
            

On the Liapunov stability of multi-finger grasps
Mikhail Svinin,* Kanji Ueda* and Makoto Kaneko**

SUMMARY
This paper deals with the stability of a rigid body under
multiple contact forces. First, the problem is considered at
the force planning level, and the stability of a force
distribution is formulated. For this problem, the stiffness
tensor is derived, and its basic properties are analyzed.
Necessary and sufficient conditions for stability of a force
distribution are established in an analytical form. These
conditions, considered under unilateral frictional con-
straints, are studied on an illustrative example. Next, it is
shown that stabilization of an unstable force distribution can
be done by a simple control law. The stability conditions for
this control law are formulated by transforming the stiffness
tensor to the center of stiffness. Finally, conclusions on the
contradiction between the Liapunov stability and the contact
stability of the objects are drawn.

KEYWORDS: Multi-finger grasp; Stability analysis; Stiffness
tensor; Force redundancy; Internal forces; Friction.

1. INTRODUCTION
One of the fundamental problems in controlling multi-
fingered hands is the stability of the resulting grasp. In
recent years, the problem has been addressed from different
points of view, and a number of approaches to define
grasping stability and its relation to concepts such as
grasping form and force closure, have been proposed in the
literature. Good surveys of this topic can be found in
references 1 and 2.

In the research community, stability of a grasp is
understood in two ways.3 One is that of force-closure, and
the other is based on the classical Liapunov’s definition of
stability. The former approach relates to the ability to resist
an arbitrary force/moment, while the latter relates to the
ability to return to an equilibrium when displaced from it.
The force-closure-based definition is essentially static,
while the Liapunov’s definition is dynamic, or better say
energetic as it requires examining the potential energy at
equilibrium. This paper deals with the stability understood
in the Liapunov’s sense.

In literature, the finding of stable grasping configurations
by minimizing the potential energy stored in elastic fingers
is shown,4 and a general model of the compliance of multi-
finger grasps is developed.5 An approach for constructing
three-dimensional stable grasps, where each finger is

replaced by virtual springs, is presented in reference 6.
Using this approach and ignoring gravity and external
forces, conditions for the stability of a planar grasp are
derived in an analytical form.7

The stability analysis is conducted under a special
arrangement of virtual springs.7 More accurate and detailed
derivation of the stiffness matrix of the object is given in
reference 8, where the results are presented for the three
dimensional case. No special arrangements for the virtual
springs is necessary since the stiffnesses of the virtual
springs are introduced through the finger-tip position
feedback. Similar framework for studying grasping stability
is explored in reference 9. Contact geometry is introduced
into the stability analysis in references 10–13. The gravita-
tional effects in the stability problem are investigated in
references 3 and 14.

Basically, the total stiffness of an object grasped by
multiple fingers has two sources: the first one is due to the
compliance of the fingers, while the second is due to the
contact force interaction between the fingers and the object.
Roughly, the Cartesian stiffness of the fingers is defined by
the transformation of the joint stiffness to the Cartesian level
through the finger Jacobian. The Cartesian stiffness of the
fingers is symmetric and positive definite (and therefore
stable) as long as the joint stiffness matrix is symmetric and
stable.

On the other hand, the stiffness due to the contact force
interactions is not necessarily positive definite. It depends
on the contact force distribution, and is often the source of
grasping instability. In the most simple form it can be shown
on the flipping coin example.15 It should be noted that a
similar subject—stability due to internal forces in mecha-
nisms with closed kinematic chains—is analyzed in
references 16 and 17.

One possible approach to provide stable grasping is based
on decomposition of the total stiffness, and designing the
corresponding matrices, the Cartesian finger stiffness and
the stiffness due to the contact forces, separately. Indeed, if
they are both stable, then the resulting stiffness will also be
stable. If, however, the contact-force-induced stiffness
cannot be made stable the design of the Cartesian finger
stiffness becomes complicated. Thus, the design of the
contact force distribution is a very important part of the
solution to the stability problem.

Our work is motivated mainly by the reference18 where
the rotational stability of the grasped object under the
constant contact forces is analyzed from the classical
standpoint of the Liapunov’s theory. However, the relation
between the stability and the force distribution has not been
studied in detail. Furthermore, the necessary and sufficient
conditions for the stability have not been obtained in an
analytical form. All this, taken together, sets the goals for
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this paper---to relate the force distribution to the stability,
and to obtain the stability conditions.

This paper is organized as follows. In Section 2, an
analytical expression for the stiffness tensor is derived, and
a definition of the stable force distribution is given.
Necessary and sufficient conditions for stability of the force
distribution are derived in Section 3. The topic of stability
analysis is treated in Section 4. The stability conditions
under unilateral frictional constraints are studied in Section
5 on an illustrative example. Section 6 discusses stabiliza-
tion of an unstable force distribution. Comments on the
relation between the Liapunov stability and the contact
stability of the object are given in Section 7. Finally,
conclusions are presented in Section 8.

