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Nonlinear stability of gravitationally unstable,
transient, diffusive boundary layers in

porous media
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The linear stability of transient diffusive boundary layers in porous media has
been studied extensively for its applications to carbon dioxide sequestration. The
onset of nonlinear convection, however, remains understudied because the transient
base state invalidates the traditional stability methods that are used for autonomous
systems. We demonstrate that the onset time of nonlinear convection, t = ton, can
be determined from an expansion that is two orders of magnitude faster than a
direct numerical simulation. Using the expansion, we explore the sensitivity of ton
to the initial perturbation magnitude and wavelength, as well as the initial time
at which a perturbation is initiated. We find that there is an optimal initial time
and wavelength that minimize ton, and we obtain analytical relationships for these
parameters in terms of aquifer properties and initial perturbation magnitude. This
importance of the initial perturbation time and magnitude is often overlooked in
previous studies. To investigate perturbation evolution at late-times, t > ton, we
perform direct numerical simulations that reveal two unique features of transient
diffusive boundary layers. First, when a boundary layer is perturbed with a single
horizontal Fourier mode, nonlinear mechanisms generate a zero-wavenumber response
whose magnitude eventually surpasses that of the fundamental mode. Second, when
a boundary layer is simultaneously perturbed with many Fourier modes, the late-time
perturbation magnitude is concentrated in the zero-wavenumber mode, and there is no
clearly dominant, non-zero, wavenumber. These unique results are further interpreted
by comparison with direct numerical simulations of Rayleigh–Bénard convection.

Key words: buoyancy-driven instability, fingering instability, nonlinear instability

1. Introduction
This study is motivated by carbon dioxide sequestration in subsurface, porous, brine-

saturated aquifers (Orr 2009). Following injection into an aquifer, buoyant CO2 forms
a horizontal layer of gas bounded by impermeable caprock above and brine below,
as illustrated in figure 1(a). With time, CO2 dissolves into the brine and forms a
downwardly growing diffusive boundary layer. Because the brine density increases
with dissolution of CO2, a gravitational instability leads to the formation of finger-
like structures that convect aqueous CO2 downwards (Ennis-King & Paterson 2003).
Predicting the onset of this convection is important for CO2 sequestration as well as
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FIGURE 1. (a) Sketch (not to scale) of the geometry considered in the current study. Here
CO2 gas forms a layer beneath the impermeable caprock. At time t = 0, CO2 begins
dissolving into the underlying brine. Gravitational instability leads to the formation of
fingers. (b) The transient base state (2.3) for Ra= 500 and t= 0.1 (solid line). The dashed
line shows the corresponding initial perturbation (2.6), normalized so its maximum is unity,
for tp= 0.1. To ease visualization, cb and cp are shown for 06 z6 0.2 because both decay
to zero well before z= 1.

heat transfer devices (Goldstein 1959) and geophysical flows (Green & Foster 1975;
Wooding, Tylers & White 1997).

The linear stability of transient diffusive boundary layers has been studied
extensively and is relatively well understood (Rees, Selim & Ennis-King 2008).
During the initial formation of the boundary layer, perturbations are strongly
damped. Eventually, a critical time for linear instability, t = tc, is reached after
which perturbations grow. Numerical simulations show that linear mechanisms can
dominate for considerable time beyond tc (Riaz et al. 2006; Rapaka et al. 2008;
Daniel, Tilton & Riaz 2013; Tilton, Daniel & Riaz 2013). Within this linear regime,
the horizontal wavenumber, k, and growth rate of the dominant perturbations vary
significantly with time. The linear stability of these perturbations has been studied
using both quasi-steady methods (Morton 1957; Goldstein 1959; Lick 1965; Robinson
1976) and by solving the linear initial value problem (IVP). The initial condition for
the IVP may be prescribed arbitrarily (Foster 1965; Gresho & Sani 1971; Caltagirone
1980; Kaviany 1984; Ennis-King & Paterson 2003), set to the dominant eigenmode
of the diffusion operator in self-similar space (Riaz et al. 2006), or determined
from an optimization procedure (Rapaka et al. 2008; Doumenc et al. 2010; Slim &
Ramakrishnan 2010). Recently, Daniel et al. (2013) determined optimal perturbations
that support finite amplitudes and found them to be consistent with the dominant
mode initial condition of Riaz et al. (2006).

The current study is concerned with perturbation evolution after the critical time for
linear instability, t > tc. This includes the initial regime of linear instability, and the
ensuing nonlinear regime when nonlinear mechanisms cause perturbations to deviate
from linear theory. This onset of nonlinear convection is of considerable importance
because it is the primary mechanism for dissolution of CO2 into brine (Ennis-King &
Paterson 2003). Within the linear regime, the net dissolution flux, J, of CO2 decreases
with time. The onset of nonlinear convection, however, initiates a period of accelerated
dissolution. Consistent with experimental (Blair & Quinn 1969) and numerical (Jhaveri
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& Homsy 1982; Rapaka et al. 2008; Daniel et al. 2013; Tilton et al. 2013) studies,
we define the onset time of nonlinear convection, ton, as the time at which dJ/dt= 0.
A major goal of the current study is to develop an efficient method of determining
ton without resorting to direct numerical simulations (DNS). Using such a method, we
then wish to produce simple relationships for ton in terms of aquifer properties. Such
relationships have been lacking to date, and they constitute a major step forward from
linear analyses concerned mostly with the critical time for linear instability, tc.

The nonlinear stability of transient diffusive boundary layers remains understudied.
To understand why, it is helpful to consider Rayleigh–Bénard (RB) convection in a
fluid layer heated from below. In this case, the base state is steady and a traditional
eigenmode analysis produces a critical Rayleigh number, Rac, and horizontal
wavenumber, kc, for the equilibrium state of the dominant perturbation. For weakly
supercritical Rayleigh numbers, 0 < Ra − Rac� 1, the perturbation growth rates are
small and nonlinear stability analyses can expand the flow fields about the equilibrium
state using a multiple-scale expansion (Godreche & Manneville 1998) of the form

θ(x, t)= εθ1(x, τ0, τ1, τ2, . . .)+ ε2θ2(x, τ0, τ1, τ2, . . .)+ ε3θ3(x, τ0, τ1, τ2, . . .)+ · · ·
(1.1)

where θ is the perturbation temperature field, ε� 1 is a small parameter and τj = ε jt
are multiple time scales over which nonlinear mechanisms occur. In comparison
with RB convection, the nonlinear stability of transient diffusive boundary layers is
complicated by the transient base state. This has three main consequences. First, the
eigenmode approach is invalid. Second, there is no equilibrium state about which
to perform an expansion of type (1.1). Third, the separation of temporal variations
into distinct time scales, τj, is unclear because the growth rates of the base state
and perturbations vary significantly with time and are not generally small (Riaz et al.
2006; Tilton et al. 2013). Consequently, the second goal of the current study is to
study nonlinear convection through DNS to determine whether transient diffusive
boundary layers are amenable to weakly nonlinear expansions of form (1.1).

Despite the above-noted difficulties, Robinson (1976) attempted to investigate the
weakly nonlinear stability of transient diffusive boundary layers in porous media
using a quasi-steady approach. Robinson noted that this approach provides only
qualitative results because it is based on mutually exclusive assumptions. The
quasi-steady assumption requires perturbations have a large growth rate, while
Robinson’s asymptotic expansion requires perturbations have a small growth rate.
Subsequently, the onset time of nonlinear thermal convection in fluid layers was
investigated by Jhaveri & Homsy (1982) using a two-dimensional nonlinear IVP
method that considers nonlinear interactions between a fundamental wavenumber
and a zero-wavenumber response. This produces quantitative results that agree with
experimental results for ton. However, because the nonlinear IVP depends on the initial
perturbation magnitude, and because the dominant wavenumbers vary temporally, the
nonlinear IVP must be solved numerically for many potential dominant wavenumbers
and initial perturbation magnitudes.

The current study investigates the onset of nonlinear convection using three
complementary methodologies. We first investigate the onset time of nonlinear
convection, ton, by performing a regular asymptotic expansion about the transient
base state. We then investigate the subsequent perturbation evolution for t> ton using
high-order DNS and the nonlinear IVP of Jhaveri & Homsy (1982). The regular
asymptotic expansion avoids the quasi-steady assumption of Robinson (1976) and
is approximately one order of magnitude faster than the nonlinear IVP of Jhaveri
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& Homsy (1982) and two orders of magnitude faster than DNS. The speedup
occurs because the expansion produces linear partial differential equations that are
independent of the initial perturbation magnitude. Consequently, the expansion can be
solved once for a given perturbation structure, and the initial perturbation magnitude
can then be varied independently to observe its effect on ton. The efficiency of the
expansion makes it computationally feasible for us to perform a thorough parametric
study of ton in terms of the perturbation wavenumber, k, initial perturbation magnitude,
ε, initial perturbation time, tp, and Rayleigh number, Ra.

