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Three-dimensional oblique water-entry problems
at small deadrise angles
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This paper extends Wagner theory for the ideal, incompressible normal impact of rigid
bodies that are nearly parallel to the surface of a liquid half-space. The impactors
considered are three-dimensional and have an oblique impact velocity. A formulation
in terms of the displacement potential is used to reveal the relationship between
the oblique and corresponding normal impact solutions. In the case of axisymmetric
impactors, several geometries are considered in which singularities develop in the
boundary of the effective wetted region. We present the corresponding pressure profiles
and models for the splash sheets.
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1. Introduction
The impact of a nearly flat rigid body moving toward a liquid half-space is a

canonical model for a range of physical applications, ranging from ship slamming
and inkjet printing to asteroid impact. The foundations for the theory of water-entry
were first discussed by von Kármán (1929) and by Wagner (1932), who were both
concerned with the hydrodynamics of an alighting seaplane.

Even when neglecting physical effects such as the influence of gravity, air
cushioning, surface tension, viscosity and compressibility, the normal impact of a
rigid body into a fluid is a nonlinear problem and analytic progress is far from simple.
However, when the impacting body is almost parallel to the undisturbed fluid free
surface, that is, when the deadrise angle of the body is small, progress can be made
using Wagner’s idea that the bulk of the fluid motion can be approximated as that
experienced due to the presence of an expanding flat plate on the undisturbed planar
free surface, as explained in, for example, Armand & Cointe (1987) and Howison,
Ockendon & Wilson (1991).

The majority of analytic oblique water-entry studies consider two-dimensional
impacts. In particular, there is a wealth of work concentrating on the constant-speed
oblique water-entry of a wedge, for which there is a similarity solution. Garabedian
(1953) derives the similarity solution under the assumption that the leading and trailing
free surfaces separate from the wedge sides either perpendicularly or tangentially.
Chekin (1989) looks at more general wedge impacts and solves the similarity problem
by adapting the numerical approach of Dobrovol’skaya (1969) for normal impacts.
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More recently, Semenov & Yoon (2009) use complex variable techniques to solve the
general constant-speed wedge impact problem, solving the resulting integral equations
numerically. Judge, Troesch & Perlin (2004) look at the breakdown of oblique wedge
entry and use the method of vortex distributions to approximate the impact. They
compare their results to experimental observations. Both Judge et al. (2004) and
Semenov & Yoon (2009) are interested in the onset of ventilation on the trailing edge
of the wedge, when the fluid detaches from the apex of the wedge above a certain
tangential impact speed.

Korobkin (1988) looks at the small-time asymptotics of the oblique entry of a rigid
parabola. He uses a Lagrangian description to note that, to leading order, the problem
reduces to the normal impact problem.

For more general impactors, Howison, Ockendon & Oliver (2004) employ the
method of matched asymptotic expansions to consider two-dimensional small-deadrise
impacts, where the tangential component of impact velocity is of the order of
the inverse of the deadrise angle. They utilize the ideas of Korobkin (1982) by
reformulating the problem using the displacement potential, thereby revealing how the
instabilities described in Howison et al. (1991) apply to the flow when the trailing
boundary of the wetted region is effectively exiting the fluid.

In the current paper, we concentrate on three-dimensional oblique impacts. One of
the few theoretical works on three-dimensional oblique water-entry is that of Miloh
(1991), where the impact of a rigid sphere is considered at small times after impact.
The methodology builds on the ideas for the two-dimensional oblique water-entry
of a parabola as described in Korobkin (1988). Miloh deduces that the addition of
an oblique component of impact velocity reduces the maximum downward force on
the sphere, compared to the purely normal impact, suggesting that the pressure on
the sphere decreases. Moreover, for moderate angles of attack (which is an indicator
of the relative sizes of the oblique and normal components of the impact velocity),
Miloh notes that there is very little change in the downward force on the sphere.
This observation bears similarities to the analysis of Howison et al. (2004), where
for horizontal impact velocities comparable to the normal impact velocity, the leading-
order outer problem reduces to that for normal impact. A recent consideration of the
general impact of an elliptic paraboloid is given by Scolan & Korobkin (2012), who
use Galin’s theorem to write down the solution. It is shown that for any impact, even
with oblique velocity components or rotations, to leading order the boundary of the
wetted region is an ellipse.

Bird, Tsai & Stone (2009) look at the similar problem of oblique droplet impact
onto a solid surface. They perform experiments in which the oblique component of
impact velocity is realized by either inclining or moving the surface. They conclude
that this component of velocity acts to inhibit the splash of the droplets in the
direction opposite the oblique velocity while accentuating the splash in the direction of
oblique velocity.

The present paper extends the work of Moore et al. (2012), which uses the
displacement potential formulation of the problem to simplify the leading-order
analysis. This enables us to solve the problem of impact by a general three-
dimensional body and in particular, an axisymmetric body. We are able to predict
the pressure on the impactor and the singular behaviour at points at which Wagner
theory breaks down. We will conclude the analysis by describing the dynamics of the
splash sheet (ejecta) for general axisymmetric impactors.
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2. Formulation of the problem
We consider the impact of a rigid, smooth (except possibly at its minimum), convex

body onto an initially quiescent body of fluid occupying z∗ 6 0 in three-dimensional
Euclidean space, with axes denoted by (x∗, y∗, z∗). The impact is assumed to begin
at time t∗ = 0 at the origin. The fluid is assumed to be ideal and incompressible and
the region not occupied by the impactor or the fluid to be a vacuum. The impactor
has components of impact velocity in the positive x∗-, y∗- and z∗-directions denoted by
(L/T)Ẋ(t∗/T), (L/T)Ẏ(t∗/T) and −(L/T)Ż(t∗/T) respectively, where a dot indicates
differentiation with respect to time, so that the body profile is defined by

z∗

L
= f

(
εx∗

L
− X

(
t∗

T

)
,
εy∗

L
− Y

(
t∗

T

))
− Z

(
t∗

T

)
, (2.1)

where f is smooth and convex, f (0, 0) = 0, f has its minimum at (0, 0), T is a typical
impact time scale and LZ is a typical penetration depth. Throughout this paper we
assume that the deadrise angle of the impactor is small, that is to say that the impactor
is almost flat, so that ε is a small positive constant. The prescribed smooth functions
of time X, Y and Z satisfy X(0) = 0, Y(0) = 0, Z(0) = 0 and Ż(0) > 0. Moreover, we
assume that (L/T)Ẋ, (L/T)Ẏ and (L/T)Ż are of order unity independent of ε. Note
that the components of impact velocity in the x∗- and y∗-directions are O(1/ε) larger
than that in the z∗-direction. We will neglect the influence of compressibility, gravity
and surface tension throughout.

