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For k-graphs F0 and H , an F0-packing of H is a family F of pairwise edge-disjoint copies

of F0 in H . Let νF0
(H) denote the maximum size |F | of an F0-packing of H . Already in

the case of graphs, computing νF0
(H) is NP-hard for most fixed F0 (Dor and Tarsi [6]).

In this paper, we consider the case when F0 is a fixed linear k-graph. We establish an

algorithm which, for ζ > 0 and a given k-graph H , constructs in time polynomial in |V (H)|
an F0-packing of H of size at least νF0

(H) − ζ|V (H)|k . Our result extends one of Haxell

and Rödl, who established the analogous algorithm for graphs.

2010 Mathematics subject classification: Primary 05C35

Secondary 05C65, 05C85

1. Introduction

For k-uniform hypergraphs (k-graphs, for short) F0 and H , an F0-packing of H is a family

F of pairwise edge-disjoint copies of F0 in H . Let νF0
(H) denote the maximum size |F |

of an F0-packing in H . Already in the case of graphs, computing νF0
(H) is NP-hard for

any fixed graph F0 having a component with three or more edges (Dor and Tarsi [6]).

Haxell and Rödl proved, however, that nearly optimal F0-packings can be polynomially

constructed for graphs H satisfying νF0
(H) = Ω(n2).

Theorem 1.1 (Haxell and Rödl [12]). For every graph F0 and for all ζ > 0, there exists

n0 = n0(F0, ζ) and an algorithm which, for a given graph H on n > n0 vertices, constructs in

time polynomial in n an F0-packing of H of size at least νF0
(H) − ζn2.

Note that Theorem 1.1 remains true when n � n0, but it is not interesting. In this case,

one exhaustively searches for the optimal F0-packing of H in time O(1).
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The aim of this paper is to provide an extension of Theorem 1.1 to the case of linear

hypergraphs F0. A k-graph F0 is said to be linear if every pair of its edges meet in at most

one vertex – which is true of all (simple) graphs F0.

Theorem 1.2. For every linear k-graph F0 and for all ζ > 0, there exists an integer n0 =

n0(F0, ζ) and an algorithm which, for a given k-graph H on n > n0 vertices, constructs in

time polynomial in n an F0-packing of H of size at least νF0
(H) − ζnk .

The proofs of Theorems 1.1 and 1.2 both rely on the following well-known relaxation

of an F0-packing. A function ψ :
(
H
F0

)
→ [0, 1] is a fractional F0-packing of H if, for each

edge e ∈ H ,∑{
ψ(F) : F ∈

(
H

F0

)
satisfies e ∈ F

}
=

∑{
ψ(F) : F ∈

(
H

F0

)
e

}
� 1, (1.1)

where
(
H
F0

)
denotes the family of all copies of F0 in H and

(
H
F0

)
e

denotes the family of all

such copies containing the edge e. The size |ψ| of a fractional F0-packing ψ is given by

|ψ| =
∑{

ψ(F) : F ∈
(
H

F0

)}

and ν∗
F0

(H) denotes the maximum size |ψ| of a fractional F0-packing ψ of H . Note

that the characteristic function of an F0-packing is a fractional F0-packing, and hence

νF0
(H) � ν∗

F0
(H). It is known that building a fractional F0-packing ψ of maximum size

ν∗
F0

(H) is a linear programming problem, and hence constructable in time polynomial in

|V (H)|.
Theorem 1.2 is not the first partial hypergraph extension of Theorem 1.1 (cf. Re-

mark 1.4).

Theorem 1.3 ([12, 13, 21, 26]). For every k-graph F0 and for all ζ > 0, there exists n0 =

n0(F0, ζ) so that for every k-graph H on n > n0 vertices,

ν∗
F0

(H) − νF0
(H) � ζnk.

Theorem 1.3 implies that the parameter νF0
(H), when large enough, can be approximated

in polynomial time by the parameter ν∗
F0

(H). When k = 2, Theorem 1.3 was a corollary of

Theorem 1.1 since Haxell and Rödl, in fact, built F0-packings of H of size ν∗
F0

(H) − ζn2.

An alternative proof of Theorem 1.3 when k = 2 was later given by Yuster [26], which

allowed F0 to be replaced with a family of graphs. Theorem 1.3 when k = 3 was proved by

Haxell, Rödl and the second author [13]. Finally, for k � 2, Theorem 1.3 was established

by Rödl, Schacht, Siggers and Tokushige [21]. For future reference, we make the following

remark, indicating the main difference between Theorems 1.2 and 1.3.

Remark 1.4. Theorem 1.3 is not restricted to the case that F0 is linear, but claims no

algorithm for building a nearly optimal F0-packing of H . Theorem 1.2 provides such an

algorithm, but only in the case when F0 is linear. We explain the reason for this difference

in upcoming Remarks 2.8 and 2.9.
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The proofs of Theorems 1.1–1.3 all depend heavily on graph and hypergraph versions

of the regularity method, which relates to the celebrated Szemerédi Regularity Lemma. We

shall next present the regularity tools we need for this paper. More generally, we proceed

along the following itinerary.

Itinerary of paper. In Section 2, we present five algorithmic tools we need, each of which

has a graph analogue in Haxell and Rödl [12]. In particular, we present three regularity

tools: a Regularity Lemma (Theorem 2.1, due to Czygrinow and Rödl [5]), a Slicing Lemma

(Lemma 2.3), and a Packing Lemma (Lemma 2.6). We also present two supplemental (non-

regularity) tools: a Crossing Lemma (Lemma 2.10, due to Haxell and Rödl [12]) and a

Bounding Lemma (Lemma 2.12). In Section 3, we use these tools to prove Theorem 1.2.

In Section 4, we prove the Packing Lemma. In Section 5, we prove the Slicing Lemma. In

Section 6, we prove the Bounding Lemma.

2. Algorithmic tools: regular and supplemental

In this section, we present the regularity and supplemental tools advertised above.

2.1. Regularity, Slicing and Packing Lemmas

We require the following concepts. For a k-graphH , let non-empty pairwise disjoint subsets

U1, . . . , Uk ⊂ V (H) be given. Write H[U1, . . . , Uk] for the edges of H which intersect each

Ui, 1 � i � k. The density of (U1, . . . , Uk) is defined as

d(U1, . . . , Uk) =
|H[U1, . . . , Uk]|

|U1| · · · |Uk|
.

For d ∈ [0, 1] and ε > 0, we say that (U1, . . . , Uk) is (d, ε)-regular if, for all U ′
i ⊆ Ui, 1 � i �

k, where |U ′
i | > ε|Ui|, we have

|d(U ′
1, . . . , U

′
k) − d| < ε.

We say that (U1, . . . , Uk) is ε-regular if it is (d, ε)-regular for some d ∈ [0, 1], and ε-irregular

otherwise.

When k = 2, the celebrated Szemerédi Regularity Lemma [23, 24] guarantees that, for

all ε > 0, there exist integers T0 = T0(ε) and N0 = N0(ε) so that every graph H on n � N0

vertices admits a vertex partition V (H) = V1 ∪ · · · ∪ Vt into t � T0 parts where all but

ε
(
t
2

)
pairs (Vi, Vj), 1 � i < j � t, are ε-regular. (Moreover, these parts can be arranged

to have nearly the same size |V1| � · · · � |Vt| � |V1| + 1.) Alon, Duke, Lefmann, Rödl

and Yuster [2] showed that the partition V (H) = V1 ∪ · · · ∪ Vt in Szemerédi’s Regularity

Lemma can be constructed in time O(M(n)) = O(n2.3727), where M(n) is the time needed

to multiply two n× n matrices with 0,1-entries over the integers (see [25]). Kohayakawa,

Rödl and Thoma [18] improved this running time to O(n2).

For k � 2, the following hypergraph version of Szemerédi’s Regularity Lemma was

established by Frankl and Rödl [7], where the algorithmic assertion was established by

Czygrinow and Rödl [5]. (In the following statement, the input k-graph H is equipped

with a vertex partition V (H) = V1 ∪ · · · ∪ V�, which is refined into a regular partition – a

common ability of any regularity lemma.)
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Theorem 2.1 (Regularity Lemma [5, 7]). For all ε > 0 and all positive integers k and �,

there exist integers T0 = T0(ε, k, �) and N0 = N0(ε, k, �) so that the following holds.

Let a k-graph H on n � N0 vertices be given with a vertex partition V (H) = V1 ∪ · · · ∪ V�
satisfying |V1| � · · · � |V�| � |V1| + 1. Then, one may construct, in time O(n2k−1 log2 n), a

refined partition

Vi = Vi0 ∪ Vi1 ∪ · · · ∪ Vit, with m
def
= |Vi1| = · · · = |Vit|,

1 � i � �, where t � T0, where V0 = V10 ∪ · · · ∪ V�0 has size |V0| < εn, and where all but

ε
(
�
k

)
tk many k-tuples (Vi1j1 , . . . , Vikjk ), 1 � i1 < · · · < ik � �, 1 � j1, . . . , jk � t, are ε-regular

and labelled as such.

Remark 2.2. The ‘labelling’ assertion of Theorem 2.1 is not explicitly stated in [5], but

is implicit in their proof [4]. For completeness, we mention a recent result of Conlon,

Hàn, Person and Schacht [3] which would make the labelling easy to see (but at the

cost of producing a larger polynomial running time). The authors in [3] established a

k-graph Mk with 2k edges and k2k−1 vertices for which the following equivalence holds

with d = dH (Vi1j1 , . . . , Vikjk ).

(a) If δ > 0 is sufficiently smaller than ε > 0, and if H[Vi1j1 , . . . , Vikjk ] has within d2kmk2
k−1

(1 ± δ) copies of Mk , then (Vi1j1 , . . . , Vikjk ) is (d, ε)-regular.

(b) If ε > 0 is sufficiently smaller than δ > 0, and if (Vi1j1 , . . . , Vikjk ) is (d, ε)-regular, then

H[Vi1j1 , . . . , Vikjk ] has within d2kmk2
k−1

(1 ± δ) copies of Mk .

(In fact, when k = 2, M2 turns out to be C4 (the 4-cycle), and the equivalence above is

precisely the one devised and used by Alon, Duke, Lefmann, Rödl and Yuster [2] for their

algorithmic version of Szemerédi’s Regularity Lemma.) Now, employing the above result

in the proof of Theorem 2.1 would render the promised labelling. The running time would

increase to O(k2k−1), but for the purpose of proving Theorem 1.2 it would not matter.

We shall now present the Slicing Lemma.

Lemma 2.3 (Slicing Lemma). For every integer k � 2 and for all d0, ε
′ > 0, there exists

ε = εLem.2.3(k, d0, ε
′) > 0 so that the following holds.