The current study makes four main contributions. (i) We show that the regular
asymptotic expansion accurately determines ton to within 1 % of DNS. Although
beyond the scope of the current study, the expansion can be extended to anisotropic
aquifers with vertical heterogeneity, and can also be coupled with the procedure of
Daniel et al. (2013) to investigate optimal perturbation structures. (ii) We show that
when the boundary layer is perturbed with a single Fourier mode at an initial time
tp, there is an optimal initial time and wavenumber that minimize the onset time of
nonlinear convection. Furthermore, onset occurs when perturbations attain a critical
magnitude. By rescaling the problem, we find analytical relationships for these optimal
parameters in terms of aquifer properties and the initial perturbation magnitude. Such
relationships have been lacking to date, and show the importance of the initial
perturbation time and magnitude, which are often overlooked in previous studies. (iii)
Using DNS, we demonstrate that when the boundary layer is perturbed with a single
Fourier mode, nonlinear mechanisms generate a zero-wavenumber response whose
magnitude becomes equal order with the fundamental mode after t= ton. This indicates
that any weakly nonlinear expansion that assumes the zero-wavenumber response is
small compared with the fundamental mode will likely fail after t= ton. The nonlinear
IVP of Jhaveri & Homsy (1982), however, shows excellent agreement with DNS
for the late times, t > ton, because it assumes the zero-wavenumber response to be
equal order with the fundamental mode. (iv) Finally, we consider boundary layers
that are simultaneously perturbed with many Fourier modes. We demonstrate that
such systems have an initial linear regime, t 6 ton, during which nonlinear interactions
between simultaneously perturbed modes may be neglected. Consequently, the total
flux at the onset of convection is well approximated by a linear combination of
fluxes associated with each perturbed mode. For t > ton, however, these systems are
dominated by strongly nonlinear interactions between perturbed modes, and cannot be
studied using weakly nonlinear expansions or the method of Jhaveri & Homsy (1982).

This study is organized in the following manner. We present the governing equations
in § 2, and the methodology in § 3. In § 4, we explore the onset time of nonlinear
convection using the regular asymptotic expansion. In § 5, we explore perturbation
evolution for the late times, t> ton. We summarize our conclusions in § 6. The DNS
method is benchmarked in appendix A. Corresponding results for weakly supercritical
RB convection are provided in appendix B.

2. Governing equations and stability problem

We consider a homogeneous, isotropic, brine-saturated porous region delimited
by a layer of CO2 gas at z = 0 and a layer of impermeable rock at z = H, as
illustrated in figure 1(a). The domain is of infinite horizontal extent and the z-axis
points downward in the direction of gravity. The porous medium has a permeability
K, dispersion coefficient D and porosity φ. The brine is initially quiescent with
zero CO2 concentration, c= 0, and uniform density ρ = ρ0. Following most previous
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work, we model CO2 dissolution by assuming that at time t = 0, saturated brine is
supplied at z= 0 with a constant concentration c= C1 and density ρ = ρ1. Note that
ρ1 > ρ0 because the brine density increases with the dissolution of CO2 (Ennis-King
& Paterson 2003). The fluid viscosity, µ, is assumed constant. To be consistent with
previous numerical studies (Riaz et al. 2006; Rapaka et al. 2008; Pau et al. 2010;
Daniel et al. 2013; Hewitt, Neufeld & Lister 2013) and two-dimensional Hele–Shaw
experiments (Green & Foster 1975; Slim et al. 2013), we consider two-dimensional
convection in the x–z plane. We also note that the previous two-dimensional analysis
of Jhaveri & Homsy (1982) showed excellent agreement with three-dimensional
experimental results for onset of thermal convection in fluid layers.

We model advection–diffusion using volume-averaged forms of the advection–
diffusion, Darcy and continuity equations (Whitaker 1999). Because the density
difference 1ρ = ρ1 − ρ0 is typically of the order of 1 % (Ennis-King & Paterson
2003), we use the Boussinesq approximation with the linear density profile ρ =
ρ0 + 1ρ(c/C1). Following the standard procedure (Riaz et al. 2006), the governing
equations and boundary conditions may be expressed as

∂c
∂t
+ u

∂c
∂x
+w

∂c
∂z
− 1

Ra
∇2c= 0, ∇2w− ∂

2c
∂x2
= 0,

∂u
∂x
+ ∂w
∂z
= 0, (2.1)

c
∣∣∣∣

z=0

= 1,
∂c
∂z

∣∣∣∣
z=1

= 0, w
∣∣∣∣

z=0

=w
∣∣∣∣

z=1

= 0, (2.2)

where u and w are the horizontal and vertical fluid velocities, respectively. Equations
(2.1) and (2.2) are non-dimensionalized as in Riaz et al. (2006) using the characteristic
length H, buoyancy velocity U = K1ρg/µ, time φH/U and concentration C1. The
Rayleigh number is defined as Ra=UH/φD .

Note from (2.2) that the velocity field produced by Darcy’s law does not satisfy
the no-slip condition. The issue of how to model fluid flow at an interface between a
porous medium and an impermeable wall remains an open problem. This is because
the assumptions of homogeneity and isotropy are invalid in a thin layer adjacent to
the lower wall where the porosity and permeability vary rapidly (Whitaker 1986).
Currently, there are two main approaches to modelling impermeable boundaries. The
first adds a viscous Laplacian term to Darcy’s law that allows the application of
a no-slip condition (Sparrow et al. 1973; Hirata, Goyeau & Gobin 2007; Tilton
& Cortelezzi 2008) or a zero tangential stress (Camporeale, Mantelli & Manes
2013). This has been criticized because it violates the length-scale constraints of
Darcy’s law (Whitaker 1986). The second approach, overwhelmingly used in studies
of CO2 sequestration, uses the traditional form of Darcy’s law and applies only
the no-penetration condition. Both approaches are engineering approximations. We
choose the second approach because there is some numerical evidence that suggests
the no-slip assumption has a negligible effect on the volume-averaged flow fields
(James & Davis 2001; Breugem & Boersma 2005). We also show in § 4.3 that
the end-effects at z = 1 play no role in determining the onset time of nonlinear
convection, ton.

Equations (2.1) and (2.2) admit the transient base state,

vb= 0, cb(z, t)= 1− 4
π

∞∑
n=1

1
2n− 1

sin
[(

n− 1
2

)
πz
]

exp

[
−
(

n− 1
2

)2
π2t
Ra

]
. (2.3)
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Figure 1(b) illustrates cb (solid line) for Ra = 500 and t = 0.1. We investigate onset
of nonlinear convection by solving (2.1) and (2.2) subject to an initial condition that
is the sum of base state (2.3) and a small, spatially periodic, perturbation originating
at time t= tp, c

u
w


t=tp

=
cb(z, tp)

0
0

+ ε
 cp(z)(eikx + e−ikx)

iup(z)(eikx − e−ikx)

wp(z)(eikx + e−ikx)

 , (2.4)

where cp(z), wp(z) and up(z) = (1/k)(dwp/dz) are real-valued shape functions, k is
the horizontal wavenumber and i = √−1. The perturbation satisfies (2.1) and (2.2),
and is scaled so the initial perturbation amplitude, measured using a root-mean-square
average over the horizontal wavelength λ= 2π/k, satisfies{

1
λ

∫ λ
0

∫ 1

0

1
2
[u2 +w2 + (c− cb)

2]t=tpdz dx
}1/2

= ε, (2.5)

where ε � 1 is the initial perturbation amplitude. In practice, we prescribe cp, and
up and wp are determined from (2.1). Note that for a given cp, Ra and tp, there
is a maximum initial amplitude, εmax, above which initial condition (2.4) produces
unphysical regions of negative concentration (Daniel et al. 2013).

Experimentally, perturbations are observed to originate within the boundary layer
(Spangenberg & Rowland 1961; Blair & Quinn 1969). For this reason, we consider the
following popular initial perturbation that is concentrated within the boundary layer
(Ben, Demekhin & Chang 2002; Pritchard 2004; Riaz et al. 2006; Elenius, Nordbotten
& Kalisch 2012; Kim & Choi 2012)

cp = ξe−ξ
2
, ξ = z

√
Ra/(4 tp). (2.6)

The dashed line in figure 1(b) illustrates initial perturbation (2.6) for Ra = 500 and
tp = 0.1. Perturbation (2.6) decays rapidly to zero outside the boundary layer so that
cp < 10−20 when z = 0.2. Consequently, figure 1(b) only shows results for z 6 0.2.
The popularity of (2.6) arises from studies that approximate the aquifer depth as semi-
infinite for small times when the end-effects at z= 1 are negligible (Riaz et al. 2006).
It is applicable to finite-depth systems provided that

√
4tp/Ra� 1 (Riaz et al. 2006).

We use initial condition (2.6) due to its popularity and because Daniel et al. (2013)
have shown that it is consistent with experiments and optimal perturbations in systems
of finite depth, H.

The stability of a transient boundary layer is sensitive to the initial time, t= tp, at
which it is perturbed. In the current study, we first consider perturbations originating
near tp = 0, as is common practice in previous studies. We then vary tp to find
the optimal initial perturbation time that minimizes the onset time for nonlinear
convection.

