
Mathematical Structures in Computer Science (2021), 31, pp. 898–917
doi:10.1017/S0960129522000019

PAPER

E-Unification based on Generalized Embedding
Peter Szabo1 and Jörg Siekmann2∗

1Kurt-Schumacher-Str. 13, D-75180 Pforzheim, Germany and 2Saarland University/DFKI, Stuhlsatzenhausweg 3, D-66123
Saarbrücken, Germany
∗Corresponding author. Email: siekmann@dfki.de

(Received 29 January 2019; revised 25 November 2021; accepted 7 January 2022; first published online 24 March 2022)

Abstract
Ordering is a well-established concept in mathematics and also plays an important role in many areas
of computer science, where quasi-orderings, most notably well-founded quasi-orderings and well-quasi-
orderings, are of particular interest. This paper deals with quasi-orderings on first-order terms and
introduces a new notion of unification based on a special quasi-order, known as homeomorphic tree
embedding. Historically, the development of unification theory began with the central notion of a most
general unifier based on the subsumption order. A unifier σ is most general, if it subsumes any other
unifier τ , that is, if there is a substitution λ with τ =E σλ, where E is an equational theory and =E denotes
equality under E. Since there is in general more than one most general unifier for unification problems
under equational theories E, called E-Unification, we have the notion of a complete and minimal set of
unifiers under E for a unification problem Γ , denoted as μU�E(�). This set is still the basic notion
in unification theory today. But, unfortunately, the subsumption quasi-order is not a well-founded
quasi-order, which is the reason why for certain equational theories there are solvable E-unification
problems, but the set μU�E(�) does not exist. They are called type nullaryin the unification hierarchy.
In order to overcome this problem and also to substantially reduce the number of most general unifiers,
we extended the well-known encompassment order on terms to an encompassment order on substitutions
(modulo E). Unification under the encompassment order is called essential unification and if μU�E(�)
exists, then the complete set of essential unifiers eU�E(�) is a subset of μU�E(�). An interesting effect
is that many E-unification problems with an infinite set of most general unifiers (under the subsumption
order) reduce to a problem with only finitely many essential unifiers. Moreover, there are cases of an
equational theory E, for which the complete set of most general unifiers does not exist, the minimal and
complete set of essential unifiers however does exist. Unfortunately again, the encompassment order
is not a well-founded quasi-ordering either, that is, there are still theories with a solvable unification
problem, for which a minimal and complete set of essential unifiers does not exist. This paper deals
with a third approach, namely the extension of the well-known homeomorphic embedding of terms to a
homeomorphic embedding of substitutions (modulo E). We examine the set of most general, minimal, and
complete E-unifiers under the quasi-order of homeomorphic embedment modulo an equational theory E,
called ϕU�E(�), and propose an appropriate definitional framework based on the standard notions of
unification theory extended by notions for the tree embedding theorem or Kruskal’s theorem as it is called.
The main results are that for regular theories the minimal and complete set ϕU�E(�) always exists. If we
restrict the E-embedding order to pure E-embedding, a well-known technique in logic programming and
term rewriting where the difference between variables is ignored, the set ϕπU�E(�) always exists and it is
even finite for any theory E.
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1. Introduction
Ordering is a well-established concept in mathematics and it plays an important role in many
areas of theoretical computer science too. Quasi-orderings (qo) and most notably well-founded
quasi-orderings (wfqo) and well-quasi-orderings (wqo) in particular are of great general interest,
see Kruskal (1972). Probably the most popular application within our own field is the use of quasi-
orders and well-quasi-orders on first-order terms to prove the termination of rewriting rules, see
Dershowitz (1982, 1987) and logic programs see Leuschel (1998, 2002).

In the theory of E-unification of terms based on an alphabet � = F ∪X, with signature F and
variables X and an equational theory E, the set U�E(�) denotes the set of all E-unifiers of a
unification problem �. Of great interest is now to find a complete andminimal subset of U�E(�),
denoted as μU�E(�), from which all other E-unifiers can be obtained.

Equality on terms induced by the equational theory E will be denoted as =E and the subsump-
tion order on terms is denoted as ≤E. So, if there are two unifiers τ and σ for terms s and t, such
that sτ =E tτ and sσ =E tσ and there is a substitution λ, such that τ =E σλ, then τ is an instance of
σ , or σ subsumes τ , denoted as σ ≤E τ . This led to the notion of a most general E-unifier (mgu),
that is an E-unifier, which is not an instance of any other E-unifier. The set of most general uni-
fiers is denoted as μU�E(�) and every E-unifier is subsumed by some element of μU�E(�),
that is, it can be obtained by instantiation in an automated reasoning process, such as resolu-
tion (Robinson, 1965). Often we shall drop the E from E-unifiers if it is understood from the
context.

To illustrate the role of orderings in E-unification, consider the equational theory A for free
semigroups with the axiom of associativity for terms built over a binary function symbol f withA ={f (x, f (y, z)) = f (f (x, y), z)}. This is also known as the word (or string) algebra and the notation
is that of words (strings), where we just drop the function symbol f and have concatenation of
symbols.

For example, the string unification problem �1 = {ax =? xa} has most general unifiers of the
form σn = {x↦ an ∶ n ≧ 1}. Because the σn are ground substitutions, they are incomparable with
respect to the subsumption order, so μU�A(�1) = {σn ∶ n ≧ 1} is an infinite set and therefore �1 is
of unification type infinitary. Furthermore, since the subsumption order is not a well-quasi-order,
there are equational theories such that the set of mgus does not exist, see Baader (1988) and Hoche
(2016).

In order to address these problems, we proposed a generalization of the encompassment of
terms to equational encompassment of substitutions, whereby a term s is encompassed by a term
t, denoted as s ⊑ t, iff an instance of s, say sσ , is a subterm of t. This allows a decomposition of t in
the following sense: if we denote with t′ the replacement of the subterm sσ of t by a new variable
z′, then the term t can be written as t = t′{z′→ s}σ . Equational encompassment of terms, denoted
as ⊑E, is then lifted component-wise to substitutions and applied to the set of E-unifiers. We then
introduced the notion of an essential E-unifier by saying that σ is E-encompassed by τ , σ ⊑E τ , iff
each domain variable x of τ is also a domain variable of σ and xτ has an instance of xσ as a subterm
(modulo E). E-unifiers, which are not encompassed by any other unifier, are then called essential
E-unifiers and the complete set of essential E-unifiers is denoted as eU�E(�) for a unification
problem �. If μU�E(�) exists, we have eU�E(�) ⊆μU�E(�), that is, the encompassment order
generalizes the subsumption order and there are cases where an E-unification problem with an
infinite set of mgus reduces to a finite set of essential unifiers (Hoche and Szabo, 2006; Szabo et al.,
2016). Moreover it can happen that an equational theory E, for which μU�E(�) does not exist,
may have a minimal and complete set of essential unifiers eU�E(�).

For example, the unification type of �1 from above changes drastically using the encom-
passment order: the essential unifier σ1 = {x↦ a} encompasses all the other most general uni-
fiers σn = {x↦ an}, n > 1, because σ1 ⊑A σn, n > 1. More precisely, the decomposition of a term,
which encompasses another term, as shown above, is also valid for substitutions. In this case,

https://doi.org/10.1017/S0960129522000019 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000019


900 P. Szabo and J. Siekmann

encompassment allows the decomposition σn = λnσ1, where λn = {x↦ anx}, n ≧ 0. So the minimal
and complete set of essential unifiers for �1 is eU�E(�1) = {σ1}, that is, it is unitary instead of
infinitary as it is under the subsumption ordering.

Nevertheless there are still essentially infinitary string unification problems, as the following
example shows. Let �2 = {xby =? ayayb} be the string unification problem, which has eU�A(Γ2) ={{x↦ abna, y↦ bn} ∶ n > 0} as its minimal and complete set of essential unifiers. The unifiers are
incomparable with respect to encompassment, because abna cannot be a substring of abma for
m ≠ n. Furthermore, as the encompassment order on unifying substitutions is not a wqo, unfor-
tunately again, there are theories with a solvable unification problem �, for which eU�E(�) does
not exist, see Baader (1988), Hoche (2008), and Szabo et al. (2016).

