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Abstract

Many of the design systems developed in recent years incorporate some machine learning. The number of such systems
already available, and the multitude of design learning opportunities that are slowly being revealed, suggest that the
time is ripe to attempt to put these developments into a systematic framework. Consequently, in this paper we present
a set of dimensions for machine learning in design research. We hope that it can be used as a guide for comparing
existing work, and that it may suggest new directions for future exploration in this area.
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1. INTRODUCTION

Design represents one of the most complex problem-solving
domains addressed by artificial intelligence (AI). Despite
the progress made in the last decade to advance the use of
AI techniques in design, existing systems have difficulty cop-
ing with the diversity and quantity of knowledge required,
as well as with the variety of reasoning involved.

In general:

• A design problem requires knowledge from various do-
mains and uses a broad range of representations.

• Design problem solving is based on the ability to carry
out many specialized tasks, such as analysis, abstrac-
tion, evaluation, and explanation, each involving dif-
ferent reasoning abilities.

Portions of some design domains have been analyzed and
formalized, providing solid support for the search for solu-
tions. However, much of designing still relies on good knowl-
edge and heuristics. Maintaining the quality of designs and
the efficiency with which they are produced requires con-
tinual evaluation and improvement of design knowledge and
methods, including heuristics.

For designers, such improvements have been based on
recording and learning from notable events and attributes

that have occurred during the development of designs. Learn-
ing from designs, and learning during designing, is as old
as design activity itself.

Adding adaptation to a design system is clearly desir-
able. Even though learning does not always reach the opti-
mal solution, experience should eventually bring noticeable
and worthwhile improvements over initial designs and de-
sign processes. These are measured in terms of higher qual-
ity, shorter design times, and lower costs.

There has been increasing acknowledgment that compu-
tational design systems can and should include the ability
to learn, and there is an increasing amount of research on
machine learning in design (as demonstrated by the papers
in this special issue).

Knowledge acquisition and machine learning are the main
tools that support the process of change in a design system.
Knowledge acquisition emphasizes the transfer of knowl-
edge from the outside world into the system and relies less
on transformations inside the system. The primary goal of
knowledge acquisition is to extend the system’s operation,
by the addition of new knowledge.

Learning, while being based on the perception of events
and feedback, focuses on transformations that affect perfor-
mance. The meaning of “performance” includes both the
quality of the solution offered by the system and the effi-
ciency of the processes which generate that design (or
designs).

Many of the design systems developed in recent years do
incorporate some learning. They illustrate the different ways
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in which design is open to adaptive techniques. With learn-
ing, design systems can try to cope with increasingly more
complex problems. The number of examples of adaptive de-
sign systems already available, and the multitude of design
learning opportunities that are slowly being revealed, sug-
gest that the time is ripe to attempt to put these develop-
ments into a systematic framework.

2. NEED FOR DIMENSIONS

It is not this paper’s intent to review the use of machine
learning in design systems (for a recent review, see Duffy,
1997). However, we believe that the field is now important
enough and active enough that it is useful to try to charac-
terize it and to attempt to provide a framework for future
work.

Consequently, in this paper we present a set of dimen-
sions for machine learning in design research. We hope that
it can be used as a guide for comparing existing work, and
that it may suggest new directions for future exploration in
this area.

The set of dimensions chosen is inspired mainly by the
existing attempts to apply machine learning to design. It is
by no means complete, and probably not the only possible
analysis of the research literature. It represents a hypothesis
for discussion. We expect that future authors [including those
responding in this special issue to our draft of these ideas
(Grecu & Brown, 1997)] will have different opinions, es-
pecially as new developments in the field occur.

We do not claim that there is no overlap between the co-
ordinates within each dimension, or that they exhaust the
possibilities within that dimension. The purpose of defining
the coordinates is to identify the main points of focus within
each category. Some of the coordinates “flow” into each
other, and it would be difficult to define a clear line of de-
marcation between them. Their representative characterand
their distinctiveness have been simultaneously considered
in singling them out for inclusion.