Let G be an ε-regular k-partite k-graph with vertex partition V (G) = V1 ∪ · · · ∪ Vk , where

|V1| = · · · = |Vk| = m is sufficiently large. Suppose that p1, . . . , ps � d0 are given with

s∑
i=1

pi � dG(V1, . . . , Vk).

Then, there exists an algorithm which, in time O(mk), constructs an edge-partition G =

G0 ∪ G1 ∪ · · · ∪ Gs, where each Gi, 1 � i � s, is (pi, ε
′)-regular.

Remark 2.4. In the context of the Slicing Lemma, it is an easy consequence that the class

G0 is (p0, sε
′)-regular, where p0 = D −

∑s
i=1 pi. (In this paper, however, we do not use this

feature.)
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Our final regularity tool is the Packing Lemma, which considers the following setup.

Setup 2.5 (Packing Setup). Let F0 be a linear k-graph with vertex set

V (F0) = [f] = {1, . . . , f},

and let G be an f-partite k-graph with vertex partition V (G) = V1 ∪ · · · ∪ Vf satisfying

|V1| = · · · = |Vf | = m. Suppose, moreover, that for some d, ε > 0, G has the following prop-

erty. For each {i1, . . . , ik} ∈
(
[f]
k

)
,

(a) if {i1, . . . , ik} ∈ F0, then (Vi1 , . . . , Vik ) is (d, ε)-regular,

(b) if {i1, . . . , ik} /∈ F0, then G[Vi1 , . . . , Vik ] = ∅.

In the context of Setup 2.5, a subhypergraph F ′ of G on vertices v1, . . . , vf is a partite-

isomorphic copy of F0 if vi ∈ Vi for all 1 � i � f, and if vi → i defines an isomorphism

from F ′ to F0.

Lemma 2.6 (Packing Lemma). Let F0 be a fixed linear k-graph with V (F0) = [f]. For all

d0, μ > 0, there exists ε = εLem.2.6(d0, μ) > 0 so that the following holds.

Let G be a k-graph satisfying the hypothesis of Setup 2.5 with F0 above, with some d > d0,

with ε = εLem.2.6 above, and with m sufficiently large. Then, there exists an algorithm which,

in time polynomial in m, constructs an F0-packing FG of G covering all but μ|G| edges of

G, and which consists entirely of partite-isomorphic copies of F0 in G. In particular,

|FG| � (1 − μ)(d− ε)mk.

Remark 2.7. The last assertion of the Packing Lemma is an easy consequence of its

predecessor. Indeed, in the context above, let G′ ⊆ G denote the set of edges covered by

FG. Every element F ∈ FG covers precisely |F0| edges of G′, and every edge of G′ is

covered by precisely one element F ∈ FG. Thus,

|FG| × |F0| = |G′| � (1 − μ)|G|

= (1 − μ)
∑

{|G[Vi1 , . . . , Vik ]| : {i1, . . . , ik} ∈ F0}

� (1 − μ)|F0|(d− ε)mk,

where the last inequality follows from the definition of (d, ε)-regularity. The result now

follows.

Remark 2.8. For k � 3, the conclusion of Lemma 2.6 is false when F0 is not linear.

Indeed, for example, consider when k = 3, f = 4, F0 consists of the triples {1, 2, 3} and

{2, 3, 4}, and G is defined as follows. Take the random bipartite graph G(V2, V3, 1/2).

For each v2 ∈ V2 and v3 ∈ V3, if {v2, v3} ∈ G(V2, V3, 1/2), put {v1, v2, v3} ∈ G for every

v1 ∈ V1. Otherwise, put {v2, v3, v4} ∈ G for every v4 ∈ V4. Clearly, G contains no copies of

F0. However, by the Chernoff inequality, with high probability, both of (V1, V2, V3) and

(V2, V3, V4) are (1/2, o(1))-regular.
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Remark 2.9. The papers [13, 21] proving Theorem 1.3 use hypergraph regularity lemmas

from [8, 20] (see also [9, 10]) which allow an analogue of the Packing Lemma when F0

is not necessarily linear. Unfortunately, algorithmic versions of these regularity lemmas

are not known for k � 4, although, for k = 3, such an algorithm has been given [15] (see

also [14, 19]).

2.2. Crossing and Bounding Lemmas

In what follows, let H and F0 be k-graphs, and suppose H has vertex partition Π:

V (H) = V1 ∪ · · · ∪ V�. We say a copy F ∈
(
H
F0

)
crosses Π if |V (F) ∩ Vi| � 1 for every

1 � i � �. Let
(
H
F0

)
Π

denote the subcollection of copies F ∈
(
H
F0

)
which cross Π. The

Crossing Lemma, due to Haxell and Rödl [12] (see Remark 2.11), then states that if

H has a fractional F0-packing ψ, then one may construct a relatively small partition Π

whose crossing copies of F0 comprise most of the value of ψ.

Lemma 2.10 (Crossing Lemma [12]). For every k-graph F0 on f vertices, and for all μ > 0,

there exists L0 = L0(μ, F0) so that the following holds.

Let H be a k-graph on n vertices, and let ψ be a fractional F0-packing of H . There exists

an algorithm which constructs, in time O(nf), a vertex partition Π : V (H) = V1 ∪ · · · ∪ V�,
� � L0, satisfying that �n/�
 � |Vi| � �n/�� for all 1 � i � �, and satisfying that

|ψΠ| def
=

∑{
ψ(F) : F ∈

(
H

F0

)
Π

}
� (1 − μ)|ψ|.

Remark 2.11. Haxell and Rödl proved Lemma 2.10 in the following more general setting

(see Lemma 11 in [12]): with V = V (H), H is replaced by
(
V
f

)
, where f = |V (F0)|, and

ψ is replaced by an arbitrary function g :
(
V
f

)
→ [0,∞). Their lemma then constructs a

partition Π so that |gΠ| � (1 − μ)|g|, where

|g| =
∑{

g(S) : S ∈
(
V

f

)}
and |gΠ| =

∑{
g(S) : S ∈

(
V

f

)
Π

}
,

where
(
V
f

)
Π

is the set of f-tuples S which cross the partition Π. We could not find an

explicit mention of the time complexity of Lemma 11 in [12], although O(nf) is clear from

the proof. Indeed, in time O(nf), they define a weight function w on
(
V
2

)
by

w({x, y}) =
∑{

g(S) : x, y ∈ S ∈
(
V

f

)}
.

Then, they apply Lemma 10 in [12] to V and w to construct in time O(n2) (with running

time O(n2) explicitly stated in Lemma 10) an equitable bipartition V = V1 ∪ V2 so that

∑
{w({x, y}) : x ∈ V1, y ∈ V2} � (1/2)

∑{
w({x, y}) : {x, y} ∈

(
V

2

)}
.

They then apply Lemma 10 to V1 and V2, and so on, so that after at most log2(f
2/μ) = O(1)

iterations, they reach the promised partition.
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We now present the Bounding Lemma, which considers weighted hypergraphs H0 and

the following concepts. Let F0 be a k-graph, and let H0 be an edge-weighted k-graph

with weight function ω : H0 → [0, 1]. A fractional (ω, F0)-packing of H0 is a function

ψ̂ :
(
H0

F0

)
→ [0, 1] satisfying that, for each e ∈ H0,

∑{
ψ̂(F) : F ∈

(
H0

F0

)
e

}
� ω(e)

(recall the notation in (1.1)). (If ω ≡ 1 is the constant function on H0, then ψ̂ is a fractional

F0-packing of H0.) As before, set

|ψ̂| =
∑{

ψ̂(F) : F ∈
(
H0

F0

)}
and

ν∗
F0

(H0) = max{|ψ̂| : ψ̂ is a fractional (ω, F0)-packing of H0}.

Finally, we say that a fractional (ω, F0)-packing ψ̂ is δ-bounded if, for each F ∈
(
H0

F0

)
,

ψ̂(F) ∈ {0} ∪ [δ, 1]. The Bounding Lemma then states that the parameter ν∗
F0

(H0) can be

approximated by a δ-bounded fractional (ω, F0)-packing ψ̂.

Lemma 2.12 (Bounding Lemma). For every k-graph F0 and for all ξ > 0, there exists a

positive constant δ = δLem.2.12(F0, ξ) so that the following holds.

Let H0 be a weighted k-graph on r vertices with weight function ω : H0 → [0, 1]. Then,

there exists a δ-bounded fractional (ω, F0)-packing ψ̂ of H0 such that |ψ̂| � ν∗
F0

(H0) − ξrk .

Moreover, the function ψ̂ can be found, in time depending on r, by an exhaustive search.

We conclude this section by stating specific versions of some familiar tools.

2.3. Some familiar tools

Fact 2.13 (Cauchy–Schwarz inequality: see, e.g., [22]). For a1, . . . , at � 0 and τ � 0, sup-

pose
∑t

i=1 ai � (1 − τ)at and
∑t

i=1 a
2
i � (1 + τ)a2t. Then, for all but 2τ1/3t terms 1 � i � t,

we have ai = a(1 ± 2τ1/3).

Fact 2.14 (Chernoff inequality: see, e.g., [1, 16]). Let X have binomial distribution. Then,

for any 0 < δ < 3/2, P[X �= (1 ± δ)E[X]] � 2 exp{−δ2E[X]/3}.

3. Proof of Theorem 1.2

Let F0 be a given linear k-graph on f vertices and let ζ > 0 be given. Our first step is to

define some auxiliary constants with respect to which the size of the input hypergraph H

needs to be large.

Step 0: auxiliary constants and input H . Set

μ = ξ =
ζ

6
. (3.1)

With ξ given above, let

δ = δLem.2.12(F0, ξ) > 0 (3.2)
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be the constant guaranteed by the Bounding Lemma (Lemma 2.12). Set

d0 = δ. (3.3)

With μ in (3.1) and d0 in (3.3), let εLem.2.6 = εLem.2.6(F0, d0, μ) > 0 be the constant guaranteed

by the Packing Lemma (Lemma 2.6). Set

ε′ = (d0μ)εLem.2.6, (3.4)

and let εLem.2.3 = εLem.2.3(k, d0, ε
′) > 0 be the constant guaranteed by the Slicing Lemma

(Lemma 2.3). Define

ε = min{εLem.2.3, εLem.2.6} (3.5)

(which is achieved by εLem.2.3).

In all that follows, the integer n0 is assumed to be sufficiently large with respect to

all constants discussed above. In particular, n0 is large with respect to the following

additional constants. With μ > 0 given in (3.1), let L0 = L0(μ) be the constant guaranteed

by the Crossing Lemma (Lemma 2.10). With ε > 0 given in (3.5) and L0 given above, let

T0 = T0(ε, k, L0) and N0 = N0(ε, k, L0) be the constants given by the Regularity Lemma

(Theorem 2.1). The integer n0 is larger than N0 and T0.