This paper deals with a further generalization, namely the extension of the well-known homeo-
morphic embedding of terms to a homeomorphic embedding modulo E of terms and of substitutions,
called E-embedding of terms or substitutions, respectively.1 Informally, the homeomorphic
embedding of terms is understood as follows:

Let s = f (s1, ..., sn) and t = f (t1, ...., tn) be terms, then s is syntactically embedded into t, denoted
as s ⊴ t iff s = t or s ⊴ ti for some i or si ⊴ ti for all i. For example, f (x, b) ⊴ f(g(a, x), f (x, b)) and
also f (x, b) ⊴ f(f (a, h(x)), f (b, a)) and f (a, x) ⊴ f(g(a, b), x), but f (a, b) ⋬ f (g(a, b), x).

The E-embedding order for terms, denoted as ⊴E, will then be extended to an E-embedding
order for substitutions similar to the encompassment order in Szabo et al. (2016).We define σ ⊴E τ
iff each domain variable x of τ is also a domain variable of σ and xτ homeomorphically E-embeds
xσ , that is if τ = {xi↦ ti} and σ = {xi↦ si}, 1 ≦ i ≦ n, then σ ⊴E τ iff si ⊴E ti. To illustrate the effect
of this E-embedding order, take Γ2 from above as an example, where E is the equational theory A
for strings. In this case, aba ⊴A ab......ba and b ⊴A b.....b, hence with σ1 = {x↦ aba, y↦ b} we have
σ1 ⊴A σn for all n > 1. Consequently, σ1 is the onlyminimal unifier and the set of embedment free
unifiers for �2 is λU�A(�2) = {σ1} and it is finite. In fact, it can be shown that in general the
theory is unitary instead of infinitary as before.

But in order to generalize the encompassment order for terms to the embedment order for
unification problems, we need a more general notion of embedment. This is achieved by defining
that a term s is instance E-embedded into a term t iff an instance of s, say sλ, is E-embedded into t,
which we call λE-embedding. This is denoted as s ⩿E t and E-unifiers, which have no λE-embedded
unifier, are called free λE-unifiers. If the set of free λE-unifiers is complete, then it is denoted as
ϕU�E(�) for a unification problem �.

This paper is organized as follows: The next chapter presents the notions and notation in
unification theory, term rewriting, and automated theorem proving giving it an algebraic flair.
This is then extended to a chapter on quasi-ordering, the basic algebraic notion of this paper.
The third chapter presents the main results on E-unification based on equational homeomorphic
embedding.

2. Notions and Notation
Notation and basic definitions in unification theory are well known (see, e.g., Baader and Nipkow
(1988)) and have found their way into many and diverse academic fields. Most monographs and
textbooks on automated reasoning have sections on unification.

In the following, we unify the various presentations of the necessary concepts for unification
toward a concise notation which serves our purpose and we show how the additional concepts for
ordering E-unifiers based on homeomorphic embedding can be built upon these definitions. The
notion of an algebra given below embraces algebraic structures and the original notions in com-
putational logic, recursive function theory, theory of automata, and automated theorem proving
are compatible and natural applications.
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2.1 Signatures, terms, and term algebras
A signature is a finite set F of function symbols that come with a nonnegative integer n, called
arity, which is assigned to each member f of F. f is an n-ary function symbol. The subset of n-ary
function symbols in F is denoted by Fn. An algebra of type F is an ordered pair A= ⟨A, F⟩, where
A is a nonempty set and F is a family of finitary operations on A indexed by the signature F such
that corresponding to each n-ary function symbol f in Fn there is an n-ary operation f A on A. The
set A is called the carrier of the algebra.

Let X be a set of (distinct) variables. Let F be a signature. The set T(F,X) of (syntactic) terms
of F over X is the smallest set

(i) comprising X and F0 and
(ii) if t1, . . . , tn in T(F,X) and f in Fn, then f (t1, . . . , tn) in T(F,X)
The set of variable-free terms are called ground terms. The set of variables occurring in a term

t is denoted by Var(t). The set of subterms of a term f (t1, . . . , tn) contains the term itself and is
closed recursively by containing t1, . . . , tn. It is denoted by Sub(t).

The set of terms can be given an algebraic structure called term algebra as usual.

2.2 Substitutions
A substitution is a (unique) homomorphism in the term algebra generated by a mapping σ ∶X�→
T(F,X) from a finite set of variables to terms. Substitutions are generally denoted by small Greek
letters α, β , γ , σ , etc. and they are represented explicitly as a function by a set of variable bind-
ings σ = {x1↦ s1, . . . , xm↦ sm}. SF,X denotes the set of all substitutions. The application of the
substitution σ to a term t, denoted tσ , is defined by induction on the structure of terms

tσ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

si if t = xi
f (t1σ , . . . , tnσ) if t = f (t1, . . . , tn)
t otherwise

The substitution ε = {} with tε = t for all terms t in T(F,X) is called the identity. A substitution
σ = {x1↦ s1, . . . , xm↦ sm} has the finite domain:

Dom(σ) ∶= {x∣xσ ≠ x} = {x1, . . . , xm};
The range of the substitution σ is the set of terms

Ran(σ) ∶= ⋃
x∈Dom(σ)

{xσ} = {s1, . . . , sm′},m′ ≤m
The set of variables occurring in the range isVRan(σ) ∶= Var(Ran(σ)) andVar(σ) =Dom(σ) ∪
VRan(σ). The restriction of a substitution σ to a set of variables Y ⊆X, denoted by σ∣Y , is the
substitution which is equal to the identity everywhere except over Y ∩Dom(σ), where it is equal
to σ . The composition of two substitutions σ and θ is written σ ○ θ (to emphasize the composition)
or just as σθ . The application is defined by tσθ = (tσ)θ . This is fine if σθ has no contradictory
variable bindings, otherwise there are several solutions proposed in the literature which solve this
problem and preserve functional composition, see, for example, Baader and Nipkow (1988) and
Baader and Snyder (2001).

Relations such as =, ≥, . . . between substitutions sometimes hold only if they are restricted to
a certain set of variables V . A relation R which is restricted to V is denoted as RV , and defined
as σRVτ ⇐⇒ xσRxτ for all x in V. Two substitutions σ and θ are equal, denoted σ = θ iff
xσ = xθ for every variable x; they are equal restricted to V, xσ =Vxθ , iff xσ = xθ for all variables
x in V.
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2.3 Congruences and equations
An equivalence relation � on the underlying set (the carrier) of an algebra of type F is a con-
gruence, if for each n-ary function symbol f in F and elements ai, bi of A, for all i in 1 ≤ i ≤ n we
have

ai�bi⇒ f A(a1, . . . , an)�f A(b1, . . . , bn)
The quotient algebra is the algebra whose carrier are the equivalence classes A/� and whose

operations satisfy

f A/�(a1/�, . . . , an/�) = f A(a1, . . . , an)/�
We are interested in quotient algebras, where the congruence is defined by a set of equations E,

which is denoted as =E. For a term t in T(F,X) and the congruence E the equivalence class of t is
denoted as [t]E.

2.4 Ordering
Our main interest in this paper is to investigate if the set of most general, minimal, and complete
unifiers ϕU�E(�) exists under certain conditions and the main technique for showing this result
is based on orderings, in particular on well-quasi-orderings.

Definition 1. A quasi-order (also called a pre-order) is a binary relation that is reflexive and
transitive.

A term t is (syntactically) an instance of a term s, if sσ = t for some substitution σ . We also say
s subsumes t and this relation is a quasi-order. It is called the subsumption order on terms.
A term t (syntactically) encompasses a term s, if an instance of s is a subterm of t. Encompassment
conveys the notion that s appears in t with some context “above” (in tree notation) and a
substitution instance “below.” We say t encompasses s or s is encompassed by t. In particular,
encompassment is called strict encompassment, if sσ is a proper subterm of t.