As a final observation, we would like to note the poten-
tially distributed nature of design systems. The description
of the dimensions has been kept as general as possible, to
encompass both paradigms—distributed and nondistrib-
uted. Except for cases where there is an explicit reference
to either the distributed or the nondistributed type of a de-
sign system, the statements made are assumed to be valid in
both cases.

We now present the proposed dimensions of machine
learning in design:

• The triggers of learning.

• The elements supporting learning.

• What gets learned.

• Availability of knowledge for learning.

• Methods of learning.

• Local versus global learning.

• Consequences of learning.

3. DIMENSIONS

The following dimensions have been produced from an anal-
ysis of the research literature. No significance should be at-
tached to the order.

3.1. Triggers of learning

The situations that trigger learning in a particular design
environment have an impact on the choice of learning tech-
niques that apply and, at run-time, the frequency of occur-
rence of learning situations.

• Failure presents a system with the challenge of iden-
tifying the context and the reasons for its occurrence.
Failure can occur in a partial or temporary form (as in
backtracking in a subproblem), or it can be equivalent
to the failure of finding a design solution—where a so-
lution may or may not be known to exist.

• Successcannot always be taken for granted at the end
of a design process. For many design problems it is
hard to know how a good solution can be reached, de-
spite having a significant amount of resources. Being
able to identify factors that facilitate the achievement
of good performance is as challenging as finding causes
for failure—i.e., both the credit and blame assignment
problems are hard.

• Differences between expected and real valuesindicate
a learning situation, and can include failure and, per-
haps, success situations. One advantage of design sys-
tems is that they allow monitoring of the evolution of
virtually any design parameter or other factor. The de-
sign process may generate parameter values that fall
outside the range considered to be normal. While often
being too local to be immediately evaluated as good or
bad, parameter fluctuations can be captured and used
to do prediction as well as evaluations of the design.

• The need to improve abilitiesmay be a built-in long-
term goal, or it may occur as a requested extension to
the set of objectives of the design system. An explicit
change of goals, for example, calls for adjustments to
satisfy these new requirements.

3.2. Elements supporting learning

Learning in design depends on three supporting elements:a
representational structurethat can be evaluated and up-
dated;the support knowledge, such as rules, plans, or ac-
tions, used to generate new entities; andthe feedbackthat is
used to decide how to modify the representational structure.

For example, the representational structure can be the heu-
ristics in a design planning module, the support knowledge
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for learning can be a set of previous design plans, and the
feedback can consist of evaluations of how these design plans
performed. The learning component can update the plan-
ning module with new planning heuristics extracted from
the set of plans based on the available feedback.

The representations used for design problem-solving are
chosen according to the design task and the domain to which
they will be applied. It is not always the case that system
developers consider the possibility of modification when
making their representation decisions. Feedback and sup-
port knowledge usually can be more easily customized to
facilitate learning.

Examples of feedback and support knowledge used in de-
sign are as follows:

• Critiqueandpraisereflect utility factors in design. They
often represent a point of view and can provide oppos-
ing feedback elements.Estimatesmay be preliminary
sources of rating information.Evaluationsprovide as-
sessments of decisions or values with respect to a goal
or a set of goals. All of these elements can be provided
from external sources, by system users, or by sources
internal to the design system, incorporated in separate
system components. Most often, critiques, praise, es-
timates, and evaluations are used at run-time.

• Feedback after completing the design taskusually
comes from outside the design system and reflects eval-
uations provided by humans to the solution(s), and pos-
sibly the ingredient decisions, of the design system. This
feedback can refer either to the current design solution
or, on a comparative basis, to an entire set of past de-
sign solutions. It may be about all or part of the solu-
tion(s). Feedback may be directed to the whole design
system or to some particular reasoning component.

• Analyses of failures and conflicting elements(e.g., goals
or decisions) are concerned with factors that introduce
“stress” in the design process. Especially in the case
where this analysis uses design rationale provided by
the user, this feedback can extend the range of adapta-
tion of the design system beyond what can be achieved
automatically.

• Sequences of design decisionssupport the generation
of improvements from the perspective of design as a
decision-making process. Either utilities or newly com-
piled decisions (in the “knowledge compilation” sense)
may be generated by examining the decision sequenc-
ing process.