Now, let H be a given k-graph on n > n0 vertices. We construct, in time polynomial in

n, an F0-packing FH of H of size

|FH | � ν∗
F0

(H) − ζnk. (3.6)

Since ν∗
F0

(H) � νF0
(H), this will prove Theorem 1.2. We proceed to the first step of our

algorithm.

Step 1: preprocessing H . First, equip H with a maximum fractional F0-packing ψ∗, i.e., one

for which |ψ∗| = ν∗
F0

(H). Constructing ψ∗ is a linear programming problem with running

time polynomial in n.

We now apply the Crossing Lemma (Lemma 2.10) toH and ψ∗. With μ > 0 given in (3.1),

Lemma 2.10 guarantees the constant L0 = L0(μ) (discussed in Step 0) and constructs, in

time O(n2), a vertex partition Π : V (H) = V1 ∪ · · · ∪ V� where � � L0, �n/�
 � |Vi| �
�n/��, and where

|ψ∗
Π| def

=
∑{

ψ∗(F) : F ∈
(
H

F0

)
Π

}
� (1 − μ)|ψ∗|. (3.7)

We mention that we build ψ∗ so that we may apply the Crossing Lemma, and we need

the Crossing Lemma in order to prove Proposition 3.1 below.

Step 2: regularizing H and building H0. Our next step is to apply the Regularity Lemma

(Theorem 2.1) to H (and Π) and to construct, as usual, the resulting ‘cluster’ hypergraph

H0. To that end, with ε > 0 given in (3.5), � obtained in Step 1 (with � � L0), Theorem 2.1

guarantees the constant T0 = T0(ε, k, �) (discussed in Step 0) and constructs, in time

O(n2k−1 log2 n), a refined vertex partition

Π̂ : V (H) = V0 ∪
⋃

{Vij : 1 � i � �, 1 � j � t},

https://doi.org/10.1017/S0963548313000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000291


Constructive Packings by Linear Hypergraphs 837

where

(i) t � T0 and m
def
= |V11| = · · · = |V�t| and |V0| < εn,

(ii) all but ε
(
�
k

)
tk many k-tuples (Vi1j1 , . . . , Vikjk ), 1 � i1 < · · · < ik � �, 1 � j1, . . . , jk � t, are

ε-regular and labelled as such.

We now construct the cluster hypergraph H0 which will, in fact, be a weighted hyper-

graph. To begin, H0 will have vertex set V (H0) = {uij : 1 � i � �, 1 � j � t}. Consider the

set of all
(
�
k

)
tk many k-tuples of the form {ui1j1 , . . . , uikjk}, where 1 � i1 < · · · < ik � � and

1 � j1, . . . , jk � t. For each such k-tuple {ui1j1 , . . . , uikjk}, define

ω({ui1j1 , . . . , uikjk}) =

{
dH (Vi1j1 , . . . , Vikjk ) (Vi1j1 , . . . , Vikjk ) is (labelled to be) ε-regular,

0 otherwise.

(3.8)

Then H0 will consist of all k-tuples above whose weight is non-zero. (Note that H0 consists

only of k-tuples {ui1j1 , . . . , uikjk} where (Vi1j1 , . . . , Vikjk ) ‘crosses’ the partition V1 ∪ · · · ∪ V�.)
Together with the function ω, H0 is a weighted k-graph on �t vertices, and since � � L0

and t � T0, the construction of H0 is complete in time O(1).

While we do not use it yet, we note that ν∗
F0

(H0) is essentially a 1/mk portion of

|ψ∗| = ν∗
F0

(H).

Proposition 3.1.

mkν∗
F0

(H0) � |ψ∗
Π| − 2εnk

(3.7)

� (1 − μ)|ψ∗| − 2εnk = (1 − μ)ν∗
F0

(H) − 2εnk.

We will prove Proposition 3.1 at the end of this section.

Step 3: bounding H0. We now apply the Bounding Lemma (Lemma 2.12) to the weighted

hypergraph H0. To that end, with ξ > 0 given in (3.1) and δ given in (3.2), we apply

Lemma 2.12 to H0 to guarantee a δ-bounded fractional (ω, F0)-packing ψ̂ of H0 satisfying

|ψ̂| � ν∗
F0

(H0) − ξ(�t)k. (3.9)

The Bounding Lemma also ensures that ψ̂ can be constructed by an exhaustive search in

time O(1) (since H0 has �t � L0T0 = O(1) many vertices).

We establish some notation related to the fractional (ω, F0)-packing ψ̂ of H0. Set

(cf. (3.3))(
H0

F0

)+

=

{
F ∈

(
H0

F0

)
: ψ̂(F) �= 0

}
=

{
F ∈

(
H0

F0

)
: ψ̂(F) � δ

(3.3)
= d0

}
,

where the last equality follows from the fact that ψ̂ is δ-bounded. For a fixed e ∈ H0, we

write (
H0

F0

)+

e

=

(
H0

F0

)
e

∩
(
H0

F0

)+

.

Step 4: slicing H . We now run the Slicing Lemma (Lemma 2.3), repeatedly, over the

hypergraph H . To that end, fix e = {ui1j1 , . . . , uikjk} ∈ H0, which fixes the corresponding
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hypergraph H[Vi1j1 , . . . , Vikjk ]. For each F ∈
(
H0

F0

)+

e
, we wish to cut (using Lemma 2.3) a

‘regular’ slice from H[Vi1j1 , . . . , Vikjk ] of density pF = ψ̂(F). Let us first check that it is

appropriate to do so. First, every pF = ψ̂(F) � d0 on account of F ∈
(
H0

F0

)+

e
, as is required

by the Slicing Lemma. Second, since ψ̂ is an (ω, F0)-packing of H0, we have

∑{
pF : F ∈

(
H0

F0

)+

e

}
=

∑{
ψ̂(F) : F ∈

(
H0

F0

)+

e

}
� ω(e)

(3.8)
= dH (Vi1j1 , . . . , Vikjk ),

as is also required by the Slicing Lemma. Finally, by (3.5), ε � εLem.2.3(d0, ε
′) was chosen

to be sufficient for an application of the Slicing Lemma (Lemma 2.3). Consequently,

Lemma 2.3 constructs, in time O(mk), a partition

H[Vi1j1 , . . . , Vikjk ] = H∗[Vi1j1 , . . . , Vikjk ] ∪
⋃{

HF [Vi1j1 , . . . , Vikjk ] : F ∈
(
H0

F0

)+

e

}
, (3.10)

where each slice HF [Vi1j1 , . . . , Vikjk ], F ∈
(
H0

F0

)+

e
, is (ψ̂(F), ε′)-regular. (We use H∗ notation

to denote the remainder, which we henceforth ignore.)

Step 5: packing H (locally). We now run the Packing Lemma (Lemma 2.6), repeatedly,

over the hypergraph H . To that end, fix F ∈
(
H0

F0

)+
, and construct the following f-partite

subhypergraph GF ⊆ H (recall f = |V (F0)|):

V (GF ) =
⋃

{Vij : uij ∈ V (F)} and (3.11)

GF = E(GF ) =
⋃

{HF [Vi1j1 , . . . , Vikjk ] : {ui1j1 , . . . , uikjk} ∈ F},

where for each edge e = {ui1j1 , . . . , uikjk} ∈ F , HF [Vi1j1 , . . . , Vikjk ] is the slice (from Step 4)

from H[Vi1j1 , . . . , Vikjk ] corresponding to F . Note that the hypergraph GF is constructed in

time O(mk).

We now apply the Packing Lemma (Lemma 2.6) to the hypergraph GF , but first

check that it is appropriate to do so. Observe that GF and F satisfy the hypo-

thesis of Setup 2.5. Indeed, for each edge e = {ui1j1 , . . . , uikjk} ∈ F , the corresponding

hypergraph GF [Vi1j1 , . . . , Vikjk ] is (ψ̂(F), ε′)-regular, where ψ̂(F) � d0 = δ on account that

F ∈
(
H0

F0

)+
. Otherwise, for each {ui1j1 , . . . , uikjk} ∈

(
V (F)
k

)
\F, the corresponding hypergraph

GF [Vi1j1 , . . . , Vikjk ] = ∅. Finally, recall from (3.4) that ε′ � εLem.2.6(d0, μ) was chosen in

accordance with the Packing Lemma (Lemma 2.6). Lemma 2.6 therefore constructs, in

time polynomial in m, an F0-packing FGF of GF satisfying

|FGF | � (1 − μ)
(
ψ̂(F) − ε′)mk � (1 − μ)

(
1 − ε′

d0

)
ψ̂(F)mk. (3.12)

Step 6: constructing the promised FH . We define

FH =

{
FGF : F ∈

(
H0

F0

)+}
, (3.13)

which amounts to collecting the ‘local’ packings FGF over all F ∈
(
H0

F0

)+
. The remainder

of this section checks that FH is an F0-packing of H , that FH was constructed in time

polynomial in n, and that FH has the size promised in (3.6).
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FH is an F0-packing of H . Indeed, let F �= F ′ ∈ FH be fixed. Note that, by construction

of FH (cf. (3.13)), there exist F̂ , F̂ ′ ∈
(
H0

F0

)+
so that F ∈ FGF̂

and F ′ ∈ FG
F̂′ . Now, let us

assume, for contradiction, that F ∩ F ′ �= ∅.

If F̂ = F̂ ′, then F ∩ F ′ �= ∅ contradicts the Packing Lemma (Lemma 2.6) since FGF̂
=

FG
F̂′ was an F0-packing of GF̂ = GF̂ ′ . Henceforth, we assume F̂ �= F̂ ′.

Let e ∈ F ∩ F ′, and write e ∈ H[Vi1j1 , . . . , Vikjk ] for some 1 � i1 < · · · < ik � � and 1 �
j1, . . . , jk � t. It follows from e ∈ F ∈ FGF̂

and similarly e ∈ F ′ ∈ FGF̂′ that

e ∈ GF̂ [Vi1j1 , . . . , Vikjk ] ∩ GF̂ ′[Vi1j1 , . . . , Vikjk ],

or equivalently (cf. (3.11)),

e ∈ HF̂ [Vi1j1 , . . . , Vikjk ] ∩HF̂ ′[Vi1j1 , . . . , Vikjk ]. (3.14)

But (3.14) contradicts the Slicing Lemma, since HF̂ [Vi1j1 , . . . , Vikjk ] and HF̂ ′ [Vi1j1 , . . . , Vikjk ]

are distinct classes of a partition (distinct because F̂ �= F̂ ′).

