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We completely characterize the validity of the inequality ‖u‖Y (Rn) � C‖∇mu‖X(Rn),
where X and Y are rearrangement-invariant spaces, by reducing it to a considerably
simpler one-dimensional inequality. Furthermore, we fully describe the optimal
rearrangement-invariant space on either side of the inequality when the space on the
other side is fixed. We also solve the same problem within the environment in which
the competing spaces are Orlicz spaces. A variety of examples involving customary
function spaces suitable for applications is also provided.
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1. Introduction

The celebrated Gagliardo–Nirenberg–Sobolev inequality, which was proved for p ∈
(1, n) by Sobolev and for p = 1 by Gagliardo and Nirenberg independently, tells us
that there exists a positive constant C such that

‖u‖Lp∗ (Rn) � C‖∇u‖Lp(Rn) for each u ∈ W 1,p(Rn), (1.1)

where n ∈ N, n � 2, p ∈ [1, n) and p∗ = np/(n − p). Here W 1,p(Rn) stands for the
Sobolev space of all weakly differentiable functions u on Rn that together with their
gradients belong to Lp(Rn). This result and its various modifications is classical and
can be found in a wide variety of literature (e.g. [2,24,30,34,41,42,47]). The
Gagliardo–Nirenberg–Sobolev inequality and its consequences proved undoubtedly
to be indispensable tools for analysis of partial differential equations, harmonic
analysis and other fields of mathematics. Inequality (1.1) was refined by Peetre
[37], utilizing the convolution inequality of O’Neil’s [35], to

‖u‖Lp∗,p(Rn) � C‖∇u‖Lp(Rn) for each u ∈ W 1,p(Rn), (1.2)

where Lp∗,p(Rn) is a Lorentz space (for the definition of Lorentz spaces, see § 3).
Inequality (1.2) is a substantial improvement of (1.1) because the Lorentz space
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Lp∗,p(Rn) is strictly smaller than the Lebesgue space Lp∗
(Rn). By iteration argu-

ments one can also derive inequalities similar to the inequalities above where the
first order gradient on the right-hand side is replaced by m-th order gradient, where
m > 1.

Theory as well as applications shows that finer scales of function spaces are
indeed needed and so subtler forms of the Gagliardo–Nirenberg–Sobolev inequality
involving more general function spaces are of great interest in mathematical analysis
and its applications (e.g. [1,5,10,43,46]).

In this paper, we focus on inequalities in which norms of scalar functions of sev-
eral variables are compared to norms of their gradients from a broader perspective.
It is known that Lebesgue spaces as well as more general Lorentz spaces are spe-
cial instances of the so-called rearrangement-invariant spaces, which are, loosely
speaking, Banach spaces of functions whose norms depend merely on the size of
functions. We will consider inequalities taking the form

‖u‖Y � C‖∇mu‖X for each u ∈ V m
0 X(Rn), (1.3)

where C is a positive constant independent of u, m ∈ N, 1 � m < n, X and Y
are rearrangement-invariant spaces over Rn and V m

0 X(Rn) is a vector space of all
m-times weakly differentiable functions on Rn whose m-th order gradients belong
to X and whose derivatives up to order m − 1 have ‘some decay at infinity’. In
some sense, the most general condition that ensures such decay is to assume that
|{x ∈ Rn : |∇ku(x)| > λ}| < ∞ for each λ > 0 and k = 0, 1, . . . ,m − 1. This means
that any integrability assumptions on u itself and its lower-order derivatives are
not needed and it is enough to assume that they ‘decay at infinity’, albeit arbitrar-
ily slowly. Sobolev-type spaces of V m

0 X(Rn)-type were already recognized as the
natural function-space framework for Sobolev-type inequalities on Rn with possible
applications in the calculus of variations in [29].

Precise definitions as well as other theoretical background needed in this paper
are provided in § 3.

We note that embeddings of Sobolev spaces on Rn in the class of rearrangement-
invariant spaces were studied in [3,45] but with the right-hand side involving the
full gradient (that is, derivatives of all orders). In [45] a generalized Pólya-Szegő
symmetrization principle, which roughly speaking states that a rearrangement-
invariant function norm of a first order gradient does not increase under spherical
symmetrization (see [14, lemma 4.1]), was used to reduce the corresponding inequal-
ity with the full gradient of first order on the right-hand side to a one-dimensional
inequality, which led to descriptions of the optimal rearrangement-invariant spaces
(on either side) in that inequality under extra assumptions on the rearrangement-
invariant norms involved. Later, in [3], the symmetrization method, which is
known to fail for higher-order derivatives, was combined with a sharp iteration
(see [16, corollary 9.6]) to reduce the corresponding inequality with the full gra-
dient of arbitrary order on the right-hand side to a one-dimensional inequality
and to describe the optimal target (i.e. on the left-hand side) rearrangement-
invariant space in that inequality without any extra assumptions. It turns out that
the optimal rearrangement-invariant norm on the left-hand side of the inequality
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‖u‖Y (Rn) � C
∑m

k=0 ‖∇ku‖X(Rn) behaves, loosely speaking, like the optimal tar-
get rearrangement-invariant norm for Sobolev embeddings on bounded (regular)
domains (see [20,27]) locally and like the norm on X itself ‘near infinity’. In this
paper, we also use the symmetrization and a sharp iteration (see theorem 2.2) to
reduce inequality (1.3) to one-dimensional inequalities (see theorem 2.3). However,
this time there is no ‘localization’, unlike the situation in which the full gradient
is considered on the right-hand side, so the integral and supremal operators that
we need to handle to obtain not only the optimal rearrangement-invariant spaces
on either side of (1.3), but also various interesting examples of such spaces act on
unbounded intervals, which complicates the analysis of their behaviour. In order to
overcome that, we need to suitably utilize recent results on such operators obtained
in [21,33]. Careful synthesis of new as well as well-established results with sharp
estimates enables us to thoroughly analyse (1.3) and provide sharp results without
any unnecessary assumptions on function norms.

The main results regarding inequality (1.3) are contained in § 2. We prove, among
other things, so-called reduction principle for inequality (1.3). This reduction prin-
ciple (see theorem 2.3) reveals that inequality (1.3) is, in fact, equivalent to a
one-dimensional inequality involving a weighted Hardy-type operator. Moreover,
for a fixed rearrangement-invariant space X over Rn, we fully characterize the best
possible (i.e. the smallest possible) rearrangement-invariant space Y over Rn that
renders (1.3) true (see theorem 2.1). Complementing this result, we also answer the
opposite question what the best possible (i.e. the largest possible) rearrangement-
invariant space X over Rn that renders (1.3) true for a fixed rearrangement-invariant
space Y over Rn is (see theorem 2.5). The results presented in § 2 are then proved
in § 4. We note that reduction principles have been successfully applied before, see
e.g. [13,16,20,27].