3. Methodology
3.1. Asymptotic expansion

We exploit the small initial perturbation amplitude, ε, to seek a solution to (2.1)–(2.4)
in the form of a regular asymptotic expansion about the transient base state,c

u
w

≈
cb(z, t)

0
0

+ ε
c1(x, t)

u1(x, t)
w1(x, t)

+ ε2

c2(x, t)
u2(x, t)
w2(x, t)

 . (3.1)
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We use the term ‘regular’ asymptotic expansion to differentiate expansion (3.1)
from Lindstedt–Poincaré and multiple-scale expansions (Nayfeh 1981). Expansions
of type (3.1) are also referred to as ‘straightforward’ by Nayfeh (1981). Expansion
(3.1) assumes the second-order flow field, ε2[c2 u2 w2]T, is small compared with the
first-order field, ε[c1 u1 w1]T, which is small compared with cb, which is of order
unity. Substituting (3.1) into (2.1)–(2.4) and collecting orders of ε yields a hierarchy
of linear IVPs. At first order in ε, we obtain

∂c1

∂t
+w1

∂cb

∂z
− 1

Ra
∇2c1 = 0, ∇2w1 = ∂

2c1

∂x2
,

∂u1

∂x
=−∂w1

∂z
, (3.2)

c1

∣∣∣∣
z=0

= ∂c1

∂z

∣∣∣∣
z=1

=w1

∣∣∣∣
z=0

=w1

∣∣∣∣
z=1

= 0, c1

∣∣∣∣
t=tp

= cp(z)
(
eikx + e−ikx

)
, (3.3)

to which we find the solutionc1
u1
w1

=
 ĉ1(z, t)

(
eikx + e−ikx

)
iû1(z, t)

(
eikx − e−ikx

)
ŵ1(z, t)

(
eikx + e−ikx

)
 , (3.4)

∂ ĉ1

∂t
+ ŵ1

∂cb

∂z
− 1

Ra

(
∂2

∂z2
− k2

)
ĉ1 = 0,

(
∂2

∂z2
− k2

)
ŵ1 =−k2ĉ1, û1 = 1

k
∂ŵ1

∂z
,

(3.5)

ĉ1

∣∣∣∣
z=0

= ∂ ĉ1

∂z

∣∣∣∣
z=1

= ŵ1

∣∣∣∣
z=0

= ŵ1

∣∣∣∣
z=1

= 0, ĉ1

∣∣∣∣
t=tp

= cp(z). (3.6)

Hereinafter, we use the ̂ symbol to denote functions dependent on z and t only.
At second order in ε, we obtain the following forced, linear IVP

∂c2

∂t
+w2

∂cb

∂z
− 1

Ra
∇2c2 = f2, ∇2w2 = ∂

2c2

∂x2
,

∂u2

∂x
=−∂w2

∂z
, (3.7)

c2

∣∣∣∣
z=0

= ∂c2

∂z

∣∣∣∣
z=1

=w2

∣∣∣∣
z=0

=w2

∣∣∣∣
z=1

= 0, c2

∣∣∣∣
t=tp

= 0, (3.8)

where f2 = −v1 · ∇c1 arises due to nonlinear interactions of the fundamental
disturbance

f2 =−2
∂

∂z
(ĉ1ŵ1)−

(
ŵ1
∂ ĉ1

∂z
− ĉ1

∂ŵ1

∂z

) (
ei2kx + e−i2kx

)
. (3.9)

The first term on the right-hand-side of (3.9) does not vary horizontally, while the
second term varies sinusoidally with a horizontal wavenumber 2k. We exploit the
linearity of (3.7)–(3.9) to find a solution as the sum of two responses to the forcing
at the zero wavenumber and second harmonic,c2

u2
w2

=
ĉ(0)2 (z, t)

0
0

+
 ĉ(2)2 (z, t)

(
ei2kx + e−i2kx

)
iû(2)2 (z, t)

(
ei2kx − e−i2kx

)
ŵ(2)

2 (z, t)
(
ei2kx + e−i2kx

)
 , (3.10)
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where the superscript denotes the index of the harmonic component. The zero-
wavenumber response, ĉ(0)2 , represents a nonlinear modification of the vertical mean
concentration profile. The zero-wavenumber and second-harmonic responses satisfy

∂ ĉ(0)2

∂t
− 1

Ra
∂2ĉ(0)2

∂z2
=−2

∂

∂z
(ĉ1ŵ1), (3.11)(

∂2

∂z2
− 4k2

)
ŵ(2)

2 =−4k2ĉ(2)2 , û(2)2 =
1
2k
∂ŵ(2)

2

∂z
, (3.12)

∂ ĉ(2)2

∂t
+ ŵ(2)

2
∂cb

∂z
− 1

Ra

(
∂2

∂z2
− 4k2

)
ĉ(2)2 =−

(
ŵ1
∂ ĉ1

∂z
− ĉ1

∂ŵ1

∂z

)
, (3.13)

where ĉ(0)2 , ĉ(2)2 , ŵ(0)
2 and ŵ(2)

2 , satisfy the boundary and initial conditions (3.8).
Equations (3.5), (3.6) and (3.11)–(3.13) are solved numerically using standard
Chebyshev collocation methods with a third-order temporal discretization (Peyret
2002).

From (3.5) and (3.6), we note that the first-order IVP evolves independently of the
higher-order problems. Consequently, expansion (3.1) cannot account for the nonlinear
saturation of the fundamental mode, and we expect the expansion to eventually break
down due to the growth of secular terms (Nayfeh 1981). Prior to breaking down,
however, expansion (3.1) accurately predicts the onset time ton. Our motivations for
not pursuing a multiple-scale expansion are made clear in § 5.2 where we demonstrate
that such an expansion may not be relevant to physical systems in which many Fourier
modes are simultaneously perturbed. Furthermore, the regular asymptotic expansion
(3.1) is particularly efficient computationally. This allows us to perform a thorough
parametric study of the onset time ton in terms of k, Ra, tp and ε.

3.2. High-order, pseudospectral, DNS
We compare expansion (3.1) with DNS of equations (2.1)–(2.4), discretized temporally
using the following third-order scheme (Peyret 2002),

11cn+1 − 18cn + 9cn−1 − 2cn−2

6δt
+ 3NLn − 3NLn−1 +NLn−2 = 1

Ra
∇2cn+1, (3.14)

∇2wn+1 = ∂
2cn+1

∂x2
,

∂un+1

∂x
=−∂wn+1

∂z
, (3.15)

wn+1

∣∣∣∣
z=0

=wn+1

∣∣∣∣
z=1

= 0, cn+1

∣∣∣∣
z=0

= 1,
∂cn+1

∂z

∣∣∣∣
z=1

= 0, (3.16)

where NLn = un∂cn/∂x + wn∂cn/∂z. The horizontal domain is truncated to x ∈ [0, L]
with periodic boundary conditions at x= 0 and x= L. We map (x, z) ∈ [0, L] × [0, 1]
to [x∗, z∗] = [0, 2π] × [−1, 1] and approximate cn and vn as

f n(x∗, z∗)≈
Nx/2−1∑

l=−Nx/2

Nz∑
m=0

alm eilx∗Tm(z∗), (3.17)

where f n= (cn,vn),alm are expansion coefficients, and Tm is the Chebyshev polynomial
of order m. Note that Nx is always taken to be even because this facilitates our fast
Fourier transform (FFT) routines. In the computation of the nonlinear terms NLn,
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aliasing is removed using the ‘3/2 rule’ (Peyret 2002). For all simulations, we set
L = 2π to resolve integer wavenumbers, k. Spatial resolution is verified by ensuring
the spectral coefficients decay to numerical precision. Temporal resolution is verified
by ensuring the results are independent of δt. The numerical accuracy of the DNS
scheme is verified in appendix A.

3.3. Measures of perturbation growth and solute flux
We measure the magnitude of each horizontal Fourier mode of the DNS perturbation
flow fields with respect to the following norm,

El(t)=
[

1
λl

∫ λl

0

∫ 1

0

1
2

(
ũ2

l + w̃2
l + c̃2

l

)
dz dx

]1/2

, (3.18)

where ũl, w̃l and c̃l are the perturbation velocity and concentration fields generated
by the Fourier modes with wavenumbers l and −l, where l > 0, and λl = 2π/l is the
mode’s wavelength. When l= 0, E0 is computed by setting λ0 = 1. The perturbation
concentration field is computed by subtracting the base state from the total DNS
concentration field, c̃ = c − cb. The Fourier components c̃l are then computed using
classical FFT routines. The perturbation magnitude (3.18) includes both the velocity
and concentration perturbation fields, and is identical to the norms used by Doumenc
et al. (2010) and Daniel et al. (2013). Our definition of El may be interpreted as a
‘generalized energy’ in the sense described by Joseph (1976), and is consistent with
our definition of the initial magnitude ε. Note that the symbol k always refers to
the wavenumber of the fundamental mode that is perturbed at t = tp through initial
condition (2.4). Substituting expansion (3.1) in the norm (3.18), one finds that the
magnitudes of the fundamental mode, Ek, zero-wavenumber mode, E0, and second-
harmonic mode, E2k, can be computed from the expansion through the relations

Ek = ε
[∫ 1

0
(û2

1 + ŵ2
1 + ĉ2

1) dz
]1/2

, E0 = ε2

[∫ 1

0
(ĉ(0)2 )

2 dz
]1/2

, (3.19)

E2k = ε2

{∫ 1

0
[(û(2)2 )

2 + (ŵ(2)
2 )

2 + (ĉ(2)2 )
2] dz

}1/2

. (3.20)

We measure the solute flux across the gas interface at z = 0 with respect to an
average over the fundamental wavelength λk = 2π/k,

J(t)= 1
λk

∫ λk

0

1
Ra

∂c
∂z

∣∣∣∣
z=0

dx. (3.21)

We also measure the portion of the flux due to the base state as

Jb(t)= 1
Ra
∂cb

∂z

∣∣∣∣
z=0

. (3.22)

4. The onset of nonlinear convection
This section explores the onset time of nonlinear convection using expansion

(3.1). In § 4.1, we validate expansion (3.1) with comparison to DNS for a fixed
Rayleigh number, Ra, and initial time, tp. In § 4.2, we demonstrate that onset
of nonlinear convection occurs when perturbations attain a critical magnitude. In
§ 4.3, we demonstrate that for a given Rayleigh number, Ra, and initial perturbation
magnitude, ε, there is an optimal initial time and wavenumber that minimize the
onset time of nonlinear convection.
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4.1. The onset time of nonlinear convection for fixed Ra and tp

In this section, we explore onset of nonlinear convection for the fixed Rayleigh
number Ra = 500, which is typical of CO2 sequestration (Ennis-King & Paterson
2003), and for the fixed initial time tp = 0.01. The initial time is set one order of
magnitude smaller than the critical time for linear instability, tc. The critical time
is defined as the time for which dEk(tc)/dt = 0, after which perturbations begin to
grow. There is no unique value of tc because it depends on k,Ra, tp and cp. However,
studies show that tc ∼O(0.1) for Ra= 500 (Ennis-King & Paterson 2003; Riaz et al.
2006; Slim & Ramakrishnan 2010).