FH was constructed in time polynomial in n. Indeed, in Step 1, we constructed a maximum

fractional F0-packing ψ∗ of H , which as a linear programming problem is done in time

polynomial in n. We then applied the Crossing Lemma (Lemma 2.10) to H and ψ∗, which

was done in time O(nf). In Step 2, we applied the Regularity Lemma (Theorem 2.1) to H

and Π, which was done in time O(n2k−1 log2 n), and we constructed the weighted cluster

H0 in time O(1). In Step 3, we applied the Bounding Lemma (Lemma 2.12) to H0, which

constructed ψ̂ in time O(1). In Step 4, we applied the Slicing Lemma (Lemma 2.3) to H at

most
(
�t
k

)
� (L0T0)

k = O(1) times, where each such application took time O(mk) = O(nk).

In Step 5, we applied the Packing Lemma at most (�t)f � (L0T0)
f = O(1) times, where

each such application took time polynomial in m (and so polynomial in n).

FH has size promised in (3.6). From (3.13), we have

|FH |=
∑{

|FGF | : F ∈
(
H0

F0

)+}
(3.12)

� (1 − μ)

(
1 − ε′

d0

)
mk

∑{
ψ̂(F) : F ∈

(
H0

F0

)+}

= (1 − μ)

(
1 − ε′

d0

)
mk|ψ̂|

(3.4)

� (1 − μ)2mk|ψ̂|
(3.9)

� (1 − μ)2mk
(
ν∗
F0

(H0) − ξ(�t)k
)

Prop.3.1

� (1 − μ)2
(
(1 − μ)ν∗

F0
(H) − 2εnk − ξ(m�t)k

)
(3.1)

� (1 − 2μ)
(
ν∗
F0

(H) − 4μnk
) (3.1)

� ν∗
F0

(H) − 6μnk
(3.1)
= ν∗

F0
(H) − ζnk,

where the second equality holds since ψ̂ vanishes outside
(
H0

F0

)+
(and where we used

m�t � n and ν∗
F0

(H) � nk). All that remains is to prove Proposition 3.1.

Proof of Proposition 3.1. It suffices to produce a fractional packing ψ0 :
(
H0

F0

)
→ [0, 1]

for which mk|ψ0| has the lower bound of Proposition 3.1. To produce ψ0, we use the
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following notation. Define

HΠ̂ =
⋃

{H[Vi1j1 , . . . , Vikjk ] : {ui1j1 , . . . , uikjk} ∈ H0}.

Thus, HΠ̂ consist of all edges {vi1j1 , . . . , vikjk} ∈ H for which vi1j1 ∈ Vi1j1 , . . . , vikjk ∈ Vikjk ,

for some 1 � i1 < · · · < ik � �, 1 � j1, . . . , jk � t, where (Vi1j1 , . . . , Vikjk ) is (labelled to be)

ε-regular. Since each edge of HΠ̂ crosses the partition Π : V (H) = V1 ∪ · · · ∪ V� (cf. the

Crossing Lemma (Lemma 2.10)), every element F ∈
(
HΠ̂
F0

)
also crosses Π, and so(

HΠ̂

F0

)
⊆

(
H

F0

)
Π

. (3.15)

Note that the mapping

π : V (HΠ̂) → V (H0) given by v �→ uij ⇐⇒ v ∈ Vij

defines a homomorphism from HΠ̂ to H0. As such, since each F ′ ∈
(
HΠ̂
F0

)
crosses the

partition Π, we have that F = π(F ′) defines a copy of F0 in H0, i.e., F = π(F ′) ∈
(
H0

F0

)
.

We shall call F = π(F ′) the projection of F ′ in H0 and say that F ′ ∈
(
HΠ̂
F0

)
projects to

F = π(F ′) ∈
(
H0

F0

)
.

Now, define the function ψ0 :
(
H0

F0

)
→ [0, 1] by setting, for F ∈

(
H0

F0

)
,

ψ0(F) =
1

mk

∑{
ψ∗(F ′) : F ′ ∈

(
HΠ̂

F0

)
projects to F

}
. (3.16)

To show that ψ0 is a fractional (ω, F0)-packing of H0, fix

e = {ui1j1 , . . . , uikjk} ∈ H0.

From (3.16),∑{
ψ0(F) : F ∈

(
H0

F0

)
e

}

=
1

mk

∑{∑{
ψ∗(F ′) : F ′ ∈

(
HΠ̂

F0

)
projects to F

}
: F ∈

(
H0

F0

)
e

}
.

Every F ′ ∈
(
HΠ̂
F0

)
projects to some F ∈

(
H0

F0

)
e
if and only if F ′ ∩H[Vi1j1 , . . . , Vikjk ] �= ∅ (recall

e = {ui1j1 , . . . , uikjk}). Therefore,

∑{
ψ0(F) : F ∈

(
H0

F0

)
e

}

=
1

mk

∑{
ψ∗(F ′) : F ′ ∈

(
HΠ̂

F0

)
satisfies F ′ ∩H[Vi1j1 , . . . , Vikjk ]

}

=
1

mk

∑{∑{
ψ∗(F ′) : F ′ ∈

(
HΠ̂

F0

)
e′

}
: e′ ∈ H[Vi1j1 , . . . , Vikjk ]

}

� 1

mk

∑{∑{
ψ∗(F ′) : F ′ ∈

(
H

F0

)
e′

}
: e′ ∈ H[Vi1j1 , . . . , Vikjk ]

}

� 1

mk
|H[Vi1j1 , . . . , Vikjk ]| = dH (Vi1j1 , . . . , Vikjk )

(3.8)
= ω(e),
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where in the last inequality we used that ψ∗ is a fractional F0-packing of H , i.e., the final

inner sum is at most 1.

To finish the proof of Proposition 3.1, consider the quantity |ψ∗
Π| − mk|ψ0|. From (3.16),

we have that

mk|ψ0| =
∑{∑{

ψ∗(F ′) : F ′ ∈
(
HΠ̂

F0

)
projects to F

}
: F ∈

(
H0

F0

)}

=
∑{

ψ∗(F ′) : F ′ ∈
(
HΠ̂

F0

)}
,

where the last equality holds from the fact that every F ′ ∈
(
HΠ̂
F0

)
projects to some F ∈

(
H0

F0

)
.

Therefore, we have (cf. (3.7) and (3.15))

|ψ∗
Π| − mk|ψ0| =

∑{
ψ∗(F) : F ∈

(
H

F0

)
Π

}
−

∑{
ψ∗(F ′) : F ′ ∈

(
HΠ̂

F0

)}

=
∑{

ψ∗(F) : F ∈
(
H

F0

)
Π

\
(
HΠ̂

F0

)}

=
∑{

ψ∗(F) : F ∈
(
H

F0

)
Π

satisfies F ∩
(
H \HΠ̂

)
�= ∅

}

�
∑{∑{

ψ∗(F) : e ∈ F ∈
(
H

F0

)
Π

}
: e ∈ H \HΠ̂

}

�
∑{∑{

ψ∗(F) : F ∈
(
H

F0

)
e

}
: e ∈ H \HΠ̂

}
� |H \HΠ̂|,

where in the last inequality we used that ψ∗ is a fractional F0-packing of H . Note

that H \HΠ̂ consists of edges e for which e ∩ V0 �= ∅, or else, e ∈ H[Vi1j1 , . . . , Vikjk ] for

some 1 � i1 < · · · < ik � � and 1 � j1, . . . , jk � t where (Vi1j1 , . . . , Vikjk ) is not (labelled to

be) ε-regular. However, at most εn · nk−1 + ε
(
�
k

)
tkmk � 2εnk edges e ∈ H can have these

properties, which completes the proof.

4. Proof of the Packing Lemma

Our proof of the Packing Lemma (Lemma 2.6) is a hypergraph analogue of the proof of

Lemma 5 in Haxell and Rödl [12]. The Packing Lemma will follow nearly immediately

from Theorem 4.1 and Lemma 4.2 below.

The following statement is a well-known result of Grable [11] which concerns hyper-

graph packings. A packing P in a hypergraph P is a family of pairwise disjoint edges. In

a hypergraph P and x ∈ V (P ), let NP (x) = {Q : Q ∪ x ∈ P } denote the neighbourhood of

x in P , and for x, x′ ∈ V (P ), write NP (x, x′) = NP (x) ∩NP (x′). Further, write degP (x) =

|NP (x)| and degP (x, x′) = |NP (x, x′)|.

Theorem 4.1 (Grable [11]). For every integer p � 2 and for all λ > 0, there exists

β = βThm.4.1(p, λ) > 0

so that the following holds. Let P be a p-graph with sufficiently large vertex set X = V (P )

satisfying that, for some Δ > 0,
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(a) for all x ∈ X, degP (x) = (1 ± β)Δ,

(b) for all distinct x, x′ ∈ X, degP (x, x′) < Δ
(log |X|)4 .

Then, there exists a packing P of P covering all but λ|X| vertices of X. Moreover, P can

be constructed in time polynomial in |X|.

We call the following result the Extension Lemma, which we prove later in this section.

Lemma 4.2 (Extension Lemma). For all integers f � k � 2 and all d0, γ > 0, there exists

δ = δLem.4.2(f, k, d0, γ) > 0 so that the following holds.

Let a linear k-graph F0 with vertex set [f] be given, and let G be given as in Setup 2.5

with some d � d0, with ε = δ above, and with a sufficiently large integer m. Then, there

exists G′ ⊆ G, where |G′| > (1 − γ)|G|, so that for each {i1, . . . , ik} ∈ F0, every {vi1 , . . . , vik} ∈
G′[Vi1 , . . . , Vik ] belongs to within (1 ± γ)d|F0|−1mf−k many partite-isomorphic copies of F0 in

G′. Moreover, the subhypergraph G′ can be found in time O(mf).

4.1. Proof of the Packing Lemma

Let F0 (on f vertices), d0, and μ > 0 be given as in Lemma 2.6. To define the promised con-

stant ε = εLem.2.6(d0, μ) > 0, we first consider some auxiliary constants. Let β = βThm.4.1(p =

f, λ = μ/2) > 0 be the constant guaranteed by Theorem 4.1. Let δ = δLem.4.2(f, k, d0, γ =

β) > 0 by the constant guaranteed by Lemma 4.2. We set ε = δ, and take m to be

sufficiently large whenever needed.

Now, let G be given as in the hypothesis of the Packing Lemma (Lemma 2.6). We apply

the Extension Lemma (Lemma 4.2) to G to construct, in time O(mf), the subhypergraph

G′ ⊆ G guaranteed there. As in Theorem 4.1, set X = G′ and define P to be the family of

all partite-isomorphic copies of F0 in G′. Note that a packing P of P corresponds to an

F0-packing of G′.

We now apply Theorem 4.1 to P , but first check that it is appropriate to do so.