We consider the dimensionless model where distances are scaled with L, velocities
with the typical normal impact velocity L/T , time with T , velocity potential with L2/T
and pressure with ρL2/T2, where ρ is the fluid density. Using these scalings, the
position of the impactor is given in dimensionless variables by

ẑ= f (εx̂− X(t), εŷ− Y(t))− Z(t). (2.2)

The wetted extent of the impactor is defined by the curve ∂C(t), which has projection
t = c(εx̂ − X(t), εŷ − Y(t)) on the (x̂, ŷ)-plane. The multivalued free surface is given
by ẑ= h(x̂, ŷ, t). The turnover curve, where ẑ= h becomes vertical, is given by ∂Ω(t),
with projection t = ω(εx̂− X(t), εŷ− Y(t)) on the (x̂, ŷ)-plane. The turnover curve is a
direct three-dimensional generalization of the turnover points as discussed in Howison
et al. (1991). The set Ω(t) lying inside ∂Ω(t) has projection t > ω(εx̂−X(t), εŷ−Y(t))
in the (x̂, ŷ)-plane. We call this the contact set. A schematic of the configuration is
given in figure 1.

The fluid is at rest initially, so that the fluid velocity is u = ∇φ̂ in terms of the
potential φ̂(x̂, ŷ, ẑ, t), where

∇2φ̂ = 0 (2.3)

in the fluid region. The kinematic condition at the body is

εf,1
∂φ̂

∂ x̂
+ εf,2 ∂φ̂

∂ ŷ
− ∂φ̂
∂ ẑ
= Ż + Ẋf,1 + Ẏf,2 (2.4)

on ẑ= f (εx̂−X(t), εŷ−Y(t))−Z(t), t > c(εx̂−X(t), εŷ−Y(t)), where the subscript ‘, i’
denotes differentiation with respect to argument i. At the free surface, the kinematic
boundary condition is

∂φ̂

∂ n̂
= vn on ẑ= h(x̂, ŷ, t), t < ω(εx̂− X(t), εŷ− Y(t)), (2.5)
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FIGURE 1. The splashing configuration for t > 0. The turnover curve has projection
t = ω(εx̂ − X(t), εŷ − Y(t)) on the (x̂, ŷ)-plane, with the contact set given by t >
ω(εx̂ − X(t), εŷ − Y(t)). The curve forming the edge of the splash sheet has projection
t = c(εx̂− X(t), εŷ− Y(t)) on the (x̂, ŷ)-plane.

where ∂/∂ n̂ represents the normal derivative and vn denotes the outward normal
velocity of the free surface. The dynamic boundary condition is given by

p̂=−∂φ̂
∂t
− 1

2
|∇φ̂|2 = 0 on ẑ= h(x̂, ŷ, t), t < ω(εx̂− X(t), εŷ− Y(t)), (2.6)

in the absence of surface tension, where p̂(x̂, ŷ, t) is the fluid pressure relative to
atmospheric.

Finally, assuming that the free surface is planar prior to impact, the initial and
far-field conditions are given by

φ̂(x̂, ŷ, ẑ, 0)= 0 for −∞< x̂, ŷ<∞, ẑ 6 0, (2.7)

φ̂ = O
(

1/R̂
)

as R̂= (x̂2 + ŷ2 + ẑ2
)1/2→∞, (2.8)

h(x̂, ŷ, 0)= 0 for −∞< x̂, ŷ<∞, (2.9)

h→ 0 as (x̂2 + ŷ2)
1/2→∞. (2.10)

Moreover, ω(0, 0)= 0 and c(0, 0)= 0.

2.1. Asymptotic structure
The asymptotic structure described in Howison et al. (1991) for two-dimensional
impacts at small deadrise angles extends readily to three-dimensional impacts. The
problem breaks down into three distinct regions. In the outer region, of size of O(1/ε),
the boundary conditions can be linearized onto the plane z = 0, with the kinematic
condition on the body applied on the expanding contact set. This is the generalization
of the flat-plate model proposed by Wagner (1932) for the constant-velocity two-
dimensional impact of a wedge. Locally to ∂Ω(t), there is an inner region of size
of O(ε) in a plane perpendicular to ∂Ω(t) in which the free surface turns over. The
flow in this region is quasi-two-dimensional provided that ∂Ω(t) is smooth. The final
region is the splash sheet emanating from the inner region with extent of O(1/ε) and
thickness of O(ε).

Since the inner region is quasi-two-dimensional, we can state the matching
conditions that must hold for the leading-order outer and splash sheet problems. For
three-dimensional impacts, these conditions are simply a generalization of those given
in, for example, Howison et al. (1991) or Oliver (2007).
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3. Outer region
We neglect the splash sheet and make the outer scalings x̂ = x/ε, ŷ = y/ε, ẑ = z/ε,

φ̂ = φ/ε and p̂= p/ε, so that (2.4) becomes

εf,1
∂φ

∂x
+ εf,2 ∂φ

∂y
− ∂φ
∂z
= Ż + Ẋf,1 + Ẏf,2, (3.1)

on z = ε[f (x − X(t), y − Y(t)) − Z(t)], t > ω(x − X(t), y − Y(t)). Thus our scaling
has had the desired effect that the oblique components of the velocity influence the
leading-order outer problem for Ẋ, Ẏ of order unity; for slower horizontal velocity
components, the flow would be as for normal impact, to lowest order.

When we expand φ, p, h and ω in powers of ε, we can linearize the boundary
conditions (2.4)–(2.6) and impose them on z = 0 at leading order. The resulting
leading-order outer problem is given by

∇2φ0 = 0 in z< 0, (3.2)

∂φ0

∂z
=−Ż − Ẋf,1 − Ẏf,2 on z= 0, t > ω0(x− X(t), y− Y(t)), (3.3)

∂φ0

∂z
= ∂h0

∂t
on z= 0, t < ω0(x− X(t), y− Y(t)), (3.4)

φ0 = 0 on z= 0, t < ω0(x− X(t), y− Y(t)), (3.5)

subject to the initial and far-field conditions (2.8)–(2.10). A subscript 0 denotes a
leading-order variable. Note that (3.5) is derived by integrating the leading-order
Bernoulli equation and applying (2.7). In the outer region, h refers only to the lower
free surface (below the turnover curve) from § 2 and is hence not multivalued.