A term s is homeomorphically embedded into t iff s can be obtained from t by erasing some
“parts” in t. We usually abbreviate homeomorphical embedding just to embedding. Embedment
conveys the notion that the structure of s and some corresponding symbols appear within t. A
term s is instance-embedded into t, we also say it is λ-embedded into t, iff an instance of s, that is sλ,
is embedded into t. This is the main notion of this paper, which we will generalize to embedment
of substitutions later on.
More formally, we have the following orders on terms2:

Definition 2. (syntactic)

(1) A term s is a subterm of t if s ∈ Sub(t) and we denote this by s ⪯ t. If s is a proper subterm of
t, we write s ≺ t.

(2) A term s subsumes t, denoted s ≤ t, iff there exists a substitution σ with sσ = t
(3) A term s is encompassed by t, denoted s ⊑ t, iff there exists a substitution σ such that sσ ∈

Sub(t).
(4) A term s is embedded into a term t, denoted s ⊴ t, if s = t or s is embedded into an argument

of t or the argument terms of s and t embed, respectively:
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s ⊴ t ⇐⇒
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = t, or
t = f (t1, . . . , tn) and for some i, 1 ≤ i ≤ n ∶ s ⊴ ti, or
t = f (t1, . . ., tn), s = f (s1, . . ., sn)

and ∀i ∶ si ⊴ ti, 1 ≤ i ≤ n.
We denote strictly embedding by s ⊲ t if s and t are not equal.

We also say that t embeds s, t ⊵ s, and use it either way depending on the context. Embedding is
of practical interest, notably in term rewriting systems and logic programming languages, where
it is used in termination proofs. Sometimes an equivalent definition is used in these fields based
on a reduction system:

Definition 3. For a set of terms T(F,X), the Embedding Reduction System,RF, associated with
the signature F is defined asRF ∶= {f (x1, ....xn)�→ xi ∶ n ≥ 1, f ∈ Fn ⊆�, for i, 1 ≤ i ≤ n}.
The following Proposition states a well-known fact, see, for example, Dershowitz and Jouannaud
(1991) and Baader and Nipkow (1988).

Proposition 4. For terms s, t: t embeds s, t ⊵ s, iff t ∗��→
RF

s.

The next definition for embedding involves instances of terms.

Definition 5. A term s is instance-embedded into a term t, denoted s ⩿ t, if there is an instantiating
substitution λ for s, such that sλ is embedded into t: sλ ⊴ t. We also say that s is λ-embedded into t.

Some remarks: embedding implies λ-embedding, but λ-embedding does not necessarily imply
embedding.

Remark 6. For terms s and t and a substitution λ:
if s ⊴ t, then s is λ-embedded into t, sε ⊴ t, with the empty substitution ε.
Otherwise: s ⩿ t does not imply s ⊴ t, for example, s = f (a, x) and
t = f (g(a, b), f (b, h(a))) and λ = {x↦ a}. We have s ⩿ t, because sλ ⊴ t,
but s ⋬ t since s = f (a, x) ⋬ f (g(a, b), f (b, h(a))) = t .
These standard order relations are now extended to equality modulo E for the congruences

induced by the equations in E.

Definition 7. Let E be an equational theory:

(1) A term s is a subterm of t modulo E, denoted s ⪯E t, iff there exists an s′ =E s and a term
t′ =E t such that s′ ⪯ t′. We say s is an E-subterm of t.

(2) A term s subsumes t modulo E, s ⩽E t, iff there exists a substitution σ with sσ =E t. We say s
E-subsumes t.

(3) A term s is encompassed by t modulo E, s ⊑E t iff there is a substitution σ such that sσ ⪯E t.
We say s is E-encompassed by t.

The subterm and the encompassment order are quasi-orders (reflexive and transitive).
Fortunately, the extension to E-subterm and E-encompassment order preserves transitivity, so they
are quasi-orders too:
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Proposition 8. The E-subterm order, ⪯E, is a quasi-order, that is, it is reflexive and transitive
Proof. Reflexivity: for a term t it is obvious, that t ⪯E t .

Transitivity: for terms r, s, t if r ⪯E s, s ⪯E t%⇒ r ⪯E t.
r ⪯E s%⇒∃r′ ∈ [r]E, s′ ∈ [s]E ∶ r′ ⪯ s′ and
s ⪯E t%⇒∃s′′ ∈ [s]E, t′′ ∈ [t]E ∶ s′′ ⪯ t′′. Now because
s′′ =E s′ we get a new term t′ from t′′ by replacing s′′ by s′.
And then we have s′ ⪯ t′.
That is: r′ ⪯ s′ ⪯ t′ and transitivity of ⪯ yields r′ ⪯ t′.
Hence, r =E r′ ⪯ t′ =E t%⇒ r ⪯E t.
The important observation for the following is that the term r′ in the above proof is not

necessarily a subterm of t′. It is a subterm of t′ only when t′′ is transformed under =E into t′.
This property is not valid for E-embedding and hence transitivity does not hold for this and
other reasons. Thus, we cannot prove its quasi-order property. The reason is that if a term t
embeds a term p, then there is not necessarily a t′ ∈ [t]E, such that for a given E-variant of
p, p′ ∈ [p]E , t′ ⊵E p′. To see this and in order to motivate our Definition 10 below, consider
the usual method to extend a quasi-order (relation) R to “R modulo E,” which is to take the
transitive closure =E ○R○ =E . Originally, we used this idea, where E-embedding is defined as:
t ⊵E s iff t =E s, or ∃t′ ∈ [t]E, s′ ∈ [s]E ∶ t′ ⊵ s′. The problem is, however, that transitivity, namely:
t ⊵E s ⊵E r⇒ t ⊵E r does not hold in this case. Consider the following example:

Let F = {f , g, h, a, b, c} be a signature and E = {f (b, b) = g(c, h(a))}
be an equational theory.
Now consider t = f (g(b, a), f (b, a)) and s = f (b, b) and r = h(a), where
transitivity of ⊵E: t ⊵E s ⊵E r⇒ t ⊵E r does not hold:
t ⊵E s because t ⊵ s and s ⊵E r because s =E s′ = g(c, h(a)) ⊵ h(a) = r.
But there is no t′ ∈ [t]E and no r′ ∈ [r]E, such that t′ ⊵ r′.

Therefore, we propose an enhanced definition for equational embedding by requiring that if an
embedded term p of a term t E-embeds a term s, then t also E-embeds s. For our contribution,
it is important that this E-embedding, respectively λE−embedding, enhances the comparison
of objects (i.e. unifying substitutions) and allows us to use the famous tree-embedding theorem
Kruskal (1960). This theorem is valid for first-order terms and can be lifted to substitutions and we
show later on that it holds for E-embeddings as well. E-embedment, respectively λE−embedment,
is then our fundamental tool in the rest of this paper. In the following definition and for the rest
of this paper note: if two terms are equal under E, then they are embedment equivalent ≡E too,
because s =E t implies ∃s′ ∈ [s]E and ∃t′ ∈ [t] with s′ = t′ which implies s′ ⊴ t′ and s′ ⊵ t′ , hence
s ≡E t. So we just use =E in the following.

Definition 9. For a term t and an equational theory E:
Let EmbE(t) := {p ∶ p =E p′ and p′ ⊴ t} be the set of the closure under E of all embedded terms

in t.

The following is the crucial definition in this paper:

Definition 10. (E-embedding) A term t E-embeds a term s, denoted t ⊵E s, if s =E t, or there are
terms t′ =E t and s′ =E s and there is an embedded term p ∈EmbE(t′) such that p ⊳ s′:

t ⊵E s ⇐⇒ {s =E t or∃t′ ∈ [t]E, s′ ∈ [s]E and ∃p ∈EmbE(t′) ∶ p ⊳ s′
Note that if p = t′ and t ⊵E s then ∃t′ ∈ [t]E, s′ ∈ [s]E ∶ t′ ⊳ s′ is just a special case of the above
definition for t ⊵E s.
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In order to show that t ⊵E s, we can use an E-embedding-chain of the following form:
t =E t′1 ⊳ t2 =E t′2 ⊳ t3 =E t′3 ⊳ ..... ⊳ tn =E s

where ⊳ denotes strict embedding as in Definition 2. We abbreviate this chain as t ▸nE s, n ≥ 1.
Note that this embedding chain has the typical regular structure where =E and ⊳ alternate. The ti
may be an embedded term as denoted by p in the second line of Definition 10.