From the application of the Extension Lemma, every vertex x ∈ X = V (P ) = G′ satisfies

degP (x) = (1 ± γ)d|F0|−1mf−k . Setting Δ = d|F0|−1mf−k and recalling that γ = β was chosen

to be sufficient for an application of Theorem 4.1, we see degP (x) = (1 ± β)Δ. Note

that, easily, for each x �= x′ ∈ X, degP (x, x′) � mf−(k+1) = O( 1
m
Δ). Moreover, |X| = Θ(mk),

so degP (x, x′) < Δ/ log4 |X|. Thus, Theorem 4.1 constructs, in time polynomial in |X| =

Θ(mk), a packing P covering all but λ|X| vertices x ∈ X. This corresponds to an F0-

packing F covering all but λ|G′| edges in G′. Together with the edges G\G′, the F0-packing

F covers all but 2λ|G| = μ|G| edges of G, which completes the proof.

4.2. Proof of Lemma 4.2

To prove Lemma 4.2, we will use its following seemingly ‘weaker’ version.

Lemma 4.3 (‘Weak’ Extension Lemma). For all integers f � k � 2 and all d0, ζ > 0, there

exists ε = εLem.4.3(f, k, d0, ζ) > 0 so that the following holds.

Let a linear k-graph F0 with vertex set [f] be given, and let G be given as in Setup 2.5 with

some d � d0, with ε above, and with a sufficiently large integer m. Then, for each {i1, . . . , ik} ∈
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F0, all but ζmk elements {vi1 , . . . , vik} ∈ G[Vi1 , . . . , Vik ] belong to within (1 ± ζ)d|F0|−1mf−k

many partite-isomorphic copies of F0 in G.

We prove Lemma 4.3 at the end of the section.

It is clear that Lemma 4.2 implies Lemma 4.3, but we need the converse to hold. The

equivalence between Lemmas 4.2 and 4.3 is not clear, as we now indicate.

Remark 4.4. To form G′, it would be natural to delete from G all |F0|ζmk edges which

are ‘bad’ in the sense of Lemma 4.3. In this case, all remaining edges in G′ clearly extend

to at most (1 + ζ)d|F0|−1mf−k many copies of F0 in G′. The concern is that each such edge

may not extend to at least (1 − ζ)d|F0|−1mf−k many copies of F0 in G′ (on account of

deletion).

We now prove that Lemma 4.3 implies Lemma 4.2.

Proof of Lemma 4.2. Let integers f � k � 2 and d0, γ > 0 be given. To define the

promised constant δ = δLem 4.2(f, k, d0, γ) > 0, we first define an auxiliary constant ζ > 0

to satisfy

4f3k

√
ζ

d
fk

0

< γ. (4.1)

Now, let ε = εLem 4.3(f, k, d0, ζ) > 0 be the constant guaranteed by Lemma 4.3, and set

δ = ε. Let a linear k-graph F0 and G be given as in Setup 2.5 with some constant

d � d0, with δ = ε above, and with a sufficiently large integer m. To define the promised

hypergraph G′ ⊆ G, we make two considerations (that of a ‘good edge’ and that of a

‘good vertex’).

First, for a fixed {i1, . . . , ik} ∈ F0, we shall call an edge {vi1 , . . . , vik} ∈ G[Vi1 , . . . , Vik ] a

good edge if it belongs to within (1 ± ζ)d|F0|−1mf−k many partite-isomorphic copies of

F0 in G. Otherwise, we call {vi1 , . . . , vik} a bad edge. The first step in defining G′ is

to delete all bad edges from G, across all {i1, . . . , ik} ∈ F0. Upon doing so, we shall

call the resulting (intermediate) hypergraph G1 ⊆ G, where Lemma 4.3 implies |G1| �
|G| − |F0|ζmk � |G| − fkζmk . Note that G1 is identified in time O(mf).

Second, fix 1 � i � f and fix {i1, . . . , ik} = K ∈ F0 for which i ∈ K . We shall call a vertex

vi ∈ Vi a K-bad vertex if vi belongs to at least
√
ζmk−1 bad edges

{vi1 , . . . , vik} ∈ G[Vi1 , . . . , Vik ].

Note that, for K fixed above, at most
√
ζm vertices vi ∈ Vi can be K-bad, since otherwise,

we would have ζmk bad edges within G[Vi1 , . . . , Vik ], contradicting Lemma 4.3. Now, call

a vertex vi ∈ Vi a bad vertex if there exists any K ∈ F0 for which vi is a K-bad vertex, and

call vi a good vertex otherwise. Then there are at most
√
ζfk−1m bad vertices vi ∈ Vi and

at most
√
ζfkm bad vertices in all of G. Note, moreover, that bad vertices in G are clearly

identified in time O(mk).

Now, to define G′, we simply induce the hypergraph G1, defined above, on the good

vertices of G (which takes time O(mk)). Since each bad vertex of G can belong to at most
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fk−1mk−1 edges of G1, we have that

|G′| > |G1| −
√
ζf2k−1mk > |G| − ζfkmk −

√
ζf2k−1mk > |G| − 2

√
ζf2kmk. (4.2)

Since |G| � |F0|(d− ε)mk > (d0/2)mk , we thus have

|G′| >
(

1 − 4f2k

√
ζ

d0

)
|G|

(4.1)
> (1 − γ)|G|.

Thus, G′ is as large as promised by Lemma 4.2, and was constructed in time O(mf). It

remains to verify that each of its elements extends to within the promised number of

copies of F0 in G′.

To that end, we establish some notation needed for the remainder of the section.

Suppose hypergraphs A0 and B are defined in the context of Setup 2.5. For an edge b ∈ B,

define

extA0 ,B(b) =

∣∣∣∣
{
A ∈

(
B

A0

)
b

: A is a partite-isomorphic copy of A0

}∣∣∣∣ (4.3)

for the number of extensions of the edge b to partite-isomorphic copies of A0 in B.

Now, fix {i1, . . . , ik} = K ∈ F0, and without loss of generality, assume that {i1, . . . , ik} =

{1, . . . , k}. Fix an edge {v1, . . . , vk} ∈ G′[V1, . . . , Vk]. Since {v1, . . . , vk} is a good edge in G,

extF0 ,G({v1, . . . , vk}) = (1 ± ζ)d|F0|−1mf−k, (4.4)

and clearly,

extF0 ,G′({v1, . . . , vk}) � extF0 ,G({v1, . . . , vk}) � (1 + ζ)d|F0|−1mf−k. (4.5)

It remains to verify that extF0 ,G′({v1, . . . , vk}) is not much smaller than extF0 ,G({v1, . . . , vk}).
To that end, fix {j1, . . . , jk} = K1 ∈ F0 where K1 �= K . We consider two cases.

Case 1: K ∩K1 = ∅. It follows from (4.2) that

|(G \ G′)[Vj1 , . . . , Vjk ]| � 2
√
ζf2kmk. (4.6)

Fix {vj1 , . . . , vjk} ∈ (G \ G′)[Vj1 , . . . , Vjk ]. Clearly, at most mf−2k copies of F0 in G can contain

both {v1, . . . , vk} and {vj1 , . . . , vjk}, and all of these copies are lost in G′. Thus, (4.6) implies

that, summing over all {vj1 , . . . , vjk} ∈ (G \ G′)[Vj1 , . . . , Vjk ], the edge {v1, . . . , vk} lost at most

2
√
ζf2kmk × mf−2k = 2

√
ζf2kmf−k

many copies of F0 from G.

Case 2: K ∩K1 �= ∅. Since F0 is a linear hypergraph, it must be the case that |K ∩K1| = 1.

Set {i} = K ∩K1, and without loss of generality, assume i = 1. Fix {vj1 , . . . , vjk} ∈ (G \
G′)[Vj1 , . . . , Vjk ], where for sake of argument, we assume v1 ∈ {vj1 , . . . , vjk}. Since v1 is a

K1-good vertex, {vj1 , . . . , vjk} can be one of only at most
√
ζmk−1 edges deleted from G

which contain v1. Since {v1, . . . , vk} and {vj1 , . . . , vjk} constitute 2k − 1 distinct vertices,

there can be at most mf−2k+1 many copies of F0 in G containing both these edges, and all

of these copies are lost in G′. Thus, summing over all {vj1 , . . . , vjk} ∈ (G \ G′)[Vj1 , . . . , Vjk ]

containing v1, the edge {v1, . . . , vk} lost at most√
ζmk−1 × mf−2k+1 =

√
ζmf−k
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many copies of F0 from G.

Over all {j1, . . . , jk} = K1 ∈ F0 distinct from {1, . . . , k} = K ∈ F0, Cases 1 and 2 imply

that

extF0 ,G′({v1, . . . , vk}) � extF0 ,G({v1, . . . , vk}) −
(
(|F0| − 1)

(
2
√
ζf2kmf−k +

√
ζmf−k))

(4.4)

� (1 − ζ)d|F0|−1mf−k − 3
√
ζf3kmf−k

�
(

1 − ζ − 3f3k

√
ζ

d
fk

0

)
d|F0|−1mf−k

(4.1)
> (1 − γ)d|F0|−1mf−k.

The above inequality and (4.5) imply extF0 ,G′({v1, . . . , vk}) = (1 ± γ)d|F0|−1mf−k , which con-

cludes the proof of Lemma 4.2.

4.3. Proof of Lemma 4.3

To prove Lemma 4.3, we shall use the following result from [17].

Theorem 4.5 (Counting Lemma for Linear Hypergraphs). For all integers f1 � k � 2 and

all d0, τ > 0, there exists δ = δThm.4.5(f1, k, d0, τ) > 0 so that the following holds.

Let a linear k-graph F1 with vertex set [f1] be given, and let G be given as in Setup 2.5

with some d � d0, with ε = δ, and with a sufficiently large integer m. Then, the number of

partite-isomorphic copies of F1 in G, which we write as #{F1 ⊂p.i. G}, satisfies

#{F1 ⊂p.i. G} = (1 ± τ)d|F1|mf1 .

Let integers f � k � 2 be given and let d0, ζ > 0 be given. Define auxiliary constant

τ = ζ3/6. Let δ1 = δThm.4.5(f1 = f, k, d0, τ) > 0 be the constant guaranteed by Theorem 4.5.

Let δ2 = δThm.4.5(f1 = 2f − k, k, d0, τ) > 0 be the constant guaranteed by Theorem 4.5. Let

ε0 > 0 be sufficiently small that each of the following inequalities holds:

(1 + τ)
(
1 − ε0d

−1
0

)−1 � 1 + 2τ and (1 − τ)
(
1 + ε0d

−1
0

)−1 � 1 − 2τ. (4.7)

Define ε = min{ε0, δ1, δ2}. Let F0 and G be given as in Setup 2.5 with some d � d0, with ε

given above, and with a sufficiently large integer m.

Fix {i1, . . . , ik} ∈ F0, and assume without loss of generality that {i1, . . . , ik} = {1, . . . , k} =

[k]. Our proof will make a joint appeal to the Counting Lemma (Theorem 4.5) and

the Cauchy–Schwarz inequality (Fact 2.13). For that purpose, we make the following

considerations.