2. STABLE FORCE DISTRIBUTION
Consider a rigid body subjected to multiple frictional
contacts. Assume that constant forces f1, f2, . . . , fn are
applied at the points defined by the radius-vectors r1,
r2, . . . , rn drawn from the center of mass O. The dynamic
equations read

mẍ = mg +On

i=1

fi , Jv̇ + v 3 Jv =On

i = 1

ri 3 fi , (1)

where ẋ and v are the quasi-coordinates, m is the mass of
the body, J is the inertia tensor, and g is the gravity vector.
Since the contact forces are assumed to be constant,
linearizing (1) at the equilibrium (ẋ = 0 and v = 0) gives

mDẍ =On

i =1

D fi , Jü + Ku =On

i = 1

ri 3 D fi , (2)

where u is the vector of infinitesimal rotation of the body,
and

K =On

i =1

(rT
i f i )I 2 ri f T

i (3)

is the stiffness tensor. Note that in the planar case the
rotational stiffness is a scalar given by

K =On

i =1

rT
i f i . (4)

The following properties of the stiffness tensor can be
formulated directly.

(i) The stiffness tensor does not depend on the location of
the origin of the reference frame. That is if we change
the origin from O to O9 the matrix K still will be
defined by (3) with ri drawn from O. The proof is
straightforward and is omitted here due to the page
limitation.

(ii) K is symmetric as long as the object is at equilibrium.
Indeed, one can prove that K 2KT = V(On

i=1 ri3 fi).

Therefore, the skew-symmetric part of K is always zero
by the static equations. Here, V is the skew-symmetric
operator such that V(a)·b ; a3 b.

(iii) The stiffness K defines the potential energy of the
constant contact forces f i. Note that even if the contact
moments m i (such as those used in the “soft” finger
contact models) were present in (1), they would not
enter the stiffness tensor. However, the contact
moments would make the system nonconservative
because in this case K 2 K T = 2V(On

i = 1 mi). There-
fore, the stiffness matrix would become asymmetric
and its eigen-values would be complex numbers unless
the nonconservative curl, On

i = 1 mi, is zero.
(iv) The stiffness tensor K is not always and not necessarily

positive definite. The judgment on the positive definite-
ness of K can be done easily only for some simple
cases of force loading. Consider, for example, the case
when all the applied forces are co-planar to the
correspondent vectors r i, i.e., f i = ki ri. Formula (3)
gives

K =On

i=1

kiH( pT
i pi ) I2pi pT

i J (5)

As can be seen, K has the structure of the inertia tensor
of a system of points built on the vectors r i, with ki

playing the role of masses. Therefore, if all ki ≥ 0, i.e.,
all the forces are stretching, K is positive definite. In the
opposite case, when all ki ≤ 0, i.e., all the forces are
compressive, K is negative definite.

However, in the general case, when ki have different
signs or when the applied forces f i are not co-planar to
r i, it is not that easy to make judgment on the
properties of K without direct computations.

Now, consider (2) with Df i = 0 (no feedback). In doing
so, the grasp is considered on the position/force planning
level. The translational part of (2) is not influenced by
forces, and is out of interest at the force planning level. On
the other hand, the rotational part of (2) depends on the
force distribution, and its stability can be judged by K. In
this situation, being at the force planning level, it is
meaningful to talk about stability of the force distribution.
In what follows, a particular force distribution scheme will
be called unstable if K is negative definite, and stable
otherwise. The reason for taking this view is simple—even
if the contact-force-induced stiffness matrix K is positive
semi-definite, the resulting stiffness of the object can be
easily made stable with simple proportional control of the
finger joints.

3. STABILITY CONDITIONS
In general, the judgement on the positive definiteness of the
matrix K can be done in terms of its eigen-values. The
eigen-values can be easily calculated in numbers. However,
they cannot be represented in a convenient, analytical form.
Therefore, other invariants of K should be established to
conduct the stability analysis in an analytical form.
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To obtain the stability conditions for the matrix K,
consider the characteristic equation

det(K 2 lI ) = 0. (6)

Let R = {r1, r2, . . . , rn}T, R P R33 n, and F = { f1, f1, . . . ,
fn}T, F P R33 n. Note that the eigenvalues of the matrix K are

related to the eigenvalues of the matrix RF T = On

i = 1
r i f T

i

as

l(K ) = L2l(RFT ), (7)

and the characteristic equation (6) can be written down in
the following form

(L2l)3 2L(L2l)2 + S(L2l)2V = 0. (8)

Here, L, S, and V are the sums of the principal minors—of
the 1st, 2nd and 3rd order, respectively—of the matrix RFT.
Using the Cauchy-Binet theorem,19 the principal minor of
the p-th order of the matrix RFT is given by

RFT Si1 . . . ip

i1 . . . ip
D = O

1≤k1 < . . . <kp ≤n

R S i1 . . . ip

k1 . . . kp
DFS i1 . . . ip

k1 . . . kp
D .

(9)

Calculation of the L2S2V coefficients with the use of (9)
leads to the following expressions:

L =On

i = 1

ri · f i , (10)

S =On

i=1
On

j=i+1

(ri3 rj) · ( f i3 f j), (11)

V =On

i=1
On

j=i+1
On

k=j+1

{ri · (rj3 rk)}{f i · (f j3 fk )}. (12)

Here, in order to highlight the geometric meaning of the
L2S2V coefficients, dots are used to designate the scalar
product of two vectors.

Note that K is symmetric since the object is at
equilibrium. By the Jacobi criterion,20 a symmetric matrix is
positive definite iff its characteristic polynom has sign-
changing coefficients. Rewrite (8) as

l3 22Ll2 + (L2 + S)l2 (LS2V) = 0, (13)

and the following stability conditions

L ≥ 0, (14)

L 2 + S ≥ 0, (15)

LS2V ≥ 0, (16)

are obtained for the matrix K. The condition (14) has the
following interpretation: the total work of the contact forces
on the displacements defined by the contact point vectors
must not be negative.