The general results presented in § 2 may be considered somewhat complicated
from the point of view of applications in partial differential equations or harmonic
analysis. For this reason, we provide a variety of concrete examples of optimal
spaces in (1.3) for customary function spaces of particular interest in applications
in § 5. These examples include, in particular, Lebesgue spaces, Lorentz spaces, Orlicz
spaces or Zygmund classes. For instance, these examples reveal that not only is the
result of Peetre’s (i.e. (1.2)) better than (1.1), but it cannot, in fact, be improved.
More precisely, the Lorentz space Lp∗,p is the smallest possible rearrangement-
invariant space on the left-hand side of (1.2) that renders the inequality true. Similar
results are provided for other situations too.

Although the class of rearrangement-invariant spaces is very rich and contains
many customary function spaces, it is sometimes useful in applications to work
within a narrower class of function spaces. A typical example of such a class is that
of Orlicz spaces, which is an irreplaceable tool for analysing partial differentiable
equations having a non-polynomial growth (e.g. [4,18,44]). This motivates § 6. We
investigate the inequality

‖u‖LB � C‖∇mu‖LA for each u ∈ V m
0 LA(Rn), (1.4)

where LA and LB are Orlicz spaces over Rn. We characterize optimal Orlicz spaces
on either side of the inequality above while the Orlicz space on the opposite side
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is fixed (see theorems 6.1 and 6.4) and we also provide a reduction principle for
inequality (1.4) (see theorem 6.8). To illustrate the general situation some concrete
examples of optimal Orlicz spaces in (1.4) are also provided in § 6. In particular,
these examples show that the Lebesgue space Lp∗

is the smallest possible Orlicz
space on the left-hand side of inequality (1.1) that renders the inequality true.
We stress that the crucial difference between §§ 6 and 2 is that, in § 6, we look for
optimal spaces that stay in the narrower class of Orlicz spaces. Although Orlicz
spaces are particular instances of rearrangement-invariant spaces and so one is
entitled to use the results from § 2, there is no guarantee that resulting optimal
rearrangement-invariant spaces are Orlicz spaces themselves. Finally, we note that
inequality (1.4) was partially studied in [12]. However, only the first order version
(i.e. m = 1) of the inequality was studied there and optimality of Orlicz spaces only
on the left-hand side of the inequality was considered.

2. Main results

The theoretical background of rearrangement-invariant spaces used in this paper
follows essentially the theory presented in [6]. The exact definitions and the fun-
damental theory used in this paper are provided in § 3 after the exhibition of the
main results in this section.

We say that a rearrangement-invariant space Y over Rn is the optimal target space
(within the class of rearrangement-invariant spaces) for a rearrangement-invariant
space X over Rn in (1.3) if (1.3) is satisfied and whenever (1.3) is satisfied for
another rearrangement-invariant space Z over Rn in place of Y , Z is larger than
Y , that is, Y ↪→ Z. We say that a rearrangement-invariant space X over Rn is the
optimal domain space (within the class of rearrangement-invariant spaces) for a
rearrangement-invariant space Y over Rn in (1.3) if (1.3) is satisfied and whenever
(1.3) is satisfied for another rearrangement-invariant space Z over Rn in place of
X, Z is smaller than X, that is, Z ↪→ X.

In what follows we shortly denote the Lebesgue measure of a measurable set E
by |E|.

If m ∈ N and u is a m-times weakly differentiable function on Rn, we denote by
∇ku, for k ∈ {0, 1, . . . ,m}, the vector of all weak derivatives of order k of u, where
∇0u = u. If X is a rearrangement-invariant space over Rn, we define Sobolev-type
spaces V mX(Rn) and V m

0 X(Rn) built upon the rearrangement-invariant space X
by

V mX(Rn) = {u : Rn → R : u is m-times weakly differentiable and |∇mu| ∈ X},
V m

0 X(Rn) = {u ∈ V mX(Rn) : |{x ∈ Rn : |∇ku(x)| > λ}| < ∞
for k ∈ {0, 1, . . . ,m − 1} and λ > 0}.

Throughout the paper the convention that 1/∞ = 0 and 0 · ∞ = 0 is used with-
out further explicit reference. We write A � B when A � constant · B where the
constant is independent of appropriate quantities appearing in expressions A and
B. Similarly, we write A � B with the obvious meaning. We also write A ≈ B when
A � B and A � B simultaneously.

https://doi.org/10.1017/prm.2020.14 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.14


300 Zdeněk Mihula

Our first theorem characterizes when, for a given rearrangement-invariant space
X over Rn, there exists a rearrangement-invariant space Y over Rn that renders
(1.3) true by a condition on the associate space of X, and if the condition is satisfied,
it provides a description of the optimal target space for X.

Theorem 2.1. Assume that m < n and let X be a rearrangement-invariant space
over Rn such that

tm/n−1χ(1,∞)(t) ∈ X ′(0,∞). (2.1)

Define the functional σX,m by

σX,m(f) = ‖tm/nf∗∗(t)‖X′(0,∞), f ∈ M+(Rn). (2.2)

Then σX,m is a rearrangement-invariant norm and there exists a positive constant
C, which depends on m and on the dimension n only, such that

‖u‖Ytarg(X,m) � C‖∇mu‖X for each u ∈ V m
0 X(Rn) (2.3)

where Ytarg(X,m) = Ytarg(X,m)(σ′
X,m). Moreover, Ytarg(X,m) is the optimal (smallest)

target space for X in (1.3).
Conversely, if (2.1) is not true, then there does not exist any rearrangement-

invariant space Y for which (1.3) is true at all.

We note that (2.1) holds, for instance, for the Lebesgue spaces X = Lp with
p ∈ [1, n/m) or for the Lorentz space X = Ln/m,1.

A somewhat surprising property of optimal target spaces is that they are stable
under iteration (cf. [15, theorem 1.5], [16, theorem 5.7]). This iteration principle is
the content of the following theorem.

Theorem 2.2. Let k and l be natural numbers such that k + l < n. Assume that
X is a rearrangement-invariant space over Rn such that (2.1) holds with m = k +
l. Then (2.1) holds also with m = k, tl/n−1χ(1,∞)(t) ∈ (Ytarg(X,k))′(0,∞) and the
norms on Ytarg(Ytarg(X,k),l) and Ytarg(X,k+l) are equivalent, where the constants of
the equivalence depend on m and on the dimension n only.

The following theorem establishes the reduction principle for inequality (1.3).

