−κ(T−t)
+
σ2

2κ
(e−κ(T−t) − 1) + κe−κT

∫ T

t

µ(u)eκu du + σe−κT
∫ T

t

eκu dWu,

which is normally distributed with mean

m(T) = (ln S)e−κ(T−t)
+
σ2

2κ
(e−κ(T−t) − 1) + κe−κT

∫ T

t

µ(u)eκu du, (3.2)

variance

g(T) = σ2e−2κT

∫ T

t

e2κu du =
σ2

2κ
(1 − e−2κ(T−t)), (3.3)

and PDF

fX(x) =
1

√
2πg(T)

exp
{
− (x − m(T))2

2g(T)

}
. (3.4)

Using (3.4), the option value (1.2) can be computed by

v(S, t; φ) = e−r(T−t)

∫ ∞

−∞
(φK − φex)+fX(x) dx. (3.5)

Note that, to use the formula (3.5) directly, one needs to evaluate the improper integral.

For further simplification, the improper integral (3.5) is derived to get a closed-form

formula similar to the Black–Scholes formula for stocks by using the PDF of the asset

log-price and the property of normal distribution. The Black–Scholes-type formula is

stated as follows.

THEOREM 3.1. The value of the European option (1.2) can be represented by

v(S, t; φ) = φKe−r(T−t)N[φd1] − φe−r(T−t)+m(T)+g(T)/2N[φd2], (3.6)

where m(T), g(T) are defined as in (3.2)–(3.3) respectively, and

d1 =
ln K − m(T)
√

g(T)
, d2 = d1 −

√
g(T).

PROOF. From (3.5), note that

v(S, t; φ) = e−r(T−t) · φ lim
n→−∞

∫ ln K

φn

(φK − φex)fX(x) dx

= e−r(T−t)
(
K lim

n→−∞

∫ ln K

φn

fX(x) dx − lim
n→−∞

∫ ln K

φn

exfX(x) dx

)
. (3.7)

Since XT is normally distributed with mean m(T) and variance g(T), we have that

Z = (XT − m(T))/(
√

g(T) is the standard normal random variable. Also, since fX(x) is
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the PDF of XT ,

lim
n→−∞

∫ ln K

φn

fX(x) dx = φQ(φXT ≤ φ ln K)

= φQ

(
φZ ≤ φ ln K − m(T)

√
g(T)

)

= φQ

(
Z ≤ φ ln K − m(T)

√
g(T)

)

= φN[φd1], (3.8)

where the third equality is obtained from the normal distribution property

Q(Z ≥ x) = Q(Z ≤ −x).

Let

fY (x) =
1

√
2πg(T)

exp
{
− (x − m(T) − g(T))2

2g(T)

}

be the PDF of a normal random variable with mean m(T) + g(T) and variance g(T).

By using (3.4), we obtain

lim
n→−∞

∫ ln K

φn

exfX(x) dx = em(T)+g(T)/2 lim
n→−∞

∫ ln K

φn

1
√

2πg(T)
e−[(x−m(T)−g(T))2]/2g(T) dx

= em(T)+g(T)/2 lim
n→−∞

∫ ln K

φn

fY (x) dx

= φem(T)+g(T)/2N[φd2], (3.9)

where the last equality is obtained by an argument similar to (3.8). Substituting

(3.8)–(3.9) into (3.7), the result is obtained. �

3.1.3. Notation and comparison results. Let

C(S) = v(S, 0;−1), P(S) = v(S, 0; 1)

denote call and put option prices computed from our analytical formula (2.5),

respectively, and

CMC(S), PMC(S) and CBS(S), PBS(S)

denote call and put option prices obtained by MC simulations and BS-type formula

(3.6), respectively.

In our numerical tests, we compute the values of C(S), P(S), CMC(S), PMC(S),

CBS(S), PBS(S), by using various underlying asset spot prices S ∈ DS = {30, 32, . . . , 48}.
The option prices obtained from our analytical formula, MC simulations, and

BS-type formula are compared based on the five cases of long-run mean functions to

illustrate the accuracy of the formula (2.5). The displays of the five comparison results

are shown in Figure 2.
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(a) Constant

(b) Linear (c) Smooth periodic

(d) Piecewise differentiable (e) Piecewise continuous periodic

MC

MC

BS

BS

FIGURE 2. Five comparison results of call and put option prices obtained from our formula, MC

simulations and the BS-type formula, corresponding to the five cases of long-run mean functions.