As described by Howison et al. (1991), in each plane perpendicular to the turnover
curve, the flow in the turnover region is approximately two-dimensional and occupies
a region of size of O(ε). The resulting switch from Dirichlet to Neumann boundary
conditions in the codimension-two leading-order outer free boundary problem has
an important consequence: it demands that the velocity potential has square-root
behaviour in distance from the turnover curve as we approach it in any perpendicular
plane. Our final requirement is that the Wagner condition must hold at the turnover
curve:

h0(x, y, t)= f (x− X(t), y− Y(t))− Z(t) on t = ω0(x− X(t), y− Y(t)). (3.6)

This states that the leading-order outer free surface meets the impactor at the leading-
order turnover curve.

3.1. Displacement potential formulation
It is convenient to transform the problem (2.8)–(2.10), (3.2)–(3.6) using the leading-
order displacement potential, as first introduced in the context of impact problems by
Korobkin (1982), which is defined by

Ψ (x, y, z, t)=−
∫ t

0
φ0(x, y, z, τ ) dτ. (3.7)

By the definition of the turnover curve, the contact set is given by t >
ω0(x − X(t), y− Y(t)) and the free surface by t < ω0(x − X(t), y− Y(t)). Hence, under
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the transformation (3.7), the kinematic boundary condition on the body, (3.3), becomes

∂Ψ

∂z
(x, y, 0, t)=−

∫ ω0

0

∂h0

∂τ
(x, y, τ ) dτ +

∫ t

ω0

Ż(τ )+ Ẋ(τ )f,1 + Ẏ(τ )f,2 dτ

=−h0 (x, y, ω0)+ [Z(t)− Z(ω0)]
− [f (x− X(t), y− Y(t))− f (x− X (ω0) , y− Y(ω0))]
= Z(t)− f (x− X(t), y− Y(t)), (3.8)

where in the first line, the range of integration is split into τ < ω0(x− X(τ ), y− Y(τ )),
where we apply (3.4), and τ > ω0(x − X(τ ), y − Y(τ )), where we use (3.3); in the
second line we have used (2.9); and in the final line we have applied (3.6).

Thus it is readily shown that the displacement potential problem is given by
(dropping the subscripts on the leading-order variables)

∇2Ψ = 0 in z< 0, (3.9)
∂Ψ

∂z
= Z(t)− f (x− X(t), y− Y(t)) on z= 0, t > ω(x− X(t), y− Y(t)), (3.10)

∂Ψ

∂z
=−h on z= 0, t < ω(x− X(t), y− Y(t)), (3.11)

Ψ = 0 on z= 0, t < ω(x− X(t), y− Y(t)), (3.12)

subject to

Ψ = O(1/R) as R= (x2 + y2 + z2)
1/2→∞, (3.13)

and the far-field condition on h given by (2.10). Finally, as φ has square-root
behaviour, the smoothing effect of integration in (3.7) means that we require Ψ to
have 3/2-power behaviour in distance from the turnover curve as we approach it in
any perpendicular plane.

The problem (2.10), (3.9)–(3.13) contains no time derivatives. Therefore, under the
transformation

x− X(t) 7→ x, y− Y(t) 7→ y, (3.14)

the displacement potential formulation reduces exactly to the equivalent normal
impact formulation. Hence, given a solution to the normal impact problem we
are able to write down the solution to the corresponding oblique impact. In
particular, if Ψ (x, y, z, t), z = h(x, y, t) and t = ω(x, y) are, respectively, the leading-
order outer displacement potential, free surface and turnover curve for the normal
impact of the body profile z = f (x, y) − Z(t), then Ψ (x − X(t), y − Y(t), z, t),
z = h(x − X(t), y − Y(t), t) and t = ω(x − X(t), y − Y(t)) are the leading-order outer
displacement potential, free surface and turnover curve for the oblique impact of the
body z = f (x − X(t), y − Y(t)) − Z(t). This is a direct analogue of the conclusion for
two-dimensional oblique impact problems, given in Moore et al. (2012). Moreover, it
confirms the conclusion reached for elliptic paraboloids via an application of Galin’s
theorem in Scolan & Korobkin (2012). We note, however, that the leading-order outer
velocity potential and leading-order outer pressure do not have such a simple relation
with their normal-impact counterparts, due to the time-dependence of this moving
frame.

We now exploit this analysis to investigate the oblique impact of axisymmetric
bodies.
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4. Axisymmetric impactors
4.1. Normal impact

Normal axisymmetric water-entry is considered in Schmieden (1953) and briefly
discussed in Howison et al. (1991). In our analysis it is most appropriate to follow
the approach of Korobkin & Scolan (2006) (see §4 and Appendix A in that paper)
by solving the displacement potential formulation, setting X(t) = 0 = Y(t) in (2.10),
(3.9)–(3.13). In cylindrical polar coordinates (r, θ, z), Laplace’s equation for the
displacement potential becomes

1
r

∂

∂r

(
r
∂Ψ

∂r

)
+ ∂

2Ψ

∂z2
= 0 in z< 0. (4.1)

The boundary conditions (3.10)–(3.12) reduce to

∂Ψ

∂z
= Z(t)− f (r) on z= 0, r < d(t), (4.2)

∂Ψ

∂z
=−h on z= 0, r > d(t), (4.3)

Ψ = 0 on z= 0, r > d(t), (4.4)

where f (r) is the axisymmetric body profile and r = d(t) is the leading-order position
of the turnover curve. These are subject to

Ψ = O(1/R) as R= (r2 + z2)
1/2→∞, (4.5)

h→ 0 as r→∞, (4.6)

and d(0) = 0. We also have the requirement that Ψ has 3/2-power behaviour as we
approach the turnover curve r = d(t), z= 0 in any plane perpendicular to it.

We can find separable solutions and hence write the general solution as a
superposition of these of the form

Ψ (r, z, t)=
∫ ∞

0
α(λ)eλzJ0(λr) dλ, (4.7)

where J0(λr) is the Bessel function of the first kind of order zero. The unknown
function α(λ) can be determined by applying (4.2) and (4.4). We deduce the following
dual integral equations: ∫ ∞

0
α(λ)J0(λr) dλ= 0 for r > d(t), (4.8)∫ ∞

0
λα(λ)J0(λr) dλ= Z(t)− f (r) for r < d(t), (4.9)

which can be solved by adapting the method of Sneddon (1966, pp. 76–77) to show
that

α(λ)=
∫ d(t)

0
χ(σ) sin λσ dσ, (4.10)

where

χ(σ)= 2
π

∫ σ

0

r(Z(t)− f (r))√
σ 2 − r2

dr. (4.11)
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Then (4.7), (4.10) and (4.11) give the displacement potential solution for the normal
impact of the body z= f (x, y)− Z(t).