Theorem 2.3. Assume that m < n and let X and Y be rearrangement-invariant
spaces over Rn. Then the following three inequalities are equivalent:

‖u‖Y � C1‖∇mu‖X for each u ∈ V m
0 X(Rn); (2.4)∥∥∥∥∫ ∞

t

f(s)sm/n−1 ds

∥∥∥∥
Y (0,∞)

� C2‖f‖X(0,∞) for each f ∈ M+(0,∞); (2.5)

‖tm/ng∗∗(t)‖X′(0,∞) � C2‖g‖Y ′(0,∞) for each g ∈ M+(0,∞), (2.6)

where the positive constants C1 and C2 depend on each other, on m and on the
dimension n only.
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In fact, inequality (2.5) is equivalent to the same inequality but restricted to
nonincreasing functions only. More precisely, (2.5) is equivalent to (with a possibly
different positive constant C)∥∥∥∥∫ ∞

t

f∗(s)sm/n−1 ds

∥∥∥∥
Y (0,∞)

� C‖f‖X(0,∞) for each f ∈ M+(0,∞).

This equivalence is a special case of the general result that originated as a conse-
quence [16, corollary 9.8] of a more general principle established in [16, theorem 9.5]
in connection with sharp higher-order Sobolev-type embeddings and its extension
to unbounded intervals was given in [38, theorem 1.1].

Remark 2.4. There is an intimate connection between inequality (1.3) and the
fractional maximal operator Mγ , which is defined for a fixed γ ∈ (0, n) and for a
locally integrable function f on Rn by

Mγf(x) = sup
Q�x

1
|Q|1−γ/n

∫
Q

|f(y)|dy, x ∈ Rn,

where the supremum is taken over all cubes Q ⊆ Rn whose edges are parallel to
the coordinate axes and that contain x. If m < n, then inequality (1.3) is true for
a pair of rearrangement-invariant spaces X and Y if and only if

Mm : Y ′ → X ′

is bounded because it follows from the arguments used in the proof of [21,
theorem 4.1] that Mm : Y ′ → X ′ is bounded if and only if (2.6) is valid, which
is equivalent to (1.3) by theorem 2.3.

Complementing theorem 2.1, the following theorem characterizes when, for a
given rearrangement-invariant space Y over Rn, there exists a rearrangement-
invariant space X over Rn rendering (1.3) true by a condition on the fundamental
function of the space Y , and if the condition is satisfied, it provides a description
of the optimal domain space.

Theorem 2.5. Assume that m < n and let Y be a rearrangement-invariant space
over Rn such that

inf
1�t<∞

t1−m/n

ϕY (t)
> 0. (2.7)

Define the functional τY,m by

τY,m(f) = sup
h∼f
h�0

∥∥∥∥∫ ∞

t

h(s)sm/n−1 ds

∥∥∥∥
Y (0,∞)

, f ∈ M+(Rn), (2.8)

where the supremum is taken over all h ∈ M+(0,∞) equimeasurable with f . Then
τY,m is a rearrangement-invariant norm and there exists a positive constant C,
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which depends on m and on the dimension n only, such that

‖u‖Y � C‖∇mu‖Xdom(Y,m) for each u ∈ V m
0 Xdom(Y,m)(Rn) (2.9)

where Xdom(Y,m) = Xdom(Y,m)(τY,m). Moreover, Xdom(Y,m) is the optimal (largest)
domain space for Y in (1.3).

Conversely, if (2.7) is not true, then there does not exist any rearrangement-
invariant space X for which (1.3) is true at all.

The general description of the optimal domain norm given by (2.8) is quite
complicated. Fortunately, it can be simplified significantly in many customary situa-
tions. This is the content of the following statement, which follows from theorems 4.2
and 4.7 in [21]. We shall need the operator Tα defined for any fixed α ∈ (0, 1) by

Tαf(t) = t−α sup
t�s<∞

sαf∗(s) for t ∈ (0,∞) and f ∈ M(0,∞). (2.10)

Theorem 2.6. Assume that m < n and let Y be a rearrangement-invariant space
over Rn such that the operator Tm/n is bounded on Y ′(0,∞). Then (2.7) is satisfied
and the rearrangement-invariant norm τY,m defined by (2.8) is equivalent to the
functional

f 	→
∥∥∥∥∫ ∞

t

f∗(s)sm/n−1 ds

∥∥∥∥
Y (0,∞)

, f ∈ M+(0,∞). (2.11)

Conversely, if Tm/n is not bounded on Y ′(0,∞), then τY,m is not equivalent to the
functional (2.11).

We finish this section by observing that theorem 2.6 can be applied, for example,
to Y = Lp with p ∈ (n/(n − m),∞] or to Y = Ln/(n−m),1.

3. Preliminaries

In this section, we collect all the background material that is used in the paper.
We start with the operation of the nonincreasing rearrangement of a measurable
function.

Throughout this section, let (R,μ) be a σ-finite nonatomic measure space. We
set

M(R,μ) = {f : f is μ-measurable function on R with values in [−∞,∞]},

M0(R,μ) = {f ∈ M(R,μ) : f is finite μ-a.e. on R}
and

M+(R,μ) = {f ∈ M(R,μ) : f � 0}.
The nonincreasing rearrangement f∗ : (0,∞) → [0,∞] of a function f ∈ M(R,μ)
is defined as

f∗(t) = inf{λ ∈ (0,∞) : |{s ∈ R : |f(s)| > λ}| � t}, t ∈ (0,∞).
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The maximal nonincreasing rearrangement f∗∗ : (0,∞) → [0,∞] of a function f ∈
M(R,μ) is defined as

f∗∗(t) =
1
t

∫ t

0

f∗(s) ds, t ∈ (0,∞).

If |f | � |g| μ-a.e. in R, then f∗ � g∗. The operation f 	→ f∗ does not preserve
sums or products of functions, and is known not to be subadditive. The lack of
subadditivity of the operation of taking the nonincreasing rearrangement is, up to
some extent, compensated by the following fact [6, chapter 2, (3.10)]: for every
t ∈ (0,∞) and every f, g ∈ M(R,μ), we have∫ t

0

(f + g)∗(s) ds �
∫ t

0

f∗(s) ds +
∫ t

0

g∗(s) ds.

This inequality can be also written in the form

(f + g)∗∗ � f∗∗ + g∗∗. (3.1)

Another important property of rearrangements is the Hardy–Littlewood inequality
[6, chapter 2, theorem 2.2], which asserts that if f, g ∈ M(R,μ), then∫

R

|fg|dμ �
∫ ∞

0

f∗(t)g∗(t) dt. (3.2)

If (R,μ) and (S, ν) are two (possibly different) σ-finite measure spaces, we say
that functions f ∈ M(R,μ) and g ∈ M(S, ν) are equimeasurable, and write f ∼ g,
if f∗ = g∗ on (0,∞).