Note that if K is not symmetric, i.e. the object is not at
equilibrium, the more general Routh-Hurwicz criterion
should be used to judge on the positive definiteness of K. As

can be shown, one more stability condition* will be added
to the set (14–16) in this case. This additional condition is
not considered here, since the analysis of the asymmetric
matrix K is out of the scope of this paper.

The L2S2V coefficients are convenient for analysis of
stability since they do not depend on the choice of the object
reference frame. The coefficients are expressed in terms of
the scalar, vector, and triple scalar products. Furthermore,
they are symmetric with respect to the contact points and the
contact forces, and some simple conclusions may be
formulated straight away.

• The object is planar (the contact point vectors lie in a
plane) or the contact forces are in a plane. In these cases
V = 0 and the remaining stability conditions are

L ≥ 0 and S ≥ 0. (17)

It follows from (8) that the eigenvalues of K, which can be
thought of as rotational stiffnesses about the directions
given by the eigenvectors of K, are defined as follows in
this case:

l1 = L, l2,3 =
L ± ÏL2 24S

2
. (18)

Note also that if the object is planar the out-of-plane force
components do not influence L and S.

• The object is one-dimensional (the contact point vectors
lie on a line) or the system of contact forces is parallel. In
these cases V = 0 and S = 0, and the remaining stability
condition is L ≥ 0 .

• The object is planar and the contact forces lie in the
orthogonal plane. In this case V = 0, S = 0 and L = 0, and
the contact forces do not contribute to the stiffness tensor
K = 0.

More specific conclusions on the stability depend on the
specific contact point and contact force distribution. How-
ever, in some situations it is possible to judge on the
stability without long calculations. For example, one can
prove that any force distribution in a frictionless grasp of a
convex body is always unstable, since the angle between the
normal contact force and the corresponding contact point
vector is always more than p/2 and therefore L < 0.

4. STABILITY ANALYSIS
To establish relationships between the stability and the force
structure, a proper decomposition of the applied forces is
necessary. One possible decomposition is based on the
pseudo-inversion21 of the grasp matrix. Such a decomposi-
tion, interpreted in terms of the screw theory, has been
developed22 and its correctness has been shown.23

Under the pseudo-inverse decomposition, the applied
forces f are separated orthogonally into the gravity forces
and the internal forces. Similarly, the stiffness tensor K can
be decomposed into the gravity-inducing component and
the internal-force-inducing component. In what follows, the
conditions under which the corresponding stiffness matrices
become positive semi-definite, are established.

* The additional condition is 2L(L 2 + S) ≥ LS2V.
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4.1. Gravity-induced stiffness
Consider stability due to the gravity force, assuming there is
no internal force loading. To facilitate the calculations, the
reference point O is shifted to the geometric center C
(Figure 1) defined by

rc =
1
n O

n

i=1

r i. (19)

Introducing the block vectors F 0 = {2mg ; f c, 0}T and
f = {f T

1 , . . . , f T
n }T, write down the static equations in the

following form:

Fo = Bo f = Boc Bc f, (20)

where

Boc = F I
V(rc)

O
I G , Bc = F I . . . I

V(r1) . . . V(rn ) G , (21)

and ri = ri 2rc. If n ≥ 3 (n ≥ 2 in the planar case) and the
contact points do not lie on a common line, BocBc is a full-
rank decomposition of the grasp matrix Bo and, therefore,
B+

o = B+
c B21

oc .
The pseudo-inverse solution of (20) is given by

f = B+
o Fo = BT

c (BcB
T
c )21B21

oc Fo,

where the matrix Bc BT
c is block-diagonal, Bc BT

c = diag

{n I, Jc}, because On

i=1
ri = 0. Computing (22) in the block-

component form, one obtains the following representation
for the gravity-induced forces

fi =
1
n

fc + ri3 J21
c (rc3 fc), i = 1, . . . , n, (23)

where

Jc =On

i=1

(rT
i ri ) I2ri r

T
i (24)

is the contact point tensor. It is the inertia tensor of a system
formed by the unit mass points ri. In the general spatial case
Jc P R33 3 is symmetric and positive definite if n ≥ 3 and all
points do not lie on a common line.

The gravity-induced stiffness tensor and the correspond-
ing L2S2V coefficients can be represented through the
geometric parameters of the grasp, rc and Jc. Substituting
(23) into (10–12) leads to the following expressions:

L = rT
c fc, (25)

S = (rc3 Jc fc)
TJ21

c mc + mT
c (I22lJ21

c + sJ22
c )mc, (26)

V = {rT
c (Jc + sJ21

c )mc} { f T
c J21

c mc}, (27)

where mc = rc3 fc is the gravitational moment, and l, s, y are
the L2S2V coefficients for the contact point tensor Jc.

Note that the stability condition (14) has now the
following geometric interpretation: for the no-internal-force
grasp to be stable, the geometric center rc must be placed
above the center of mass of the object. (Figure 2).

In general, the gravitational stability depends on fc, rc,
and Jc. Some particular cases, when the stability judgement
can be done easily, are listed below.

Case 1. If the geometric center of the grasp coincides with
the center of mass (rc = 0), gravity does not contribute to
the total stiffness.

