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ABSTRACT

Recently, there has been an increasing interest from life insurers to assess their
portfolios’ mortality risks. The new European prudential regulation, namely
Solvency II, emphasized the need to use mortality and life tables that best
capture and reflect the experienced mortality, and thus policyholders’ actual
risk profiles, in order to adequately quantify the underlying risk. Therefore,
building a mortality table based on the experience of the portfolio is highly
recommended and, for this purpose, various approaches have been introduced
into actuarial literature. Although such approaches succeed in capturing the
main features, it remains difficult to assess the mortality when the underlying
portfolio lacks sufficient exposure. In this paper, we propose graduating the
mortality curve using an adaptive procedure based on the local likelihood.
The latter has the ability to model the mortality patterns even in presence of
complex structures and avoids relying on expert opinions. However, such a
technique fails to offer a consistent yet regular structure for portfolios with
limited deaths. Although the technique borrows the information from the
adjacent ages, it is sometimes not sufficient to produce a robust life table. In
the presence of such a bias, we propose adjusting the corresponding curve, at
the age level, based on a credibility approach. This consists in reviewing the
assumption of the mortality curve as new observations arrive. We derive the
updating procedure and investigate its benefits of using the latter instead of a
sole graduation based on real datasets. Moreover, we look at the divergences in
the mortality forecasts generated by the classic credibility approaches including
Hardy–Panjer, the Poisson–Gamma model and the Makeham framework on
portfolios originating from various French insurance companies.
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1. INTRODUCTION

For insurers, the assessment of experienced mortality is of paramount impor-
tance. The new regulations and norms, established under Solvency II, shed light
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on the need of life tables that best reflect the experience of insured portfolios own
mortality in order to reliably quantify the underlying risk. Insurers, in France
for example, are used to rely on regulatory life tables for pricing and reserving
purposes, which are sometimes too conservative. However, the use of inadequate
life tables, i.e. that are too conservative, would considerably affect the finan-
cial profitability of life insurance businesses as well as insurers’ competitiveness.
Among others, from a Solvency II perspective, using overly conservative tables
lead to two major impacts: (i) an increase of best estimate technical provisions
(and thus a decrease of Basic Own-Funds), and (ii) an increase of the base figure
used for calculating the capital charge for mortality risk.

A natural and straightforward approach to handle this issue is to use the
available data at the portfolio level and build an entity-specific mortality table.
However, practitioners may face technical difficulties related to the size of the
portfolios and the heterogeneity of the guarantees (for the same underlying risk,
say mortality risk). For instance, an insurer may have a fairly big portfolio but
with policyholders holding different insurance contracts: pure endowment con-
tracts, unit-linked contracts with minimum death guarantees, loan insurance
and so on. In such a case, it is difficult to build a mortality table based on the
sole experience of each product or guarantee. More precisely, the constructed
table would not be able to represent the mortality profile of the policyholders
thus failing to capture the underlying risk. This should also be the case even
if the mortality table is periodically updated with the incoming new data. If a
mortality table only based on the experience stemming from one product or
guarantee is drawn, then there will be a sample size problem. The latter arises
not only at the portfolio level but also for individual ages. In fact, the mortality
profile is highly dependent on the age of the individuals and some age groups
being poorly represented may alter the quantification of the mortality risk at
each individual age.

In this paper, we consider an insurer with exposures to different coverages
and aiming to establish an experience-based mortality table for each policy and
age level, as individuals may have different risk profiles (as showed by some
empirical mortality studies, e.g. see Vaupel et al. (1979) and Hougaard (1984)
among others). To begin with, we consider a graduation principle to build mor-
tality rates at the insured portfolio level. There are usually two sorts of meth-
ods: non-parametric and parametric, see Forfar et al. (1988a) and Debón et al.
(2006) for a comprehensive introduction to the use of both graduation tech-
niques. The non-parametric framework is very useful in practice especially when
there is sufficient data. This method relies on the use of kernel estimation tech-
niques which were first used for graduation by Copas and Haberman (1983)
and Ramlau-Hansen (1983). There is extensive literature on this subject and we
may observe two schools. First, there is a continuous approach that defines data
sampling via stochastic counting processes and which considers the lifetimes
of individuals to be continuous random variables subject to random censor-
ships, i.e. left truncation and right censoring. In our case, the mortality data
that we use are divided into discrete yearly numbers of death occurrences and
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exposures. Therefore, these data only allow the use of an approach based on an
approximation of the continuous filtered model. Both the continuous and the
discrete formulations have been intensively explored in the literature, see e.g.
Fan and Gijbels (1995), Jiang and Doksum (2003), Nielsen et al. (2009) and
more recently Gámiz et al. (2016). In these models, the hazard rate is estimated
using a non-parametric kernel method. A number of commonly used smooth-
ing methods such as smoothing splines, kernel estimates and local polynomial
fitting can be used to implement the basic step of the graduation of a mortal-
ity table. More recently, estimators based on local polynomial fitting, discussed
in earlier works of Cleveland (1979) and Lejeune (1985), among others, have
become more popular. This keen interest turned out to be useful, in particu-
lar for their good performance and analytical tractability, see for example, the
monograph by Fan and Gijbels (1996).

In the approach proposed here, local polynomial fitting methods are used as
an implementation of smoothing methods. This allows us to model the mortal-
ity patterns even in presence of complex structures and avoid relying on expert
opinions. In Tomas (2011), the author explores the same adaptive smoothing
procedure applied to the dataset used in this paper.

The graduated mortality can then be used to project future insurance liabil-
ities related to the underlying population. However, the evolution of the flow of
data related to the latest available information is not taken into account. This
should be, for example, used to update the graduated mortality. Though, if one
decides to redo a graduation procedure including the new data, the forecasts
are likely to be unstable, adding potential volatility to the underlying reserves
and capital charges. Therefore, the primary contribution of this paper is the
incorporation of sample bias into the graduated mortality table model by in-
troducing an unobserved variate for individual differences in each attained age.
Such an approach has been considered in Salhi et al. (2016) but with different
graduated curves. The latter used a parametric model, i.e. Makeham law, to first
build the mortality curve and then applies a credibility procedure to a portfolio-
sensitive parameter. Other approaches have also been introduced in the litera-
ture but work directly on the aggregate death counts, e.g. Hardy and Panjer
(1998). Unlike the traditional approaches that focus on updating the aggregate
deaths recorded within the whole portfolio, the proposed adjustment approach
is intended to enhance the predictive ability of the graduated mortality using
a credibility-based revision at the age level and not on the aggregate portfolio
level, while borrowing information from other portfolios with sufficient infor-
mation. More formally, our methodology is based on a discretization of the
Nielsen and Sandqvist (2000) credibility approach. The latter, however, did not
consider a multidimensional credibility method as the underlying risk does not
exhibit an extra dimension rather than the observation date, see Section 3.