The solid lines in figure 2(a) illustrate DNS results for the flux, J, when k = 30
and ε = 10−3, 10−4, 10−5 and 10−6. For k = 30, the perturbations are damped up to
the time tc = 0.219, after which linear instability causes the perturbation magnitudes
to increase. The initial damped period, t < 0.219, is shaded grey in figure 2(a). The
DNS results for J equal that due to the base state, Jb (dashed line) for considerable
time after tc = 0.219. Eventually, nonlinear effects cause DNS results to deviate from
Jb such that each solid line has two turning points. The first turning point marks
the onset time, ton, at which J begins increasing. The increase occurs due to the
nonlinear zero-wavenumber response that increases the concentration gradient at the
gas interface, z = 0, see (3.21). The second turning point marks the time at which
J attains a local maximum and begins decreasing. With increasing initial amplitude,
ε, the duration of the linear regime decreases, and the maximum flux at the second
turning point increases. For comparison, the dash-dotted lines demonstrate the flux
predicted by expansion (3.1), which accurately predicts the duration of the linear
regime and the onset of nonlinear convection. For ε = 10−3, expansion (3.1) predicts
ton = 2.606 compared with ton = 2.629 predicted by DNS; a difference of less than
1 %. Following onset of convection, however, expansion (3.1) overpredicts J. The
overprediction occurs due to the breakdown of expansion (3.1) from secular terms
that grow without bound (Nayfeh 1981). These terms appear because expansion (3.1)
does not account for slow nonlinear variations occurring over long time scales. Taking
expansion (3.1) to third order, O(ε3), neither improves the results for ton nor prevents
breakdown. This will be discussed in greater detail in § 5.1.

We compute ton for the integer wavenumbers 66 k640 and ε=10−3,10−4,10−5 and
10−6. Figure 2(b) illustrates the DNS (solid lines) and expansion (dash-dotted lines)
results for ton as a function of k. For a given ε, there is a maximum wavenumber
above which onset of convection never occurs because the boundary layer stability
increases at large wavenumbers. Agreement between the DNS and expansion is
excellent and the solid and dash-dotted lines are virtually indistinguishable. Expansion
(3.1), however, requires two orders of magnitude less computational time than DNS.
On identical CPUs, the expansion results were computed in 4 h, while the DNS
required 500 h.

The solid dots in figure 2(b) mark the minimum onset times, tmin
on , and corresponding

wavenumbers, kmin
on , computed using expansion (3.1). The results are also presented in

table 1. With increasing initial amplitude, onset of convection occurs sooner and kmin
on

increases. We obtain the following quadratic fits for (kmin
on , t

min
on ) as functions of log10 ε,

kmin
on ≈ 0.1816(log10 ε)

2 + 3.312 log10 ε + 36.49. (4.1)
tmin
on ≈ 0.04498(log10 ε)

2 − 0.8557 log10 ε − 0.3850. (4.2)

Note that relations (4.1) and (4.2) were obtained using the data in table 1 as well as
data for (kmin

on , tmin
on ) at four additional values of ε in the range 10−7 6 ε 6 10−3. The

fits produce errors on the order of 0.1 % with respect to table 1.
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FIGURE 2. DNS and expansion (3.1) results for J and ton when Ra = 500, tp = 0.01
and ε = 10−3, 10−4, 10−5 and 10−6. (a) DNS (solid lines) and expansion (dash-dotted
lines) results for J versus t when k = 30. The dashed line shows the flux Jb due to
the base state. The initial damped period, t < 0.219, when dEk/dt < 0, is shaded grey.
(b) DNS (solid lines) and expansion (dashed-dotted lines) results for ton versus k. Solid
dots indicate (kmin

on , tmin
on ). The dashed line shows the wavenumbers that maximize Ek. Note

that these wavenumbers are indistinguishable from those that maximize Ec
k. The crosses

show wavenumbers that maximize Ew
k .

ε kmin
on tmin

on Φcr

1× 10−3 28.26 2.589 17.73
1× 10−4 26.09 3.756 1.542× 102

1× 10−5 24.50 5.019 1.395× 103

1× 10−6 23.20 6.371 1.292× 104

1× 10−7 22.15 7.808 1.213× 105

TABLE 1. For Ra = 500 and tp = 0.01, the second, third and fourth columns present
expansion results for kmin

on , tmin
on and Φcr, respectively, for the initial amplitudes, ε, presented

in the first column.

The solid dots marking (kmin
on , tmin

on ) in figure 2(b) lie virtually on the dashed line that
shows the wavenumbers that maximize the amplitude of the fundamental mode, Ek(t).
This suggests, as expected, that onset of convection occurs due to perturbations that
maximize Ek. Most previous studies of diffusive boundary layers measure perturbation
amplitude with respect to either the vertical velocity field (Foster 1965; Gresho & Sani
1971; Kaviany 1984; Hassanzadeh, Pooladi-Darvish & Keith 2006) or concentration
field (Caltagirone 1980; Ennis-King & Paterson 2003; Kim & Kim 2005; Riaz et al.
2006; Rapaka et al. 2008), as

Ew
k =

[
1
λk

∫ λk

0

∫ 1

0

1
2

w̃2
k dz dx

]1/2

, Ec
k =
[

1
λk

∫ λk

0

∫ 1

0

1
2

c̃2
k dz dx

]1/2

. (4.3)

There is significant disagreement in the literature concerning which of the two
measures in (4.3) best predicts the dominant perturbations responsible for onset of
convection. Repeating our analysis for Ec

k and Ew
k , we find that the wavenumbers that

maximize Ec
k are indistinguishable from those that maximize Ek, and are consequently
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good predictors of dominant perturbations. In future studies, it would be sufficient
to measure perturbation magnitude with respect to only the concentration field.
Because this result is not obvious from the previous literature, the current study
uses definitions of ε and El that include both the velocity and concentration fields. In
contrast to Ec

k, we find that Ew
k is not a good predictor of dominant perturbations. This

is demonstrated in figure 2(b) where the crosses denote wavenumbers that maximize
Ew

k . These do not accurately predict kmin
on .

For completeness, we repeat the computation of tmin
on and kmin

on by measuring the
initial perturbation magnitude as εc = Ec

k(tp). We find the following analogues to
relations (4.1) and (4.2)

kmin
on ≈ 0.1808(log10 ε

c)2 + 3.316 log10 ε
c + 36.57, (4.4)

tmin
on ≈ 0.04495(log10 ε

c)2 − 0.8566 log10 ε
c − 0.3983. (4.5)

4.2. The critical perturbation amplification for onset of nonlinear convection
Previous linear stability analyses have suggested that perturbations must attain a
critical magnitude to trigger the onset of nonlinear convection (Kaviany 1984; Kim &
Kim 2005). Within the limitations of a linear analysis, this is suggested by expressing
perturbation growth in terms of an amplification defined as Φ(k, t) = Ek(t)/Ek(tp) =
Ek(t)/ε. A critical amplification, Φcr, for onset of nonlinear convection can then be
estimated by comparing linear results for Φ(k, t) with experimental results for ton.
The critical amplification is set to the linear result for the maximum amplification
at t = ton (Kaviany 1984; Kim & Kim 2005). Previous linear and experimental
studies, however, provide no information regarding the initial perturbation magnitude.
Consequently, this approach provides a single value of Φcr for specific experimental
conditions, and it neglects the intuitive result that Φcr should decrease as ε increases.

To investigate the notion of a critical perturbation amplification and magnitude, we
first define the critical amplification as

Φcr = Ekmin
on
(tmin

on )

ε
. (4.6)

Here Φcr is simply the amplification measured at (kmin
on , tmin

on ), see the solid dots in
figure 2(b). Table 1 and figure 3(a) show Φcr as a function of ε. These demonstrate
that for Ra= 500 and tp = 0.01, Φcr satisfies the power law

Φcr = 0.02280ε−0.9591. (4.7)

As expected, perturbations with large initial magnitudes require less amplification
to trigger nonlinear convection than initially small perturbations. This indicates that
experimentally measured values of Φcr are only valid among systems with similar
initial perturbation magnitudes. For example, if in physical systems, ε is determined
by an aquifer’s pore structure, then we expect that experimental values of Φcr should
be valid for aquifers with similar pore composition. If, however, ε is sensitive to
uncharacterizable flow conditions, then Φcr may vary widely among aquifers of
similar structure.