Lemma 11. Let s, t be terms, t E-embeds s, t ⊵E s, iff
t =E s, or there exists a strictly descending chain of the form:
t =E t′1 ⊳ t2 =E t′2 ⊳ t3 =E t′3 ⊳ ..... ⊳ t′n =E s, abbreviated as t ▸nE s.

Proof. The first case in Definition 10 is obvious and we show the existence of the E-embedding
chain by induction:

t ▸1E s ∶ by Definition 10 ∃t′1 ∈ [t]E, ∃s′ ∈ [s]E and ∃p ∈EmbE(t′) ∶ p ⊳ s′.
Hence, t =E t′1 ⊳ s′ =E s.
t ▸n+1E s: that is t ▸nE tn and tn ▸1E s. By induction hypothesis, we have the chain
t =E t′1 ⊳ t2 =E t′2 ⊳ ...... ⊳ tn and tn ▸1E s with tn =E t′n ⊳ tn+1, where tn+1 = s′.
So the whole E-embedding-chain is the following:
t =E t′1 ⊳ t2 =E t′2 ⊳ t3 =E ........ ⊳ tn =E t′n ⊳ tn+1 =E s.
The next definition extends instance-embedding to instance embedding modulo an equational

theory E.

Definition 12. (instance E-embedding) A term s is instance-embedded modulo E into t, denoted
s ⩿E t, if an instance of s is E-embedded into t, that is sλ ⊴E t for a substitution λ. We say s is
λE-embedded into t.

The relation E-embedding is recursively defined in Definition 10 and it can be computed using
Proposition 4 as follows:

Proposition 13. For a set of terms T(F,X) and an equational theory E the
E-embedding Rewrite System, EF, is defined as EF := ( ∗�→RF .

∗�→E).
Then for terms s, t: t ⊵E s iff ∃t′ ∈ [t]E, ∃s′ ∈ [s]E ∶ t′ ∗�→EF s′.
That is: there is a finite chain of the form:
t ∗�→E t′

∗�→RF t1
∗�→E t′1

∗�→RF t2....
∗�→RF tn

∗�→E s.

Proof. Follows from Lemma 11 by replacing =E by its equivalent rewrite system ∗�→E and ⊵E by
its reduction system ∗�→RF .

With Definition 10 and Lemma 11, we obtain our first main result:

Theorem 14. The E-embedment order ⊵E is a quasi-order on terms.

Proof. Let r, s, t be terms and let E be an equational theory.
reflexivity: Because terms embed themselves.
transitivity: t ⊵E s ⊵E r%⇒ t ⊵E r.
By Definition 10 and Lemma 11, we have t ▸mE s and s ▸nE r
that is t =E t′1 ⊳ t2 =E t′2 ⊳ t3 =E t′3........ ⊳ tm =E s and

s =E s′1 ⊳ s2 =E s′2 ⊳ s3 =E s′3........ ⊳ sn =E r.
But since tm =E s′1 we have the correct chain
t =E t′1 ⊳ t2 =E t′2 ⊳ t3 =E t3........ ⊳ tm =E s′1 ⊳ s2 =E s′2 ⊳ s3 =E s′3........ ⊳ sn =E r
Hence, t ▸n+mE r , which means t ⊵E r.
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The negation of E-subsumption and E-encompassment is obvious: s ≰E t iff there exists no sub-
stitution σ with sσ =E t and s ⋢E t iff there is no substitution σ such that sσ ⪯E t. But the notions
“not embedded” and “incomparable” with respect to ⊴E should be made more explicit.

Definition 15. (not embedded modulo E)

(1) A term s is not embeddedmodulo E into a term t , s ⋬E t, iff for every element s′ of the class[s]E there exists no element t′ of the class [t]E such that s′ ⊴E t′.
(2) Terms s and t are incomparable with respect to ⊴E iff s ⋬E t and t ⋬E s.
(3) Terms s and t are incomparable with respect to ⩿E iff there exist no substitutions λ1 and λ2

with sλ1 ⊴E t and tλ2 ⊴E s .
We shall lift these orderings modulo E on terms now component-wise to orderings on substi-
tutions in the sense that for all variables in the domain of the substitution we require that the
corresponding images fulfill the order relation modulo E.

Definition 16. (ordering modulo E for substitutions restricted to a set of variables)
In the following, let σ , τ be substitutions with Dom(σ) =Dom(τ) ⊇ V, where V is some set of
variables.

(1) A substitution σ is a sub-substitution modulo E of τ restricted to V, denoted as σ ⪯VE τ , if for
all x in V, xσ is a subterm of xτ modulo E, that is xσ ⪯E xτ .

(2) A substitution σ E-subsumes a substitution τ restricted to V, denoted as σ ≤VE τ , if there
exists a substitution λ such that σλ =VE τ . The relation ≤VE is called the E-subsumption order
for substitutions restricted to V.
We denote E-subsumption equivalence as σ ∼VE τ , if σ ≤VE τ and τ ≤VE σ .

(3) A substitution σ is E-encompassed by τ restricted to V, denoted σ ⊑VE τ , if there exists λ,
such that (σλ) restricted to V is a sub-substitution of τ modulo E, σλ ⪯VE τ .
We denote E-encompassment equivalence as σ ≈VE τ if σ ⊑VE τ and τ ⊑VE σ .

(4) A substitution σ is E-embedded into a substitution τ restricted to V, denoted as σ ⊴VE τ , iff
for all x in V we have xσ ⊴VE xτ .

(5) A substitution σ is λE-embedded into a substitution τ restricted to V, denoted as σ ⩿VE τ , iff
there is a substitution λ, such that ∀x ∈V ∶ x(σλ) is E-embedded into xτ .

The encompassment and embedment order on terms are well known as quasi-orderings, but
themodulo E extension to substitutions requires verification.

Theorem 17. The E-encompassment order is a quasi-order on substitutions.

Proof. This is an improved version of the proof published before in Szabo et al. (2016) and even
earlier in Hoche and Szabo (2006).

reflexivity: σ ⊑E σ by Definition 16 .3 means σλ ⪯VE σ , setting λ to the
substitution identity ε we have σ =E εσ = σ .

transitivity: σ ⊑VE τ and τ ⊑VE ψ implies σ ⊑VE ψ , where by definition we have
Dom(σ) =Dom(τ) =Dom(ψ), so by Definition 16. 3.:

σλ1 ⪯VE τ
τλ2 ⪯VE ψ

and by composition with λ2 from the right

σλ1λ2 ⪯VE τλ2 ⪯VE ψ⇒ σ ⊑VE ψ
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Theorem 18. The E-embedment order is a quasi-order on substitutions.

Proof. Let σ , τ ,ψ be substitutions and V ∶= Dom(σ) =Dom(τ) =Dom(ψ).
reflexivity: σ ⊴VE σ since xσ embeds itself for all x in V .
transitivity: we show: σ ⊴VE τ ⊴VE ψ implies σ ⊴VE ψ
By Definition 16.(4) : For σ ⊴VE τ we have ∀x ∈V ∶ xσ ⊴E xτ
and for τ ⊴VE ψ we have ∀x ∈V ∶ xτ ⊴E xψ .
Now ∀x ∈V ∶ xσ ⊴E xτ and xτ ⊴E xψ are assertions on terms,
so using Theorem 14 we have ∀x ∈V ∶ xσ ⊴E xψ
and then by Definition 16.(4) we have σ ⊴VE ψ .
The following lemma asserts that if a term s (a substitution σ ) is embedded into a term t

(a substitution τ ) then their instances are embedded too, that is, the relation ⊴ is right composable
with substitutions.