The rest of the paper is organized as follows. Section 2 specifies the notation
and assumptions used throughout the paper. It also introduces the smoothing
model in its general and continuous form. A discretization of the latter is con-
sidered as mentioned earlier and we also recall some statistical inference results
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used in the sequel. Section 3 introduces the credibility approach to the gradu-
ated mortality. We specify the model and illustrate the connection with recent
literature. Furthermore, we derive the main tools needed to fully characterize
the next prediction period of mortality rates when a (multiplicative) credibility
factor is taken into account. Section 4 presents an application with experience
data originating from some French insurance companies. Finally, some remarks
in Section 5 conclude the paper.

2. NOTATION, ASSUMPTIONS AND PRELIMINARIES

2.1. Notation, assumptions and continuous time local smoothing

Assume that we have at our disposal mortality statistics originating from K
portfolios (or companies) over the time interval [0,Ti ], i ∈ {1, . . . , K}. We sup-
pose that the portfolios are composed of Ii individuals for which we associate a
triplet (Yi

e , Z
i
e, �

i
e), for e = 1, . . . , Ii , whereYi

e is the age that an individual enters
the portfolio during the considered period, Zie the age they leave the portfolio
and �i

e an indicator of the censoring status. In other terms, �i
e is equal to 1

when the individual deceases during the period [0,Ti ] and 0 when they leave
for other reasons, e.g. surrendering their policy. Based on this triplet, which can
be observed in most life insurance portfolios, we let Ni

e(x) = �i
e1{Zie≤x} be the

counting process indicating the death of the individual e before age x. Similarly,
we define the process Lie(x) = 1{Yie≤x<Zie} that indicates if the insured is at risk
at age x. For all the portfolios, we are interested in the mortality behavior in an
age interval [x1, xni ]. Moreover, under usual conditions, we assume Cox (1972)’s
multiplicative model where the random intensity of death ϕix, at age x of port-
folio i is related to a reference ϕref

x as follows:

ϕix = exp[ f i (x)]ϕref
x , (1)

where f i is an unspecified, smooth and deterministic function of the age x. The
latter allows us to link the mortality of the company i to the baseline at the
attained age level x. Here, we adopt a parametric form for the function f i and
denote β i this vector of parameters which will be specified later in this section.

Remark 1. In this assumption, the baseline mortality is shared across portfolios.
However, the function f i is not common as it is supposed to adjust to the particular
feature of each portfolio. That is, the form as well as the parameters may depend on
the sample size and particularly across ages. The form of the latter will be common
and defined to be of polynomial form. However, the degree will be adapted to each
portfolio.

The specification in Equation (1) is a simple variation of Cox’s proportional
hazards regression model. This was considered, for example, in Anderson and
Senthilselvan (1980) and Gray (1990) using a known link function but with co-
variates that adjust themortality given the observed heterogeneity. Cox’s general
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model, in the presence of covariates, with an unknown link function is consid-
ered inWang (2001, 2004) who suggested a local likelihood approach to estimate
the function f i . Formally, under the aforementioned assumptions, the likeli-
hood functional L(ϕi ; β i ) in the presence of left truncation and right censoring
is given as follows:

L(ϕi ; β i ) =
∏

e|Yie≤Zie

[(
ϕiZie

)�i
e exp

(∫ Zie

Yie

ϕisds

)]
.

Therefore,

logL(ϕi ; β i ) =
∑

e|Yk
i ≤Zki

[
�k
i log

(
ϕkZki

) −
∫

1{Yk
i ≤s<Zki }ϕ

k
s ds

]

=
∫

log(ϕks )dN
k(s) − Lk(s)ϕks ds,

where Ni (x) = ∑Ii
e=1 N

i
e(x) and L

i (x) = ∑Ii
e=1 L

i
e(x). Given the above, we con-

sider the local likelihood model which fits a polynomial model locally within a
smoothing window. To this end, the localized log-likelihood at an age x can be
written as follows:

logLloc(ϕix; β i ) =
∫

ωh(s − x) log(ϕis)dD
i (s) − ωh(s − x)Li (s)ϕisds, (2)

where ωh(u) is a weight function with a bandwidth parameter h > 0 that as-
signs larger weights to observations close to x. These considerations will yield
the local kernel weighted log-likelihood estimation of the polynomial function
f i . Such a formulation complies with the literature on local polynomial haz-
ard estimation, see Fan and Gijbels (1995), Jiang and Doksum (2003) and
Gámiz et al. (2016). We assume that f i (xj ) is a pth degree polynomial in xl ,
where xl is an element in the neighborhood of xj . Formally, denoting xl =(
1, xl − xj , . . . , (xl − xj )p

)�
and β i = (

β i
0, . . . , β

i
p

)�
, we can write f i (xj ) in

the following form: f i (xj ) = x�
l β i .

Remark 2. i. The reference mortality ϕref
x is constructed using the aggregate

data stemming from the portfolios, which will underpin the use of the common
baseline. However, it may be of interest to consider a full Cox model taking into
account the specific features of each portfolio. This is, for instance, investigated
in Nielsen and Sandqvist (2005), where it is taken into account that mortal-
ity rates should not be around a common mean, but around a Cox regression
instead. By doing so, it allows the approach to be used even when the lines of
mortality are different, as long as they fit into a proportional hazard framework,
see also Gustafsson et al. (2006, 2009).
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ii. Various forms of the function f i have been considered in empirical actuarial
science. For example, in Currie (2016), the function f i has the parametric form
f i (x) = β i

0 + β i
1x for some unknown parameters β i

0 and β i
1. Other examples

were considered in Renshaw et al. (1996).

2.2. Local likelihood smoothing of mortality in discrete time

Up to now, we have considered the lifetimes of individuals to be continuous
random variables subject to random censorships. In our case, the mortality data
at our disposal are divided into discrete annual numbers of death occurrences
and exposures. Therefore, these data only allow the application of an approach
based on an approximation of the continuous filtered model in Equation (2).
As noted before, both the continuous and the discrete formulations have been
intensively explored in the literature, see e.g. Fan and Gijbels (1995), Jiang and
Doksum (2003) and more recently, Gámiz et al. (2016). The latter provides a
theoretic treatment of local linear mortalities and it also describes in detail the
relationship between discrete and continuous sampling. In actuarial literature,
early works based on discrete data date a long way back to Gram (1879, 1883)
who develops local polynomial hazard estimators that are not far in spirit from
our work.