We find that for a fixed initial perturbation magnitude, ε, onset of nonlinear
convection occurs when perturbations attain a critical amplification that is independent
of the perturbation wavenumber. This result is demonstrated by the dashed lines in
figure 3(b) that show linear results for isocontours of the amplification Φ(k, t)=Φcr

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

72
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.72


Diffusive boundary layers in porous media 263
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FIGURE 3. Results for the critical amplification Φcr when tp = 0.01 and Ra = 500.
(a) Expansion results for Φcr as a function of ε. The dashed line shows relation (4.7).
(b) Isocontours of Φ =Φcr (dashed lines) in the (k, t) plane for ε = 10−3, 10−4, 10−5 and
10−6. The solid lines show the corresponding DNS results for ton versus k. The solid dots
show (kmin

on , tmin
on ).

in the (k, t) plane when ε= 10−3, 10−4, 10−5 and 10−6. Note that, by definition, these
contours pass through the points (kmin

on , tmin
on ), shown in figure 3(b) as solid dots. The

solid lines in figure 3(b) show the corresponding DNS results for ton as a function
of k. We observe that the Φ isocontours are virtually indistinguishable from the
DNS results for ton. This means that for a fixed ε, onset of nonlinear convection
occurs at the same value of amplification, Φ =Φcr, for all wavenumbers. The critical
amplification can also be expressed as a critical magnitude Ecr = εΦcr = 0.0228ε0.0409.
The onset time, ton, varies with k because the perturbation growth rate and the time
required to attain Ecr vary with the wavenumber. The minimum onset time, tmin

on ,
occurs at the wavenumber, kmin

on , that first attains the critical magnitude, Ecr.
Note from figure 3(b) that at large wavenumbers, for example k = 38, the DNS

results do not predict onset of nonlinear convection when the perturbation attains
the critical magnitude Ecr. In these cases, nonlinear mechanisms cause only a small
deviation of the flux, J, from that due to the base state, Jb, and do not produce a
turning point dJ/dt = 0 within the final time of the DNS, t = 20. In this case, an
alternate definition of the onset time could be introduced to extend the DNS results
to higher wavenumbers, such as the time t∗on when the ratio J/Jb= 1.01. We, however,
prefer to measure ton with respect to the turning point where dJ/dt = 0 because this
is more clearly defined. Moreover, in physical systems, we do not expect to observe
onset of convection at the large wavenumbers mentioned above, because onset will
occur earlier at (kmin

on , tmin
on ).

For completeness, we repeat our computation of the critical amplification by
measuring the initial amplitude as εc = Ec

k(tp), we report the following result,

Φc
cr = 0.01751(εc)−0.9573 where Φc

cr =
Ec

kmin
on
(tmin

on )

εc
. (4.8)

4.3. Optimal initial perturbation time and minimum onset time
In a previous linear stability analysis, Daniel et al. (2013) have shown that there is
an optimal wavenumber and initial perturbation time that maximize the perturbation
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FIGURE 4. Expansion (3.1) results for (a) kopt/Ra, (b) topt
p Ra, (c) topt

on Ra and (d) Φopt as
functions of ε

√
Ra for Ra= 250 (circles), 500 (solid dots) and 1000 (squares). The dashed

lines show the corresponding best fits (4.9)–(4.12).

amplification, Φ, within the linear regime. Similarly, we find that for a given Rayleigh
number, Ra, and initial perturbation magnitude, ε, there is an optimal wavenumber,
kopt, and initial time, topt

p , that minimize the onset time of nonlinear convection, topt
on .

Furthermore, topt
on occurs when the perturbation amplification attains a critical value,

Φopt. We compute kopt, topt
p , topt

on , and Φopt for the Rayleigh numbers Ra= 250, 500 and
1000, and the initial perturbation magnitudes ε> 10−7, using expansion (3.1). Figure 4
demonstrates that the results collapse to four curves by plotting kopt/Ra (figure 4a),
topt
p Ra (figure 4b), topt

on Ra (figure 4c) and Φopt (figure 4d) as functions of ε
√

Ra. The
dashed lines show the following best fits,

kopt

Ra
= 4.328× 10−4

[
log10

(
ε
√

Ra
)]2 + 6.453× 10−3 log10

(
ε
√

Ra
)
+ 0.06765, (4.9)

topt
p Ra=−0.1623

[
log10

(
ε
√

Ra
)]2 − 6.544 log10

(
ε
√

Ra
)
+ 104.4, (4.10)

topt
on Ra= 23.84

[
log10

(
ε
√

Ra
)]2 − 433.3 log10

(
ε
√

Ra
)
+ 127.4, (4.11)

Φopt = 0.5370
(
ε
√

Ra
)−0.9486

. (4.12)

The results in figure 4 collapse because for Ra > 250 and ε > 10−7, onset of
nonlinear convection occurs before the flow fields interact with the lower boundary.
Consequently, the Rayleigh number dependence may be removed by approximating the
aquifer depth as infinite, H→∞, and non-dimensionalizing the governing equations
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(2.1)–(2.4) with respect to the characteristic length L∗= φD/U and time T∗= φL∗/U.
Recall from § 2 that U = K1ρg/µ. One can then show that a system characterized
by the parameters (Ra1, tp1, ε1) is equivalent to a second system characterized by
(Ra2, tp2, ε2) provided that tp1Ra1 = tp2Ra2 and ε1

√
Ra1 = ε2

√
Ra2. We conclude that

prior to interaction with the lower wall, onset of nonlinear convection in a system
with a large Rayleigh number is equivalent to onset of convection in a system with a
smaller Rayleigh number, later initial perturbation time, and larger initial perturbation
amplitude. Note that relation (4.12) for Φopt differs from relation (4.7) for Φcr because
the latter is computed for tp = 0.01, while the former is computed for tp = topt

p .
The notion of an optimal initial perturbation time may appear counterintuitive

because in physical systems, boundary layers are often continuously perturbed from
tp= 0 onwards. An optimal perturbation time occurs because perturbations originating
near tp = 0 are damped up to the critical time for linear instability, tc. Consequently,
they have smaller late-time magnitudes than perturbations originating near tp ≈ tc.
Conversely, perturbations originating at late times, t� tc may grow immediately, but
have smaller magnitudes than perturbations that began growing at earlier times near
tp ≈ tc. If within the linear regime, t< ton, the response to continuous forcing can be
expressed as the infinite sum of many impulse responses to forcing at discrete initial
times, then topt

on represents a theoretical minimum onset time produced by the initial
perturbation profile cp(z) given in (2.6).

To facilitate their application to physical systems, relations (4.9)–(4.11) can be
rewritten in dimensional form as

k∗φD

U
= 4.804× 10−4(log10 ε

∗)2 + 6.968× 10−3 log10 ε
∗ + 0.06936, (4.13)

t∗pU2

φ2D
=−0.2241(log10 ε

∗)2 − 7.363 log10 ε
∗ + 113.0, (4.14)

t∗onU2

φ2D
= 23.76(log10 ε

∗)2 − 432.1 log10 ε
∗ + 89.75, (4.15)

where k∗, t∗p and t∗on are the dimensional optimal wavenumber, initial time and onset
time, respectively. Relations (4.13)–(4.15) have been expressed in terms of an initial
perturbation magnitude measured with respect to the concentration field as

ε∗ = Ec
k(tp)
√

Ra=
{

U
φD

∫ H

0

(
c∗p
C1

)2

dz

}1/2

, (4.16)

where Ec
k is defined in (4.3), c∗p(z) is the dimensional initial perturbation profile, and

C1 is the concentration at z= 0. The initial magnitude (4.16) facilitates the application
of (4.13)–(4.15) because it requires only the initial concentration field. Though H
appears in the integral of (4.16), relations (4.13)–(4.16) are actually independent of
H because c∗p(z) is concentrated near z= 0, see figure 1(b).

Ennis-King & Paterson (2003) cite the following typical parameter values for CO2
sequestration: µ = 5 × 10−4 Pa s, φ = 0.2, 1ρ = 10 kg m−3, g = 9.81 m s−2, D =
10−9 m2 s−1 and 10−14 6 K 6 10−12 m2. Using these values for a high-permeability
aquifer, K = 10−12 m2, relations (4.13)–(4.16) predict that the optimal wavelength,
initial time, and onset time vary between 2π/k∗ = 12.14 cm, t∗p = 38.41 h, t∗on =
461.8 h for ε∗ = 10−3 and 2π/k∗ = 14.28 cm, t∗p = 43.04 h, t∗on = 1021 h for
ε∗ = 10−6. For a low-permeability aquifer, K = 10−14 m2, the parameters vary
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between 2π/k∗ = 12.14 m, t∗p = 43.85 years, t∗on = 527.1 years for ε∗ = 10−3 and
2π/k∗ = 14.28 m, t∗p = 49.13 years, t∗on = 1165 years for ε∗ = 10−6. As expected,
t∗on increases with decreasing permeability and initial perturbation magnitude. We
observe, however, that t∗on is far more sensitive to changes in permeability than ε∗.
We note similar trends for t∗p . The optimal wavenumber increases with permeability
but decreases with ε∗. These trends for t∗p and k∗ agree well with those observed by
Daniel et al. (2013). In that study, Daniel et al. (2013) showed that for given aquifer
parameters, there is an optimal wavenumber, k, initial time, tp, and perturbation
profile, cp(z), that maximize the perturbation amplification, Φ, predicted by linear
theory at a given final time, t = tf . Due to the limitations of linear theory, Daniel
et al. (2013) could not explore the dependence of the optimal perturbation profile,
cp, on the initial perturbation magnitude. Although beyond the scope of the current
study, this could be achieved using expansion (3.1).