A functional � : M+(R,μ) → [0,∞] is called a Banach function norm if, for all
f , g and {fj}j∈N in M+(R,μ), and every λ � 0, the following properties hold:

(P1) �(f) = 0 if and only if f = 0; �(λf) = λ�(f); �(f + g) � �(f) + �(g) (the
norm axiom);

(P2) f � g a.e. implies �(f) � �(g) (the lattice axiom);

(P3) fj ↗ f a.e. implies �(fj) ↗ �(f) (the Fatou axiom);

(P4) �(χE) < ∞ for every E ⊆ R of finite measure (the nontriviality axiom);

(P5) if E is a subset of R of finite measure, then
∫

E
f dμ � CE�(f) for a positive

constant CE , depending possibly on E and � but independent of f (the local
embedding in L1).

If, in addition, � satisfies

(P6) �(f) = �(g) whenever f∗ = g∗ (the rearrangement-invariance axiom),

then we say that � is a rearrangement-invariant norm.
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If � is a rearrangement-invariant norm, then the collection

X = X(�) = {f ∈ M(R,μ) : �(|f |) < ∞}
is called a rearrangement-invariant space, sometimes we shortly write just
an r.i. space, corresponding to the norm �. We shall write ‖f‖X instead of �(|f |).
Note that the quantity ‖f‖X is defined for every f ∈ M(R,μ), and

f ∈ X ⇔ ‖f‖X < ∞.

With any rearrangement-invariant function norm �, there is associated another
functional, �′, defined for g ∈ M+(R,μ) as

�′(g) = sup
{∫

R

fg dμ : f ∈ M+(R,μ), �(f) � 1
}

.

It turns out that �′ is also a rearrangement-invariant norm, which is called the asso-
ciate norm of �. Moreover, for every rearrangement-invariant norm � and every
f ∈ M+(R,μ), we have (see [6, chapter 1, theorem 2.9])

�(f) = sup
{∫

R

fg dμ : g ∈ M+(R,μ), �′(g) � 1
}

.

By [6, chapter 2, proposition 4.2] we, in fact, have

�′(g) = sup

{∫ μ(R)

0

f∗(t)g∗(t) dt : f ∈ M(R,μ), �(f) � 1

}
and

�(f) = sup

{∫ μ(R)

0

f∗(t)g∗(t) dt : g ∈ M(R,μ), �′(g) � 1

}
.

If � is a rearrangement-invariant norm, X = X(�) is the rearrangement-invariant
space determined by �, and �′ is the associate norm of �, then the function space
X(�′) determined by �′ is called the associate space of X and is denoted by X ′.
We always have (X ′)′ = X (see [6, chapter 1, theorem 2.7]), and we shall write X ′′

instead of (X ′)′. Furthermore, the Hölder inequality∫
R

|fg|dμ � ‖f‖X‖g‖X′

holds for every f, g ∈ M(R,μ).
We say that a rearrangement-invariant space X is embedded into a rearrangement-

invariant space Y , and we write

X ↪→ Y, (3.3)

if X ⊆ Y and the inclusion is continuous, that is, there exists a positive constant
C such that

‖f‖Y � C‖f‖X for each f ∈ X.

However, it turns out that (3.3) holds if and only if X ⊆ Y [6, chapter 1,
theorem 1.8].
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Another important property (see [6, chapter 1, proposition 2.10], which we shall
exploit several times, is that (3.3) holds if and only if

Y ′ ↪→ X ′. (3.4)

Moreover, if (3.3) holds, then (3.4) holds in fact with the same embedding constant,
and vice versa.

For every rearrangement-invariant space X over the measure space (R,μ),
there exists a unique rearrangement-invariant space X(0, μ(R)) over the interval
(0, μ(R)) endowed with the one-dimensional Lebesgue measure such that ‖f‖X =
‖f∗‖X(0,μ(R)). This space is called the representation space of X. This follows from
the Luxemburg representation theorem (see [6, chapter 2, theorem 4.10]). Through-
out this paper, the representation space of a rearrangement-invariant space X will
be denoted by X(0, μ(R)). It will be useful to notice that when R = (0,∞) and μ
is the Lebesgue measure, then every X over (R,μ) coincides with its representation
space.

If � is a rearrangement-invariant norm and X = X(�) is the rearrangement-
invariant space determined by �, we define its fundamental function, ϕX , by

ϕX(t) = �(χE), t ∈ [0, μ(R)),

where E ⊆ R is such that μ(E) = t. Property (P6) of rearrangement-invariant
norms and the fact that χ∗

E = χ[0,μ(E)) guarantee that the fundamental function is
well defined. Moreover, one has

ϕX(t)ϕX′(t) = t for every t ∈ [0, μ(R)).

For each a ∈ (0,∞), let Da denote the dilation operator defined on every nonneg-
ative measurable function f on (0,∞) by

(Daf)(t) = f(at), t ∈ (0,∞).

The dilation operator Da is bounded on every rearrangement-invariant space over
(0,∞); hence, in particular, on the representation space of any rearrangement-
invariant space over an arbitrary σ-finite nonatomic measure space. More precisely,
if X is any given rearrangement-invariant space over (0,∞) with respect to the
one-dimensional Lebesgue measure, then we have

‖Daf‖X � C‖f‖X for every f ∈ X, (3.5)

with some constant C, 0 < C � max{1, 1/a}, independent of f . For more details,
see [6, chapter 3, proposition 5.11].

Basic examples of function norms are those associated with the standard
Lebesgue spaces Lp. For p ∈ (0,∞], we define the functional �p by

�p(f) = ‖f‖p =

{(∫
R

fp dμ
)1/p

, 0 < p < ∞,

ess supR f, p = ∞,

for f ∈ M+(R,μ). If p ∈ [1,∞], then �p is a rearrangement-invariant function norm.
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If 0 < p, q � ∞, we define the functional �p,q by

�p,q(f) = ‖f‖p,q =
∥∥∥s1/p−1/qf∗(s)

∥∥∥
q

for f ∈ M+(R,μ). The set Lp,q, defined as the collection of all f ∈ M(R,μ) satisfy-
ing �p,q(|f |) < ∞, is called a Lorentz space. If 1 < p < ∞ and 1 � q � ∞, p = q = 1,
or p = q = ∞, then �p,q is equivalent to a rearrangement-invariant function norm
in the sense that there exists a rearrangement-invariant norm σ and a constant C,
0 < C < ∞, depending on p, q but independent of f , such that

C−1σ(f) � �p,q(f) � Cσ(f).