Case 2. The vectors rc and fc are parallel, i.e., fc = krc and
mc = 0. In this case V = 0, S = 0 and the remaining stability
condition L ≥ 0 gives k ≥ 0.

Note that if a configuration is stable for fc = f *c, it will also
be stable for fc = f *c + krc.

Case 3. If fc is parallel to one of the eigen-vectors of Jc, or
rc is parallel to one of the eigen-vectors of Jc, then V = 0
and S is always negative unless mc = 0.

To prove it, consider all the vector quantities in the
principal axes of the tensor Jc. In the principal axes,
J(c)

c = diag{Jx, Jy, Jz}.
First, consider the case of Jcfc = lfc. Let r(c)

c = {rx, ry,
rz}

T, and also let fc be parallel, for example, to the x eigen-
direction of Jc, i.e., f (c)

c = { fx, 0, 0}T. Then, calculation by
(26) gives

S = 2
f 2

x(2Jx + Jy + Jz ) 2 (J 2
y r 2

y + J 2
zr

2
z)

4 J 2
y J 2

z

. (28)

By the triangle inequality for moments of inertia Jy + Jz > Jx,
and S = 0 only if ry = 0 and rz = 0, i.e. mc = 0.

Next, consider the case of Jcrc = lrc. Let f(c)
c = {fx, fy, fz}

T

and also let rc be parallel to the x eigen-direction of Jc, i.e.,
r(c)

c = {rx, 0, 0}T. Then,

S = 2
r2

x{(Jx + Jy 2Jz )2J 2
z f 2

z + (Jx + Jz 2Jy)
2J 2

y f 2
y}

4J 2
y J 2

z

. (29)

Again, taking into account the triangle inequalities, one
concludes that S = 0 only if fy = 0 and fz = 0, i.e. mc = 0.

Fig. 1. Shift to the geometric center.

Fig. 2. Gravitational stability as given by L > 0.
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Case 3 covers the case when the contact points form a
regular polyhedron configuration (tetrahedron, cube, octa-
hedron, dodecahedron, icosahedron). For the regular
polyhedrons, Jc is proportional to the unit tensor, and fc is
always on one of the eigen-directions of Jc. Another
particular case, covered by Case 3, is when the object is
planar and its plane is orthogonal to the gravity force. Note
that in the latter case L = 0, and mc = 0 means rc = 0.

Case 4. The vector mc is parallel to one of the eigen-
vectors of Jc. In this case V = 0 because Jcmc = lmc, and the
vectors fc and rc lie in a plane orthogonal to one of the
eigen-vectors of Jc.

Without loss of generality, put f(c)
c = {fx, fy, 0}T and r(c)

c = {rx,
ry, 0}T, and transform fc and rc to the polar coordinates:
fx = f sin w, fy = f cosw, rx = r sinc, ry = r cosc. Calculation
by (25) gives L = fr cos(w2c) and the area of L > 0 is
defined as 2p/2 < w2c < p/2.

Next, formula (26) gives

S = 2
f 2 r2 sin(w2c){sin w cos c2z2 cos q sin c}

1 + z2 , (30)

where

z =
Jz 2Jx + Jy

Jz + Jx 2Jy

. (31)

As can be seen from (30), S = 0 when w2c = ±kp or
tanw tan21c = z2. Sign of S does not depend on the absolute
values of rc and fc. Areas of S ≥ 0 are shown in gray color
in Figure 3 for z = 2 (top) and z = 10 (bottom). As z→1 the
areas transform to lines w2c = ±kp, and reflect symmet-
rically when z < 1. Note, finally, that Case 4 covers the case
when all the contact points and the gravity force lie in a
plane. Here, Jz = Jx + Jy and z = Jy /Jx.

4.2. Internal-force-induced stiffness
Consider now stability due to the internal forces. The
general solution of the static equations (20) for Fo = 0 has
the following form:

f = Pc w = (I2B+
c Bc)w, (32)

where Pc is the orthogonal projector onto the null space of
the grasp matrix Bo, i.e., onto the space of the internal
forces, and w P R3n is an arbitrary vector.

Note that w defines a redundant representation of the
internal forces and does not have a clear physical meaning.
To introduce a physically meaningful parameterization of
the internal forces, one can characterize the interaction
between any two fingers by22

a i j = (ri 2rj)
T( f i 2 f j ). (33)

i.e., by the difference of the contact forces projected along
the line joining the two contact points. The interaction force
is of compression type if ai j < 0, and of tension type if
ai j > 0.

The physical meaning of ai j is the work produced by
f i j = f i 2 f j on the displacement r i j = f i 2 f j. However, the
dimension of ai j, [N · m], can also be interpreted as that of

the rotational stiffness. It is remarkable that in this
interpretation the grasp of a rigid body can be represented
by virtual springs which can have positive as well as
negative stiffness.

Summing up all ai j as given by (33) and comparing the
result with (10) gives

L =
1
nO

n

i=1
On

j=i+1

ai j, (34)

The stability condition (14) has now the following inter-
pretation: the total stiffness of the rotational virtual springs
must not be negative.