The discretization of Equation (2) relies on an aggregation of the lifetimes
into intervals. In this subsection, we describe a modification of the local linear
estimator for discrete data in Equation (2).We suppose that the following yearly
aggregated values of occurrences and exposures are available:

Di
xj =

Ii∑
e=1

∫ xj+1

xj
dNi

e(s), Ei
xj =

Ii∑
e=1

∫ xj+1

xj
Lie(s)ds. (3)

These refer, respectively, to the number of deaths and the number of individuals
who are at risk in the age interval [xj , xj+1[. Moreover, we assume a piecewise
constant hazard rate ϕix in the sense that ϕix = ϕixj for any x ∈ [xj , xj+1[. Then,
a natural approximation of the localized likelihood function in a neighborhood
of xj , i.e. Equation (2), would be

logL(ϕixj ; β i ) =
m∑
l=1

ωh(xl − xj ) log(ϕixl )D
i
xl − ωh(xl − xj )ϕkxl E

i
xl

=
m∑
l=1

ωl jx�
l β i Di

xl − ωl jϕ
refex

�
j β

i
Ei
xl + Ci , (4)

where Ci is a constant offset, which does not depend on the parameter
vector β i .
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Remark 3. The true likelihood given in Equation (4) can be recovered, up to a
constant offset, using the hypothesis of Poisson distributed death occurrences. In
fact, if the parameter of the Poisson distribution is assumed to be Ei

xϕ
i
x where the

intensity ϕix is as in Equation (1), then one can write the problem as a generalized
linear model such that the first moment of Di

t can be written as follows:

logE[Di
x] = log Ei

x + logϕix = log Ei
x + logϕrefx + f i (x),

where the term log Ei
x is an offset. Then, in the presence of unknown link func-

tion f i , we can rely on a localized likelihood version which adds a weight to the
observations at each age. Such an approach was used to graduate life tables with
attained age context in Delwarde et al. (2004), Debón et al. (2006) and Tomas
(2011).

In Equation (4), the non-negative weights, i.e. ωl j , depend on the distance
between the observations and the fitting point xj and can be characterized using
the kernel ωh as follows:

ωl j =
{

ω(|xl − xj |/h), if |xl − xj | ≤ h,
0, otherwise,

(5)

where ω is Gaussian kernel and h is a smoothing parameter determining the
radius of the neighborhood of xj used in the smoothing. It gives the bandwidth
of the neighborhood used in the kernel. For instance, the smaller h is the thiner
the neighborhood that contributes to the likelihood at each attained age is.

In order to estimate the parameters vector β i , we maximize the log-
likelihood in (4). To this end, we let Di = (Di

x1, . . . , D
i
xm) and ϕi =

(ϕix1, . . . , ϕ
i
xm). Then, taking the derivative, with respect to β i , yields the follow-

ing system of equations:

(X j )�W j (Di − ϕi ) = 0, (6)

where X j is the m× (p + 1) matrix

X j =

⎛⎜⎜⎜⎝
1 x1 − xj (x1 − xj )2 · · · (x1 − xj )p

1 x2 − xj (x2 − xj )2 · · · (x2 − xj )p
...

...
...

. . .
...

1 xm − xj (xm − xj )2 · · · (xm − xj )p

⎞⎟⎟⎟⎠ , (7)

and W j is the m × m diagonal weight matrix with diagonal elements wl j , for
l = 1, . . . ,m. Since ϕi is non-linear on β i , the solution of the above equation,
i.e. estimations, must be obtained numerically using, for example, an iterative
algorithm likeNelder–Wedderburn, Newton–Raphson algorithms or the Fisher
scoring methodology, see Loader (2006, Chapter 12) for further development.
From these, we can get the estimation of β i and ϕi denoted, henceforth, by β̂ i

and ϕ̂i .
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2.3. Inference of the graduated mortality

The aim of this subsection is to characterize the statistical feature of the esti-
mators considered above. We recall some well-known results in the literature
on non-parametric smoothing, see e.g. Tibshirani and Hastie (1987) and Wand
and Jones (1994), particularly regarding the variance of the graduatedmortality
and the expected behavior of these estimations. In fact, using theoretical results
concerning bias and variance, the estimator ϕ̂i is shown to be asymptotically
robust and consistent. It is, for instance, shown in Fan and Gijbels (1996) that
the smoothed mortality rates ϕ̂i are unbiased estimators of ϕi in the sense that

E[ϕ̂i ] ≈ ϕi . (8)

This approximation is found by studying the mean squared errors, which are
commonly used to assess the bias of the estimation in such a framework. Expres-
sions of the latter are available in classic textbooks and the readers can refer to
Fan and Gijbels (1996) who provide an approximation to the bias of the estima-
tor ϕ̂i . Unlike the linear model fitting, there is no exact expression for moments
of ϕ̂ix due to the non-linearity in Equation (6). Using a multivariate version of
Taylor series expansion around β i allows us to use well-known results on the
inference of the estimated parameter β̂

i
. Note that this approximation depends

on the bandwidth of the neighborhood h used in the kernel. More precisely, the
bias decreases with the bandwidth. This is particularly reasonable in practice,
because a large bandwidth induces a miss-fitting of the local polynomials and
hence also the sum of squared residuals. Furthermore, to derive the second-
order moment of ϕ̂i , a variance approximation based on Taylor linearization is
also generally suggested and shown to be consistent, see Loader (2006). More
precisely, we have the following expression for the variance:

Var(ϕ̂i ) = (SiSi�)ϕ̂i , (9)

where the matrix Si is given as follows:

Si =

⎛⎜⎜⎜⎝
si1(x1) si2(x1) si3(x1) · · · sin(x1)
si1(x2) si2(x2) si3(x2) · · · sin(x2)

...
...

...
. . .

...

si1(xn) si2(xn) si3(xn) · · · sin(xn)

⎞⎟⎟⎟⎠ , (10)

with rows si (xj )� = (si1(xj ), s
i
2(xj ), . . . , s

i
n(xj )) = (X j�W jX j )−1X j�W j , where

W j is the weight matrix and X j is given in Equation (7).

2.4. Small-sized portfolios and sampling bias

It is worth mentioning that the relational (proportional) model considered in
Equation (1) implicitly accounts for differential mortality that may arise due
to portfolio specific features, e.g. particular socioeconomic groups involved,
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income level, etc. This is all the more true if we consider the national mortality
as a baseline considering that insured portfolios show a typical behavior
compared to a national mortality. Specifically, the mortality of an insured
population is significantly lower than that of the national population from
which it is drawn. On the other hand, when it comes to studying the mortality
at a single portfolio level, some stylized facts arise which might compromise
the efficiency of the graduation procedure. For instance, insured populations
are generally of small size, so no or very few deaths are observable at certain
ages. Therefore, the use of model (1) and the local-likelihood-based estimation
procedure advocates using the information stemming from the adjacent ages
to construct the mortality curve. This learning procedure will enhance the
determination of the mortality at a given age. However, when successive ages
lack information, the approach exposed above will need a large bandwidth h
for the estimator to access distant ages with sufficient and reliable information.
By doing so, we increase the bias surrounding the smoothed curve. Indeed, as
noted before, the mean of squared errors measuring the bias due to the local
regression increases with the bandwidth h.