• Design histories(e.g., traces of information flow, knowl-
edge exchange, and negotiation between design sys-
tems) provide a basis for insight into entire parts of the
design process. Certain aspects that characterize glo-
bal design performance are obtainable only by looking
at the information recorded throughout entire design
sessions. Patterns of design activity also can be deter-
mined only by viewing collections of traces reflecting

specific aspects of designing (e.g., communication, in-
formation retrieval, negotiation, etc.).

3.3. What gets learned

The object of the learning process can be any aspect deemed
to be critical for design performance, and therefore the choice
always will be relative to the goals of the design system.

It is not necessary that learning focuses on onlyonetar-
get. Any element that is essential for design quality or pro-
cess performance can be included in a separate learning
process, or sets of elements can be combined and modified
as a whole within a learning process.

The following examples illustrate some of the elements
that are preferentially targeted in the learning process:

• Constraints relating parameters or other elements of
the designare at the core of every design problem. Some
constraints might not be visible or known because they
occur dynamically, only at run-time. Other constraints
remain hidden because they are distributed over sev-
eral design system components. Learning can make
them explicit.

• Dependencies between design parametersare critical
for the coordination phases of the design process. Vi-
olation of such dependencies usually leads to insuffi-
ciently informed decisions, making backtracking and
redesign more likely. Hence, increased knowledge of
dependencies is worth having.

• Support in favor of or against a decision, whether ex-
pressed as utilities or as rationale, is the basis for guid-
ing the design process. Any change in support is likely
to influence the final design outcome.

• Design rules, methods, and plansare among the ingre-
dients of almost any design reasoning system. More
generically, any extension of the basic problem-solving
knowledge of a design system may be the main target
for learning.

• Analogical associationsindicate similar patterns of rea-
soning and/or behavior in different situations. The dis-
covery of analogies represents the starting point for
abstracting reasoning mechanisms and transferring them
to other parts of the design system or into new design
contexts.

• Preferencesprovide a ranking to be used in selection
processes. Preferences might be only partially ex-
plicit, due to a large range of values, and might be com-
puted only as needed. Alternatively, when they are used
to characterize the selection process of another com-
ponent of the design system, they initially might be un-
known. In either case, preferences that become explicit
or hinted at during the design process can be learned as
a means to reduce future uncertainty. This should re-
duce failure and conflict.

• Preconditions and postconditions for rules, actions, and
tasksare essential for limiting the reasoning search
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space and for avoiding failure. Both types of condi-
tions can be refined or learned as a result of experience.

• Consequences of design decisionshelp establish the util-
ity of design actions. Learning about these end results
of design decision-making facilitates the assessments
and predictions that guide design development.

• Failures and conflictscan be classified into types, which
then allow recognizing typical situations that are likely
to create them.

• Heuristics for failure recovery and conflict resolution
often result by looking at “recordings” of situations that
have ended with a solution. Failure recovery and con-
flict resolution are frequently carried out with only a
limited look-ahead, and information synthesized in
hindsight can prove extremely useful for future situa-
tions (Cross, 1978).

• Successful designs and design processescan simply be
learned as cases, or can be used as knowledge to sup-
port the generation of new structures (e.g., via gener-
alization) that are very likely to lead to successful
outcomes when reused.

3.4. Availability of knowledge for learning

The learning mechanism depends on the way in which the
supporting knowledge is made available. This has an im-
pact on thequantityof available knowledge, thefrequency
with which it is provided (occasionally, periodically, or per-
manently), itsscope(local or global), and the limitation of
its validity in time (applies to a limited set of situations or
always). In some circumstances it may also affect isquality.

• Direct communicationrepresents a stream of mes-
sages either between the design system and the user or
between design system modules. The persistence of in-
formation is short, and it either has to be stored or im-
mediately used for learning. The contents can refer to
virtually any aspect of the design or design process.

• Indirect communication(e.g., between design systems
via a blackboard) usually conveys information that is
less time-critical, and its frequency tends to be lower
than for direct communication. The knowledge quan-
tity, its scope, or its validity in time are as unrestricted
as in the case of direct communication.