Define hypergraph F2
0 ⊇ F0 as follows. Let

V (F2
0 ) = {1, . . . , k, k + 1, . . . , f} ∪ {(k + 1)′, . . . , f′}

so that F2
0 has 2f − k vertices. Include every edge of F0 in F2

0 . More generally, suppose [k] �=
K = {i1, . . . , ik} ∈ F0. Since F0 is linear, |K ∩ [k]| ∈ {0, 1}, and without loss of generality,

assume K ∩ [k] ⊆ {i1}. Write, for some � ∈ {0, 1},

K \ [k] = {i�+1, . . . , ik} and define K ′ = {i1, . . . , i�, i′�+1, . . . , i
′
k}.
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Now, put K ′ ∈ F2
0 . We repeat this procedure over all [k] �= K ∈ F0, which completes the

definition of F2
0 . Then, F2

0 is a linear k-graph on 2f − k vertices and 2|F0| − 1 edges.

Define hypergraph G2 ⊇ G similarly. For k + 1 � t � f, let V ′
t be a copy of the class

Vt. Let

V (G2) = V1 ∪ · · · ∪ Vk ∪ Vk+1 ∪ · · · ∪ Vf ∪ V ′
k+1, . . . , V

′
f

be a (2f − k)-partition. Include every edge of G in G2. More generally, suppose K ∈ F2
0

has the form (for some j � 0) K = {i1, . . . , ij , i′j+1, . . . , i
′
k} where K ∩ [f] = {i1, . . . , ij}. Let

G2
K = G2[Vi1 , . . . , Vij , V

′
ij+1
, . . . , V ′

f] be a copy of G[Vi1 , . . . , Vij , Vij+1
, . . . , Vf].

Define

G2 =
⋃{

G2
K : K ∈

(
V (F2

0 )

k

)}
.

We now make the following observations (see (4.8) and (4.10)). To begin (recall that we

assume {1, . . . , k} ∈ F0),

#{F0 ⊂p.i. G} =
∑

{v1 ,...,vk}∈G[V1 ,...,Vk]

extF0 ,G({v1, . . . , vk}).

Then, Theorem 4.5 (with F1 = F0) implies that∑
{v1 ,...,vk}∈G[V1 ,...,Vk]

extF0 ,G({v1, . . . , vk}) � d|F0|mf(1 − τ).

Since, by the hypothesis of Setup 2.5, we have |G[V1, . . . , Vk]| = (d± ε)mk , where d � d0,

the inequality above implies∑
{v1 ,...,vk}∈G[V1 ,...,Vk]

extF0 ,G({v1, . . . , vk})

� d|F0|−1mf−k|G[V1, . . . , Vk]|(1 − τ)
(
1 + εd−1

0

)−1

(4.7)

� d|F0|−1mf−k|G[V1, . . . , Vk]|(1 − 2τ). (4.8)

Similarly,

#{F2
0 ⊂p.i. G

2} =
∑

{v1 ,...,vk}∈G[V1 ,...,Vk]

extF2
0 ,G

2 ({v1, . . . , vk}),

and Theorem 4.5 (applied with F1 = F2
0 ) implies that∑

{v1 ,...,vk}∈G[V1 ,...,Vk]

extF2
0 ,G

2 ({v1, . . . , vk}) � d|F2
0 |m|V (F2

0 )|(1 + τ). (4.9)

However, |F2
0 | = 2|F0| − 1, |V (F2

0 )| = 2f − k, and for each fixed {v1, . . . , vk} ∈ G[V1, . . . , Vk]

we have

extF2
0 ,G

2 ({v1, . . . , vk}) = ext2F0 ,G
({v1, . . . , vk}).
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Since |G[V1, . . . , Vk]| = (d± ε)mk , inequality (4.9) implies∑
{v1 ,...,vk}∈G[V1 ,...,Vk]

ext2F0 ,G
({v1, . . . , vk})

�d2|F0|−2m2f−2k|G[V1, . . . , Vk]|(1 + τ)
(
1 − εd−1

0

)−1

(4.7)

�
(
d|F0|−1mf−k)2|G[V1, . . . , Vk]|(1 + 2τ). (4.10)

Comparing (4.8) and (4.10) and using the Cauchy–Schwarz inequality (Fact 2.13), we

see that all but 6τ1/3|G[V1, . . . , Vk]| � ζmk elements {v1, . . . , vk} ∈ G[V1, . . . , Vk] satisfy the

conclusion of Lemma 4.3, as promised.

5. Proof of the Slicing Lemma

Our proof of the Slicing Lemma (Lemma 2.3) is a hypergraph analogue of the proof of

Lemma 6 in Haxell and Rödl [12]. In what follows, we shall use the following variation

of the Slicing Lemma, which takes place in an environment of fixed size.

Lemma 5.1 (‘Miniature’ Slicing Lemma). For all ς > 0 and all integers k � 2 and s � 1,

there exists an integer S0 = S0(ς, k, s) so that the following holds.

Let K[A1, . . . , Ak] be the complete k-partite k-graph with vertex partition A1 ∪ · · · ∪ Ak ,
where |A1| = · · · = |Ak| = S0. Let q1, . . . , qs > 0 be given where q0 = 1 −

∑s
i=1 qi � 0. Then,

there exists a partition K[A1, . . . , Ak] = J0 ∪ J1 ∪ · · · ∪ Js with the following property.

For every w :
⋃k
j=1 Aj → [0, 1] satisfying, for each 1 � j � k,

w(Aj)
def
=

∑
a∈Aj

w(a) � ς|Aj |,

we have, for each 0 � i � s,

(qi − ς)

k∏
j=1

w(Aj) �
∑

{a1 ,...,ak}∈Ji

w(a1) · · ·w(ak) � (qi + ς)

k∏
j=1

w(Aj).

Moreover, the partition above can be found, in time depending on S0, by an exhaustive search.

We proceed to show that Lemma 5.1 implies Lemma 2.3, and then return to prove

Lemma 5.1.

5.1. Proof of Lemma 2.3

Let integer k � 2 and d0, ε
′ > 0 be given. Set

ς =
ε′

2
. (5.1)

Now, for an integer (variable) 1 � s � �1/d0�, let S0(s) = S0(ς, k, s) be the integer (function)

guaranteed by Lemma 5.1. Define

S∗
0 = max{S0(s) : 1 � s � �1/d0�}. (5.2)
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Define1

ε = εLem. 2.3(k, d0, ε
′) =

ςk+1

8kS∗
0

. (5.3)

With ε in (5.3), let G be an ε-regular k-partite k-graph with vertex partition V (G) =

V1 ∪ · · · ∪ Vk , where |V1| = · · · = |Vk| = m is sufficiently large. Write D = dG(V1, . . . , Vk),

for simplicity. Let p1, . . . , ps � d0 be given satisfying
∑s

i=1 pi � D. We say a word about

constants. Since s is a fixed integer, S0 = S0(s) (described above) is also a fixed integer,

where

sd0 �
s∑
i=1

pi � D =⇒ s � D/d0 � �1/d0�
(5.2)
=⇒ S0 � S∗

0 .

Thus, by (5.3),

ε � ςk+1

8kS0
. (5.4)

To define the promised partition G = G0 ∪ G1 ∪ · · · ∪ Gs, we make two auxiliary con-

siderations. First, consider the complete k-partite k-graph K[A1, . . . , Ak], where A1, . . . , Ak
are arbitrary sets of size |A1| = · · · = |Ak| = S0. For each 1 � i � s, set qi = pi/D, and let

K[A1, . . . , Ak] = J0 ∪ J1 ∪ · · · ∪ Js

be the partition guaranteed by Lemma 5.1.

Second, refine the vertex classes V1, . . . , Vk as follows. For each of the sets Aj above,

1 � j � k, write Aj = {aj1, . . . , ajS0
}. Now, for each aj� ∈ Aj , 1 � � � S0, choose a subset

Vj� ⊂ Vj of size

|Vj�| =

⌊
m

S0

⌋
def
= m̂ so that Vj = Vj0 ∪

⋃
aj�∈Aj

Vj� (5.5)

is a partition. (The class Vj0 is the remainder of size at most S0 − 1.)

Now, fix a choice 0 � �1, . . . , �k � S0 and consider G[V1�1
, . . . , Vk�k ]. If any �j = 0,

1 � j � k, put

G[V1�1
, . . . , Vk�k ] ⊂ G0.

Otherwise, for each 1 � i � s, put

G[V1�1
, . . . , Vk�k ] ⊂ Gi ⇐⇒ {a1�1

, . . . , ak�k} ∈ Ji.

This defines the partition G = G0 ∪ G1 ∪ · · · ∪ Gs promised by Lemma 2.3, which is easily

constructed in time O(mk).

1 It is easy to infer, from the proof of Lemma 5.1, that S0(s) is monotone increasing in s, and therefore S∗
0

is achieved by s = �1/d0�. However, for completeness, we avoid using this assumption. (Moreover, it would

hardly simplify our presentation.)
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It remains to check that each Gi, 1 � i � s, is (pi, ε
′)-regular. To that end, fix 1 � i � s,

and for each 1 � j � k, let V ′
j ⊆ Vj be given with |V ′

j | > ε′|Vj | = ε′m. We will show that

dGi (V
′
1, . . . , V

′
k) = pi ± ε′. (5.6)

To that end, we establish a few ‘underlying’ considerations. First, for each 1 � j � k and

1 � � � S0, write

V ′
j� = V ′

j ∩ Vj� and w(aj�) =
|V ′
j�|

|Vj�|
=

|V ′
j�|
m̂

.

Then,

w(Aj) =

S0∑
�=1

w(aj�) =
1

m̂

S0∑
�=1

|V ′
j�| =⇒ w(Aj) =

|V ′
j |
m̂

(1 − o(1))
(5.1)

� ς|Aj | = ςS0, (5.7)

since

|V ′
j | − S0 + 1 �

S0∑
�=1

|V ′
j�| � |V ′

j |,

where |V ′
j | > ε′m and S0 = O(1). (Thus, o(1) → 0 as m → ∞.) Second, for 1 � j � k and

1 � � � S0, we say aj� is ε-big if

|V ′
j�| > εm ⇐⇒ w(aj�) > ε

m

m̂
= εS0(1 − o(1)), (5.8)

and ε-small otherwise. Let J+
i denote the set of all {a1�1

, . . . , ak�k} ∈ Ji for which every aj�j ,

1 � j � k, 1 � �j � S0, is ε-big, and let J−
i = Ji \ J+

i denote the set of all {a1�1
, . . . , ak�k} ∈ Ji

for which some aj�j , 1 � j � k, 1 � �j � S0, is ε-small. Observe then that

∑
{a1�1

,...,ak�k }∈J+
i

w(a1�1
) · · ·w(ak�k )

(5.8)
=

( ∑
{a1�1

,...,ak�k }∈Ji

w(a1�1
) · · ·w(ak�k )

)
± 2εkSk+1

0

= (qi ± ς)
(
w(A1) · · ·w(Ak)

)
± 2εkSk+1

0 , (5.9)

where the last inequalities follow by the application of Lemma 5.1 (cf. (5.7)).