Due to these different sources of uncertainty, we suppose that the truemor-
tality curve ϕix, for x = x1 . . . , xn, is known up to an unobservable multiplica-
tive factor �i

x. In other words, the portfolios examined should be regarded as
a sample of the reference. Estimates based on the data will be subject to sam-
pling errors and the smaller the group is, the bigger the relative random errors
in the number of deaths will be and the less reliable the resulting estimates will
be. This argument is extended to include the bias stemming from the attained
age level due the consideration exposed above. Thus, if one has estimated the
curve using the non-parametric approach, the true curve is an adjustment of
the latter as multiplied by the random and non-observable parameter �i

x. Such
a setting is inspired by the credibility approach to hazard estimation of Nielsen
and Sandqvist (2000).

3. COMPANY-SPECIFIC RELATIVE RISK LEVEL

Recall that we have at our disposal K portfolios with individuals’ ages rang-
ing from x1 to xni . Here, the ni ’s could all be different in order to be in line
with insurance practices. This kind of information structure is similar to the
so-called unbalanced framework used in actuarial science. For the sake of read-
ability, without loss of generality, we will henceforth assume similar observed
age groups for all companies, i.e. n = n1 = · · · = nK . With a slight variation to
the model, however, it can be easily extended to the unbalanced case.

3.1. The credibility model

Given the specific parameterization of the problem, one may consider the K
portfolios to be subsets of the reference population and where each portfolio
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is characterized by a risk profile. The latter is due to the heterogeneous sizes
of the portfolios as well as the underlying guarantees (for the same underly-
ing risk). These sources of heterogeneity might also induce an age-varying risk
profile within the same portfolio. Therefore, for a company i , we let the vector
�i = diag(�i

x1, . . . , �
i
xn ) be its relative risk level. For x ∈ {x1, . . . , xn}, each �i

x
characterizes the age-specific risk level, and is an unobservable random variable.

The primary objective is to characterize the force of mortality of each com-
pany i at a specific age x through the proportional relationship introduced in
Section 2.2, i.e.

ϕi = �iα, (11)

where α = (αx1, . . . , αxn )
� such that for j = 1, . . . , n, we have αxj =

exp[ f i (xj )]ϕref
xj . This model suggests that for each company i , the age-specific

experienced force of mortality varies around the baseline αx, which can be seen
as a reference or best-estimate mortality. This fluctuation is modeled by a het-
erogeneity parameter �i

x capturing the individual properties (heterogeneity) of
each company at attained age x. Thus, using new incoming data should allow
the updating of the next-period mortality ϕix by adjustment following the model
in Equation (11). The approach is to first find an estimator ϕ̂ix of ϕix = �i

xαx
for each company i using the likelihood-based approach introduced in Sec-
tion 2. Henceforth, the notation ϕ̂ix|�i

x refers to the estimation of the quantity
αx = exp[ f i (x)]ϕref

x , which, by abuse of language, refers to the estimated mor-
tality conditional to the risk profile.

Remark 4. This reasoning is built upon the work of Nielsen and Sandqvist (2000,
2005) and Gustafsson et al. (2006). The former considered hazard rates of dif-
ferent groups assuming that the hazard of each group fluctuates across a com-
mon baseline hazard and used continuous sampling of observations as in Section
2.1. In the current work, we consider a discretization of the model in Nielsen and
Sandqvist (2000) as the mortality data that we will use are divided into discrete
annual numbers of death occurrences and exposures. Moreover, we slightly extend
this framework by considering a multivariate setting and allow for the age to in-
fluence the estimation of future mortality. Using a multivariate framework will
provide a base to catch the sample bias properties at the attained age level. This is
even more significant given that the mortality intensities are correlated not only at
the portfolio level but also between different portfolios.

The random variables ϕ̂ix1, . . . , ϕ̂
i
xn are assumed to be dependent. Namely,

the force of mortality of one age does directly impact those of other ages. This
is mainly due to the graduation of mortality at a given age, which weights the in-
formation stemming from the adjacent age groups, see Section 2. This induces a
dependency which will be explored later in this section. Finally, in order to char-
acterize the next-period mortality level, we make use of credibility theory. For
this purpose and using the usual credibility setting, we shall make the following
assumptions:
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A1. The randomvectors�i are independent across companies and ages.More-
over, for i = 1, . . . , K , �i

x’s are identically distributed with E[�i ] = In and
Var(�i ) = σ , where σ is a diagonal matrix with elements σx and In is the
identity matrix.

A2. The random vectors (ϕi , �i ), i = 1, . . . , K are independent across com-
panies.

A3. ϕix1, . . . , ϕ
i
xn are conditionally independent given �i .

The first assumption (A1) ensures that the baseline mortality produces the a
priori expected number of deaths under the model assumption (1), in the sense
that E[Di

x] = E[�i
xαx] = αx. The assumption (A2) means that the risk profiles

are independent across portfolios. In other words, the successive realizations of
the mortality intensity (as well as for the death counts) for any portfolio are
independent of each other except through the risk parameter. This assumption
is in line with the empirical studies and it is commonly used in actuarial litera-
ture when dealing with mortality risk. However, note that this only makes sense
for mortality-contingent contracts. Thus, we should exclude annuities and pen-
sion policies where a dependence over observations is present due, for instance,
to the cohort effect. Finally, assumption (A3) translates the dependency of the
mortality across ages. It is only captured by the vector �i . Conditionally to the
latter, the forces of mortality at the age level are independent.

As noted before, ϕ̂i |�i is the conditional local-likelihood estimator of the
intensity in Equation (1) based on the data from the i th portfolio as developed
in Section 2. In view of the assumptions (A1)–(A3), it is important to recall that
conditional to the knowledge of the risk profile �i , the theoretical properties of
ϕ̂i are identical to those of the local-likelihood estimator considered in Section
2.3. This will be used, among others, in the following lemma, in order to state
some fundamental features of the dependence structure.

Lemma 1. Under assumptions (A1)–(A3) and the notation above, we can write
that

i. The first-order moment of ϕi is given by

E[ϕi ] = α. (12)

ii. The variance matrix of ϕ̂i |�i , denoted 	i (�i ) = Var(ϕ̂i|�i), is given by

	i (�i ) = (SiSi�)ϕi . (13)

Hence, the variance 	i = Var(ϕ̂i) can be written as

	i = (
SiSi� + σ

)
α. (14)

iii. The covariance of ϕix with ϕ̂i is given by

Cov
(
ϕi
x, ϕ̂

i) = (
σxαx)

2eδx, (15)
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with δx = j if x = xj and e j is the vector with all 0’s except for a 1 in the j th
coordinate.