As a consequence, Lp,q is considered to be a rearrangement-invariant space for the
above specified cases of p, q (see [6, chapter 4]). If either 0 < p < 1 or p = 1 and
q > 1, then Lp,q is a quasi-normed space. If p = ∞ and q < ∞, then Lp,q = {0}.
For every p ∈ [1,∞], we have Lp,p = Lp. Furthermore, if p, q, r ∈ (0,∞] and q � r,
then the inclusion Lp,q ⊂ Lp,r holds.

If A = [α0, α∞] ∈ R2 and t ∈ R, then we shall use the notation A + t = [α0 +
t, α∞ + t] and tA = [tα0, tα∞].

Let 0 < p, q � ∞, A = [α0, α∞] ∈ R2 and B = [β0, β∞] ∈ R2. Then we define the
functionals �p,q;A and �p,q;A,B on M+(R,μ) by

�p,q;A(f) =
∥∥∥t1/p−1/qA(t)f∗(t)

∥∥∥
Lq(0,∞)

and

�p,q;A,B(f) =
∥∥∥t1/p−1/qA(t)B(t)f∗(t)

∥∥∥
Lq(0,∞)

,

where

A(t) =

{
(1 − log t)α0 , t ∈ (0, 1),
(1 + log t)α∞ , t ∈ [1,∞),

and

B(t) =

{
(1 + log(1 − log t))β0 , t ∈ (0, 1),
(1 + log(1 + log t))β∞ , t ∈ [1,∞).

The set Lp,q;A, defined as the collection of all f ∈ M(R,μ) satisfying �p,q;A(|f |) <
∞, is called a Lorentz–Zygmund space, and the set Lp,q;A,B, defined as the collection
of all f ∈ M+(R,μ) satisfying �p,q;A,B(|f |) < ∞, is called a generalized Lorentz–
Zygmund space. The functions of the form A, B are called broken logarithmic
functions. It can be shown [36, theorem 7.1] that the functional �p,q;A is equivalent

https://doi.org/10.1017/prm.2020.14 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.14


Embeddings of homogeneous Sobolev spaces on the entire space 307

to a rearrangement-invariant function norm if and only if⎧⎪⎪⎪⎨⎪⎪⎪⎩
p = q = 1, α0 � 0, α∞ � 0 or
p ∈ (1,∞) or
p = ∞, q ∈ [1,∞), α0 + 1

q < 0 or
p = q = ∞, α0 � 0.

(3.6)

The spaces of this type proved to be quite useful since they provide a com-
mon roof for many customary spaces. These include not only Lebesgue spaces and
Lorentz spaces, by taking A = [0, 0], but also all types of exponential and logarith-
mic Zygmund classes, and also the spaces discovered independently by Maz’ya (in
a somewhat implicit form involving capacitary estimates [30, pp. 105 and 109]),
Hansson [26] and Brézis–Wainger [10], who used it to describe the sharp target
space in a limiting Sobolev embedding (the spaces can also be traced in the stud-
ies of Brudnyi [11] and, in a more general setting, Cwikel and Pustylnik [17]). One
of the benefits of using broken logarithmic functions consists of the fact that the
underlying measure space can be considered to have either finite or infinite mea-
sure. For the detailed study of (generalized) Lorentz–Zygmund spaces we refer the
reader to [22,23,36,39]. In some examples in § 5 we shall need more than two
layers of logarithms. Such spaces are defined as a straightforward extension of the
spaces defined above.

A convex, neither identically zero nor infinity, left-continuous function
A : [0,∞) → [0,∞] vanishing at 0 is called a Young function. Hence any Young
function can be expressed in the form

A(t) =
∫ t

0

a(s) ds for t � 0, (3.7)

for some nondecreasing, left-continuous function a : [0,∞) → [0,∞]. For a Young
function A we define the Luxemburg function norm ‖ · ‖LA as

‖f‖LA = inf
{

λ > 0:
∫

R

A

(
f(x)

λ

)
dμ(x) � 1

}
, f ∈ M+(R,μ).

The corresponding rearrangement-invariant space LA is called an Orlicz space. In
particular, LA = Lp if A(t) = tp when p ∈ [1,∞) and LA = L∞ if A(t) = 0 for t ∈
[0, 1] and A(t) = ∞ for t > 1.

The associate space of an Orlicz space LA is equivalent to another Orlicz space
LÃ where Ã is the Young conjugate function of A, which is a Young function again,
defined by

Ã(t) = sup
0�s<∞

(st − A(s)) .

We say that a Young function A dominates a Young function B near zero or
near infinity if there exist positive constants c and t0 such that

B(t) � A(ct) for all t ∈ [0, t0] or for all t ∈ [t0,∞), respectively.

We say that two Young functions A and B are equivalent near zero or near infinity
if they dominate each other near zero or near infinity, respectively. We say that they
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are equivalent globally if they are equivalent near zero and equivalent near infinity
simultaneously.

If, for a nonnegative measurable function F on (0,∞), there exists t0 > 0 such
that

∫ t0
0

F (s) ds < ∞ or
∫∞

t0
F (s) ds < ∞, respectively, we shortly write that∫

0

F (s) ds < ∞ or
∫ ∞

F (s) ds < ∞, respectively.

If A is a Young function, we define the function hA : (0,∞) → [0,∞) by

hA(t) = sup
0<s<∞

A−1(st)
A−1(s)

, t > 0,

and we set

iA = sup
1<t<∞

log t

log hA(t)
(3.8)

and

IA = inf
0<t<1

log t

log hA(t)
. (3.9)

The quantities iA and IA are called the lower Boyd index of A and the upper
Boyd index of A, respectively, and it can be shown that 1 � iA � IA � ∞, iA =
limt→∞ log t/log hA(t) and IA = limt→0+ log t/log hA(t). We refer the interested
reader to [28,40] for more details on Orlicz spaces and to [6,8,9] for more details
on Boyd indices.

A common extension of Orlicz and Lorentz spaces is provided by the family of
Orlicz–Lorentz spaces. Given p ∈ (1,∞), q ∈ [1,∞) and a Young function A such
that ∫ ∞ A(t)

t1+p
dt < ∞, (3.10)

we denote by ‖ · ‖L(p,q,A) the Orlicz–Lorentz rearrangement-invariant function norm
defined as

‖f‖L(p,q,A) =
∥∥∥t−1/pf∗(t1/q)

∥∥∥
LA(0,μ(R))

, f ∈ M+(R,μ). (3.11)

The fact that (3.11) actually defines a rearrangement-invariant function norm fol-
lows from simple variants in the proof of [12, proposition 2.1]. We denote by
L(p, q, A) the Orlicz–Lorentz space associated with the rearrangement-invariant
function norm ‖ · ‖L(p,q,A). Note that the class of Orlicz–Lorentz spaces includes
(up to equivalent norms) the Orlicz spaces and various instances of Lorentz and
Lorentz–Zygmund spaces.