Lemma 19. Let s, t be terms and let σ ,τ , and λ be a substitution. Then
(1) For all λ, if s ⊴ t, then sλ ⊴ tλ
(2) For all λ, if s ⊴E t, then sλ ⊴E tλ
(3) For all λ, if σ ⊴E τ , then σλ ⊴E τλ

Proof. (1) s ⊴ t implies sλ ⊴ tλ :
By Definition 2.(4), we have three cases:
(i) s = t is trivial.
(ii) Let t = f (t1, . . . , tn) and s ⊴ tj for some j ≤ n.
Now tλ = f (t1, . . . , tn)λ = f (t1λ, . . . , tnλ). Since tj is smaller than t we
obtain by an inductive argument that sλ ⊴ tjλ. Hence, sλ ⊴ tλ .
(iii) Let s = f (s1, . . . , sn) and t = f (t1, . . . , tn) with s1 ⊴ t1, ..., sn ⊴ tn.
We have sλ = f (s1λ, . . . , snλ) and f (t1λ, . . . tnλ) = tλ and again by an inductive
argument, we obtain siλ ⊴ tiλ for 1 ≤ i ≤ n.
Hence, sλ ⊴ tλ .
(2) This is shown using the ⊵E-chain of Lemma 11 t n▸E s,
that is, there is a ⊳E-chain t =E t1 ⊳ t′1 =E t2 ⊳ ........ ⊳ t′n =E s.
Applying assertion (1) of this lemma to every element of the chain yields:
t =E t1%⇒ tλ =E t1λ, t1 ⊳ t′1%⇒ t1λ ⊳ t′1λ, ......., t′n =E s%⇒ t′nλ =E sλ.
Combining these into one chain yields: tλ =E t1λ ⊳ t1λ =E t2λ ⊳ ......tnλ =E sλ.
Hence, tλ ⊵E sλ, resp. sλ ⊴E tλ.
(3) By Definition 16.(4) σ ⊴E τ : ∀x ∈Dom(σ) =Dom(τ) ∶ xσ ⊴E xτ and since
these are terms, we have with 19(2) that ∀x ∈Dom(σ) =Dom(τ) ∶ xσλ ⊴E xτλ
and thus σλ ⊴E τλ.
The next theorem shows that instance E-embedding is also a quasi-order on first-order terms.

Theorem 20. The λE-embedment order ⪀E is a quasi-order on terms.

Proof. Let r, s, t be terms:
reflexivity: is obvious because every term λ-embeds itself.
transitivity: we show t ⪀E s ⪀E r implies t ⪀E r.
By Definition 12, we have:
s ⪀E r implies ∃σ ∶ s ⊵E rσ and t ⪀E s implies ∃τ ∶ t ⊵E sτ .
Furthermore with Lemma 20 and Theorem 14:
s ⊵E rσ %⇒∃m ∶ s m▸E rσ and t ⊵E sτ %⇒∃n ∶ t n▸E sτ .
By Lemma 19 ▸ is substitution-composable from the right, hence we have
sτ m▸E rστ , which implies t n▸E sτ m▸E rστ .

https://doi.org/10.1017/S0960129522000019 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000019


908 P. Szabo and J. Siekmann

Using the transitivity of ⊵E we get: t n+m▸E rστ and hence t ⊵E r(στ),
that is t ⪀E r.
Using Theorem 20, we can now show that instance E-embedding of terms lifted to substitutions

is also a quasi-order:

Theorem 21. The λE-embedment order ⪀E is a quasi-order on substitutions.

Proof. reflexivity: is a trivial consequence with the identity substitution ε: σε ⪀E σ
transitivity: τ ⪀E σ ⪀E � implies τ ⪀E �
By Definition 16.(5), we have: σ ⪀E � implies ∃λ ∶ σ ⊵E �λ and τ ⪀E σ implies∃δ ∶ τ ⊴E σδ. Hence, by Lemma 19.(3) on the components of σ and �
we have σδ ⊵E �(λδ), which implies by definition τ ⪀E �.
The following definition lists some well-known notions (see Kruskal (1960) and Nash-Williams

(1963)) on quasi-orderings, which we shall use later on.

Definition 22. Let ≤ be a quasi-ordering on a set S, then:

(1) An infinite sequence of elements of S, a1, a2, a3, ... is called a ≤−chain if ai ≤ ai+1 for all i ≥ 1.
The sequence a1, a2, a3, ... is said to contain a chain if it has a subsequence that is a chain.

(2) The infinite sequence a1, a2, a3, ... is called an anti-chain if neither ai ≤ aj nor aj ≤ ai, for all
1 ≤ i < j.

(3) The quasi-ordering ≤ is well-founded (wfo) if it contains no infinite strictly descending<-chain; that is, there is no infinite sequence a1, a2, a3, ... of elements of S such that ai > ai+1
for every i inN.

(4) A well-quasi-ordering on S (wqo), ≤, is a quasi-ordering which is well-founded and it has
no infinite anti-chains in S with respect to ≤.

Lemma 23. Let E be an equational theory and let t1 ⪀E t2 ⪀E t3 ⪀E ... be an infinitely descending⪀E-chain of terms ti, 1 ≦ i. Then there exists an infinitely descending ⊵E-chain of instances of ti
with corresponding instantiating substitutions σi: t1 ⊵E t2σ2 ⊵E t3σ3 ⊵E t4σ4 ⊵E .... , where the σi are
composed from the σk for 1 ≤ k ≤ i.
Proof. By Definition 12, we have t1 ⪀E t2%⇒∃λ2 ∶ t1 ⊵E t2λ2

and t2 ⪀E t3%⇒∃λ3 ∶ t2 ⊵E t3λ3.
With Lemma 19.(2), we get t2λ2 ⊵E t3λ3λ2. Hence, t1 ⊵E t2λ2 ⊵E t3λ3λ2.
Now we have the following induction hypotheses: with σ2 ∶= λ2 and for n > 2
t1 ⪀E t2 ⪀E t3 ⪀E ... ⪀E tn%⇒∃λi ∶ t1 ⊵E t2λ2 ⊵E t3λ3λ2 ⊵E .... ⊵E tnλnλn−1λn-2...λ2
For more readability, let us use the following notation:
(*1) σ1 ∶= ε, σ2 ∶= λ2, σ3 ∶= λ3λ2, that is: σi ∶= λiσi−1, i ≥ 2.
Now by induction.
n = 2 ∶ t1 ⪀E t2%⇒∃λ2 ∶ t1 ⊵E t2λ2 and using (*1) we have: t1 ⊵E t2σ2
n→ n+ 1 ∶ by induction hypotheses there exist substitutions λ2, λ3, ..., λn
such that t1 ⊵E t2σ2 ⊵E t3σ3 ⊵E .... ⊵E tnσn, where σi ∶= λiσi−1, i ≥ 2,
as notated in (*1).
Now at the tail of the chain, we have tn ⪀E tn+1 and by Definition 12 there is a
substitution λn+1, such that tn ⊵E tn+1λn+1. Moreover with Lemma 19.(2) :
tnσn ⊵E tn+1λn+1σn, and using notation (*1): tnσn ⊵E tn+1σn+1.
Hence in the limit we obtain t1 ⊵E t2σ2 ⊵E t3σ3 ⊵E .... .
The following Tree Theorem was first proposed as a hypothesis by A. Vázsonyi and proved

by Kruskal (1960, 1972), and later with a more elegant proof by Nash-Williams (1963). It states
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that the set of finite trees over a well-quasi-ordered set of labels is itself well-quasi-ordered under
homeomorphic embedding. Kruskal uses a notation, where T(Y) denotes the collection of all
(structured) trees over an alphabet Y.

Theorem 24. The Tree Theorem.
If Y is well-quasi-ordered, then T(Y) is well-quasi-ordered too.