Proof. To show these results, we make an intensive use of the law of total
variance.

i. Equation (12) is a direct consequence of assumption (A1) which gives
E[ϕi |�i ] = �iα.

ii. The conditional variance 	i (�i ) is directly derived from the calculus in
Section 2.3. Hence, to check (14), the law of total variance gives

	i = E
[
Var(ϕ̂i |�i )

] + Var
(
E[ϕ̂i |�i ]

)
,

= (SiSi�)E[ϕ̂i ] + Var(�i )α = (
SiSi� + σ

)
α.

iii. Finally, to prove (15), notice that Cov(ϕix, ϕ̂
i |�i ) = 0. Thus,

Cov
(
ϕix, ϕ̂

i) = Cov
(
E[ϕi (x)|�i ], E[ϕ̂i |�i ]

) + E
[
Cov(ϕix, ϕ̂

i |�i )
]
,

= Cov(�i
xαx, �

iα) = (
σxαx)

2eδx,

where the last equality follows from the independence assumption in (A1).

3.2. The next-period linear per-age mortality estimator

The goal is to predict the future force of mortality for each company i at the age
level. Therefore, we will be looking for the inhomogeneous credibility predic-
tor corresponding to the linear estimators of ϕix. Hence, we solve the following
optimization problem:

min
ci0,x,c

i
x

E

[(
ϕix − ci0,x − cix

�ϕ̂i
)2]

, (16)

where ci0,x ∈ R and cix ∈ Rn. This formulation suggests adjusting the next-
period force of mortality at a given age using the information stemming from
the other age groups. This should enhance the prediction for ages with low or
sparse information using the credibility in ages of high information. Based on
Proposition 1, we can easily derive the inhomogeneous credibility estimators of
ϕi . Indeed, we can state the following proposition.

Proposition 1. The point estimate of the linear factors in (16) can be written as
follows:

ci0,x = (
1n − cix

)�
α and cix = (

σxα
i
x

)2
(	i )−1eδx . (17)

The next-period predicted mortality estimator ϕ̃i of ϕi is given by

ϕ̃i = (In − (
α(	i )−1σα

)�)
α + (

α(	i )−1σα
)�

ϕ̂i . (18)
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Proof. Let us first derive the intercept ci0,x. To do this, we develop the expec-
tation in Equation (16) and take the derivative with respect to ci0,x. This yields
to the following equality:

ci,0 + (cix)
�
E[ϕ̂i ] = 1.

Moreover, differentiating the expectation in Equation (16) with respect to vector
cix gives rise to the following variance:

Var
(
ϕix − (cix)

�ϕ̂i
)
,

needed to fully characterize the solution. This can be computed using results in
Lemma 1. Indeed, we can write

Var
(
ϕix − (cix)

�ϕ̂i
) = Var(ϕix) − 2(cix)

�
Cov(ϕix, ϕ̂

i ) + (cix)	
i (cix)

�.

Taking the derivative with respect to the vector cix yields

2Cov(ϕix, ϕ̂
i ) − 2	icix = 0.

The terms 	i and Cov(ϕix, ϕ̂
i ) are given in Lemma 1, which concludes the

proof.

Note that we are able to estimate all the components needed to characterize
the next-period intensity ϕ̃i , except for the variance σ . Remarking that ϕ̂i is an
estimator of ϕi = �iα, we can write �̂i = diag(ϕ̂i � α), with “�” being the
Hadamard division (element-wise) operator. Therefore, a natural choice for the
estimator of σ is

σ̂ = (
�̂i − In

)�(
�̂i − In

)
. (19)

We can now derive the following estimation of the adjustment factor �i .

Lemma 2. The optimal credibility estimator of �i is given by

˜̃
�i = (In − (

α(	i )−1σ̂ α
)�)

1n + (
α(	i )−1σ̂ α

)�
�̂i ,

and the next-period prediction of ϕi can be approximated by ˜̃
�iα.

Remark 5. The adjustment procedure described in Proposition 1 and Lemma 2
can be written for each individual age x in the classic form ϕ̃ix = (1−zix)αx+zixϕ̂

i
x,

where zix is the credibility factor given as follows:

zix = (αx)
2σ̂ 2

i

[
(αx)

2σ̂ 2
i + ϕ̂ix‖si (x)‖2

]−1
.

Here, recall that ‖si (x)‖2 = ∑n
j=1

(
sij (x)

)2
and measures the reduction in variance

of the smoothed mortality curve ϕ̂ix.
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Remark 6. All the ingredients required to implement the credibility approach in
Lemma 2, in order to predict the next-period estimator, are already determined.
However, we still need to characterize an estimation of α. To do this, we borrow
the same procedure considered in Nielsen and Sandqvist (2000), which amend to
estimate α as a linear weighted average across the portfolios.

4. NUMERICAL ANALYSIS

4.1. Source of data

The data come from studies conducted by the Institut des Actuaires. These in-
clude in total 14 portfolios covering the period 2007–2011, with each company
contributing data for at least four of a possible five years. Table 1 presents the
observed characteristics of the male population of these portfolios. For this
dataset, we consider a period of T = 4 years for all companies. The remain-
ing year serves to test the predictive feature of the model using an in-sample
analysis. The considered analysis follows similar lines as in Salhi et al. (2016),
which also exploits the same dataset. Therefore, the age band for all compa-
nies ranges from x = 30 to 95 years old. Figure 1 shows the age distribution
of the portfolios (in percentage), i.e. the aggregate number of individuals ex-
posed to risk at each attained age. It graphically depicts the size heterogeneity
observed between the portfolios with policyholders having different coverages.
These portfolios are not only of different sizes but also of different age pyramids.
For example, portfolio P1 corresponds to a typical death contingent coverage.
In fact, the latter has a concentration on middle-aged populations with little
exposure at high ages. When portfolios, such as P2, are concerned, we should
note that they are not contingent to life annuities but rather correspond to death
insurance coverage and saving contracts. They allow for a tax-advantaged in-
vestment component for those anticipating their succession and/or suitable for
estate planning, which typically attracts the more elderly.

In the sequel, the baseline mortality ϕref
x is a market table, denoted IA2013.

The latter is derived from mortality trends originating from the INSEE table,
the French national bureau of statistics, constructed for the French insurance
market provided by the Institut des Actuaires, see Tomas (2011).

Before proceeding to the implementation of the methodology developed in
the previous sections, we must look deeper into the particular features of our
dataset. Specifically, we must focus on those where specific concerns may arise
when it comes to the graduation of a mortality table using the smoothing pro-
cedure considered in Section 2. As previously reported, the experienced mortal-
ity does not only suffer in presence of a small sample size but also the under-
representation of those within some age groups. This is typically the case of
portfolio P2, see Table 1 and Figure 1. In fact, we have a small sample size of
7, 589 individuals with only 2% aged under 60. This is also the case for portfolios
P7, P8 and to some extent P10, but with a larger exposure. For these portfolios,
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TABLE 1

OBSERVED CHARACTERISTICS OF PORTFOLIOS’ POPULATION.