We stress the fact that, for a function from V mX(Rn), only its m-th order
derivatives are required to be elements of X, whereas there are no assumptions
imposed on its derivatives of lower orders. The derivatives of lower orders are not
required to have any extra regularity apart from their existence in the weak sense,
that is, as locally integrable functions. We also write ‖∇ku‖X instead of ‖|∇ku|‖X

for the sake of brevity, where |∇ku| is the 1-norm of the vector ∇ku, that is,
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|∇ku| =
∑

α1+···+αn=k |∂ku/(∂α1x1 · · · ∂αnxn)|. We note that this particular choice
of the 1-norm is immaterial and the results of this paper would remain intact if
we decided to use any p-norm, p ∈ [1,∞], instead.

4. Proofs of main results

We start off by proving the equivalence of (2.5) and (2.6).

Proposition 4.1. Assume that m < n and let X(0,∞) and Y (0,∞) be
rearrangement-invariant spaces over (0,∞). Then the following two inequalities (in
fact with the same positive constants C) are equivalent:∥∥∥∥∫ ∞

t

f(s)sm/n−1 ds

∥∥∥∥
Y (0,∞)

� C‖f‖X(0,∞) for each f ∈ M+(0,∞);

‖tm/ng∗∗(t)‖X′(0,∞) � C‖g‖Y ′(0,∞) for each g ∈ M+(0,∞).

Proof. The equivalence of these two inequalities follows from the definition of the
associate norm because we have that

sup
‖f‖X(0,∞)�1

f�0

∥∥∥∥∫ ∞

t

f(s)sm/n−1 ds

∥∥∥∥
Y (0,∞)

= sup
‖f‖X(0,∞)�1

f�0

sup
‖g‖Y ′(0,∞)�1

g�0

∫ ∞

0

g(t)
∫ ∞

t

f(s)sm/n−1 dsdt

= sup
‖f‖X(0,∞)�1

f�0

sup
‖g‖Y ′(0,∞)�1

g�0

∫ ∞

0

f(s)sm/n−1

∫ s

0

g(t) dt ds

= sup
‖f‖X(0,∞)�1

f�0

sup
‖g‖Y ′(0,∞)�1

g�0

∫ ∞

0

f(s)sm/ng∗∗(s) ds

= sup
‖g‖Y ′(0,∞)�1

g�0

‖sm/ng∗∗(s)‖X′(0,∞),

where the last but one equality is true due to the Hardy–Littlewood inequality (3.2)
and the fact that g and g∗ are equimeasurable. �

The following proposition provides a necessary condition on a pair X and Y of
rearrangement-invariant spaces for the validity of (2.5) or, equivalently, of (2.6).
This information will enable us to easily single out pairs of spaces for which
(1.3) cannot hold after we have proved theorem 2.3. Similar necessary condi-
tions (sometimes called ‘of Muckenhoupt type’ in the literature) have been treated
in various contexts before and proved very useful, see e.g. [7, theorem 1] or
[19, lemma 1].
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Proposition 4.2. Assume that m < n and assume that X(0,∞) and Y (0,∞) are
rearrangement-invariant spaces over (0,∞) such that (2.5), equivalently (2.6), is
valid for them. Then

sup
0<a<∞

ϕY (0,∞)(a)‖tm/n−1χ(a,∞)(t)‖X′(0,∞) < ∞.

In particular,

‖tm/n−1χ(a,∞)(t)‖X′(0,∞) < ∞ for each a > 0.

Proof. For each a > 0 we have that

‖χ(0,a)‖Y (0,∞)‖tm/n−1χ(a,∞)(t)‖X′(0,∞)

= ‖χ(0,a)‖Y (0,∞) sup
‖f‖X(0,∞)�1

∫ ∞

a

|f(s)|sm/n−1 ds

� sup
‖f‖X(0,∞)�1

∥∥∥∥χ(0,a)(t)
∫ ∞

t

|f(s)|sm/n−1 ds

∥∥∥∥
Y (0,∞)

� C2,

where C2 is the constant from (2.5) or (2.6). �

The following proposition is a key step in establishing the iteration principle of
theorem 2.2, which will also be indispensable in the proof of theorem 2.1.

Proposition 4.3. Let X(0,∞) be a rearrangement-invariant space over (0,∞).
Assume that α, β ∈ (0,∞) are such that α + β < n. Then there exist positive
constants C1 and C2, depending on α, β, and n only, such that

C1‖tα/n[τβ/nf∗∗(τ)]∗∗(t)‖X(0,∞)

� ‖t(α+β)/nf∗∗(t)‖X(0,∞)

� C2‖tα/n[τβ/nf∗∗(τ)]∗∗(t)‖X(0,∞) for each f ∈ M(0,∞).

Proof. The first inequality was proved in [15, theorem 3.4] for (0, 1) instead of
(0,∞). However, the proof works just as well for (0,∞) when combined with the
argument from the proof of [21, lemma 4.10]. For the sake of brevity, the details
are omitted.

Regarding the second inequality, we estimate

‖t(α+β)/nf∗∗(t)‖X(0,∞) =
∥∥∥∥t(α+β)/n−1

∫ t

0

f∗(s) ds

∥∥∥∥
X(0,∞)

≈
∥∥∥∥tα/n−1

∫ 2t

t

τβ/n−1 dτ

∫ t

0

f∗(s) ds

∥∥∥∥
X(0,∞)

�
∥∥∥∥tα/n−1

∫ 2t

t

τβ/n−1

∫ τ

0

f∗(s) dsdτ

∥∥∥∥
X(0,∞)
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=
∥∥∥∥tα/n−1

∫ 2t

t

τβ/nf∗∗(τ) dτ

∥∥∥∥
X(0,∞)

� ‖tα/n[τβ/nf∗∗(τ)]∗∗(t)‖X(0,∞),

where Hardy–Littlewood inequality (3.2) is exploited in the last step. �

Now we are in the position to prove our main results.

Proof of theorem 2.2. We have that

σX,k

(
tl/n−1χ(1,∞)(t)

)
=

∥∥∥∥tk/n−1

∫ t

0

(s + 1)l/n−1 ds

∥∥∥∥
X′(0,∞)

≈ ‖tk/n−1[(t + 1)l/n − 1]‖X′(0,∞)

� ‖tk/n−1[(t + 1)l/n − 1]χ(0,1)(t)‖X′(0,∞) + ‖t(k+l)/n−1χ(1,∞)(t)‖X′(0,∞)

� ‖tk/n−1[(t + 1)l/n − 1]‖L∞(0,1)‖χ(0,1)‖X′(0,∞) + ‖t(k+l)/n−1χ(1,∞)(t)‖X′(0,∞)

< ∞.