Equations (33) can be represented in the matrix form

a = Ao f, (35)

where a = {ai j} P RN, N = n(n21)/2, and Ao P RN3 3n. This
representation depends on how the elements of a are
ordered. For example, for the three-fingered grasp (Figure
4) with a = {a23, a31, a12}

T, the matrix Ao can be constructed
as follows:

Fig. 3. Areas of positive S.
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Ao =
0

2rT
31

rT
12

rT
23

0
2rT

12

2rT
23

rT
31

0
. (36)

For the minimal, non-redundant representation of the
internal forces—for which there exists a one-to-one
mapping between the internal forces f and the vector a—
the dimension of a should be equal to the dimension of the
null space of the grasp matrix Bo. Equating N to 3(n22)
gives n = 3 or n = 4.

Note that for an arbitrary b = {bi j} P RN the vector

f = AT
o b (37)

belongs to the null space of the grasp matrix Bo. Here,
parameterization of the internal forces is done in terms of
the linear virtual springs (Figure 5), with bi j being the
stiffness of the spring connecting the i-th and j-th contact
points. It should be noted that this interpretation is
conceptually close to the virtual linkage model24 and to the
virtual truss model.25

Combining (35) with (37) gives the following relation-
ship between stiffness of the linear and the rotational virtual
springs:

b = (AoAT
o )21a . (38)

The transformation from the rotational to the linear virtual
springs is nonsingular if the grasp is non-degenerative and
n ≤ 7.

Now, assume that the elements b i j of the vector b are
somehow ordered, and can be addressed by only one
subscript. The same order is kept for the corresponding
vectors ri j and f i j. The use of such single-indexed variables
is marked by bar sign, i.e., b̄l corresponds to some element
b i j.

In synthesis of a stable grasp under the internal force
loading the stiffness of the linear virtual springs should be
specified in such a way so that the stiffness tensor is positive
semi-definite. Substituting the internal forces (37) into (3)
gives

K = ON

i=1

b̄i {(r̄T
i r̄i )I2 r̄i r̄T

i }. (39)

As can be seen, K has the structure of the inertia tensor of
a system of points built on the vectors r̄i, with b̄i playing the
role of masses. Hence, N conditions b̄i ≥ 0 guarantee that
the matrix K is not negative definite. However, they are the
sufficient but not necessary conditions for stability under the
internal forces.

The necessary and sufficient conditions are given by
(14–16) where the L2S2V coefficients are defined as
follows:

L = ON

i=1

b̄ i (r̄i · r̄i), (40)

S = ON

i=1
ON

j=i+1

b̄ ib̄ j ( r̄i3 r̄j ) · ( r̄i3 r̄j ), (41)

V = ON

i=1
ON

j=i+1
ON

k=j+1

b̄ ib̄ jb̄k { r̄i · ( r̄j3 r̄k )}2, (42)

They are obtained from (10–12) with the formal change:
ri → r̄i and fi → b̄ i r̄i.

Consider, for a example, a three-fingered grasp. In this
case the vectors r̄i, r̄j, r̄k are linearly dependent, and
therefore V = 0. The remaining stability conditions are L ≥ 0
and S ≥ 0. One can show that

S = nTn (b̄1b̄2 + b̄2b̄3 + b̄3b̄1), (43)

where the vector

n = r13 r2 + r2 3 r3 + r3 3 r1 (44)

is orthogonal to the plane containing the contact points. If
the grasp is non-degenerative n ≠ 0, and S ≥ 0 is equivalent
to

b̄1b̄2 + b̄2b̄3 + b̄3b̄1 ≥ 0. (45)

Geometrically, the stability area in the space b̄1, b̄2, b̄3 is
defined by the intersection of the plane L > 0 with the cone
(45).

5. FRICTIONAL CONSTRAINTS
For systems with bilateral constraints between the object
and the end-point links, the conditions (14–16) can be
achieved more or less easily provided there is enough
power. In grasping, however, the constraints are unilateral.
Commonly, they are defined on the basis of the Coulomb
friction models:

Fig. 4. Rotational springs in three-fingered grasp.

Fig. 5. Linear springs in three-fingered grasp.
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u ni3 fi u ≤ m ( fi · ni ), i = 1, . . . , n, (46)

where ni is the unit vector orthogonal to the object’s surface,
pointing toward it, and m stands for the static friction
coefficient.

In this section, we study the conditions (14–16) under the
constraints (46) for a simple example. Consider a planar
object, grasped by a four-fingered hand. The geometric form
of the object is that of the generalized ellipse:

S x
a Dm

+ S y
b Dm

= 1, (47)

where a and b are the lengths of the semi-axes of the ellipse.
The object is convex for m ≥ 1, and concave for m < 1 (see
Figure 6).

Assume the symmetrical placement of the contact points
on the object as shown in Figure 7 for m = 2. The contact
points are defined as follows:

r1 =
a cos2/mc

b sin2/m c

0

, r2 =
2a cos2/mc

b sin2/m c

0

, (48)

and r3 = 2r1 , r4 = 2r2 . Here, c P [0, p/2] is the grasping
angle.