Period of Observation Mean Age
Average Mean age

Beginning End In Out Exposure at Death Size

P1 01/01/07 12/31/11 36.96 39.74 2.77 68.78 616,390
P2 01/01/07 12/31/11 69.3 73.35 4.05 80.34 7,589
P3 01/01/07 12/31/10 40.16 43.1 2.94 71.77 80,086
P4 01/01/07 12/31/11 37.5 41.13 3.63 54.08 93,165
P5 01/01/07 12/31/11 36.9 39.1 2.2 59.31 21,540
P6 01/01/07 12/31/10 48.5 52.11 3.62 82.34 847,469
P7 01/01/07 12/31/11 66.65 71.29 4.64 73.68 89,507
P8 01/01/07 04/13/11 67.51 71.38 3.86 80.72 78,650
P9 01/01/07 06/30/11 45.97 49.6 3.62 73.17 1,556,150
P10 01/01/07 12/31/11 62.97 67.64 4.67 79.77 132,990
P11 01/01/07 12/31/11 38.89 42 3.11 56.44 420,405
P12 01/01/07 12/31/11 37.05 39.2 2.15 57.41 904,020
P13 01/01/07 12/31/11 43.01 46.89 3.88 71.03 848,757
P14 01/01/07 12/31/11 50.12 54.16 4.04 72.37 233,488

the use of the smoothing procedure in Section 2.2 has the advantage of borrow-
ing the information in age bands where the exposure is substantially larger. This
may allow the mortality curve to fulfill some required local properties such as
smoothness. In fact, enlarging the smoothing window h, giving access to far dis-
tant ages, may ensure the increasing of the mortality intensity across ages, which
is not only a very much sought after behavior but also a biologically reasonable
quality.

4.2. Entity-specific graduated mortality

In order to implement the local-likelihood-based graduation approach in Sec-
tion 2, we need to identify the fitting variables. There are several components of
the local fit that must be specified: the bandwidth h, the degree of local polyno-
mial p and the weight function. (i) The latter is assumed be aGaussian kernel as
stipulated earlier in this paper. Other types of kernels can be investigated but this
has much less effect on the bias and the variance tradeoff. As noted by Loader
(2006), the kernel choice only influences the visual quality of the fitted regression
curve. (ii) In addition, the bandwidth has a critical effect on the local regression
fit. The simplest specification is a constant bandwidth for all ages x. This is, how-
ever, not satisfactory in our case. In fact, as mentioned throughout the paper,
for ages where data is available in a sufficient amount, small bandwidths will
produce a convenient fit with the desired features. In turn, when the population
is poorly represented at some ages, large values of h are required. Accordingly,
one might choose a different bandwidth for each fitting age x ∈ {x1, . . . , xm},
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FIGURE 1: Distribution of age groups in the portfolios.
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taking into account local features such as the local intensity and the amount of
data. The problem of choosing the bandwidth h has received a lot of attention
in the literature. See, for example, Fan and Gijbels (1995), Jones et al. (1996),
Bagkavos and Patil (2009), Nielsen et al. (2009) and Gámiz et al. (2016) and the
references therein.

First of all, when the bandwidth h does not depend on the age level, we
can use a scoring procedure based on a generalization of Aı̈kake Information
Criterion (AIC) that uses the deviance function, i.e. the likelihood together with
the degrees of freedom of the fitted model, to rank the models. In our case,
as we adopt a local rather than a global bandwidth, we advocate using some
popular and yet efficient data-driven approaches. Here, we use the selection rule
proposed by Jiang and Doksum (2003). The latter can be summarized in the
following steps:

Step 1 We choose an initial global bandwidth h. The latter can be based on
a modified AIC as described above and advocated by Loader (2006).
This is, for instance, the approach used in the empirical work of Tomas
(2011). Then, pilot estimators ϕ̂x of ϕx are obtained by using the same
bandwidth h for ages x and the local likelihood estimator in Equation
(4).

Step 2 For each age level x, we optimize the likelihood functional in Equation
(4) being function of the bandwidth. We obtain its minimizer h.

Step 3 We run a local smoother of the bandwidths h over ages using the global
bandwidth in Step 1 and the same kernel ω.

The above rule is the analog of the least-squares cross-validation or the leave-
one-out principle, see Mammen et al. (2011), Gámiz et al. (2013) and Gámiz
et al. (2016). In Gámiz et al. (2016), a precise connection between the cross-
validation procedure and our discrete framework is investigated.

Once an estimate of the local bandwidths are obtained, one can estimate
the optimal polynomial degree p through the global partial likelihood. In Ta-
ble 2, we copied the degree of the polynomial used for smoothing as well as
the corresponding degree of freedom and the AIC score. This is intended to
represent the global sparsity of the data and the goodness of fit quality. We can
see that for some portfolios the optimal choice of the degree controls induce a
high level of degrees of freedom, i.e. portfolios P5 and P6. This is to say that
the corresponding “smoothed” curves ϕ̂i , i = 5, 6, will be noisy, showing many
features. Indeed, the degree of freedom is a qualitative proxy for the regularity
of the graduated mortality curve as the smoothness evolves inversely to the de-
gree of freedom. This feature can already be deduced from the limited amount
of information (exposures) that are at our disposal for these portfolios. How-
ever, the sparsity of the data is not only represented by the exposure. Indeed,
the deaths are of paramount importance when characterizing the survival rate.
In fact, looking at the exposure reported in Table 1, one could expect a high
degree of freedom for portfolio P2, having only 7, 589 individuals exposed to
risk. However, the death records are concentrated on a small band making the
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TABLE 2

LOCAL-LIKELIHOOD SMOOTHING PARAMETERS’ OPTIMAL CHOICE.

P1 P2 P3 P4 P5 P6 P7

AIC 57.12 49.34 79.68 78.91 61.10 106.73 68.37
Degree 2 2 1 1 3 3 1
DF 5 3 4 6 16 10 8

P8 P9 P10 P11 P12 P13 P14

AIC 74.11 63.96 53.44 70.86 74.82 82.70 78.37
Degree 2 1 2 1 1 3 2
DF 4 5 4 6 6 7 5

smoothing less noisy as the information needed to estimate themortality at each
individual age is accessible at the immediate adjacent ages. This is, for instance,
not the case for portfolio P5 having more exposed individuals but with higher
sparsity and a smaller number of deaths over few ages. For the remaining portfo-
lios, the degrees of freedom are relatively small. In the following, we will imple-
ment the credibility approach described in the last section to assess the impact
of the latter on the graduated mortality curves.