To solve for the location of the turnover curve, we must meet the requirement that
the displacement potential have (3/2)-power behaviour in distance as we approach
the turnover curve. Upon evaluating the displacement potential on z = 0 and writing
r = d(t)− δ, we find that

Ψ (d(t)− δ, 0, t)= δ1/2

∫ 1

0

χ(d(t))√
2d(t)(1− S)

dS

+ δ3/2

∫ 1

0

χ(d(t))(S+ 1)− 4Sd(t)χ ′(d(t))
4d(t)
√

2d(t)(1− S)
dS+ O(δ5/2) (4.12)

as δ ↓ 0. The coefficient of the δ1/2 term must vanish, so that we require

χ(d(t))= 0, (4.13)

where χ(σ) is given by (4.11). We note that it follows that

Ψ (r, 0, t)=−4χ ′(d(t))
3
√

2d(t)
(d(t)− r)3/2+O((d(t)− r)5/2), (4.14)

as r ↑ d(t), which extends the results of Korobkin & Scolan (2006). Thus, having
deduced expressions for Ψ (r, z, t) and d(t), we can find the leading-order outer free
surface by using (4.3) to deduce that

h(r, t)=−
∫ d(t)

0

χ ′(σ )√
r2 − σ 2

dσ. (4.15)

4.2. Oblique impact

With these expressions for Ψ (r, z, t), h(r, t) and d(t) in the case of the normal impact
of the body z= f (r)− Z(t), we can use the argument at the end of § 3.1 to deduce the
form of the leading-order displacement potential, leading-order outer free surface and
leading-order turnover curve in the impact of the body z= f (x − X(t), y− Y(t))− Z(t)
by making the change of variables given in (3.14) in reverse. Hence, we simply have
to write

r =
√
(x− X(t))2+ (y− Y(t))2, (4.16)

in the expressions (4.7), (4.10), (4.11), (4.13) and (4.15).
Clearly, the turnover curve is simply a circle moving in the direction (X(t),Y(t))

in the (x, y)-plane. However, we must remember that, as in the case of two-
dimensional oblique impacts, this analysis is only valid if the turnover curve is
everywhere advancing. This is a consequence of the local-in-space-and-time linear
stability analysis of Howison et al. (1991), who argue that not only does the two-
dimensional problem become unstable to out-of-plane perturbations in the vicinity of
the turnover curve when the turnover curve is retreating, but also that solving the
hyperbolic equation for the leading-order outer free surface is no longer possible, as
we lose causality when we try to find the boundary of the contact set. Therefore,
our analysis is only valid during the stage of impact when the outward normal
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speed of the turnover curve is positive. In particular, if the turnover curve is defined
by F(x, y, t)= 0, then its outward normal speed is given by

vn =− 1
|∇F|

∂F

∂t
, (4.17)

so that with F(x, y, t)=
√
(x− X(t))2+ (y− Y(t))2 − d(t), we have

vn(θ, t)= ḋ(t)+ Ẋ(t) cos θ + Ẏ(t) sin θ, (4.18)

where θ represents the polar angle around the turnover curve. Hence, it is possible that
there are values of Ẋ, Ẏ , θ and t such that vn 6 0. To get a clearer picture of this,
we consider two different examples of oblique impact. For the sake of simplicity, we
assume that X(t) = Ut, Y(t) = 0 and Z(t) = t, where U > 0, in both of the examples,
although our results generalize readily.

4.3. Oblique impact of a cone
We consider the oblique impact of a cone defined by z = βr − t where β > 0. For the
moment we ignore the fact that, as in the two-dimensional oblique entry of a wedge,
there is an infinite negative pressure at the apex of the cone, but we discuss cavitation
in § 5.

Upon integrating (4.11), we find that

χ(σ)= 2
π

(
σ t − βσ

2π

4

)
, (4.19)

so that upon applying the consistency condition, (4.13), we find

r =
√
(x− Ut)2+y2 = 4t

βπ
= d(t) (4.20)

defines the location of the turnover curve. Note that, when U = 0, this reduces to the
normal impact case, as deduced from the velocity potential solution in Shiffman &
Spencer (1951) and Howison et al. (1991). Using (4.18), we deduce that the outward
normal speed of the turnover curve is given by

vn = 4
βπ
+ U cos θ. (4.21)

The normal impact speed is independent of t, reflecting the fact that, in this example,
the problem (2.10) and (3.9)–(3.13) admits a similarity solution. More interestingly,
the obtained solution is valid only if vn > 0 for any θ , that is for U < 4/(βπ). Thus,
we expect the turnover curve to stop advancing at its trailing edge, θ = π, when
U = 4/(βπ).

Hence, the solution is valid for all time for 0 < U < 4/(βπ), but breaks down at a
critical horizontal velocity.

4.4. Oblique impact of a blunt power-law body
We consider a blunt power-law body with profile of the form z= βrn − t, where β > 0
and n> 1. Integrating (4.11) for χ(σ), we deduce that

χ(σ)= 2
π

(
σ t − β2nσ n+1B

(
n+ 2

2
,

n+ 2
2

))
, (4.22)
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FIGURE 2. The time of breakdown tc as a function of the exponent n of the power-law
impactor profile. The dotted line indicates the asymptotic form of the critical time, as given
in (4.27).

where B(·, ·) is the beta function. Therefore, the turnover curve is given by

r =
√
(x− Ut)2+y2 =

(
t

β2nB((n+ 2)/2, (n+ 2)/2)

)1/n

= d(t). (4.23)

We note that the right-hand side of this equation is simply the turnover curve position
for the normal impact of a general axisymmetric power-law body as given in Korobkin
& Scolan (2006).

Its outward normal speed is

vn = 1
n

(
1

2nβB((n+ 2)/2, (n+ 2)/2)

)1/n

t1/n−1 + U cos θ, (4.24)

so that vn > 0 for all U, when t > 0 is sufficiently small, but the normal speed of the
turnover curve vanishes when

t = tc = min
θ∈(π/2,3π/2)

[−nU cos θ (2nβB((n+ 2)/2, (n+ 2)/2))1/n]n/(1−n)
. (4.25)

Again, this first occurs on θ = π, and hence the turnover curve stops advancing on the
ray θ = π at time

tc = [nU (2nβB((n+ 2)/2, (n+ 2)/2))1/n]n/(1−n)
. (4.26)

For large values of n with U, β fixed, the asymptotic form of the critical time is

tc ∼ 1
n

(
2
π

)1/2n

(n+ 2)1/2n, (4.27)

so that the flatter the body profile, the more rapid the breakdown. A plot of the critical
time as a function of the exponent, n, is shown in figure 2.