The following theorem is a consequence of the tree theorem for the set of first-order terms
T(F,X), built over a finite signature F and a finite set of variable symbols X. Hereby, we refer
to the work of Gallier (1991), whose terminology we like to use. He proves that “Given a finite
alphabet � =F ∪X which is well quasi ordered then ⊵ is also a well quasi order on T(F, X)”
and the next theorem is a generalization to “modulo E.” In the following, we assume that � is
well-quasi-ordered.

Theorem 25. Let E be an equational theory. The E-embedding quasi-order ⊵E is a well-quasi-order
on the set of terms built over a finite alphabet � =F ∪X.

Proof. (i) ⊵E is well founded.
If not, then there exists an infinite strictly descending ⊳E −chain over a finite alphabet: t1 ⊳E

t2 ⊳E t3 ⊳E ....
From this chain, we obtain the (sub-) sequence s1, s2, s3, .... where each si corresponds to some

tj with si =E tj.
Then by the tree embedding theorem, there are indices i < j such that ti ⊴ tj .
(see Gallier (1991) for this formulation).
But ti ⊴ tj implies in particular ti ⊴E tj and hence contradicts that there is a
strictly descending ⊳E −chain.
(ii) There are no infinite anti-chains with respect to ⊵E.
The argument is in the same spirit by contradiction, reducing ⊵E to ⊵.

Theorem 26. Let E be an equational theory. The λE−embedding quasi-order ⩿E is a well-quasi-
order on the set of terms built over a finite alphabet � = F ∪X.

Proof. Similar to Theorem 25.3

E-unification of first-order terms is based on an infinite set of variable symbols and it is well
known that the embedding order of terms with an infinite set of variable symbols is not a well-
quasi-order, since we have the anti-chain x1, x2, x3, ..... Of course the same is the case then for
embedment modulo E.
But well foundedness of the syntactic embedding ordering is valid, since the number of symbols
decreases in a strictly descending syntactic ⊳−chain. This well-known fact is stated in the next
proposition.

Proposition 27. In a strictly descending ⊳−chain the number of occurrences of symbols decreases.

Our interest in this paper is the extension to equational theories. But with an infinite set of vari-
ables Proposition 27 is not applicable, since in an infinite strictly decreasing ⊵E-chain the number
of occurrences of symbols could increase. So one would conjecture that the E-embedding order is
not a well-founded order (WFO). Unfortunately, we have yet no proof either way.

For an infinite set of variable symbols, we have to look for appropriate constraints on the equa-
tional theory E and a possible candidate is that for a term t the total number of variable symbols
in [t]E is finite. This is achieved by requiring that every axiom l = r in E has the property, that
Var(l) =Var(r), a class of theories called regular theories.

Lemma 28. Let E= {l1 = r1, l2 = r2, ..., lk = rk} be a regular equational theory, that is for each i ∈{1, ..., n} ∶Var(li) =Var(ri). For any term t ∈T(F,X), the total number of variable symbols in the
equational class [t]E is finite.
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Proof. Consider t′ ∈ [t]E and a number n ≧ 1 of rewrite steps t n�→E t′.
Then for every rewrite step: ti�→li→ri ti+1 or ti�→ri→li ti+1
there is a substitution λi such that liλi (or riλi) is a subterm of ti,
liλ ⪯ t (or liλ ⪯ t) and ti+1 is the result of replacing liλ by riλ (or riλ by liλ).
But since Var(li) =Var(ri) this cannot introduce new variables in ti+1 and
hence Var(t′) ⊆Var(t).
Well foundedness of E-embedding is now an easy consequence.

Theorem 29. Let E be a regular equational theory. E-embedding ⊵E is a well-founded quasi-order
on the set of terms.

Proof. If not, then there exists an infinite strictly descending ⊳E-chain
t1 ⊳E t2 ⊳E t3... ⊳E ti ⊳E .....
With Definition 10 and Lemma 11, this chain has the form:
t1 =E t′1 n1▸E t2 =E t′2 n2▸E t3 =E t′3 n3▸E t4..... which consists of E-variants of embedded
terms. Now with Lemma 28 andW ∶= Var(t1)⋃VE we have,
that for all terms t̂, which appear in the chain: Var(t̂) ⊆W.
But then all elements of the chain and its E-equivalents are built over a finite
alphabet. Hence by Theorem 25, the ⊵E ordering is well founded.
The next theorem is similar and shows that λE-embedding preserves well foundedness.

Theorem 30. Let E be a regular equational theory. λE−embedding ⪀E is a well-founded quasi-order
on the set of terms.

Proof. If not, then there is an infinite strictly descending ⋗E-chain
t1 ⋗E t2 ⋗E t3... ⋗E ti ⋗E .....
By Lemma 23, there exists a corresponding infinite strictly descending⊳E-chain t1 ⊳E t2σ2 ⊳E t3σ3 ⊳E t4σ4 ⊳E .... contradicting Theorem 29.

3. Ordering E-unifiers under homeomorphic embedding
We shall now look at unification under λE-embedding, which is our main interest in this paper,
and we start with a recapitulation of the standard notions of E-unification.

3.1 E-Unification
Let E be an equational theory and let F be the signature of the term algebra. An E-unification
problem is a finite set of equations

� = {s1 =?E t1, . . . , sn =?E tn}
Let V denote the set of variables in Γ , V =Var(Γ ). An E-unifier for � is a substitution σ such that

s1σ =E t1σ , . . . , snσ =E tnσ
The set of all E-unifiers of � is denoted U�E(�). A complete set of E-unifiers cU�E(�) for � is
a set of E-unifiers, such that for every E-unifier τ there exists σ ∈ cU�E(�) with σ ≤VE τ . The set
μU�E(�) is called a minimal complete set of E-unifiers for �, if it is complete and for all distinct
elements σ and σ ′ in μU�E(�) if σ ≤VE σ ′ then σ =VE σ ′.

When a minimal complete set of E-unifiers of a unification problem � exists, it is unique up to
E-subsumption equivalence ∼VE . Minimal complete sets of E-unifiers need not always exist, and
if they do, they might be singular, finite, or infinite. Since minimal complete sets of E-unifiers
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are isomorphic whenever they exist, they can be used to classify theories with respect to their
corresponding unification problem. This leads naturally to the concept of a unification hierarchy,
see Siekmann (1989), Knight (1989), Gallier (1991), Baader and Siekmann (1994), and Baader
and Snyder (2001) for the standard surveys on this aspect.

A unification problem � is

• nullary, if � is unifiable, but the minimal complete set of E-unifiers does not exist.
• unitary, if it is not nullary and the minimal complete set of E-unifiers for � is of cardinality
less than or equal to 1.

• finitary, if it is not nullary and the minimal complete set of E-unifiers is always finite.
• infinitary, if it is not nullary and the minimal complete set of E-unifiers is infinite.

An equational theory E is

• unitary, if all unification problems for E are unitary
• finitary, if all unification problems are finitary.
• infinitary, if there is at least one infinitary unification problem and all unification problems
have minimal complete sets of E-unifiers.

• If there exists a solvable unification problem � not having a minimal complete set of
E-unifiers, then the equational theory E is nullary or of type zero.

3.2 E-Unifiers ordered by homeomorphic embedding
The essential problem in unification theory is to determine the relationship between the solutions
of term equations. In other words: what is the structure of the solution space?

In the case of syntactic unification, the structural relationship between the unifiers is based on
the fact that terms form a lattice under the subsumption order, that is, there is a least upper bound
and a max lower bound. Hence, if a unification problem is solvable, then there is a single most
general unifier. But for unification under an equational theory the answer is not as easy, because:

– the complete set of most general unifiers is mostly infinite
– the complete set of most general unifiers may not even exist for a solvable E-unification prob-

lem.
So the search for an order relation better than subsumption comes naturally. Our first idea was
based on the observation that certain solutions contain the instances of other solutions as a
sub-structure. We captured this idea technically with the encompassment order on terms and sub-
stitutions, which led to the notion of an E-essential unifier4. Sub-structure means, in this case, that
a unifying substitution encompasses other unifiers and hence they need not necessarily be part
of the new set that represents all solutions. Unfortunately, the encompassment order is not a wqo
either and hence there are equational theories for which there are solvable E-unification problems,
but the minimal and complete set of essential E-unifiers does not exist, so they are E-nullary w.r.t.
encompassment (Baader, 1988; Hoche, 2016; Szabo et al., 2016).