4.3. Next-period mortality rate

Here, we consider the mortality experience over the period 2007–2010 upon
which we calibrate the smoothing procedure considered in the above subsec-
tion. For each portfolio, we build a graduated mortality table ϕ̂i and aim to
adjust the latter for the next-period projection. For each age x, the graduated
mortality gives a candidate rate for the next period, i.e. ϕ̂ix. The insurer has the
possibility of relying on this rate or adjusting it given the experience stemming
from the other rates at other ages. In other words, the mortality used for the
next period forecasts can be adjusted using the credibility formula in Equation
(18). To do this, we estimate the different quantities needed to implement (18) as
follows:

i. Following Remark 6, the expected mortality rate α can be estimated as
follows:

α̂ =
( xn∑
x=x1

K∑
i=1

Ei
xϕ̂

i
x

)
/

K∑
i=1

Ei
•.

ii. The weight loading matrix Si is given as an output of the graduation step
and can be estimated using Equation (10).
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iii. The diagonal matrix σ relies on the variance of �i
x’s which can be esti-

mated given that �̂i
x = ϕ̂ix/α̂, and thus we can write

σx =
K∑
i=1

(
ϕ̂ix/α̂

)2
/K −

(( K∑
i=1

ϕ̂ix/α̂
)
/K

)2
.

Figure 2 depicts, respectively, the graduated mortality over the period
2007–2010 as described above and the next period (2011) mortality rates using
the credibility formula in Equation (18). Similarly, Figure 3 represents the next
period predicted deaths using the twomortality rates. In these figures, we grayed
areas (ages) where the relative difference between the smoothed mortality and
its adjusted counterpart exceeds a 10% level. More precisely, this corresponds
to the ages x where |ϕ̃ix − ϕ̂ix|/ϕ̂ix > 0.1. At first glance, we remark that the
credibility adjustment does change the mortality rate and does overall propose
a smoother curve compared to the initial one, and this is even evident when
dealing with portfolios with small sizes and high degrees of freedom. In fact,
when we deal with portfolios such as P5, where the exposure-to-risk as well as
the underlying deaths are very limited, the smoothing approach fails to capture
the mortality structure and the output of the procedure proposed in Section
2 is very irregular and noisy. Indeed, as noted above, such a procedure needs
information stemming from adjacent ages when a particular age lacks sufficient
exposure. Here, the case of P5 provides an explicit example of the limit of the
semi-parametric smoothing techniques as the limitation on the information is
shared across ages. This is why the corresponding degree of freedom is high and
the AIC is low, see Table 2, and explains the irregular curve (dashed line) for the
smoothed mortality.

Furthermore, the degrees of freedom given as tr(SiSi�) provide information
on the credibility of the smoothed curve ϕ̂i . In fact, as we can see in Equation
(18) or in a more tractable way as in Remark 5, the higher the degrees of free-
dom, i.e. tr(SiSi�) = ∑xn

x=x1 ‖si (x)‖2, the smaller the weight attached to the
smoothed curve ϕi (in aggregate). At an age level x ∈ {x1, . . . , xm}, one should
look at the individual variance ‖si (x)‖2. That being said, we can conclude that
the parameter driving the adjustment at the age levels vanishes, meaning that the
adjusted mortality rate ϕ̃ix is close to the reference αx. It comes as no surprise,
then, to find that the adjusted curve tends to offset this undesired effect thanks
also to the information coming from other ages but from different portfolios.

The visual inspection of the credibility-based mortality curve shows that the
regularity is preserved avoiding the limitation of the sole smoothing procedure
discussed above. For some portfolios, such as portfolio P12, the regularization
based on the credibility attached to each age level enhances the prediction of
the future mortality. Indeed, the smoothed mortality based on past observa-
tions suggests a local distortion of the curve for ages ranging from 60 to 80.
This particular feature is, however, not observed in the mortality curve for the
year 2011 and thus the credibility-based curve has a better fitting. This can also
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FIGURE 2: The next-period mortality rate based on the graduation of mortality (dashed line) as well as its credibility based adjustment (solid line) based on the period
2007–2010. Both predictions are compared to the observed mortality rate over the period 2011 (black dots).
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FIGURE 3: The next-period deaths prediction based on the graduation of mortality (dashed line) as well as its credibility-based adjustment (solid line) based on the
period 2007–2010. Both predictions are compared to the observed deaths over the year 2011 (black dots).
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be observed in Figure 3, where the predicted deaths using ϕ̃i , for i = 12, are (vi-
sually) more in line with the observations. The same conclusions, in the grayed
area, can be drawn for the other portfolios.

4.4. Proximity between the observations and the model

Besides the visual inspection of the proposed adjustments and in order to under-
stand the impact of the latter, we will use some known statistics to quantify the
proximity between the observations and the outputs of the two curves consid-
ered inFigures 2 and 3.We assess the overall deviationwith the observedmortal-
ity by comparing criteria measuring the distance between the observations and
the models with the χ2, i.e. Forfar et al. (1988b), the mean average percentage
error (MAPE), see for instance, Felipe et al. (2002), as well as the standardized
mortality ratio (SMR), i.e. the ratio of deaths observed to those predicted. The
quantities summarizing the proximity between the observations and the model,
for each portfolio i at calendar year t = 2011, are described as follows:

i. The χ2
i allows us to measure the quality of the fit of the model. It writes

χ2
i =

xn∑
x=x1

(
Di
x − Ei

x q̂
i
x

)2
Ei
x q̂ix

(
1 − q̂ ix

) .

ii. TheMAPE is the average of the absolute values of the deviations from the
observations

MAPEi =
∑xn

x=x1
∣∣(Di

x/E
i
x − q̂ ix

)
/
(
Di
x/E

i
x

)∣∣∑xn
x=x1 D

i
x

× 100.

iii. The SMR is computed as the ratio between the observed and fitted num-
ber of deaths in each portfolio

SMRi =
∑xn

x=x1 D
i
x∑xn

x=x1 E
i
x q̂ix

.

Hence, if SMRi > 1, the fitted deaths are under-estimated and vice-versa
if SMR < 1. Note that we can consider the SMRi as a global criterion
which does not take the age structure into account, compared to the χ2

i
and the MAPEi , for instance.

Table 3 summarizes the above-mentioned quantities giving the overall devi-
ation between the observations and the adjustment analysis for portfolios P1 to
P14 (except 3 and 6 which do not contain observations for year 2011) obtained
by the smoothing approach together with the credibility adjustment procedure.
When looking at criteria and quantities which take the age structure of the error
into account, the credibility approach has an important benefit compared to the
sole graduated curve. The quality of the fit increases, sometimes drastically, i.e.
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TABLE 3

TESTS AND QUANTITIES SUMMARIZING THE DEVIATION BETWEEN THE OBSERVATIONS AND THE MODEL.