The inward normals to the surface at the contact points
are defined as follows:

n1 =

2b sin
2
m c cos2 c

l(c)

2a cos
2
m c sin2 c

l(c)

0

, n 2 =

b sin
2
m c cos2 c

l(c)

2a cos
2
m c sin2 c

l(c)

0

,

(49)

n3 =2n1, n4 = 2n2, where

l(c ) = Ïa2 cos4/m c sin4c + b2 sin4/mc cos4c. (50)

To specify the positive directions of the friction forces,
define the clockwise (at the 1st and 3rd points) and counter-
clockwise (at the 2nd 4th points) tangential vectors:

t1 =

a cos
2
m c sin2 c

l(c)

2b sin
2
m c cos2 c

l(c)

0

, t 2 =

2a cos
2
m c sin2 c

l(c)

2b sin
2
m c cos2 c

l(c)

0

,

(51)

and t3 = 2t1 , t4 = 2t2 .
Consider the force distribution given by

fi = fn ni + ft ti, i =1, . . . , 4. (52)

No gravity is assumed, the static equations are always
satisfied under the specified contact forces. The object is
stretched in the X direction if ft > 0 and compressed if ft <0.
The unilateral constraints on the normal forces are given by
fn ≥ 0, and the Coulomb friction constraints (46) take the
following form:

2m ≤ ft /fn ≤ m. (53)

The coefficient L, which has the meaning of the rotational
stiffness of the object in the plane OXY, is calculated by
(10). It is obtained as

L =
4

l(c)
( ft(a

2 cos
4
m c sin 2 c2b 2 sin

4
m c cos2 c)

2 fn ab cos
2
m c sin

2
m c ). (54)

Note that the rotational stiffness is not positive if ft = 0 (for
example, if there is no friction). Also, there exists* a critical
value of the grasping angle, defined from

tan21+2/m c = a /b, (55)

under which L becomes negative because it does not depend
on f t. The geometric meaning of the condition (55) is that r i

is orthogonal to t i under (55). Also, it can be shown that for
a = b the curvature of the object attains its extremal value
for the grasping angle given by (55).

From the condition L > 0 one gets

ft

fn

≥ ±
ab cos2/m c sin2/m c

a2 cos4/m c sin2 c2b2 sin4/m c cos2 c
, (56)

where plus is taken if a/b > tan21+2/m c, and minus other-
wise. The force distribution (52) is both admissible and
stable if there is a solution for the system of inequalities (53,
56).

Dependence on the parameter m. Put a = b and change the
parameter m. The plots, corresponding to three possible

* Except of m = 2 and a ≠ b.

Fig. 6. Object shapes.

Fig. 7. Four-fingered grasp.
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situations, m < 1, 1 < m < 2, and m > 2, are shown in Figures
8, 9 and 10.

As can be seen from Figure 8, for the concave shapes
there always exist grasping angles for which (56) has
intersection with the area of “realistic” friction coefficients
u ft / fn u ≤ 1. However, as m tends to 1, the solution area gets
smaller and finally converges to two points (0 for f t > 0, and
p /2 for f t < 0). But what is more important is that for any m
there exist grasping angles c for which the force distribution
(52) is stable.

As to the convex shapes, (56) has no intersection with the
area of “realistic” friction coefficients u ft / fn u ≤ 1. Thus, a
higher friction coefficient is required to achieve stable force

distribution of the convex object. Finally, note that the case
m = 2 (sphere) is singular in the sense that L does not
depend on ft and is always negative. Therefore, the force
distribution is always unstable for the case of sphere.

Dependence on the ratio a/b. Put m=2 (singular case in the
previous model) and change the ratio z = a/b. Without loss
of generality, assume a > b, i.e. z > 1. Inequality (56) is
simplified and takes the following form (Figure 11):

ft

fn

≥
z

z 2 21
2

sin 2c
. (57)

As can be easily seen, the line of zero L in the plane ft /fn, c
attains its minimum, 2z /(z2 21), at c = p/4. The minimum
goes to infinity as z → 1 (sphere). For the force distribution
(52) to be both admissible and stable, one must require 2z/
(z2 21) < m, which leads to the following estimate:

z >
1 + Ï1 + m2

m
. (58)

For example, for m = 0.2 it gives, roughly, a > 10b.

Spatial case. The pure planar case was analyzed so far.
Now, assume that the grasping takes place in the three-
dimensional space.* The coefficient S is calculated by (11)
and is defined as

S = 2
16ab cos

2
m c sin

2
m c

l2(c)

( fn ft (a2 cos
4
m c sin4 c2b2 sin

4
m c cos4 c )

+ ( f 2
t 2 f 2

n )ab cos
2m+2

m c sin
2m+2

m c). (59)

The condition S > 0 takes the following form

2
a
b

tan222/m c ≤
ft

fn

≤
b
a

tan22+2/m c . (60)

It can be shown that regardless of the friction coefficient
m the areas of L > 0 and S > 0 do not have intersection in the

* One can imagine a cylindrical object with the cross-section
(grasping plane) having the form of the generalized ellipse.

Fig. 8. Concave shape of the object (m < 1).

Fig. 9. Convex shape of the object (1 < m < 2).

Fig. 10. Convex shape of the object (m < 2).

Fig. 11. Convex shape of the object (m = 2, a > b ).
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plane ft /fn, c. This is illustrated in Figure 12 for a = b and
m = 2/3 (astroid). Thus, in the spatial case the force
distribution (52) is not stable.

6. GRASP STABILIZATION
As shown in the previous section, the conditions (14–16) are
not always achievable under the unilateral grasping con-
straints. In such situations the feedback stabilization is
necessary. In this section, we consider a simple control law
of the following form:

D fi = 2kvi Dẋi 2kpi Dxi , i = 1, . . . , n, (61)

where Dxi are changes in the desired contact positions.
Mechanically, it corresponds to the introduction of virtual
linear springs—with stiffness kpi > 0 and damping
kvi > 0—at the contact points.