5. Breakdown and cavitation in the outer region
Given the expansion of the displacement potential as we approach the turnover

curve in (4.14), we can work out the coefficient of the square-root singularity in the
leading-order outer velocity potential and the corresponding coefficient of the inverse
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square-root singularity in leading-order outer pressure on the body. By noting that φ =
−Ψt, we have that φ(r, 0, t)= S(θ, t) (d(t)− r)1/2+O((d(t)− r)3/2) as r ↑ d(t), where

S(θ, t)=
√

2
d(t)

χ ′(d(t))vn(θ, t). (5.1)

Therefore, we can express the leading-order outer pressure on the impactor in the
vicinity of the turnover curve in terms of S(θ, t) and vn(θ, t) by

p(r, 0, t)=− 1
2 S(θ, t)vn(θ, t) (d(t)− r)−1/2+O((d(t)− r)1/2), (5.2)

as r ↑ d(t). Hence, when vn = 0, the coefficients of the inverse square-root singularities
in the leading-order outer velocity and pressure vanish. This is also the case in the
breakdown of two-dimensional impacts, as discussed by Moore et al. (2012).

Explicit forms of (5.2) are as follows.

(a) For a cone f (r)= βr:

p(r, 0, t)=−U2β

2
cosh−1

(
4t

βπr

)
+ 2t

π
√
(4t/βπ)2−r2

×
((

4
βπ

)2

+ 2U

t
r cos θ + U2cos2θ

)
, (5.3)

for 0 < r =
√
(x− Ut)2+y2 < d(t) = 4t/(πβ). We plot the cone pressure profile

in figure 3 for various values of U, where we have chosen β = 4/π so that
breakdown occurs at U = 1. When we give the cone a forward velocity component,
there is a region of negative pressure on the impactor inside the turnover curve.
This forms for any U > 0 due to the aforementioned local corner flow at the apex
of the cone. As U increases, the isobar of zero pressure gradually spreads further
from the apex, until at breakdown, it touches the turnover curve on the ray θ = π.

(b) For a paraboloid f (r)= βr2:

p(r, 0, t)= 1√
3t/2β − r2

(
3

2βπ
+ 4rU cos θ

π
+ 8βU2r2cos2θ

3π

)

− 8βU2

3π

√
3t

2β
− r2, (5.4)

for 0 < r =
√
(x− Ut)2+y2 < d(t) = √3t/(2β). We plot the paraboloid pressure

profile in figure 4. We consider the case where U = 1 and the parameters
are chosen so that the corresponding breakdown time is given by tc = 1. Prior
to breakdown, a region of negative pressure forms on the trailing side of the
paraboloid. As we approach breakdown, the zero pressure isobar touches the
turnover curve; this behaviour indeed occurs for all the geometries discussed
in § 4.

These observations suggest that it is possible that cavitation occurs before the
turnover curve stops advancing, as has been suggested in the case of elliptic
paraboloid impact in Scolan & Korobkin (2012). In particular, there is the possibility
of a patch cavity forming in the region of negative pressure. The introduction of such
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FIGURE 3. Isobars of the leading-order outer pressure on a cone for different values of U:
(a) U = 0; (b) U = 0.5; (c) U = 0.9; (d) U = 1. The turnover curve is depicted in bold black.
We have truncated the contour domain for ease of viewing the more interesting behaviour
on the interior of the turnover curve. As we increase U from zero, corresponding to the
normal impact of a cone (a), to 1, corresponding to the critical forward velocity (d), we
see a significant change in the pressure profile. The region of negative pressure spreads on
the trailing side of the cone. At breakdown, the isobar of zero pressure touches the turnover
curve.

a cavity into the model would make the solution of the leading-order outer problem
somewhat more complex. We do not consider ideas of cavitation any further here, but
we will propose a model that could allow for cavitation in the Appendix.

Even though we have restricted our analysis to axisymmetric profiles in §§ 4 and
5, our results regarding the relationship between the leading-order outer oblique and
normal impact problems also hold for non-axisymmetric impactors. For the normal
impact of an elliptic paraboloid, Scolan & Korobkin (2001) show that the turnover
curve is an ellipse. Our results show that this also holds for oblique impact, as was
shown by a different method in Scolan & Korobkin (2012). Here, the normal impact
problem is not axisymmetric and so we must consider the relationship between the
horizontal velocity of the impactor and the orientation of the ellipse. In figure 5 we
plot the angle at which breakdown first occurs on the turnover curve ellipse as a
function of the angle between the oblique velocity and the major semi-axis of the
ellipse. In particular, the breakdown only occurs in the direction directly opposite the
motion when the oblique velocity is in the direction of one of the semi-axes of the
ellipse.
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FIGURE 4. Isobars of the leading-order outer pressure on a paraboloid for different times: (a)
t = 0.5; (b) t = 0.75; (c) t = 0.9; (d) t = 1. The turnover curve is depicted in bold black. We
have again truncated the contour domain for ease of viewing the more interesting behaviour
on the interior of the turnover curve. As we increase time, a region of negative pressure forms
on the trailing side of the paraboloid. This region appears before breakdown occurs and grows
in size as we increase time. At breakdown, the isobar of zero pressure touches the turnover
curve.

6. Splash sheet region
The three-dimensional oblique splash sheet problem is a generalization of that

described for normal impact problems in Oliver (2002). The splash sheet is ejected
from the turnover region and lies an order unity distance from the leading-order
turnover curve t = ω0(x, y), z= 0.

The splash sheet is slender, with thickness of the order of the deadrise angle and
extent of the order of the inverse of the deadrise angle. Hence, if (ξ1, ξ2) are local
orthogonal curvilinear coordinates based on the impactor (scaled with 1/ε), then (ū,
v̄), which are the velocity components in the ξ1- and ξ2-directions respectively (scaled
with 1/ε), and the sheet thickness h̄ (scaled with ε) must satisfy the zero-gravity
shallow water equations

∂ h̄

∂t
+∇ · (ūh̄)= 0,

∂ū
∂t
+ (ū ·∇)ū= 0, (6.1)

to leading order, where the gradient operator, ∇, is based on the local coordinates. It
can be shown that these are the leading-order equations governing the splash sheet

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

39
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.391


272 M. R. Moore, S. D. Howison, J. R. Ockendon and J. M. Oliver

–3.0

–2.8

–2.6

–2.4

–2.2

–2.0

–1.8

–1.6

A
ng

le
 a

ro
un

d 
el

lip
tic

tu
rn

ov
er

 c
ur

ve
, 

Angle of oblique speed to major semi-axis, 
0 0.5 1.0 1.5

FIGURE 5. Breakdown for a non-axisymmetric body profile. The turnover curve for the
impact of an elliptic paraboloid is an ellipse and the angle α, at which the breakdown of the
leading-order Wagner theory first occurs on this ellipse, is plotted as a function of the angle θ
the oblique speed makes with the major semi-axis of the ellipse. Clearly, the breakdown does
not always initiate in the direction opposite the motion. The eccentricity of the plotted ellipse
is 0.933.

problem even if the frame is accelerating, provided that the components of acceleration
are of order unity as ε→ 0. Since we will only consider splash sheets whose lateral
extent is much smaller than the principal radii of curvature of the impactor, to leading
order we can, without loss of generality, take (ξ1, ξ2) to be Cartesian with the same
orientation and origin as in the outer region.