Returning to our goal in (5.6), observe that

dGi
(
V ′

1, . . . , V
′
k

)
=

|Gi[V ′
1, . . . , V

′
k]|

|V ′
1| · · · |V ′

k|
=

1

|V ′
1| · · · |V ′

k|
∑

{a1�1
,...,ak�k }∈Ji

|G[V ′
1�1
, . . . , V ′

k�k
]|

=
1

|V ′
1| · · · |V ′

k|

⎡
⎣ ∑

{a1�1
,...,ak�k }∈J+

i

|G[V ′
1�1
, . . . , V ′

k�k
]| +

∑
{a1�1

,...,ak�k }∈J−
i

|G[V ′
1�1
, . . . , V ′

k�k
]|

⎤
⎦.

By (5.8),
∑

{a1�1
,...,ak�k }∈J−

i
|G[V ′

1�1
, . . . , V ′

k�k
]| � εkS0m

k , and with |V ′
j | � ε′m, 1 � j � k, we

have ∑
{a1�1

,...,ak�k }∈J+
i

|G[V ′
1�1
, . . . , V ′

k�k
]|

|V ′
1| · · · |V ′

k|
= dGi

(
V ′

1, . . . , V
′
k

)
± εk

S0

(ε′)k
. (5.10)
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Observe that∑
{a1�1

,...,ak�k }∈J+
i

|G[V ′
1�1
, . . . , V ′

k�k
]|

|V ′
1| · · · |V ′

k|

=
∑

{a1�1
,...,ak�k }∈J+

i

|G[V ′
1�1
, . . . , V ′

k�k
]|

|V ′
1�1

| · · · |V ′
k�k

| w(a1�1
) · · ·w(ak�k )

|V1�1
| · · · |Vk�k |

|V ′
1| · · · |V ′

k|

(5.7)
= (1 ± o(1))

1

w(A1) · · ·w(Ak)

∑
{a1�1

,...,ak�k }∈J+
i

|G[V ′
1�1
, . . . , V ′

k�k
]|

|V ′
1�1

| · · · |V ′
k�k

| w(a1�1
) · · ·w(ak�k ).

By the (D, ε)-regularity of G, and the definition of J+
i (cf. (5.8)), we further infer that

∑
{a1�1

,...,ak�k }∈J+
i

|G[V ′
1�1
, . . . , V ′

k�k
]|

|V ′
1| · · · |V ′

k|

= (1 ± o(1))(D ± ε)
1

w(A1) · · ·w(Ak)

∑
{a1�1

,...,ak�k }∈J+
i

w(a1�1
) · · ·w(ak�k )

(5.9)
= (1 ± o(1))(D ± ε)

1

w(A1) · · ·w(Ak)

(
(qi ± ς)

(
w(A1) · · ·w(Ak)

)
± 2εkSk+1

0

)
(5.7)
= (1 ± o(1))(D ± ε)

(
qi ± ς± 2εk

S0

ςk

)
. (5.11)

Now, comparing (5.10) and (5.11), we infer

(1 − o(1))(D − ε)

(
qi − ς− 2εk

S0

ςk

)
− εk

S0

(ε′)k
� dGi (V

′
1, . . . , V

′
k)

� (1 + o(1))(D + ε)

(
qi + ς+ 2εk

S0

ςk

)
+ εk

S0

(ε′)k
.

With pi = Dqi and ς < ε′, we further infer that

pi − ε′ (5.1)
= pi − 2ς

(5.4)

� pi − ς− 5εk
S0

ςk
� dGi (V

′
1, . . . , V

′
k)

� pi + ς+ 8εk
S0

ςk

(5.4)

� pi + 2ς
(5.1)
= pi + ε′.

5.2. Proof of Lemma 5.1

Let ς > 0 and integers k � 2 and s � 1 be given. We take S0 = S0(ς, k, s) to be sufficiently

large (and argue, in context, that this parameter needs only to depend on ς, k and

s). Let K[A1, . . . , Ak] be the k-partite k-graph with vertex partition A1 ∪ · · · ∪ Ak with

|A1| = · · · = |Ak| = S0. Let q1, . . . , qs > 0 be given with q0 = 1 −
∑s

i=1 qi � 0.

We shall define the promised partition J0 ∪ J1 ∪ · · · ∪ Js by a standard random construc-

tion. For 0 � i � s, let Ji be defined by, independently for each {a1, . . . , ak} ∈ K[A1, . . . , Ak],

P[{a1, . . . , ak} ∈ Ji] = qi. We seek (exhaustively search for) an instance of J1, . . . , Js behaving

according to the following claim.

https://doi.org/10.1017/S0963548313000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000291


Constructive Packings by Linear Hypergraphs 851

Claim 5.2. With S0 = S0(ς, k, s) sufficiently large, the following holds. For each 0 � i � s,

(a) if qi � ςk+1

2s
, then with probability 1 − 1

2s
,

|Ji| � 2sqiS
k
0 , (5.12)

(b) if qi >
ςk+1

2s
, then with probability 1 − 1

2s
, every choice A′

j ⊆ Aj , 1 � j � k, with |A′
j | �

1
2
ςS0, satisfies

|Ji ∩K[A′
1, . . . , A

′
k]| = qi

(
1 ± ς

2s

)
|A′

1| · · · |A′
k|. (5.13)

As we show at the end of the section, Claim 5.2 follows by straightforward applications

of the Markov and Chernoff inequalities.

Set Ji = Ji, 0 � i � s, to be instances satisfying the properties in (5.12) and (5.13).

Let a function w :
⋃k
j=1 Aj → [0, 1] be given satisfying w(Aj) =

∑
a∈Aj w(a) � ςS0 for all

1 � j � k. For the remainder of the proof, fix 0 � i � s. We show

(qi − ς)

k∏
j=1

w(Aj) �
∑

{a1 ,...,ak}∈Ji

w(a1) · · ·w(ak) � (qi + ς)

k∏
j=1

w(Aj). (5.14)

We proceed by considering two cases, the first of which is nearly trivial. Indeed, assume

qi � ςk+1/(2s). Then, there is nothing to show for the lower bound of (5.14). For the upper

bound, note that ∑
{a1 ,...,ak}∈Ji

w(a1) · · ·w(ak) � |Ji|
(5.12)

� 2sqiS
k
0 .

Since w(Aj) � ς|Aj | = ςS0 for all 1 � j � k, we infer

∑
{a1 ,...,ak}∈Ji

w(a1) · · ·w(ak) � 2sqi
ςk

k∏
j=1

w(Aj) � ς

k∏
j=1

w(Aj) � (qi + ς)

k∏
j=1

w(Aj),

as desired. Thus, for the remainder of the proof, we assume that

qi >
ςk+1

2s
, (5.15)

and proceed with the following claim.

Claim 5.3. With w given above and 0 � i � s fixed above, there exists a function

w0 :

k⋃
j=1

Aj → [0, 1]

with the following properties:

(a) for 1 � j � k, w0(Aj) = w(Aj),

(b) for 1 � j � k, if MAj (w0)
def
= {a ∈ Aj : 0 < w0(a) < 1}, then w0(MAj (w0)) � 1,

(c) for any w̄ ∈ {w,w0}, if Wi(w̄)
def
=

∑
{a1 ,...,ak}∈Ji w̄(a1) · · · w̄(ak), then Wi(w) � Wi(w0).
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We defer the proof of Claim 5.3 to the end of the section.

To prove the upper bound of (5.14), let the function w0 guaranteed by Claim 5.3 be

given and define, for 1 � j � k, SAj
def
= {a ∈ Aj : w0(a) = 1}. Let us first show that

∑
{a1 ,...,ak}∈Ji

w(a1) · · ·w(ak) � |Ji[SA1
, . . . , SAk ]| +

k

ςS0

k∏
j=1

w(Aj). (5.16)

Indeed, by Claim 5.3(c), we have∑
{a1 ,...,ak}∈Ji

w(a1) · · ·w(ak) = Wi(w) � Wi(w0)

�
∑

{a1 ,...,ak}∈Ji[SA1
,...,SAk ]

1 +

k∑
h=1

∑
ah∈MAh

(w0)

w0(ah)

k∏
j=1

j �=h

∏
aj∈Aj

w0(aj)

= |Ji[SA1
, . . . , SAk ]| +

k∑
h=1

⎛
⎜⎝ k∏

j=1

j �=h

∏
aj∈Aj

w0(aj)

⎞
⎟⎠w0(MAh (w0)).

By Claim 5.3(b), we further conclude

∑
{a1 ,...,ak}∈Ji

w(a1) · · ·w(ak) � |Ji[SA1
, . . . , SAk ]| +

k∑
h=1

k∏
j=1

j �=h

∏
aj∈Aj

w0(aj)

= |Ji[SA1
, . . . , SAk ]| +

(
1

w0(A1)
+ · · · +

1

w0(Ak)

) k∏
j=1

w0(Aj)

= |Ji[SA1
, . . . , SAk ]| +

(
1

w(A1)
+ · · · +

1

w(Ak)

) k∏
j=1

w0(Aj),

where we used Claim 5.3(a). Then (5.16) follows from w(Aj) � ςS0, 1 � j � k.

We may now conclude the upper bound of (5.14). Indeed, by Claim 5.3(a,b),

|SAj | = w0(Aj) − w0(MAj (w0)) = w(Aj) − w0(MAj (w)) � w(Aj) − 1 � 1

2
ςS0.

Thus, from (5.13) from Claim 5.2, we conclude from (5.16) that

∑
{a1 ,...,ak}∈Ji

w(a1) · · ·w(ak) � qi

(
1 +

ς

2s

)
|SA1

| · · · |SAk | +
k

ςS0

k∏
j=1

w(Aj) (5.17)

�
(
qi

(
1 +

ς

2s

)
+

k

ςS0

) k∏
j=1

w(Aj) �
(
qi +

ς

s

) k∏
j=1

w(Aj),

where the last inequality follows with S0 = S0(ς, k, s) sufficiently large (as a function of k,

ς and s alone). Then (5.17) implies the upper bound of (5.14).
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The lower bound of (5.14) is an easy consequence of (5.17), which we may now assume

holds for all 0 � i � s. For 0 � i � s fixed, note that

∑
{a1 ,...,ak}∈Ji

w(a1) · · ·w(ak)

=
∑

{a1 ,...,ak}∈K[A1 ,...,Ak]

w(a1) · · ·w(ak) −
s∑
h=0
h�=i

∑
{a1 ,...,ak}∈Jh

w(a1) · · ·w(ak)

�
k∏
j=1

w(Aj) −
s∑
h=0
h�=i

qh

(
1 +

ς

s

) k∏
j=1

w(Aj) � (qi − ς)

k∏
j=1

w(Aj),

as promised.