The fingers are controlled locally and direct measure-
ment of the object position and orientation is not
required. Taking into account that Dxi = Dx + u 3 r i and
Dẋi = Dẋ + u̇ 3 ri , it can be shown that the projection of the
combined vector {D f T

1 , . . . , D f T
n} onto the internal force

space is always zero. Hence, the control law (61) does not
influence the internal force distribution. The linearized
dynamic equations (2) under the feedback (61) become

F mI
O

O
J G F Dẍ

ü
G + (62 )

On

i=1

kvi F I
V(ri )

VT(ri )
VT(ri )V(ri )

G F Dẋ
u̇ G +

SFO
O

O
K G

+ On

i=1

kpi F I
V(ri )

VT(ri )
VT(ri )V(ri )

GD F Dx
u G = 0.

The grasp under the feedback (61) is asymptotically stable
if the damping and stiffness matrices in (62) are positive

definite. The corresponding conditions are established with
the use of Theorem 7.7.6.26 The damping matrix is positive
definite if the matrix

On

i=1

ky i VT (ri 2rd )V (ri 2rd ) (63)

is positive definite. Here,

rd =
On

i=1
ky i ri

On

i=1
ky i

(64)

is the center of damping. The matrix (63) is the damping
tensor calculated at the damping center. The damping tensor
has the structure of the inertia tensor of a system of points
of mass kyi built on the vectors ri 2rd. In the general spatial
it is positive definite if n ≥ 3 and all points do not lie on a
common line.

As to the stiffness matrix, it is positive definite if the
matrix

K + On

i=1

kpiV
T (ri 2rs)V (ri 2rs) (65)

is positive definite. Here,

rs =
On

i=1
kpi ri

On

i=1
kpi

(66)

is the center of stiffness. The second part of (65) is the
stiffness tensor of the “control” springs calculated at the
stiffness center. This tensor has the structure of the inertia
tensor of a system of points of mass kpi built on the vectors
ri 2rs. Therefore, it is positive definite if n > 3 and all points
do not lie on a common line.

It is concluded from (65) that the grasp is stable for any
kpi > 0 if the force distribution is stable. If, however, it is not
the case and K is negative definite, one can always adjust kpi

so that to make (65) positive definite. To establish the
stability conditions, transform the matrix (65) to the
following form

On

i=1

VT { fi + kpi (ri 2rs)}V (ri ). (67)

One can see that the structure of the matrix (67) copies that
of K with the formal change:

fi → fi + k pi (ri 2rs). (68)

Therefore, the necessary and sufficient conditions for
stability can be obtained with the use of the L2S2V
coefficients in exactly the same way as it has been done in
Section 3. Namely, the stability conditions are given by
(14–16), with the forces modified by (68).

Fig. 12. Concave shape of the object (m = 2/3).
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Let us revisit the example from Section 5 and assume
kpi = kp , i=1, . . . , 4, so that the stiffness center coincides
with the geometric center of the contact points. Calculation
of L gives L = L0 + kp L1, where L0 takes the form of (54) and
L1 = 4(a2 cos

4
m c + b2 sin

4
m c ). The stability condition is

kp >2Lo/L1. The minimal stable gain, normalized with
respect to fn/Ïab, is a function of the grasping angle c and
the normalized tangential force ft /fn. This function is plotted
in Figure 13 for a = b.

In the case of sphere (m = 2), for which the force
distribution (52) is unstable, calculation of L gives
L = 4a(akp 2 fn ) and the stability condition is stated as
kp > fn /a. This condition does not depend on c and ft, and
therefore the normalized minimal gain surface for m = 2 is
flat at the unit level.

Next, considering the stability condition at the critical
angle (55), one gets

kp > fn sin12 2
m c/b = fn cos12 2

m c/a. (69)

As can be seen, kp increases indefinitely as m→0 while it is
limited when m→ ∞ . The reason is not related to the
curvature, which goes to infinity as m→0 or m→ ∞ , and is
in the fact that the distance between the contact points goes
to zero as m→0.

If the grasping takes place in three dimensions, one must
consider the second condition, S > 0. Calculation of S gives
S = k 2

p S2 + kp S1 + S0, where S0 takes the form of (59),
S2 = 16a2b2 cos

4
m c sin

4
m c, and

S1 =2
16ab cos

2
m c sin

2
m c

l (c )
S ft ab cos 2c cos

2
m c sin

2
m c

+ fn(a
2 cos

4
m c sin2 c + b2 sin

4
m c cos2 c )D. (70)

The values of kp satisfying S > 0 belong to the following
interval:

kp P (2∞, min{k1, k2}), < (max{k1, k2}, ∞), (71)

where

k1 =
1

l(c)
(

b
a

fn cos2 c tan
2
m c2 ft sin2 c), (72)

k2 =
1

l(c)
(

a
b

fn sin2 c cot
2
m c + ft cos2 c). (73)

Considering the conditions L > 0 and S > 0 together, it can
be shown that for a given ft / fn there exists a point c where
k1 = k2 =2L0 /L1. At this point the condition kp > 2L0 /L1

cuts the interval (71) so that the spatial stability condition
takes the form kp > max{k1, k2}. For example, in the case of
sphere one obtains

H kp > ( fn + ft cot c) /a, if ft > 0,
kp > ( fn 2 ft tan c) /a, if ft < 0.