5. Perturbation evolution after onset of nonlinear convection

This section explores perturbation evolution after the onset of nonlinear convection.
In § 5.1, we consider systems perturbed with a single Fourier mode. We explain
the deviation of expansion (3.1) from DNS results and comment on whether more
sophisticated expansions could better approximate perturbation evolution beyond
t= ton. In § 5.2, we consider systems in which many Fourier modes are simultaneously
perturbed. We demonstrate that following the onset of nonlinear convection, t > ton,
these systems are qualitatively very different from systems perturbed with single
modes.

Results in this section are computed using the Rayleigh number Ra= 500. Although
we consider times t 6 15, the end-effects due to the impermeable wall at z = 1 are
likely important for times t > 10. Consequently, the physical relevance of results for
times t>10 should be evaluated in the context of the approximate boundary conditions
(2.2) for flow at an interface between a porous medium and an impermeable boundary.

5.1. Systems perturbed with a single Fourier mode
To investigate the evolution of perturbations after the onset of nonlinear convection,
we consider a boundary layer of Rayleigh number Ra = 500 that is perturbed with
the Fourier mode k= 30 at the initial time tp = 0.01 with initial magnitude ε = 10−5.
Figure 5(a) compares DNS and expansion results for the evolution of the fundamental
mode, E30(t), and the zero-wavenumber response E0(t). DNS results are shown using
a solid line for E30 and a dashed line for E0. Expansion results are shown using
circles for E30 and squares for E0. The linear regime t < ton (where ton = 5.487) is
shaded grey. For brevity, results for the second harmonic, E60, are not shown. Recall
that the DNS results for E30 and E0 are computed using the norm (3.18), while the
expansion results are computed using (3.19). The perturbation magnitudes predicted by
expansion (3.1) agree with DNS within the shaded linear regime of figure 5(a). After
ton, however, expansion (3.1) overpredicts the magnitudes and experiences breakdown
near t≈ 7. We use the term ‘breakdown’ as defined by Nayfeh (1981) to denote when
a higher-order correction term becomes equal order with a lower-order term, thereby
violating the assumptions of the expansion. In figure 5(a), the expansion breaks down
when the expansion results for E0 (squares) and E30 (circles) become equal order. Note
that the breakdown of expansion (3.1) is not related to the transient nature of the
base state cb(z, t). In fact, a regular asymptotic expansion of RB convection would
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FIGURE 5. DNS and expansion results for the perturbation amplitudes when Ra = 500,
tp = 0.01, k= 30 and ε = 10−5. (a) The solid line and dashed line show DNS results for
E30 and E0, respectively. The circles and squares show expansion results for E30 and E0
respectively. The linear regime t < ton, where ton = 5.487, is shaded grey. (b) Plot of El
versus wavenumber l, at t= 15.

similarly break down. The breakdown occurs because the first-order problem (3.5) and
(3.6) generated by expansion (3.1) evolves independently of the higher-order problems
and consequently cannot account for the nonlinear saturation of the fundamental mode.
A further interpretation is that expansion (3.1) only captures the linear regime up to
t= ton. For this reason, we also refrain from referring to expansion (3.1) as a ‘weakly
nonlinear expansion’. Taking expansion (3.1) to order O(ε3) does not improve the
expansion’s prediction of ton.

Turning our attention to the DNS results illustrated in figure 5(a), we observe that
after the onset of nonlinear convection, t > ton, the DNS results for the magnitude
of the fundamental mode, E30 (solid line), attain a maximum when t ≈ 7.8, after
which E30 decreases. Meanwhile, the DNS results for E0 (dashed-line) become
equal order with the DNS results for E30 (solid line) around t ≈ 7. Subsequently,
E0 plateaus to a nearly constant value that is greater than E30. This growth of the
zero-wavenumber mode, such that it surpasses the fundamental, is not observed
in corresponding DNS of weakly supercritical RB convection. In that case, the
magnitude of the fundamental, Ek, and the zero-wavenumber mode, E0, saturate to
constant values for which E0 � Ek. This is demonstrated in appendix B where we
perform DNS of weakly supercritical RB convection in a porous layer. In the case
of weakly supercritical RB convection, the fact that E0 remains small compared
with Ek allows the late-time perturbation evolution to be readily modelled using a
Lindstedt–Poincaré technique or multiple-scale expansion (Malkus & Veronis 1958;
Palm 1960; Godreche & Manneville 1998). For the current problem, however, the
application of these methods may not be straightforward because our DNS results
indicate that the usual assumption that E0� Ek must be relaxed. We do not pursue
these methods, however, because the results of § 5.2 suggest that they are not relevant
to physical systems in which many Fourier modes are simultaneously perturbed. It
should also be stressed that the DNS results for E0 (dashed line) and E30 (solid line)
in figure 5(a) are entirely physical, and should not be confused with the unphysical
breakdown of expansion (3.1).

We offer the following interpretation of the DNS results presented in figure 5(a).
In the case of RB convection, the Rayleigh number is a parameter that can be fixed
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experimentally such that the flow remains weakly supercritical, 06 Ra− Rac� 1. As
a consequence, unstable perturbations have only small growth rates, where the growth
rate is defined as σ =E−1

k (dEk/dt). In appendix B, we find the maximum growth rates
produced by weakly supercritical RB convection are of the order σ ∼O(0.1) or less.
For the current problem, however, the growth rates of unstable perturbations are small
only near the critical time, i.e. 0 6 t− tc� 1. In figure 5(a), the critical time occurs
at tc = 0.219, where dE30/dt = 0. Because the critical parameter for instability is a
time, t = tc, there is no way for the flow to remain weakly supercritical. In contrast,
following the onset of linear instability, t > tc, the instability of the boundary layer
increases rapidly such that the perturbation growth rate exceeds σ = 2 when t= 1 (for
details, see figure 7(a) of Tilton et al. 2013).

To provide further physical interpretation of the DNS results in figure 5(a), we
consider figure 5(b) that shows DNS results for El as a function of the wavenumber,
l, at the late time t = 15. Recall from (3.18) that El represents the magnitude of
each horizontal Fourier mode l of the perturbation flow field. Figure 5(b) demonstrates
that the late-time perturbation magnitude is concentrated in the fundamental and zero
wavenumbers. The magnitude of the higher harmonics, however, are much smaller and
exhibit a clear separation of orders with increasing harmonic index, i.e. E60� E90�
E120. Consequently, the problem can be modelled using the reduced nonlinear IVP
method previously used by Jhaveri & Homsy (1982) in a study of thermal convection
in fluid layers, c

u
w

≈
cb(z, t)+ ĉm(z, t)

0
0

+
 ĉk(z, t)

(
eikx + e−ikx

)
iûk(z, t)

(
eikx − e−ikx

)
ŵk(z, t)

(
eikx + e−ikx

)
 , (5.1)

where ûk = (1/k)(∂ŵk/∂z). Approximation (5.1) is similar to expansion (3.1), but
makes no assumptions about the relative magnitudes of the fundamental mode, ĉk,
and zero-wavenumber mode, ĉm. The subscript m refers to the fact that previous
literature often describes the zero-wavenumber mode as a modification of the mean
concentration. Substituting (5.1) into (2.1)–(2.4), we find that

∂ ĉk

∂t
+ ŵk

(
∂cb

∂z
+ ∂ ĉm

∂z

)
− 1

Ra

(
∂2

∂z2
− k2

)
ĉk = 0,

(
∂2

∂z2
− k2

)
ŵk =−k2ĉk, (5.2)

∂ ĉm

∂t
− 1

Ra
∂2ĉm

∂z2
+ 2

∂

∂z
(ŵkĉk)= 0, (5.3)

ĉk

∣∣∣∣
z=0

= ĉm

∣∣∣∣
z=0

= ŵk

∣∣∣∣
z=0

= ∂ ĉk

∂z

∣∣∣∣
z=1

= ∂ ĉm

∂z

∣∣∣∣
z=1

= ŵk

∣∣∣∣
z=1

= 0, (5.4)

ĉk

∣∣∣
t=tp
= εcp(z), ĉm

∣∣∣
t=tp
= 0. (5.5)

Figure 6 compares DNS and nonlinear IVP results when Ra = 500, k = 30,
tp = 0.01 and ε = 10−5. There is excellent agreement for the late-time evolution of
J, E30 and E0. We conclude that nonlinear interactions between the fundamental and
zero-wavenumber modes are the dominant mechanisms responsible for perturbation
evolution after t = ton. The deviation of E30 (solid line) in figure 6(b) from that
predicted by linear theory is due to the term ŵk(∂ ĉm/∂z) in (5.2) that modifies the
fundamental harmonic and attenuates the growth of Ek. This then reduces the term
∂(ŵkĉk)/∂z in (5.3), thereby attenuating the growth of E0. Note that (5.2) and (5.3)
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FIGURE 6. Comparison of DNS results with the reduced nonlinear IVP (5.2) and (5.3)
when Ra = 500, tp = 0.01, k = 30 and ε = 10−5. (a) DNS (solid line) and nonlinear
IVP (circles) results for J versus t. The dashed line shows Jb. (b) DNS (solid line) and
nonlinear IVP (circles) results for E30. DNS (dashed line) and nonlinear IVP (squares)
results for E0. The linear regime t< ton, where ton = 5.487, is shaded grey.

depend on ε through initial condition (5.5). Consequently, we find the nonlinear IVP
method requires one order of magnitude more time than expansion (3.1) for the
computation of tmin

on and kmin
on .