The boundary conditions for the problem are found through matching with the inner
region. As described in Oliver (2002), this implies

(ū, v̄)= 2vnn at t = ω(x− X(t), y− Y(t)), (6.2)

where n is the outward-pointing normal to the turnover curve, and

h̄= πS2

16v2
n

at t = ω(x− X(t), y− Y(t)), (6.3)

where S is the coefficient of the square root in the leading-order outer velocity
potential, as given in (5.1).

For axisymmetric impactors given by z= f (r)− t, where

r =
√
(x− X(t))2+ (y− Y(t))2, (6.4)

the system (6.1) can be solved using the method of characteristics subject to the
boundary conditions

ū= 2vn cos θ, v̄ = 2vn sin θ, h̄= πχ
′ (d(T))2

8d(T)
, (6.5)

on

x= X(T)+ d(T) cos θ, y= Y(T)+ d(T) sin θ, (6.6)

where T > 0 parametrizes time, 0 6 θ < 2π parametrizes the angle around the turnover
curve, χ(σ) is given by (4.11) and vn is given by (4.18).
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If τ parametrizes time-of-travel along a characteristic, then we find that ū, v̄ and
subsequently h̄ are given by

ū= 2vn cos θ, v̄ = 2vn sin θ, h̄= πχ
′ (d(T))2

8d(T)

J(0, θ,T)

J(τ, θ,T)
, (6.7)

where

t = τ + T, x= X(T)+ (2vnτ + d(T)) cos θ, y= Y(T)+ (2vnτ + d(T)) sin θ (6.8)

and the Jacobian, J(τ, θ,T), is given by

J(τ, θ,T)=−4vn
∂vn

∂T
τ 2 + 2

(
2v2

n − ḋ(T)vn − d(T)
∂vn

∂T

− Ẋ

(
vn cos θ + ∂vn

∂θ
sin θ

)
+ Ẏ

(
cos θ

∂vn

∂θ
− vn sin θ

))
τ

+ 2vnd(T)− Ẋd(T) cos θ − Ẏd(T) sin θ − d(T)ḋ(T). (6.9)

The Jacobian is clearly bounded for all τ, T > 0 and 0 6 θ < 2π. However, we also
require it to be non-zero for the solution to be valid; when the Jacobian vanishes, the
solution becomes multivalued and the characteristics intersect. We will now illustrate
this singularity formation by returning to the examples of §§ 4.3–4.4.

6.1. Splash sheet of an obliquely impacting cone
For the constant-speed oblique impact of a cone, the thickness of the splash sheet is
given by

h̄= βT

8
J(0, θ,T)

J(τ, θ,T)
, (6.10)

where

J(τ, θ,T)=
(

32

β2π
2 +

16U

βπ
cos θ + 2U2

)
τ + 4T

βπ

(
4
βπ
+ U cos θ

)
. (6.11)

Since β, τ , T , U are all positive, it is evident that

min
θ

J(τ, θ,T)= J(τ, θ,T)|θ=π = 2
(

4
βπ
− U

)2

τ + 4T

βπ

(
4
βπ
− U

)
. (6.12)

Therefore, when 0 < U < 4/(βπ) we must have that J(τ, θ,T) > 0 for all τ,T > 0,
0 6 θ < 2π, so that the splash sheet solution is valid for all time. However,
when U = 4/(βπ), J(τ, θ,T) ≡ 0 on the ray θ = π and the solution breaks down
immediately when the turnover curve stops advancing, a consequence of the root of
the splash sheet collapsing.

To visualize the breakdown, we consider the touchdown curve, defined to be the
tip of the splash sheet which is thrown out at time t = 0. In the above solution, this
corresponds to the curve of points where h̄= 0. We find that

x= 2t cos θ
(

U cos θ + 4
βπ

)
, y= 2t sin θ

(
U cos θ + 4

βπ

)
(6.13)

gives the touchdown curve parametrically. In particular, when U = 0, this is the circle

x2 + y2 = 4d (t)2, (6.14)
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FIGURE 6. Cone splash sheet for (a) U = 0, (b) U = 0.5 and (c) U = 1. The turnover curve is
depicted by the bold circle in each plot. The figures represent a top-down view of the splash
sheet between the touchdown curve and turnover curve. In each figure, the shading represents
the thickness of the splash sheet. We can clearly see the breakdown of the splash sheet as
we approach the critical value U = 1. The touchdown curve forms a cusp, which touches the
turnover curve at θ = π, where θ = 0 is the direction of motion.

which is consistent with the normal impact of a cone. For U = 4/(βπ), (6.13) is the
cardioid

x= 4t

βπ
(cos 2θ + 2 cos θ + 1), y= 4t

βπ
(sin 2θ + 2 sin θ), (6.15)

with cusp at θ = π. For all intermediate values of U, the touchdown curve is a
limaçon.

To help visualize the breakdown, we plot the splash sheet for different values of
U in figure 6. Since the cone admits a similarity solution in which distance scales
linearly with time, t, it is sufficient to plot at one instant only. Moreover we have
chosen 4/(βπ)= 1 to fix the critical velocity at U = 1.

In figure 6 we see the nature of the breakdown. As we approach the critical value
of U, a cusp forms on the touchdown curve, which touches the turnover curve on the
ray θ = π when U = 1. Thus, when the turnover curve stops advancing on this ray,
the small-aspect-ratio assumption we made when deriving the splash sheet equations
breaks down. We can check this by noting that, from (6.13), the extent of the splash
sheet along the ray θ = π is given by

|2 cosπ(U cosπ+ 1)− (U + cosπ)| = 1− U. (6.16)

The maximum thickness of the splash sheet along that ray is on the turnover curve and
is equal to 1/(2π). Clearly, as U ↑ 1, the aspect ratio tends to infinity.