Hence tl/n−1χ(1,∞)(t) ∈ (Ytarg(X,k))′(0,∞). It follows from proposition 4.3 that

‖u‖Ytarg(Ytarg(X,k),l) ≈ ‖u‖Ytarg(X,k+l) ,

where the multiplicative constants depend on m and on the dimension n only. �

Proof of theorem 2.1. It can be proved that σX,m is a rearrangement-invariant
norm if and only if condition (2.1) is satisfied (cf. [16, theorem 5.4] and [21,
theorem 4.4]). We note only that the triangle inequality follows from (3.1). Observe
that tj/n−1χ(1,∞)(t) � tm/n−1χ(1,∞)(t) on (0,∞) for j ∈ {1, . . . , m}. Hence σX,j is
a rearrangement-invariant norm too provided that tm/n−1χ(1,∞)(t) ∈ X ′(0,∞).

We shall prove (2.3) by induction on m. Firstly, assume that m = 1. Then
(2.5) with m = 1, Y = Ytarg(X,1) and C2 = 1 is true by proposition 4.1. Let u ∈
V 1

0 X(Rn). Note that limt→∞ u∗(t) = 0. Since u∗ is locally absolutely continuous
[14, lemma 4.1], we can estimate

‖u‖Ytarg(X,1) = ‖u∗‖Ytarg(X,1)(0,∞)

=
∥∥∥∥∫ ∞

t

−du∗

ds
(s) ds

∥∥∥∥
Ytarg(X,1)(0,∞)

=
∥∥∥∥∫ ∞

t

(
−du∗

ds
(s)s1−1/n

)
s1/n−1 ds

∥∥∥∥
Ytarg(X,1)(0,∞)

�
∥∥∥∥−du∗

ds
(s)s1−1/n

∥∥∥∥
X(0,∞)

� ‖∇u‖X ,
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where the last inequality is valid with a multiplicative constant depending on the
dimension n only due to a generalized Pólya–Szegő principle [14, lemma 4.1].

Next, assume that 1 < m < n and that we have already proved (2.3) for all smaller
values of m. Let u ∈ V m

0 X(Rn). For each i ∈ {1, . . . , n} we have that ∂u/∂xi ∈
V m−1

0 X(Rn) and, by the induction hypothesis,∥∥∥∥ ∂u

∂xi

∥∥∥∥
Ytarg(X,m−1)

�
∥∥∥∥∇m−1 ∂u

∂xi

∥∥∥∥
X

� ‖∇mu‖X .

Hence

‖∇u‖Ytarg(X,m−1) � ‖∇mu‖X , (4.1)

that is, u ∈ V 1
0 Ytarg(X,m−1)(Rn). By theorem 2.2 we have that t1/n−1χ(1,∞)(t) ∈

(Ytarg(X,m−1))′(0,∞). Hence we are entitled to use the first step with m = 1 for
Ytarg(X,m−1) instead of X, which yields

‖u‖Ytarg(Ytarg(X,m−1),1) � ‖∇u‖Ytarg(X,m−1) . (4.2)

Using theorem 2.2 again it follows that

‖u‖Ytarg(Ytarg(X,m−1),1) ≈ ‖u‖Ytarg(X,m) , (4.3)

where the multiplicative constants depend on m and on the dimension n only.
Combining (4.1), (4.2) and (4.3), we obtain the desired inequality (2.3).

We shall prove the optimality of Ytarg(X,m) now. Assume that

‖u‖Y � ‖∇mu‖X for each u ∈ V m
0 X(Rn) (4.4)

for a rearrangement-invariant space Y over Rn. We shall show that (4.4) implies
(2.5). The proof proceeds along the lines of the proof of [3, theorem 3.3]. Let f ∈
M+(0,∞) having a bounded support be given. We may assume that ‖f‖X(0,∞) <
∞ because otherwise there is nothing to prove. Define a function g by

g(t) =
∫ ∞

ωntn

∫ ∞

s1

· · ·
∫ ∞

sm−1

f(sm)sm/n−m
m dsm · · · ds1, t ∈ (0,∞).

Routine, albeit slightly tedious, computations show (cf. [3, (4.34) and (4.35)]) that
for k ∈ {1, . . . , m − 1}

|g(k)(t)| �
k∑

l=1

tln−k

∫ ∞

ωntn

f(s)sm/n−l−1 ds for each t ∈ (0,∞) (4.5)

and that

|g(m)(t)| � f(ωntn) +
m−1∑
l=1

tln−m

∫ ∞

ωntn

f(s)sm/n−l−1 ds for a.e. t ∈ (0,∞). (4.6)

Now, consider a function u defined by

u(x) = g(|x|), x ∈ Rn.

Then u is m-times weakly differentiable on Rn and, by straightforward induction on
j = 1, . . . ,m, one can show that ∂ju/(∂α1x1 · · · ∂αnxn), where α1 + · · · + αn = j,
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is a linear combination of the functions of the form

xi1 · · ·xil
g(k)(|x|)|x|−j−l+k for a.e. x ∈ Rn

where l ∈ {0, . . . , j} and k ∈ {1, . . . , j}. Therefore,∣∣∣∣ ∂mu

∂α1x1 · · · ∂αnxn
(x)

∣∣∣∣ �
m∑

k=1

|g(k)(|x|)||x|k−m for a.e. x ∈ Rn, (4.7)

where α1 + · · · + αn = m. Hence, combining (4.5) and (4.6) with (4.7), we obtain
that

|∇mu(x)| � f(ωn|x|n) +
m−1∑
l=1

|x|ln−m

∫ ∞

ωn|x|n
f(s)sm/n−l−1 ds for a.e. x ∈ Rn.

(4.8)
Since for l ∈ {1, . . . , m − 1} the linear operator Tl defined as

Tlf(t) = tl−m/n

∫ ∞

t

f(s)sm/n−l−1 ds, t ∈ (0,∞),

is bounded on both L1(0,∞) and L∞(0,∞) and the corresponding operator norms
depend on l and on the dimension n only, it is bounded on every rearrangement-
invariant space over (0,∞) by [6, chapter 3, theorem 2.2]. In particular, it is
bounded on X(0,∞). Moreover, the operator norm of the operator Tl on X(0,∞)
can be bounded from above by a constant depending on m and on the dimension
n only. Hence, using (4.8), we can estimate that

‖∇mu‖X � ‖f‖X(0,∞) +
m−1∑
l=1

‖Tlf‖X(0,∞) � ‖f‖X(0,∞), (4.9)

where the multiplicative constants depend on m and on the dimension n only.
Hence, u ∈ V mX(Rn). Furthermore, since f has a bounded support, it follows that
u ∈ V m

0 X(Rn). By Fubini’s theorem

u(x) =
1

(m − 1)!