5.2. Simultaneous perturbation of many wavenumbers
To date, the linear stability of transient diffusive boundary layers has been studied
almost exclusively by perturbing individual horizontal Fourier modes. This assumes
the least stable mode will dominate the linear regime and trigger the onset of
nonlinear convection. In physical systems, however, many horizontal modes can
be simultaneously perturbed. As these simultaneous modes grow temporally, their
nonlinear interactions may eventually bypass the linear path to onset of nonlinear
convection. The late-time perturbation evolution beyond t = ton may also be quite
different from that predicted by DNS of cases for which a single Fourier mode is
perturbed at t = tp. Consequently, the physical relevance of individually perturbed
Fourier modes must be considered.

To investigate these issues, we perform DNS of systems in which many horizontal
Fourier modes are simultaneously perturbed at t= tp using the initial condition

c
∣∣

t=tp
= cb(z, tp)+ cp(z)

Nx/2−1∑
k=1

ak cos(kx+ φk), (5.6)

where Nx is the number of horizontal collocation points, φk are randomly generated
phases varying between 0 6 φk 6 L, and ak are coefficients computed so each
horizontal mode is perturbed with equal initial magnitude, ε. The total initial
perturbation magnitude, εT, is related to the initial magnitude of each mode, ε,
through Parseval’s theorem, εT = ε√Nx/2− 1. All DNS in this section are performed
for tp = 0.01, Ra = 500, L = 2π and Nx = 512. Consequently, all DNS resolve the
integer wavenumbers 0 6 k 6 255.

Figure 7(a) illustrates DNS results for the temporal evolution of the perturbation
magnitudes, Ek, of the first 51 modes, 0 6 k 6 50, for εT = 10−4 (ε = 6.26 × 10−6).
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FIGURE 7. DNS results for the perturbation magnitude and dominant wavenumber using
initial condition (5.6) with tp = 0.01 and Ra = 500. (a) The perturbation magnitude Ek
of modes 0 6 k 6 50 as a function of t for εT = 10−4. The solid black line shows the
dominant wavenumbers, kmax, that maximize Ek. (b) The temporal evolution of kmax for
initial amplitudes εT= 10−4 and 10−6. The dashed line shows the dominant wavenumbers
predicted by linear theory. The circle and square mark the dominant wavenumbers kmin

on =
24.17 and kmin

on = 22.06, respectively, predicted by relation (4.1).

The thick black line shows the dominant wavenumbers, kmax, that maximize Ek. Initial
amplitudes greater that εT = 10−4 are not considered because they produce negative
initial concentrations. The magnitude of the zero-wavenumber mode is initially zero,
E0 = 0, because it is not perturbed by (5.6). The results in figure 7(a) may appear
counterintuitive to readers accustomed to DNS of weakly supercritical RB convection.
For this reason, we stress that tests were performed to confirm that aliasing, from the
computation of nonlinear terms, did not affect our results.

In figure 7(a), we observe three regimes: (i) an initial regime during which
perturbations are damped for all non-zero wavenumbers; (ii) a subsequent regime
during which Ek increases such that the Ek surface in the k − t plane is smooth;
(iii) a final regime in which strongly nonlinear interactions produce an irregular Ek
surface, and the perturbation amplitude is increasingly concentrated near the zero
wavenumber, k= 0. During regimes (i) and (ii), the dominant wavenumbers decrease
from initial values near k = 50 to values near k = 25. Sometime between regimes
(ii) and (iii), kmax decreases discontinuously to kmax = 0 due to the growth of the
zero-wavenumber mode.

We find that in regimes (i) and (ii), nonlinear interactions between individually
perturbed modes are negligible, and the evolution of the Ek surface shows excellent
agreement with that predicted by linear theory for individually perturbed Fourier
modes. Figure 7(b) shows DNS results for the temporal evolution of kmax when
the boundary layer is perturbed with condition (5.6) for εT = 10−4 and 10−6. The
variation of kmax has been smoothed by cubic interpolation of the DNS results.
For comparison, the dashed line shows the dominant wavenumbers predicted by
linear theory. The circle and square in figure 7(c) mark the dominant wavenumbers,
kmin

on , for onset of convection, predicted by expansion (3.1) through relation (4.1).
Relation (4.1) predicts kmin

on = 24.17 for εT = 10−4 (ε = 6.26× 10−6) and kmin
on = 22.06

for εT = 10−6 (ε = 6.26 × 10−8). We observe that (4.1) accurately predicts the
wavenumber at which DNS results for systems with simultaneously perturbed modes
begin to deviate from linear theory due to onset of convection.
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FIGURE 8. DNS result (solid line) for the flux, J, when the boundary layer is perturbed
with condition (5.6) at tp = 0.01, for Ra= 500 and εT = 10−4. The dashed line shows the
flux Jb due to the base state. The dash-dotted line shows the expansion (3.1) result for
Js, see (5.7).

Figure 8 presents DNS results (solid line) for the flux when the system is perturbed
with condition (5.6) for εT = 10−4. The dashed line shows the flux Jb due to the
base state. The DNS result for the onset time, ton = 4.682, is smaller than the
minimum value, tmin

on = 5.285, predicted by expansion (3.1) through relation (4.2). The
discrepancy occurs because when many Fourier modes are simultaneously perturbed,
each mode contributes a zero-wavenumber response, ĉ(0)2 , predicted by expansion
(3.1). To demonstrate this, we solve expansion (3.1) for the integer wavenumbers
10 6 k 6 40 and sum their individual contributions to the total flux,

Js = Jb +
40∑

k=10

J̃k, (5.7)

where J̃k is the increase in flux predicted by expansion (3.1) for mode k. Figure 8
demonstrates that Js (dash-dotted line) correctly predicts the onset time, ton, produced
by simultaneously perturbed modes. As expected, the onset time in a physical system
necessarily depends on which wavenumbers are naturally perturbed. Expansion (3.1)
can be used to provide theoretical minimum onset times through relation (4.2) for tmin

on
or relation (4.15) for topt

on .
Turning our attention to the nonlinear regime (iii) illustrated in figure 7(a), we

note that the non-zero wavenumbers that dominate the linear regime do not appear
to dominate the subsequent nonlinear regime. Rather, the perturbation magnitude in
the nonlinear regime is concentrated in the zero-wavenumber mode, and there is no
clearly dominant non-zero wavenumber. This suggests that, after the onset of nonlinear
convection, the dynamics of transient diffusive boundary layers cannot be captured
by considering an asymptotic expansion about a single fundamental mode. This is
contrary to the case of RB convection. Similarly, although the nonlinear IVP of Jhaveri
& Homsy (1982) captures the late-time evolution of individually perturbed modes,
see figure 6, this late-time behaviour may not be relevant to physical systems with
simultaneously perturbed modes. The absence of a clearly defined, dominant, non-zero
wavenumber in the nonlinear regime (iii) of figure 7(a) may be related to the fact
that prior to onset of convection, there is a band of unstable wavenumbers with large
growth rates on the order of σ ∼O(1), where σ =E−1

k (dEk/dt) (see Riaz et al. 2006;
Tilton et al. 2013). In contrast, the weakly supercritical RB convection considered in
appendix B has unstable growth rates on the order of σ ∼O(0.1).
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FIGURE 9. Comparison of the DNS results for the concentration contours (shaded grey)
and streamlines (solid lines) when the boundary layer is perturbed with a single k = 24
Fourier mode with ε = 6.26× 10−4 (a, b) and when the boundary layer is perturbed with
many Fourier modes using condition (5.6) with εT = 10−4 (ε = 6.26× 10−4) (c, d). Both
simulations set tp = 0.01 and Ra= 500. Results are shown for times t = 4.61 (a, c) and
t= 10.01 (b, d).

Figure 9(a,b) illustrates DNS results for the concentration contours (shaded grey)
and streamlines (solid lines) when the transient diffusive boundary layer, cb, is
perturbed with the single Fourier mode k = 24 at tp = 0.01 for Ra = 500 and
ε = 6.26 × 10−6. Results are shown for times t = 4.61 (figure 9a) and t = 10.01
(figure 9b). Figure 9(c,d) shows the corresponding results when the boundary layer is
perturbed with many Fourier modes using condition (5.6) with εT = 10−4. The time
t= 4.61 is just prior to the onset time ton= 4.681 for the system perturbed with initial
condition (5.6). We observe that prior to onset of convection, DNS results for a single
mode are representative of the perturbation structures observed when the system is
perturbed with many modes. The results for t = 10.01, however, demonstrate that
DNS results for single modes do not produce the late-time merging and splitting of
fingers observed when systems are perturbed with many modes.

6. Summary and conclusions
We have investigated the onset of nonlinear convection in transient diffusive

boundary layers in homogeneous isotropic porous media. We demonstrated that the
onset time of nonlinear convection, ton, can be accurately determined (within 1 % of
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DNS) from a regular asymptotic expansion that is one order of magnitude faster than
the method of Jhaveri & Homsy (1982) and two orders of magnitude faster than
DNS. We then used the expansion to study ton in terms of the initial perturbation
magnitude, ε, initial perturbation time, tp, wavenumber, k, and Rayleigh number, Ra.
After onset of nonlinear convection, the expansion breaks down due to secular terms.
Consequently, we explored late-time perturbation evolution, t > ton, using high-order
DNS and the method of Jhaveri & Homsy (1982). We also compared boundary layers
perturbed with a single Fourier mode to those simultaneously perturbed with many
modes.