3.1.4. Accuracy. According to the comparison results shown in Figure 2, the level

of accuracy of the results from formula (2.5) under the five cases of long-run mean

functions is demonstrated by the average absolute differences with BS-type and the

average percentage errors with MC simulations.
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TABLE 1. Average absolute differences (d̄BS) and average percentage errors (ǭMC) when comparing the

results obtained from our formula with those from the BS-type formula and MC simulations, respectively,

and the average computation times for each approach.

Long-run mean function d̄BS (×10−8) ǭMC (%)
Average computation

time (s)
Call Put Call Put Ours BS-type MC

(a) constant 3 3 0.28 0.37 0.02 0.0008 218

(b) linear 3 3 0.60 0.36 0.02 0.0008 227

(c) smooth periodic 2 2 0.79 0.25 0.02 0.0008 228

(d) piecewise differentiable 7 7 0.44 0.58 0.50 0.0008 292

(e) piecewise continuous 7 7 0.65 0.48 0.60 0.0008 282

periodic

Define the average absolute difference and the average percentage error by

d̄BS =

( ∑

S∈DS

d(S)
)
/|DS| and ǭMC =

( ∑

S∈DS

ǫ(S)
)
/|DS|,

respectively, where

d(S) = |a(S) − x(S)| and ǫ(S) =

∣∣∣∣∣
a(S) − y(S)

a(S)

∣∣∣∣∣ × 100%,

with a(S) representing call/put option value from our formula and x(S), y(S) rep-

resenting call/put option values from BS-type formula and from MC simulations,

respectively.

The average absolute differences, the average percentage errors, and the average

computation times for each approach corresponding to each long-run mean function

are demonstrated in Table 1.

Table 1 shows that the results of call and put option values from our formula

(2.5) are accurate as compared to the BS-type formula (3.6) with average absolute

differences less than 10−7, and to MC simulations with average percentage errors less

than 0.8% for all five cases of long-run mean functions. This fact verifies the validity

of the formula (2.5).

Based on the average computation times, Table 1 confirms that the analytical

formula (2.5) and the BS-type formula are much more efficient than MC simulations

as expected, where the BS-type formula is clearly faster than our formula.

In the next subsection we describe the behaviours of option values as functions of

underlying asset price S and initial time t corresponding to various different long-run

mean functions.

3.2. Option price behaviour examples and discussion In this subsection we

demonstrate the results of European option values based on the computation of our

analytical formula (2.5).
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f

f

f

f

(a) Put option

(c) Decomposition of put option (d) Decomposition of call option

(b) Call option

FIGURE 3. Option values for constant µ(t) = 4.

The following examples illustrate behaviours of both European put and call option

values v(S, t; φ) on a mean-reverting asset spot price S ∈ [0, 60] at time t ∈ [0, T]

corresponding to the five long-run mean functions with parameters r = 0.1 and κ = 0.5.

EXAMPLE 3.2. We consider the constant long-run mean function shown in

Figure 1(a). In this case, the underlying asset spot prices do not exhibit seasonality,

and follow the one-factor Schwartz model [21] used to represent oil and copper prices

in commodity markets. The values of put and call options obtained from the analytical

formula (2.5) are shown in Figures 3(a) and 3(b), respectively.

Both figures show that as time t gets closer to the expiration date T, the option value

gets closer to the terminal condition v(S, T; φ) = (φK − φS)+ as expected with continu-

ous smooth curves in both directions except on the expiration date. Furthermore, when

the time t changes and the asset spot price S is fixed, we see that most option values

change linearly.

Figures 3(c) and 3(d) illustrate the combination of the option prices v(S, t; φ), the

initial payoff (φK − φS)+, and the integral term ũ(S, T − t; φ) functions for put and call

options in Theorem 2.2, respectively. The decomposition of the graph of option price

into the others is clearly seen for both options.

EXAMPLE 3.3. We consider the case of the linear long-run mean function shown in

Figure 1(b), where the spot prices of the underlying asset normally have linear trend
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(a) Put option (b) Call option

FIGURE 4. Option values for linear µ(t) = 1 + 6t.

(a) Put option (b) Call option

FIGURE 5. Option values for smooth periodic µ(t) = 4 + 3 sin(π/2 + 10πt).

without seasonality. The option values obtained from the analytical formula are shown

in Figure 4.