Hardy– Poisson– Makeham– Smoothed+
Panjer Gamma Credibility Smoothed Adj.

χ2 Portfolio 1 1901.240 1928.680 259.400 357.870 193.967
MAPE (%) 102.660 102.000 32.870 3.018 2.349
SMR 1.737 1.756 1.126 1.487 1.385

χ2 Portfolio 2 34.890 33.640 30.940 37.612 31.166
MAPE (%) 48.030 49.120 53.990 20.119 20.842
SMR 1.037 1.002 0.905 1.102 0.948

χ2 Portfolio 4 130.120 132.890 79.321 58.615 51.515
MAPE (%) 95.390 92.490 44.880 14.006 13.078
SMR 0.826 0.853 1.405 0.984 1.168

χ2 Portfolio 5 473.680 573.940 348.180 NA 370.401
MAPE (%) 85.660 88.040 90.420 59.296 56.038
SMR 2.857 3.424 5.021 3.513 5.534

χ2 Portfolio 7 221.640 223.560 195.000 77.997 72.795
MAPE (%) 135.390 135.710 37.250 0.534 0.509
SMR 0.846 0.844 0.823 0.922 0.922

χ2 Portfolio 8 2575.630 2583.900 2414.250 66.033 61.174
MAPE (%) 323.780 324.610 263.210 1.100 1.122
SMR 0.232 0.231 0.243 0.928 0.930

χ2 Portfolio 9 1572.530 1573.970 1502.870 57.461 53.735
MAPE (%) 368.080 368.290 125.640 0.764 0.755
SMR 0.423 0.423 0.419 0.932 0.940

χ2 Portfolio 10 115.820 116.470 97.880 83.790 72.448
MAPE (%) 89.680 91.030 46.140 3.356 3.530
SMR 0.871 0.862 0.960 0.948 0.950

χ2 Portfolio 11 415.320 417.530 76.480 55.888 55.127
MAPE (%) 152.870 151.690 46.970 5.934 5.548
SMR 0.829 0.837 1.018 0.918 0.964

χ2 Portfolio 12 130.050 129.230 90.740 88.836 76.459
MAPE (%) 110.540 107.220 95.270 36.577 33.344
SMR 0.598 0.619 0.543 0.669 0.539

χ2 Portfolio 13 351.560 351.360 263.550 94.570 89.428
MAPE (%) 180.910 180.610 54.620 1.765 1.608
SMR 0.839 0.840 0.832 0.914 0.930

χ2 Portfolio 14 227.860 227.950 85.920 59.317 50.885
MAPE (%) 159.740 160.600 53.530 5.659 4.852
SMR 0.792 0.788 0.939 0.827 0.860

https://doi.org/10.1017/asb.2018.4 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.4


566 Y. SALHI AND P.-E. THÉROND

portfolio P1, in terms of having the minimum χ2
i and MAPEi values, i.e. the

last panels of Table 3. Also, the credibility adjustment exhibits the highest p-
value for the likelihood ratio test. Even when we consider a global indicator of
the quality of the fit such as the SMRi which does not take the age structure
into account, the proposed procedure seems to perform better than the gradu-
ated curve. However, notice that the impact of adjustment is smaller when the
portfolios are quite big. This is already noticeable when checking visually as
mentioned earlier.

4.5. Comparaison with traditional approaches

Here, we wish to compare our model to the Hardy and Panjer (1998) and
Poisson–Gamma credibility analysis applied to our mortality datasets. More-
over, we intend to compare our results to a similar approach introduced in Salhi
et al. (2016), where the graduation ofmortality is based on a parametricmethod,
i.e. Makeham law, and the credibility theory is used to adjust the latter with in-
coming new data experience. The first two approaches focus on the actual to ex-
pected mortality ratio, in aggregate level, as a key observation. The adjustment
is directly applied to this quantity. Specifically, the a priori expected number of
deaths for each portfolio is updated at each period given the credibility weight
on the observations coming from this portfolio and the one computed on the
basis of the others. Table 3 also presents the tests and quantities summarizing
the overall deviation between the observations for these different approaches in
comparison to the one exposed in this paper.

We first note that the Hardy–Panjer and Poisson–Gamma approaches pro-
duce relatively similar graduations as the tests suggest sensibly similar outputs.
However, we notice some differences with theMakeham credibilitymodel which
displays more favorable results. This is already outlined in Salhi et al. (2016) and
thismay be explained by the age-specific adjustment but also thanks to the struc-
tural feature added by theMakehamparametric model. Taking into account the
age, and thus the structure of the portfolio, increases the goodness of fit of aswell
as the predictive performance of the constructed mortality. Regarding the local
likelihood approach, we notice that the force of mortality adjusts to more com-
plex mortality structures and thus offers a better fit for portfolios with sparse
information. However, for very small portfolios, the smoothed mortality rates
fail to properly predict the next-period deaths compared to the aforementioned
approaches. The credibility-based revision at the age level globally enhanced
the predictive ability of the graduated mortality. Specifically, when it comes to
the tests that are sensitive to the age structure, we notice that the credibility-
based adjustment offers an outstanding fit as the tests are favorable compared
to the Hardy–Panjer, Poisson–Gamma and the Makeham-based approaches.
More importantly, the main advantage of our method over these approaches is
its ability to adjust to more complex mortality structures and thus offer a bet-
ter fit for portfolios with sparse information, e.g. the MAPE for the following
period, for Portfolio 2 (small), goes from 3.10% to 2.34%.
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5. CONCLUDING REMARKS

In this paper, we proposed a methodology to adjust the graduated mortality
table that uses an adaptive smoothing procedure based on the local likelihood.
The adjustment is based on the credibility weighting technique of the smoothed
curves and a reference. Our approach takes into account the age-specific
heterogeneity that may arise in real-world datasets. Therefore, we consider
updating the mortality for each age based on the upcoming past information
from the same age but also the neighboring ages. The inclusion of the
neighboring ages is crucial as the particular smoothing procedure used in this
paper adds a dependency between the single ages. Based on classic results on
the inference of the smoothing procedure, we derived the closed-form formulas
needed to adjust the mortality.

The proposed methodology is shown to outperform the classic credibility
approaches that do not take into account the age structure of portfolios. This
is in line with the recent work in this field as mentioned by Salhi et al. (2016).
Even when the age structure is accounted for the methodology developed in this
paper has an important benefit. This is mainly due to the underlying curve built
using an adaptive procedure compared to the parametric model considered in
Salhi et al. (2016).

We should note that the proposed model can be investigated in order to
mathematically quantify the errors induced in the assessment of the next-period
mortality curve. This leads us to consider the uncertainty stemming from the
estimation of the different variables used in the updating procedure. There are
also several practical issues we do not address here such as the impact on the
pricing of life insurance contracts. These are open questions that we openly ac-
knowledge and leave for future research.
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