We also note that at U = 1, the turnover curve has stopped advancing for θ = π, so
that (ū, v̄)= 0 at this point.

This breakdown is analogous to that found in the oblique small-deadrise impact of
a two-dimensional wedge; there the length of the trailing splash jet vanishes as we
approach the critical horizontal velocity, as described in Moore et al. (2012).

6.2. Splash sheet of a blunt power-law body

In the constant-speed oblique impact of a blunt power-law body profile, the motion
first breaks down at the critical time (4.26) on the ray θ = π, which is in the direction
opposite the oblique motion. The outward normal speed of the turnover curve (4.24)
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can be written as

vn(θ, t)= d(t)

nt
+ U cos θ, (6.17)

so that vn(θ, t) > 0 on θ = π as long as

d(t)

nt
> U. (6.18)

The turnover curve stops advancing when U = d(t)/(nt).
Upon substituting into the general solution (6.8)–(6.9), we find that the splash sheet

profile is defined by

x = (2vnτ + d(T)) cos θ + UT, (6.19)
y= (2vnτ + d(T)) sin θ, (6.20)

h̄= 1
π

n2T2−1/n

(
βB
(

n+ 2
2

,
n+ 2

2

))1/n J(0, θ,T)

J(τ, θ,T)
, (6.21)

where

J(τ, θ,T)= 4(n− 1)
n2T2

d(T)

(
d(T)

nT
+ U cos θ

)
τ 2

+ 2
(

d (T)2

nT2
+ 2

Ud(T)

nT
cos θ + U2

)
τ

+ d(T)

(
d(T)

nT
+ U cos θ

)
. (6.22)

We note that as h̄> 0 for all τ, θ,T in these ranges and as vn is unbounded for T = 0,
the splash sheet extends to infinity. This is analogous to the infinite splash jet in two-
dimensional blunt body impact. This solution is valid for 0 6 τ, T < tc, 0 6 θ < 2π
provided that J(τ, θ,T) is non-zero.

The equation (6.22) is a quadratic in τ . As n > 1, the coefficients of the quadratic
and constant terms are non-negative when vn > 0. Moreover, we can rewrite the
coefficient of the τ -term as

2

((
d(T)

nT
+ U cos θ

)2

+ (n− 1)d (T)2

n2T2

)
, (6.23)

and hence, for n> 1, this is also positive. Therefore, for 0 6 τ, T < tc, 0 6 θ < 2π, the
Jacobian is non-zero, so the solution is valid for all values in these ranges.

At breakdown on the turnover curve, that is at τ = 0 and θ = π, the outward normal
speed vanishes so that we deduce J(0,π, tc)= 0. Hence our solution is no longer valid
at breakdown.

We can interpret this physically by noting that the bicharacteristics of (6.1) are given
by particle paths, viz.

∂x

∂τ
= ū,

∂y

∂τ
= v̄, ∂t

∂τ
= 1. (6.24)

At breakdown, we have ū = v̄ = 0 on the turnover curve at θ = π. Hence the
bicharacteristics are parallel to the turnover curve at θ = π. There is no longer any
fluid entering the splash sheet at this point and we see a clear similarity to the
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breakdown of the splash jet problem in two-dimensional oblique blunt body impacts as
described in Moore et al. (2012).

7. Summary and discussion

This work generalizes oblique impact Wagner theory to three-dimensional body
profiles. The leading-order outer problem is greatly simplified by working with
the displacement potential, which reveals that the problem can be reduced to
the corresponding normal impact model. Hence, given a solution for the leading-
order turnover curve projection, leading-order outer free surface and leading-order
displacement potential in the normal impact of the body z= f (x, y)− Z(t), we are able
to write down the corresponding leading-order turnover curve projection, leading-order
outer free surface and leading-order displacement potential for the oblique entry of the
body profile z= f (x− X(t), y− Y(t))− Z(t) for oblique velocity components X(t), Y(t)
such that Ẋ, Ẏ = O(1). Due to the time-dependence of the moving frame, more care
has to be employed in deducing the leading-order outer velocity potential and pressure.

By solving the general leading-order axisymmetric normal impact problem, the
solution can be written down for an arbitrary oblique impact. The turnover curve
is simply a translation of the corresponding normal impact turnover curve. However,
because the translation affects the crucial outward normal speed of the turnover curve,
there is the possibility of the turnover curve ceasing to advance. If this occurs, an
instability arises in a neighbourhood of the retreating turnover curve and our theory
breaks down. Furthermore, we are no longer able to solve for the leading-order
outer free surface if the turnover curve is retreating. Moreover, at breakdown, the
coefficients of the inverse square-root singularities in the leading-order outer velocity
and pressure on the impactor vanish. These properties of breakdown are analogous
to those seen due to a retreating turnover point in two-dimensional oblique impact
problems.

We have investigated breakdown for two specific examples of axisymmetric impacts
with a constant oblique speed in the x-direction. For an obliquely impacting cone,
which has a similarity solution, we find that provided the oblique speed is less than a
critical value the solution remains valid for all time. However, at this critical value, the
theory breaks down immediately. For a smooth axisymmetric power-law body, there
exists a finite time at which the outward normal speed of the turnover curve vanishes
for any non-zero oblique speed. In such cases, the leading-order outer pressure on
the body becomes negative on part of the impactor prior to breakdown. This region
grows in size as we approach breakdown, at which the isobar of zero pressure on the
impactor touches the turnover curve. We explicitly showed that this was the case for
the cone and the paraboloid. There is the possibility that cavitation occurs prior to
breakdown, which is discussed further in the Appendix.

Assuming that cavitation can be ignored, we can solve the splash sheet problem.
For the case of the cone with a constant oblique speed in the x-direction, the splash
sheet has finite extent, terminating on the impactor at the touchdown curve. While the
turnover curve is always a circle in the moving frame, for non-zero oblique impact
speeds, the touchdown curve is a limaçon with minimum distance from the turnover
curve on the ray in the direction opposite to the tangential motion. At the critical
tangential speed, the touchdown curve becomes a cardioid with the cusp touching
the turnover curve on the ray in the direction opposite to the tangential motion. The
small-aspect-ratio assumption in the splash sheet becomes invalid on this ray.
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In the case of a smooth power-law impactor, the splash sheet is thrown out to
infinity at the moment of impact, so there is no touchdown curve. As we approach
the critical time, the fluid entering the splash sheet at the turnover curve has vanishing
speed. This form of breakdown in the splash sheet also holds for a more general (not
necessarily axisymmetric) body profile. This bears similarities to the inhibition of the
ejecta caused by an oblique component of velocity in droplet impact as reported by
Bird et al. (2009).