This paper is based on the observation that certain solutions embed the instances of other solu-
tions in the sense of the homeomorphic tree embedding theorem or Kruskal’s theorem. That is,
the components of a unifying substitution embed the components of another unifying substitu-
tion. This then leads to the notion of free (instance embedment-) E-unifiers, free λE-unifiers, where
these free λE-unifiers are the candidates of our new minimal and complete set of unifiers, which
we name ϕUΣE(Γ ).
Definition 31. Let E be an equational theory,Γ be a solvable E-unification problem, andU�E(�)
be the set of all E-unifiers for Γ . If an E-unifier σ in U�E(�) does not have any λE-embedded
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unifier, then σ is called a free λE-unifier. If the set of free λE-unifiers is complete, it will be denoted
as ϕUΣE(Γ ).

Since homeomorphic embedding is not a well-quasi-order on the set of terms with infinitely
many variable symbols, we cannot use Theorem 25. But for all practical purposes it may be pos-
sible for an automated deduction system to set a limit to the number of new variables and the
theorem may still be useful in that case.

Nevertheless, the infinite sequence of variables x1, x2, x3, .... is normally used as a case in point
that we have an anti-chain and hence Kruskal’s theorem cannot be applied. But for the instance
embedding order ⪀E this is not the case: For example, x1 instance embeds x2 with the instantiating
substitution λ = {x2→ x1}. So there is the open problem whether or not the λE-embedding is a
well-quasi-order. Unfortunately, currently we have neither a counter example nor a proof – so we
state it here as an:

Open problem: Is the ⪀E-order a WQO even for an infinite number of variables?

For the rest of the paper, we shall also employ a standard technique used in the quest for termi-
nation proofs in logic programming Leuschel (1998, 2002) as well as termination of term rewriting
systems Dershowitz and Jouannaud (1990), namely to disregard the name of a variable and sim-
ply treat all variables as the same. In other words, the unification procedure processes them as if
they were embedment equivalent. This observation leads to the notion of pure embedding, which
we abbreviate to π-embedding in the following and denote it as t ⊵π s. As before, we generalize
embedding to pure instance embedding or λπ -embedding by saying a term s is λπ -embedded into
a term t, if it is λ-embedded and in addition all variables are embedding equivalent. It is defined
(almost identical to Definition 2.(4), Definition 5 and 10) as follows:

Definition 32. (Pure embedding, π−embedding)

(1) A term t π-embeds a term s if:

t ⊵π s ⇐⇒
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s = t or s, t ∈X or
t = f (t1, . . . , tn) and for some i, 1 ≤ i ≤ n, ti ⊵π s, or
t = f (t1, . . .tn), s = f (s1, . . .sn) and ∀i ∶ ti ⊵π si, 1 ≤ i ≤ n.

(2) A term s is instance π-embedded (λπ -embedded) into a term t, denoted s ⩿π t, if there is an
instantiating substitution λ such that sλ is π-embedded into t: sλ ⊴π t. We also say that s is
λπ -embedded into t.

(3) A term t πE-embeds a term s modulo E, denoted t ⊵πE s, if s and t are variables, or s =E t, or
there is a term s′ =E s and a term t′ =E t and there is an embedded term p in EmbE(t′) such
that p ⊳π s′. More precisely:

t ⊵πE s ⇐⇒ {s =E t, or s, t ∈X or
∃t′ ∈ [t]E, s′ ∈ [s]E and ∃p ∈EmbE(t′) ∶ p ⊳π s′

(4) Similar to Definition 10 and Definition 12, we define that a term s is instance π-embedded
modulo E (λπE -embedded) into a term t, s ⩿πE t .

(5) A substitution σ is π-embedded into a substitution τ for a set of variables V, denoted as
σ ⩿Vπ τ , iff V ⊆Dom(σ) and ∀x ∈V ∶ xσ is π−embedded into xτ .
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(6) A substitution σ is instance π−embedded modulo E (λπE -embedded) into a substitution τ
for a set of variables V, denoted as σ ⩿Vπ ,E τ , iff V⊆Dom(σ) and there is a substitution λ,
such that ∀x ∈V ∶ x(σλ) is π-embedded into xτ .

πE-embedding and λπE -embedding are special cases of E-embedding and λE-embedding, so we
can use Theorem 25 using the fact that we now have only one variable (see also Leuschel (1998)):

Corollary 33. πE-embedding and λπE -embedding are well-quasi-orders on the set of terms.

In order to show the results below, we recall some well-known notions originally found in
Higman (1952) and Nash-Williams (1963) and others, but now restricted to first-order terms
(Gallier, 1991). Moreover, we define that a list of terms l1 = (s1, s2, s3, ..., sn) is λE-embedded (is λπE -
embedded) into a list of terms l2 = (t1, t2, t3, ..., tn), n ≥ 1, if there is an instantiating substitution σ ,
such that l1σ is E-embedded into l2. That is every component siσ of the list l1 is E-embedded into
the component ti of the list l2 for 1 ⩽ i ⩽ n.
In the following proofs, we use two standard notions:

Definition 34. (good and bad sequences)

(1) A sequence of terms t1, t2, t3, ..... is called good, if there are indices i, j, and i < j ∶ ti ⊴ tj oth-
erwise it is called bad. A well-quasi-ordering (wqo) is a quasi-ordering over which every
infinite sequence is good.

(2) Let l1 ∶= (s1, s2, s3, ....sn), l2 ∶= (t1, t2, t3, ....tn) be lists of terms (of equal length). Then l1 is
embedded into l2, l1 ⊴ l2, iff si ⊴ ti, 1 ≦ i ≦ n.

Since a substitution is in fact a list of terms labeled with a variable, we have:

Lemma 35. Let T(F,X) be a well-quasi-ordered set of terms with respect to term-embedding ⊴.
Then every infinite sequence of terms t1, t2, t3, .... has an infinite ascending sub-sequence, (⊴-chain),
t′1 ⊴ t′2 ⊴ t′3, .....
Proof. See the proof in, for example, Nash-Williams (1963) and Gallier (1991)

This lemma can now be extended to equational embedding:

Corollary 36. Let T(F,X) be a well-quasi-ordered set of terms and E an equational theory. Then
every infinite sequence of terms t1, t2, t3, .... has an infinite ascending sub-sequence, (⊴E-chain), t′1 ⊴E
t′2 ⊴E t′3 ⊴E .....
Proof. See Gallier (1991) where this is proved in a more general setting.

Lemma 37. Let T(F,X) be a well founded, resp. a well-quasi-ordered set of terms with respect
to embedding. Then the set of finite lists of terms T(F,X)ω is also well founded, resp. well-quasi-
ordered.

Proof. See the proof in Nash-Williams (1963), Gallier (1991), and Singh et al. (2013).

The following lemma lifts the previous results from terms to substitutions and note we have
only a finite set of variables, since the terms are wqo:

Lemma 38. Let T(F,X), where X is finite, be a well-quasi-ordered set of terms with respect to
E-embedding, then the set of substitutions SF,X is also well-quasi-ordered.