• Records of the state of the designprovide an image of the
design evolution and of the context and impact of de-
sign actions. The design state directly reflects the qual-
ityof thedesignand indirectly reflects thedesignprocess.
It covers design aspects ranging from the local to the glo-
bal level. The persistence of this support for learning is
low; therefore, the adaptive component has to process the
available information immediately or it has to store rel-
evant aspects of states for later analysis.

• Repositories of designs and interaction historiespro-
vide unrestricted opportunities for generating infor-
mation for learning from the point of view of time

restrictions. The information stored usually is limited
to aspects considered relevant at the time of record-
ing. This knowledge source is usually the most useful
setting for nonincremental learning techniques.

3.5. Methods of learning

Virtually any learning technique can be applied to design.
The fact that not all of them have been used to the same
extent so far is due mainly to the relatively short time that
the field of learning in design has been given attention by
researchers. The following list presents some of the many
possible examples.

• Explanation-based learninghas a potential in design
problems where a logic-based representation of design
states and actions has proven to be effective (Mitchell
et al., 1986).

• Induction (Fisher, 1987) has been one of the most
widely used techniques, ranging from the develop-
ment of new design concepts, predicting unknown de-
sign parameters, to the modeling of the behavior of
design agents (Grecu & Brown, 1996).

• Knowledge compilation(Brown, 1991) can be used to
generate macro-operators in planning or to recombine
knowledge for design decomposition or configuration.

• Case-based and analogical learningis one of the ba-
sic techniques for knowledge reuse in design (Maher
& Pu, 1997).

• Reinforcement learningsupports action selection dur-
ing design in systems where the emphasis lies on the
design generation process and where the right sort of
feedback is available (Whitehead, 1991; Tan, 1993).

• Genetic algorithmsimplement design adaptation by re-
combining parts of an initial set of completely de-
scribed designs (Bentley & Wakefield, 1995). They also
might be applied to design generation knowledge, such
as grammars (Brown, 1997).

• Neural networksare a relevant approach whenever
learning design configuration patterns or behavior pat-
terns can improve design performance (Ivezic & Gar-
rett, 1994).

3.6. Localversusglobal learning

The overwhelming majority of learning applications in de-
sign describe learning in an individual design system or mod-
ule. Distributed design systems and agent-oriented design
systems have recently attracted increasing interest, and part
of the effort to implement learning has been transferred into
this new area. Virtually all of the learning paradigms im-
plemented in an individual design system keep their rele-
vance when mapped onto a single design agent. We call this
type of learninglocal learning.

Multiagent design systems involve a set of processes that
involve at least two agents. Some of these processes imply
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the active participation of several agents, while some of them
imply the use by one agent of knowledge about another agent.
In either case, the learning related to such processes is a
distributed learning process.

At the “extreme” end of distributed learning lie global
effects, which result as a consequence of local changes at
the level of individual agents (Hutchins, 1991; Shoham &
Tennenholtz, 1994; Weiss, 1993). These effects can be re-
garded asglobal learningcaused by partial views and feed-
back at the local level, which nevertheless result in a new
consistent behavior of the system in its entirety.

3.7. Consequences of learning

The performance of the design system, and the success of
the learning mechanism, can be measured on two different
scales:

• Design improvements mean a higher quality design so-
lution. Design quality measures can provide feedback
about the impact of learning on individual aspects of
the design. Even though a single global design quality
indicator is rarely available, the variations of individ-
ual parameters describing the design produced provide
a multifaceted view of the learning achieved.

• The improvement of the design processthrough learn-
ing implies improved design system efficiency. In some
design systems, this can be a way to avoid resource
limitations. Redirecting these “saved” resources to-
ward achieving improved design quality becomes in-
creasingly important as more difficult design problems
are attempted.

4. CONCLUSIONS

This paper presents a set of dimensions for machine learning
in design research for use as a guide for comparing existing
work and to suggest new directions for future exploration in
thisarea.Thesetofdimensionsmaynotbecomplete,and there
maywell beotherpossibleanalyses,butweconsider thosepre-
sented here to be a useful contribution.

The number of design systems that include learning, and
the many possible uses for learning in design systems, sug-
gest that this is an appropriate time to try to analyze these
developments and opportunities in a systematic manner.
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