In this paper we have relied crucially on the impactor not rotating about any axis.
Rotation about the horizontal axis is important when the body responds dynamically to
the pressure forces on it. Preliminary work on this has been considered by Korobkin &
Scolan (2006) and Scolan & Korobkin (2012). Korobkin & Scolan (2006) approximate
the vertical entry of a slightly inclined cone by considering a perturbation about
the normal symmetric impact. They deduce that the turnover curve is an ellipse and
calculate the correction to the leading-order hydrodynamic force on the impactor.
Scolan & Korobkin (2012) use Galin’s theorem to consider arbitrary elliptic paraboloid
impacts and in particular look at an example where the impactor begins a rotation
about the (x, y)-plane. They deduce that the turnover curve is given by an ellipse to
leading order.

We have also assumed that the liquid viscosity and surface tension are negligible
throughout our analysis. Howison et al. (2005) calculate typical Weber and Reynolds
numbers for the similar problem of droplet impact and deduced that these assumptions
are valid close to impact. However, we note that these effects may become important
in the splash jets. This is an interesting discussion in its own right.

A final point of interest is the role of an air-cushioning layer between the solid
and fluid. This has been shown to have an important influence in impact problems at
times very close to impact as reported, for example, by Xu, Zhang & Nagel (2005),
Kolinski et al. (2012) and de Ruiter et al. (2012). Various recent theoretical studies
have attempted to model the interaction between the air layer and the fluid. However, a
discussion of air-cushioning lies beyond the scope of this paper. The reader is directed
to Purvis & Smith (2004), Hicks & Purvis (2010), Duchemin & Josserand (2011) and
Mandre & Brenner (2012) and the references within for more information.
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Appendix. A model for cavitation

Reinhard, Korobkin & Cooker (2012) present three possible models of the non-
Wagner stage after breakdown for the two-dimensional oblique impact of a parabola.
It is possible that the negative pressure on the impactor prior to breakdown causes
cavitation to occur before this non-Wagner stage applies. Here we briefly outline the
model that would need to be solved if cavitation is assumed to occur on the impactor.
We suppose that the pressure required for cavitation to occur is given by pc < patm in
dimensional coordinates, where patm represents atmospheric pressure. We suppose that
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x

y

FIGURE 7. The three regions of the leading-order outer problem with the introduction of
a patch cavity on the impactor. Ω1(t) represents the cavity, Ω2(t) defines the remainder of
the contact set and Ω3(t) defines the non-contact set. The leading-order positions of the
turnover curve and the edge of the patch cavity are defined by t = ω(x − X(t), y − Y(t)) and
t = σ(x − X(t), y − Y(t)) respectively. The outward-pointing normal to the cavity is denoted
by n.

the pressure in any cavity takes this value. Then, provided

εT2 (pc − patm)

ρL2
� 1, (A 1)

the pressure in any cavity is given by p = 0 in outer variables at leading order.
Thus, when the leading-order outer pressure becomes negative in a subset of the
contact region, we assume that a patch cavity forms on the impactor about the region
of negative pressure. The dynamics and analysis of patch cavities is outlined in
Howison, Morgan & Ockendon (1994). Our model is an adaptation of the discussion
in Korobkin (2003) for a decelerating, normal, two-dimensional impact, to the oblique
impact of the body profile z= f (x− X(t), y− Y(t))− Z(t).

At the first instance the pressure on the impactor becomes negative, we assume
that a cavity grows from a single point. We assume the cavity thickness is much
smaller than its dimensions in the x- and y-directions so that in the leading-order outer
problem, the cavity boundary conditions linearize onto the plane z = 0. We sketch
the key regions in the leading-order outer problem in figure 7. The leading-order
turnover curve is again defined by t = ω(x − X(t), y − Y(t)) and the leading-order
boundary of the cavity is denoted by t = σ(x − X(t), y − Y(t)). We note that the patch
cavity does not necessarily encompass the minimum of the impactor. The region Ω1(t)
defines the cavity on the impactor, that is (x, y) such that t > σ(x − X(t), y − Y(t)).
The region Ω2(t) defines the rest of the contact set, that is (x, y) such that
ω(x− X(t), y− Y(t)) < t < σ(x− X(t), y− Y(t)). Finally, Ω3(t) defines the non-contact
set, that is (x, y) such that t < ω(x− X(t), y− Y(t)).

The leading-order outer velocity potential in the fluid, φ(x, y, z, t), the leading-order
outer free surface, h(x, y, t), and the leading-order thickness of the cavity, H(x, y, t),
must then satisfy

∇2φ = 0 in z< 0, (A 2)
φ = 0 on z= 0, (x, y) ∈Ω3(t), (A 3)
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∂φ

∂z
= ∂h

∂t
on z= 0, (x, y) ∈Ω3(t), (A 4)

∂φ

∂z
=−Ż − Ẋf ′1 − Ẏf ′2 on z= 0, (x, y) ∈Ω2(t), (A 5)

∂φ

∂z
=−Ż − Ẋf ′1 − Ẏf ′2 −

∂H

∂t
on z= 0, (x, y) ∈Ω1(t), (A 6)

with the initial conditions h(x, y, 0) = 0, ω(0, 0) = 0 and σ(0, 0) = 0, and the far-field
conditions

φ→ O(1/R) as R= (x2 + y2 + z2)
1/2→∞, (A 7)

h→ 0 as (x2 + y2)
1/2→∞. (A 8)

We still require φ to have a square-root singularity in distance from the turnover curve
as we approach it in any perpendicular plane. Finally, the Wagner condition still holds
at the turnover curve, as given in (3.6).

In addition to this, we require two further pieces of information to determine the
location and size of the cavity. As described above, we must also have p(x, y, 0, t)= 0
for (x, y) ∈ Ω1(t) to leading order. We take the second condition as in Korobkin
(2003), namely that the pressure close to the edge of the cavity is continuously
differentiable (that is we seek the solution with minimal singularity). Hence, we
require that ∂p/∂n→ 0 as we approach the cavity boundary, t = σ(x − X(t), y − Y(t)).
Here ∂/∂n is the normal derivative along the wetted surface normal to the edge of the
cavity. Note that this forces ∂2H/∂t2 to be bounded at the cavity edge.

It is evident that the introduction of a patch cavity makes analysis of the leading-
order outer problem much more complicated. Moreover, changing to the displacement
potential form of the problem does not appear to give any direct benefits.
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