Proof. A substitution can be seen as a list of terms, so by induction on the size of the associated
lists.
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n = 1: If T(F,X) is wqo, then for every infinite sequence of substitutions
with a single component σ1 = {x→ s1}, σ2 = {x→ s2}, σ3 = {x→ s3}, ...
the associated sequence of lists is l1, l2, ..., li,... where li = (si), i ≥ 1
and the corresponding infinite sequence is s1, s2, s3, ....
Now because s1, s2, s3, ... is good, that is there exists an i, j, i < j: si ⊴E sj
the sequence l1, l2, l3, ... is also good. Consequently, σ1, σ2, σ3, .... is good.
n→n+ 1 ∶ By induction hypothesis σ1, σ2, σ3, ....
with σi = {x1→ si1, x2→ si2, ..., xn→ sin} has the associated sequences of lists
l1, l2, ..., li,... with li = (si1, si2, ..., sin) which is good and therefore
σ1, σ2, σ3, .... is also good.
Now Lemma 35 can be used, which says that there exists an infinite ascending
E-embedding sub-chain l′1 ⊴E l′2 ⊴E l′3 ⊴E ...⊴E l′i ⊴E ... where l′i = (s′i1, s′i2, ..., s′in).
Looking now for lists with size n+ 1 we have a similar list but with
l′i = (s′i1, s′i2, ..., s′in, s′in+1), i ≥ 1 and its ascending ⊴E-subchain
l′1 ⊴E l′2 ⊴E l′3 ⊴E ....
Now becauseT(F,X) is a wqo set w.r.t. E-embedding, the corresponding infinite sequence con-

sisting of the n+ 1’th members, s′1n+1,s′2n+1, ..., s′in+1, ... must be good; therefore, there are indices
i′, j′ such that s′i′n+1 ≤ s′j′n+1 which implies l′i′ = (s′i′1, s′i′2, ..., s′i′n+1) ⊴E l′j′ = (s′j′1, s′j′2, ..., s′j′n+1), hence
l′1, l′2, l′3, ...is good. So if we assume that l1, l2, l3, ... is bad then σ1, σ2, σ3, .... is also bad, but the infi-
nite subsequence l′1, l′2, l′3, ... is good; therefore, l1, l2, l3, ... must also be good from which follows
that σ1, σ2, σ3, ..... is also good. Hence, SF,X is a well-quasi-ordered set.

The proofs for our various E-embeddings on substitutions are almost identical to those in
Lemma 38; hence, we collect them in one lemma:

Lemma 39. Let T(F,X), where X is finite, be a well-quasi-ordered set of terms with respect to
λE-embedding, πE-embedding and λπE -embedding then the set of substitutions SF,X is also a well-
quasi-ordered set with respect to these embeddings.

The results so far, namely the (homeomorphic) embedding of first-order terms and sub-
stitutions extended to various equational embeddings, namely E-embedding (⊴E), instance E-
embedding (⩿E), pure E-embedding (⊴πE ), and pure instance E-embedding (⩿πE ) can now be used
to show the following properties for the set of E-unifiers, more importantly for the set of minimal
E-unifiers, which is of course our main interest.

Theorem 40. Let T(F,X) be the set of first-order terms and E a regular equational theory. Then
for a solvable E-unification problem Γ , the set of free λE-unifiers, ϕUΣE(Γ ) always exists and it is
minimal and complete (but not necessarily finite).

Proof. T(F,X) is a well-founded quasi-order with respect to instance E-embedding as a conse-
quence of Theorem 30 and Lemma 37.

Definition 41. An E-unification problem�E is bounded if there is a number N such thatUΣE(Γ )
uses at most N variables. A theory E is bounded if every E-unification problem �E is bounded.

If the alphabet is finite and �E is bounded, we have the following stronger result5:

Theorem 42. Let T(F, X) be the set of first-order terms built over a finite alphabet � = F ∪X and
let E be an equational theory. Then for a solvable bounded E-unification problem Γ , the set of free
λE-unifiers, ϕUΣE(Γ ), always exists, it is minimal, complete, and finite.

Proof. A consequence of the tree embedding theorem extended to equational instance embedding.
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For our final result, let us say a purified E-unification problem is a problem where we define all
variables as embedment equivalent. Let ϕπUΣE(Γ ) be the corresponding complete set of pure
and free λE-unifiers, then:

Theorem 43. Let T(F, X) be the set of first-order terms and let E be an equational theory, then
for a solvable E-unification problem Γ the set of pure and free λE-unifiers, ϕπUΣE(Γ ) exists, it is
minimal, complete, and finite.

4. Conclusion and Future Work
This paper sets forth an abstract setting for equational unification problems, where we redefine
the notion of the set of most general unifiers. We now have:

“Unification based on E-subsumption”
“Unification based on E-encompassment”
“Unification based on E-embedding”

where each approach is a generalization of the previous one. For terms s, t, and an instantiating
substitution λ, this can be illustrated for the syntactic case as:

▸ t ⪀ s, that is t instance embeds s, is defined using
homeomorphic embedding ⊵:

t ⪀ s ⇐⇒ ∃λ ∶
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sλ = t, or
t = f (t1, . . . , tn), i ∈ {1, ...., n} ∶ ti ⊵ sλ
t = f (t1, . . ., tn), sλ = f (s1, . . ., sn)

and ∀i ∶ ti ⊵ si, 1 ≤ i ≤ n
▸ t ⊒ s, that is t encompasses s, is defined by deleting the third line of the previous defini-
tion:

t ⊒ s ⇐⇒ ∃λ ∶ {sλ = t, or
t = f (t1, . . . , tn), i ∈ {1, ...., n} ∶ ti ⊒ sλ

▸ t ≥ s , that is t subsumes s, is defined by deleting the second line of
the previous definition:

t ≥ s ⇐⇒ ∃λ ∶ s = tλ
Extending this to E-unification, we have the three notions: μUΣE(Γ ), the standard notion
today, essential unification eUΣE(Γ ), and finally ϕUΣE(Γ ) under homeomorphic embedding
as presented in this paper. In a sequel to this paper, we will show how to compute the set
ϕUΣE(Γ ) and its closure and whether it can be used in an inference system like resolution.

Using this general framework, the next tasks are then to look again at the standard unification
problems like associativity, commutativity, or idempotency and their combination as well as on
the wealth of results about other algebras, in order to see what the potential practical (and theoret-
ical) gains are. A first investigation into these practical problems has been made within the logic
programming paradigm (Alpuente et al., 2018)6. As in the 1970s, when we started unification the-
ory with a table listing the now standard unification problems in one column and in the adjacent
column the type within the unification hierarchy, we could now have a similar table, but with an
additional column for the type of eUΣE(Γ ) and ϕUΣE(Γ ).
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Secondly, there is far more theoretical work needed to better understand the actual structure
of and relationship between these unification settings and also how this work relates to simi-
lar results obtained within different theoretical settings, like those of Cabrer and Metcalfe (2014,
2015). Moreover how to relate all this to the wealth of theoretical results obtained by Ghilardi
(1997) and his students (see, e.g., Ghilardi (2018)) and by Franz Baader (see, e.g., Baader and
Ghilardi (2011)).

Acknowledgements. This paper has taken a very long time to take its present form. Starting from the basic observation
that a subset of infinitely many most general unifiers more often than not share a basic structure until we came to the more
theoretical characterization as presented here. We very much like to thank Michael Hoche who worked with us on earlier
drafts of these ideas and we hope that he will soon recover and come back to us, in order to continue our joint work on the
problems this paper left open. We also like to thank the referees of UNIF18 for their work and critical ideas. In particular, we
like to thank the reviewers of this journal, who contributed substantially to the final formulation and shape of this paper. Not
least, they found an embarrassing flaw in the previous version and pointed us to related work in the literature.

Notes
1 This notion is also used with a slightly different definition in Alpuente et al. (2016).
2 Signs and notation are still not uniform in all related fields; our notation is used more often in the field of automated
theorem proving and unification theory, whereas term rewriting systems usually prefer notational conventions as proposed
in Dershowitz and Jouannaud (1990) and Dershowitz and Jouannaud (1991).
3 As one reviewer remarked, we could argue more abstractly that any quasi-order that extends a well-quasi-order is a well-
quasi-order too Gallier (1991). Now, E-embedding and λE−embedding are quasi-orderings by Theorem 14 and Theorem 20
and =E is a quasi-order, hence follows the result of Theorem 25 and Theorem 26, but we feel an explicit proof shows the idea
much better.
4 A general introduction to essential unification is presented in Szabo et al. (2016)
5 The notion of boundedness actually implies a finite alphabet, but unfortunately some unification problems require the use
of infinitely many fresh variables.
6 These works have been brought to our attention, once our paper was finished and submitted, a possible cross fertilization
and comparison warrants certainly more research.
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