Similarly to Example 3.2, as time t gets closer to the expiration date T, the

option value gets closer to the terminal condition v(S, T; φ) = (φK − φS)+ as expected.

However, the figures show quadratic trends when the time t changes and the asset spot

price S is fixed. Surprisingly, the call option has the highest value not at the expiration

date but around the midpoint of the lifetime of option.

EXAMPLE 3.4. We consider the smooth periodic long-run mean function shown in

Figure 1(c) for the spot price of a seasonal underlying asset. This behaviour of

assets is usually seen on most of the agricultural commodities, livestock, energy, and

manufactured metal. The option values corresponding to this case are demonstrated in

Figure 5.

The figures show that the terminal condition v(S, T; φ) = (φK − φS)+ holds as in

the previous examples. In addition, there are many smooth oscillations on both option

values as the time changes with fixed spot price, but the call has stronger oscillations

than the put.
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(a) Put option (b) Call option

FIGURE 6. Option values for piecewise differentiable µ(t) =



1 + 18t, t ∈ [0, 1/3],

7 − 18(t − 1/3), t ∈ (1/3, 2/3],

1 + 18(t − 2/3), t ∈ (2/3, 1].

(a) Put option (b) Call option

FIGURE 7. Option values for piecewise continuous periodic µ(t) =



1 + 18t, t ∈ [0, 1/3],

1 + 18(t − 1/3), t ∈ (1/3, 2/3],

1 + 18(t − 2/3), t ∈ (2/3, 1].

EXAMPLE 3.5. In this example we consider the asset with long-run mean described by

the piecewise differentiable function shown in Figure 1(d). The option values obtained

from the analytical formula are shown in Figure 6.

Both options show that the terminal condition v(S, T; φ) = (φK − φS)+ holds as in

the previous examples, with smooth curves even though its long-run mean function is

not. The behaviour of the values is similar to those in Example 3.4; there are a few

smooth oscillations as the time changes with fixed spot price, and the call has stronger

oscillations.

EXAMPLE 3.6. In this case, we consider the model for assets with seasonality

described by a piecewise continuous periodic long-run mean function shown in Figure

1(e), where the spot price changes rapidly when it reaches the high peak. The option

values corresponding to this case are demonstrated in Figure 7.
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Similarly to all previous examples, the results satisfy the terminal condition

v(S, T; φ) = (φK − φS)+ as expected. Both option values are still continuous and

smooth even though their long-run mean function is piecewise continuous. In addition,

there are some large smooth waves when the time changes, which are shallower for the

put option. There are also some lines between the waves that are changing level rapidly

corresponding to the behaviour of jumps on the long-run mean function.

In this subsection Examples 3.2–3.6 demonstrate that both European put and call

option values obtained from the analytical formula (2.5) satisfy the terminal condition

(1.5) as expected with continuous smooth curves, even though the corresponding

long-run mean functions are not continuous or smooth in the domain. In addition, the

long-run mean functions provided show strong effects in both options such as linear,

quadratic, and oscillation behaviours as the time changes with fixed spot price, in the

sense that when the type of the long-run mean function has changed, but the calls

are more strongly impacted than the puts. This suggests that the analytical formula

can be applied for any kind of mean-reverting assets with integrable long-run mean

functions describing both seasonal and nonseasonal behaviours. In addition, Example

3.2 illustrates the decompositions of option prices between the initial payoff term and

the integral term from formula (2.5).

4. Conclusion

In this paper, we derive an integral representation formula for pricing the European

options on the underlying asset such as commodities whose spot prices follow

a mean-reverting model with time-dependent long-run mean. Based on the PDE

approach with Fourier transform, the analytical formula together with the put–call

parity are presented differently from the traditional Black–Scholes formula. The

obtained formula is composed of two terms, the payoff at the initial time and the

time-integral over the lifetime driven by the long-run mean function which is only

required to be integrable. This implies that the formula can be applied for assets with

seasonality described by not only continuous but also discontinuous long-run mean

functions. The accuracy of the formula has been verified by comparing with Monte

Carlo simulations and a Black–Scholes-type formula under various kinds of long-run

mean functions. Moreover, some examples of the European option prices based on

our formula are illustrated in order to analyse the behaviours of the option prices

corresponding to these long-run mean functions.
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