(74)

One can see that as c → 0 or c → p/2, that is when the four
contact points are degenerating to the two contact points,
more and more higher gain coefficients kp are required to
stabilize the grasp. However, unlimited increase of kp may
result in slip and loss of equilibrium.

7. COMMENT ON THE CONTACT STABILITY
The grasp under the control (61) with properly adjusted kp

and ky can be made asymptotically stable. However, it is not
always globally asymptotically stable. The area of its
asymptotical stability in the space of the object disturbances
is limited by the unilateral constraints

u (ni + Dni)3 ( fi + D fi ) u ≤ m{( fi + Dfi ) · (ni + Dni )}. (75)

The correction D fi, not violating the object contact stability,
must belong to the friction cone (75) whose origin is shifted
along the vector fi. Here one comes to the notion of the
contact stability27 as opposed to the object stability.

To define the contact stability area in the space of the
object disturbances, one represents Dni and Dxi with the use
of Rodrigues’ formula for the finite rotations,

Dni = sinu (k3 ni ) + (12cosu ){k3 (k3 ni )} (76)

Dxi = sinu (k3 ri ) + (12cosu ){k3 (k3 ri )} + Dx, (77)

and solves the system of inequalities (75) with respect to Dx
and uk. Here, u is the disturbance angle, and k stands for the
disturbance axis.

In general, the solution of (75) is quite complicated and
can be done only numerically. In the rest of the section we
complete the example considered earlier and show how theFig. 13. Normalized minimal stable gain coefficient.
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upper bounds for kp are established for the cases of pure
rotational and pure translational disturbances. Assume
k = {0, 0, 1}T. Several simple but instructive conclusions can
be drawn from this example.

Linear disturbances. Let u = 0. The system of inequalities
(75) takes the following form

u k ft 2kp (ni3 Dx) u ≤ m{ fn 2kp (ni · Dx)}. (78)

It can be shown that (78) satisfies ;i = 1, . . . , 4 if

u Dx u ≤
m fn 2 u ft u
kp (1 + m )

. (79)

On the other hand, if

u Dx u >
m fn + u ft u
kp (12m)

, (80)

the system (78) has no solution. As can be seen, increasing
kp decreases the size of the contact stability area. It can be
viewed as the contradiction between the Liapunov stability
and the contact stability of the object.

For the grasp to be both Lyapunov stable and contact
stable, the upper bound for kp, defined from (79), should be
compatible with the lower bound given by the Liapunov
stability considerations. Consider the case of sphere for
which kp > fn /a. Let ft = 0. The compatibility will be
guaranteed if u Dx u < am /(1 + m). For example, for m = 0.2
and a = 10cm the grasp can be made both Liapunov stable
and contact stable if, roughly, u Dx u < 1.6cm. On the other
hand, if u Dx u > am /(12m), that is u Dx u > 2.5cm in our
example, the contact stability will be violated.

Note that the estimates (79) and (80) can be very rough
since they do not depend on the specific shape of the object
and on the grasping angle. To illustrate this point, consider
the exact area of admissible disturbances. The area is
represented by intersection of two rhombuses whose
orientation depends on the grasping angle c. The inter-
section area is depicted in Figure 14 for ft = 0 and c = p /4.
It can be shown that for ft = 0 and c = p /4 the circle
inscribed into the contact stability area is defined as
u Dx u < am, which gives u Dx u < 2.0cm for m = 0.2 and
a = 10cm.

Rotational disturbance. Let Dx = 0. The system of ine-
qualities (75) takes the following form

u (kpln 2 fn)sinu + ft cosu2kplt(12cosu ) u

≤ m{(kplt + ft )sinu + fn cosu + kpln(12cosu )}, (81)

where

ln =
ab cos2/m c sin2/m c

l(c)
, (82)

lt =
a2 cos4/m c sin2 c2b2 sin4/m c cos2 c

l(c)
. (83)

Consider the configuration corresponding to the critical
grasping angle (55) for which lt = 0. If there is no tangential
force ( ft = 0) and kp is set to be on the boundary of the
Liapunov stability condition for the coefficient L(kp = fn /
ln), the inequality (81) will be satisfied for relatively large
disturbances such that uu u < p / 2. A direct consequence of
this fact is that for ft = lt = 0 and uu u < p / 2 the upper bound
for kp will be always compatible with the lower bound,
defined from the Liapunov stability considerations. For
example, in the case of sphere (for which any c is critical)
and small u one gets kp < fn(1 + m / uu u)/a.

CONCLUSIONS
The problem of the stability of a rigid body subjected to
multiple frictional contacts has been considered in this
paper. First, the stability of a force distribution was
formulated at the level of force planning. For this sub-
problem the stiffness tensor of the system has been derived,
and its basic properties has been established. Necessary and
sufficient conditions for stability of a force distribution have
been established in an analytical form in terms of the so-
called L2S2V coefficients. These conditions, considered
under unilateral frictional constraints, have been studied on
an illustrative example.

Next, at the level of the feedback stabilization, it has been
shown that an unstable force distribution can be stabilized
by a simple control law. The stability conditions for this
control law have been formulated in terms of the original
stiffness tensor and the stiffness tensor of the “control”
springs calculated at the stiffness center. The stability
conditions can be defined with the use of the L2S2V
coefficients, with the contact forces modified by the elastic
forces of the “control” springs. Finally, conclusions on the
relation between the Liapunov stability and the contact
stability of the objects have been drawn.
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