Proof of Claim 5.2. Fix 0 � i � s. The first case follows immediately by Markov’s

inequality, so assume qi � ςk+1

2s
. Fix A′

j ⊆ Aj , 1 � j � k, with |A′
j | � ςS0/2. By Chernoff’s

inequality (Fact 2.14),

P

[
|Ji[A′

i, . . . , A
′
k]| �=

(
1 ± ς

2s

)
qi|A′

1| · · · |A′
k|
]

� 2 exp

{
− ς2

12s2
qi|A′

1| · · · |A′
k|
}

� 2 exp

{
− ς2k+3

3 · 2k+3s3
Sk0

}
.

Over all choices A′
j ⊆ Aj , 1 � j � k, we see that Claim 5.2(b) holds with probability

1 − 2kS0+1 exp

{
− ς2k+3

3 · 2k+3s3
Sk0

}
� 1 − 1

2s
,

where the last inequality holds with S0 = S0(ς, k, s) sufficiently large as a function of ς, k

and s.

Proof of Claim 5.3. Recall that w :
⋃k
i=1 → [0, 1] and 0 � i � s are fixed. We determine

the promised function w0 by repeating an iterative procedure. If w (playing the role

of w0) satisfies Claim 5.3(b), set w0 = w and we are done. Otherwise, there exists some

1 � j � k so that w(MAj (w)) > 1. Without loss of generality, assume j = 1, and write

MA1
(w) = {â0, â1, . . . , â�}. We shall define an intermediate function w′ :

⋃k
j=1 Aj → [0, 1]

which will eventually lead us to the promised function w0.

Since w(MA1
(w)) > 1 and every element of MA1

(w) has positive weight, we deduce that

there exist ϑ1, . . . , ϑ� > 0 such that w(âh) � ϑh for all 1 � h � � and w(â0) = 1 −
∑�

h=1 ϑh.

Define w′ :
⋃k
j=1 Aj → [0, 1] by setting w′(â0) = 1, w′(âh) = w(âh) − ϑh for each 1 � h � �,

and w′(a) = w(a) whenever a ∈ A1 \MA1
(w) or a ∈ A2 ∪ · · · ∪ Ak . Note that MA1

(w′) =

{â1, . . . , â�}.
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We claim that w′ (playing the role of w0) satisfies Claim 5.3(a). In particular, we claim

that w′(A1) = w(A1). Indeed,

w′(A1) = w′(MA1
(w′)) + w′(A1\MA1

(w′))

=

�∑
h=1

w′(âh) + w′(A1\MA1
(w′))

=

�∑
h=1

w′(âh) + w′(A1\MA1
(w)) + w′(â0)

=

�∑
h=1

(
w(âh) − ϑh

)
+ w(A1\MA1

(w)) + 1

=

�∑
h=0

w(âh) + w(A1\MA1
(w))

= w(MA1
(w)) + w(A1\MA1

(w)) = w(A1).

We claim that w′ (playing the role of w0) satisfies Claim 5.3(c). To see this, for 0 � h � �

define

Ŵi(âh) =
∑

{âh,a2 ,...,ak}∈Ji

w(a2) · · ·w(ak).

Note that we may assume, without loss of generality, that Ŵi(â0) = max0�h�� Ŵi(âh).

Now,

Wi(w
′) −Wi(w) =

∑
{a1 ,a2 ,...,ak}∈Ji

((
w′(a1) · · ·w′(ak)

)
−

(
w(a1) · · ·w(ak)

))

=

�∑
h=0

(
w′(âh) − w(âh)

)
Ŵi(âh)

=
(
w′(â0) − w(â0)

)
Ŵi(â0) +

�∑
h=1

(
w′(âh) − w(âh)

)
Ŵi(âh)

�
(
w′(â0) − w(â0)

)
Ŵi(â0) + Ŵi(â0)

�∑
h=1

(
w′(âh) − w(âh)

)

=

( �∑
h=1

ϑh

)
Ŵi(â0) − Ŵi(â0)

( �∑
h=1

ϑh

)
= 0,

as desired.

It may not be the case that w′ satisfies Claim 5.3(b), i.e., it may be that w′(MA1
(w′)) > 1.

However, in this case, recall that MA1
(w′) = {â1, . . . , â�} = MA1

(w)\{â0}, and so

https://doi.org/10.1017/S0963548313000291 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000291


Constructive Packings by Linear Hypergraphs 855

w′(MA1
(w′)) =

�∑
h=1

w′(âh) =

�∑
h=1

(
w(âh) − ϑh

)

= w(MA1
(w)) − w(â0) −

�∑
h=1

ϑh = w(MA1
(w)) − 1.

We would therefore iterate this process to obtain a function w1 for which w1(MA1
(w1)) � 1.

We would then repeat again over all 1 � j � k for which wj(MAj (wj)) > 1, to finally arrive

at the promised function w0.

6. Proof of the Bounding Lemma

We use the following result of Haxell and Rödl (appearing as Theorem 18 in [12]).

As defined in Section 4, a packing of a hypergraph H0 is a set of pairwise disjoint

edges, and so a fractional packing of H0 is a function φ : H0 → [0, 1] satisfying, for

each vertex v ∈ V (H),
∑

{φ(e) : v ∈ e ∈ H} � 1. If H0 is equipped with vertex weights

w : V (H0) → [0, 1], then φ : H → [0, 1] is a weighted fractional packing of H0 if, for each

vertex v ∈ V (H0),
∑

{φ(e) : v ∈ e ∈ H0} � w(v). We say φ is β-bounded if, for every e ∈ H0,

φ(e) ∈ {0} ∪ [β, 1]. Finally, we set |φ| =
∑

e∈H0
φ(e).

Lemma 6.1 (Haxell and Rödl [12]). For every integer p � 2 and for all ξ > 0, there exists

B0 = B0(p, ξ) > 0 so that the following holds.

Let H0 be a p-graph on R vertices with vertex weights w : V (H0) → [0, 1]. Suppose φ is a

weighted fractional packing of H0 where, for every e ∈ H0, φ(e) < 1/B0. Then, there exists

a (1/B0)-bounded weighted fractional packing φ̄ of H0 so that |φ̄| � |φ| − ξR. Moreover,

the function φ̄ can be found, in time depending on R, by an exhaustive search.

We now show that Lemma 6.1 implies the Bounding Lemma (Lemma 2.12). To that

end, let F0 be a given k-graph and let ξ > 0 be given. To define the constant δ =

δLem. 2.12(F0, ξ) > 0, we appeal to Lemma 6.1. Set p = |F0| to be the number of edges

of F0. With integer p and ξ > 0 fixed above, let B0 = B0(p, ξ) > 0 be the constant

guaranteed by Lemma 6.1. Set δ = 1/B0. Now, let H0 be a k-graph on r vertices with edge

weights ω : H0 → [0, 1]. We construct the δ-bounded (ω, F0)-packing of H0 promised by

Lemma 2.12 by appealing to Lemma 6.1.

To that end, define a vertex-weighted p-graph H0 from H0 as follows. Set V (H0) = H0,

i.e., each vertex of H0 corresponds to an edge of H0. Let R = |H0| so that H0 is on R

vertices. Set H0 =
(
H0

F0

)
, i.e., each edge of H0 corresponds to a copy of F0 in H0 (and so

H0 is p-uniform). Define vertex weights w : V (H0) → [0, 1] by setting, for each ve ∈ V (H0)

where e ∈ H0, w(ve) = ω(e). Finally, let ψ∗ :
(
H0

F0

)
→ [0, 1] be a maximum fractional (ω, F0)-

packing of H0. Then ψ∗ corresponds to a weighted fractional packing φ∗ of H0 with

|ψ∗| = |φ∗| = ν∗
F0

(H0). (6.1)

To apply Lemma 6.1, we delete edges e ∈ H0 for which φ∗(e) � δ. To that end, set D0 =

{e ∈ H0 : φ∗(e) � δ} and set H′
0 = H0 \ D0. Define vertex weights w′ : V (H′

0) → [0, 1] by
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setting, for each v ∈ V (H′
0) = V (H0),

w′(v) = w(v) −
∑

v∈e∈D0

φ∗(e). (6.2)

(Note that w′(v) � 0 on account that φ∗ is a weighted fractional packing of H0.) Write

φ′ = φ∗|H′
0

for the restriction of φ∗ on H′
0 so that

|φ′| = |φ∗| −
∑
e∈D0

φ∗(e). (6.3)

Note that, by our definition of w′ above, φ′ is a weighted fractional packing of H′
0. Indeed,

for each v ∈ V (H′) we have

∑
v∈e∈H′

0

φ′(e) =
∑

v∈e∈H0

φ∗(e) −
∑

v∈e∈D0

φ∗(e) � w(v) −
∑

v∈e∈D0

φ∗(e)
(6.2)
= w′(v),

where in the inequality above, we used that φ∗ is a weighted fractional packing of H0.

We now apply Lemma 6.1 to H′
0, which we may do on account that for every e ∈ H′

0,

we have φ′(e) = φ∗(e) < δ = 1/B0, where B0 = B0(p, ξ) > 0 is the constant required by

Lemma 6.1. In time depending on R = |H0| � rk , Lemma 6.1 determines a δ-bounded

fractional packing φ̄ of H′
0 so that

|φ̄| � |φ′| − ξR � |φ′| − ξrk. (6.4)

Now, define the function φ̂ : H0 → [0, 1] as follows. For each e ∈ H0, set

φ̂(e) =

{
φ∗(e) if e ∈ D0,

φ̄(e) if e ∈ H′
0.

Then, φ̂ is δ-bounded, by construction. Note also that φ̂ is a weighted fractional packing

of H0 since, for each v ∈ V (H0),

∑
v∈e∈H0

φ̂(e) =
∑

v∈e∈H′
0

φ̄(e) +
∑

v∈e∈D0

φ∗(e) � w′(v) +
∑

v∈e∈D0

φ∗(e)
(6.2)
= w(v).

Finally, note that

|φ̂|=
∑
e∈H0

φ̂(e) =
∑
e∈H′

0

φ̄(e) +
∑
e∈D0

φ∗(e)

(6.3)
= |φ̄| + |φ∗| − |φ′|

(6.4)

� |φ∗| − ξrk
(6.1)
= ν∗

F0
(H0) − ξrk.

Thus, φ̂ corresponds to a fractional (ω, F0)-packing ψ̂ of H0 of promised size.
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