To be consistent with previous stability analyses, we first considered boundary
layers perturbed with a single Fourier mode at a fixed initial time that is much
smaller than the critical time for linear instability, tp � tc. We showed that for
these cases, onset of nonlinear convection occurs when a perturbation attains a
critical amplification, Φcr, that is independent of the perturbation’s wavenumber.
Consequently, the minimum onset time, tmin

on , occurs at the wavenumber kmin
on for which

perturbations first attain Φcr. We found analytical relationships for kmin
on , tmin

on and
Φcr in terms of the initial perturbation magnitude, see (4.1), (4.2) and (4.7). These
show that perturbations with large initial amplitudes have smaller onset times tmin

on ,
larger wavenumbers kmin

on , and smaller critical amplifications Φcr than perturbations
with small initial magnitudes. Finally, we compared two competing measures of
perturbation magnitude that respectively measure the perturbation concentration
field, Ec

k, and vertical velocity field, Ew
k , see (4.3). These measures have produced

considerable disagreement in the previous literature. We found that perturbations that
maximize Ec

k accurately predict the wavenumbers kmin
on . This supports previous studies

that measure perturbation growth with respect to the concentration field (Caltagirone
1980; Ennis-King & Paterson 2003; Kim & Kim 2005; Riaz et al. 2006; Rapaka et al.
2008). We found, however, that perturbations that maximize Ew

k do not accurately
predict kmin

on . This brings into question the results of studies that measure perturbation
growth with respect to the vertical velocity field (Foster 1965; Gresho & Sani 1971;
Kaviany 1984; Hassanzadeh et al. 2006).

After considering a fixed initial perturbation time, we then varied tp to show
that there is an optimal combination of initial time, topt

p , and wavenumber, kopt, that
minimize the onset time of nonlinear convection, topt

on . Furthermore, onset occurs
at a critical amplification, Φopt. By rescaling the problem, we obtained analytical
relationships for these optimal parameters in terms of aquifer properties and the initial
perturbation magnitude. To the best of the authors’ knowledge, such relationships
have been lacking to date and represent a major contribution to modelling CO2
sequestration. Furthermore, these relationships show the importance of the initial
perturbation time and magnitude, which are often overlooked in previous studies.
We demonstrate that for typical aquifers, the dimensional optimal initial time,
t∗p , and corresponding dimensional onset time, t∗on, can both decrease by several
orders-of-magnitude with increasing permeability and initial perturbation magnitude.
We observe, however, that t∗p and t∗on are far more sensitive to variations of the
permeability than variations of the initial perturbation magnitude.

We found that when a boundary layer is perturbed with a single Fourier mode,
the late-time perturbation evolution, t > ton, is dominated by nonlinear interactions
between the fundamental mode and the zero-wavenumber response. DNS showed
that the magnitude of the zero-wavenumber mode, E0, becomes equal-order with the
fundamental mode, Ek. This indicates that the application of multiple-scale methods to
transient diffusive boundary layers may not be straightforward because the assumption
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that E0�Ek must be relaxed. We showed, however, that the nonlinear IVP of Jhaveri
& Homsy (1982) shows excellent agreement with DNS for the late times t > ton.
The agreement occurs because the method of Jhaveri & Homsy (1982) assumes the
zero-wavenumber response is equal order with the fundamental mode.

We demonstrated through DNS that when a boundary layer is simultaneously
perturbed with many Fourier modes, there is an initial linear regime, t < ton, during
which nonlinear interactions between simultaneously perturbed modes can be ignored.
The analytical relationships produced by our expansion correctly predict the dominant
wavenumber for onset of nonlinear convection, but underpredict ton. The discrepancy
occurs because each perturbed mode contributes to the increase in the flux J. The
discrepancy can be removed by simply summing the flux contributions of each of the
perturbed modes, see (5.7). After the onset of nonlinear convection, however, these
systems are dominated by strongly nonlinear interactions between simultaneously
perturbed modes. Furthermore, the perturbation magnitude is concentrated in the
zero-wavenumber mode, and there is no clearly dominant, non-zero, wavenumber.
Consequently, the late-time behaviour t> ton of these systems cannot be modelled by
methods that expand about a dominant mode. This behaviour may arise because no
single wavenumber dominates within the linear regime. Rather, immediately prior to
onset of nonlinear convection, there is a band of unstable wavenumbers with large
growth rates.

The regular asymptotic expansion we propose opens the door to several avenues of
promising future work. The expansion can be easily extended to include the effects
of anisotropy and vertical heterogeneity. It can also be coupled with the optimization
method of Daniel et al. (2013) to determine optimal initial perturbation profiles,
cp(z), that minimize the onset time of nonlinear convection. Finally, we note that the
application of the expansion to the case of continuously forced boundary layers is
the topic of ongoing study.
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Appendix A. Accuracy of DNS

The spatial and temporal accuracies of the DNS method are verified with respect
to the following artificial, but exact, analytical solution,

ue =−sin
(

2πax
L

)
cos(2πbz)cos(βt), we = a

bL
cos
(

2πax
L

)
sin(2πbz)cos(βt),

(A 1)

ce = 1
abL

(a2 + b2L2)cos
(

2πax
L

)
sin(2πbz)cos(βt), (A 2)

where a = b = 16 produce highly oscillatory test fields. Solution (A 1) and (A 2)
satisfies (2.1) and (2.2) with the addition of a forcing term F to the right-hand-side
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FIGURE 10. Spatial and temporal accuracy of the direct numerical method for L = 2π
and Ra = 1. (a) Plot of Eu (circles), Ew (squares) and Ec (diamonds) versus N for β =
0, dt= 0.0. (b) Plot of Eu (circles), Ew (squares) and Ec (diamonds) versus δt for β = 4,
N =M = 128. The dashed line illustrates a slope of δt3.

of the advection–diffusion (3.14). The boundary conditions (3.16) are modified so
that

wn+1

∣∣∣∣
z=0,1

=we

∣∣∣∣
z=0,1

, cn+1

∣∣∣∣
z=0

= ce

∣∣∣∣
z=0

,
∂cn+1

∂z

∣∣∣∣
z=1

= ∂ce

∂z

∣∣∣∣
z=1

. (A 3)

To test the spatial accuracy of the method, we set β = 0, dt= 0.01, Nx = Nz, c0 =
v0 = 0 and integrate in time until steady state, after which we measure the error as
Ef = ‖f − fe‖∞, where f = u, w or c and fe = ue, we or ce. Figure 10(a) demonstrates
the method converges spectrally to Ef ∼O(10−12). To test temporal accuracy, we set
β = 4,N =M= 128, and c0= c0

e, v
0= v0

e . The fields are integrated from t= 0 to t= 1
for 10−4 6 δt 6 10−2. Figure 10(b) confirms third-order temporal accuracy.

Appendix B. Comparison with RB convection
In this appendix, we present DNS of RB convection in a porous layer. These are

useful for comparison with the results presented in § 5.1. For this purpose, we modify
the boundary condition (2.2) so that

c
∣∣

z=0 = 1, c
∣∣

z=1 = 0, w
∣∣

z=0 =w
∣∣

z=1 = 0. (B 1)

Equations (2.1) and (B 1) satisfy the steady base state cb(z) = 1 − z. We perform a
classical linear modal stability analysis (Drazin & Reid 1981) to obtain the neutral
curve in the (k, Ra) plane illustrated in figure 11(a). The unstable region has been
shaded grey. This region shows combinations of k and Ra for which there is at least
one unstable eigenmode. The critical point (kc, Rac)= (3.06, 39.5) is marked with a
solid dot.

The positive growth rates produced by RB convection are much smaller than those
produced by the transient diffusive boundary layer considered in the current study. For
Ra 6 60, we observe that the maximum growth rates produced by RB convection are
on the order of σ ∼ O(0.1). In contrast, the diffusive boundary layer considered in
the current study produces growth rates as large as σ = 2 when Ra= 500, (see Tilton
et al. 2013, for details).
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FIGURE 11. Results for RB convection. (a) Neutral curve (solid line) in the (k,Ra) plane.
The unstable region is shaded grey. The solid dot marks the critical point (kc, Rac) =
(3.06, 39.5). (b) DNS results for E3 (solid line) and E0 (dashed) line when the base state
cb = 1 − z is perturbed at tp = 0 with the dominant eigenmode for k = 3 and Ra = 45.
Following an initial period of exponential growth, E3 and E0 plateau to constant values
for which E0� E3.

For comparison with the results presented in figure 5(a) of § 5.1, figure 11(b) shows
DNS results for the temporal evolution of E3 (solid line) and E0 (dashed line) when
the base state cb = 1 − z is perturbed with the dominant eigenmode for k = 3 and
Ra = 41 at the initial time tp = 0. Following a long period of exponential growth,
t < 450, the magnitude of the fundamental, E3, and the zero-wavenumber response,
E0, eventually plateau to constant values for which E0� E3. In contrast, the results
presented in figure 5(a) demonstrate that in the case of transient diffusive boundary
layers, the magnitude of the zero-wavenumber response eventually surpasses that of
the fundamental.
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