∫ ∞

ωn|x|n
f(s)sm/n−m(s − ωn|x|n)m−1 ds for x ∈ Rn,

whence

‖u‖Y �
∥∥∥∥∫ ∞

2t

f(s)sm/n−m(s − t)m−1 ds

∥∥∥∥
Y (0,∞)

�
∥∥∥∥∫ ∞

2t

f(s)sm/n−msm−1 ds

∥∥∥∥
Y (0,∞)

=
∥∥∥∥∫ ∞

2t

f(s)sm/n−1 ds

∥∥∥∥
Y (0,∞)

, (4.10)

where the second inequality follows from the simple fact that −t � −s/2 for s � 2t.
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Now, we are ready to finally establish (2.5). Indeed, by virtue of the boundedness
of the dilation operator on rearrangement-invariant spaces (see 3.5), (4.4), (4.9) and
(4.10), we obtain that

∥∥∥∥∫ ∞

t

f(s)sm/n−1 ds

∥∥∥∥
Y (0,∞)

� ‖
∫ ∞

2t

f(s)sm/n−1 ds‖Y (0,∞) � ‖u‖Y

� ‖∇mu‖X � ‖f‖X(0,∞).

Since an arbitrary function f ∈ M+(0,∞) can be approximated by a nonde-
creasing sequence of nonnegative functions with bounded supports, (2.5) follows.
Since (2.5) is equivalent to (2.6) by proposition 4.1, we have, in fact, proved that
Y ′ ↪→ (Ytarg(X,m))′, equivalently, Ytarg(X,m) ↪→ Y .

Finally, if there exists any rearrangement-invariant space Y over Rn which renders
(4.4) true, then (2.5) is valid by the computations above. Hence (2.1) is true by
proposition 4.2. �

Proof of theorem 2.3. On the one hand, if (2.4) is valid, then Ytarg(X,m) ↪→ Y by
theorem 2.1. Hence (2.6) is valid by the very definition of σX,m, given by (2.2). On
the other hand, assume that (2.6) is in force, that is,

σX,m(g) � ‖g‖Y ′(0,∞),

where σX,m is defined by (2.2). Then (2.1) is satisfied by proposition 4.2 and

Ytarg(X,m) ↪→ Y.

Hence by theorem 2.1

‖u‖Y � ‖u‖Ytarg(X,m) � ‖∇mu‖X for each u ∈ V m
0 X(Rn).

Thus the equivalence of (2.4) and (2.6) has been proved. Inequalities (2.5) and
(2.6) are equivalent by proposition 4.1. �

Proof of theorem 2.5. The fact that τY,m is a rearrangement-invariant norm is
rather deep, especially the triangle inequality, and we refer the reader to [21,
theorem 4.1]. Let f ∈ M+(0,∞). Then

∥∥∥∥∫ ∞

t

f(s)sm/n−1 ds

∥∥∥∥
Y (0,∞)

� sup
h∼f
h�0

∥∥∥∥∫ ∞

t

h(s)sm/n−1 ds

∥∥∥∥
Y (0,∞)

= ‖f‖Xdom(Y,m)(0,∞),

which proves (2.9) by theorem 2.3.
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Now, let Z be a rearrangement-invariant space such that

‖u‖Y � C‖∇mu‖Z for each u ∈ V m
0 Z(Rn)

and let f ∈ M(Rn) and h ∈ M+(0,∞) be equimeasurable. We have that∥∥∥∥∫ ∞

t

h(s)sm/n−1 ds

∥∥∥∥
Y (0,∞)

� ‖h‖Z(0,∞) = ‖f‖Z

due to theorem 2.3, whence

‖f‖Xdom(Y,m) � ‖f‖Z .

Hence Z ↪→ Xdom(Y,m).
Finally, if (2.7) is not true, then repeating the computations from the proof of

[21, theorem 4.1], one can prove that there is no rearrangement-invariant space X
for which (2.9) is rendered true. �

5. Examples of optimal Sobolev embeddings

In this section, examples of optimal rearrangement-invariant spaces for Lorentz–
Zygmund spaces and Orlicz spaces are given.

Theorem 5.1. Let m < n and let X = Lp,q;A(Rn) where p, q ∈ [1,∞] and A =
[α0, α∞] ∈ R2. Assume that one of the conditions (3.6) holds. The space Ytarg(X,m)

defined by

Ytarg(X,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lnp/(n−mp),q;A, p = q = 1, α0 � 0, α∞ � 0 or
p ∈ (1, n

m ),
L∞,q;A−1, p = n

m , α0 < 1
q′ , α∞ > 1

q′ ,

L∞,1;[−1,α∞−1],[−1,0],[−1,0], p = n
m , q = 1, α0 = 0, α∞ > 0,

Y1, p = n
m , q = 1, α0 < 0, α∞ = 0,

L∞, p = n
m , q = 1, α0 � 0, α∞ = 0,

Y2, p = n
m , q ∈ [1,∞), α0 > 1

q′ , α∞ > 1
q′ ,

L∞,q;[−1/q,α∞−1],[−1,0], p = n
m , q ∈ (1,∞], α0 = 1

q′ , α∞ > 1
q′ ,

L∞,∞;[0,α∞−1], p = n
m , q = ∞, α0 > 1, α∞ > 1,

(5.1)
where

‖f‖Y1 = ‖t−1α0−1(t)f∗(t)‖L1(0,1),

‖f‖Y2 = ‖f‖L∞ + ‖t−1/qα∞−1(t)f∗(t)‖Lq(1,∞),

is the optimal (the smallest) target space for X in (1.3).
Conversely, if p = n/m and q = 1 and α∞ < 0, or p = n/m and q ∈ (1,∞] and

α∞ � 1/q′, or p ∈ (n/m,∞], then there does not exist any rearrangement-invariant
space Y for which (1.3) is true at all.

https://doi.org/10.1017/prm.2020.14 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.14


316 Zdeněk Mihula

It turns out that the optimal target space for an Orlicz space LA depends on
whether the integral

∫ ∞(
s

A(s)

)m/(n−m)

ds (5.2)

converges or not. Assume that m < n and that A is a Young function such that

∫
0

(
s

A(s)

)m/(n−m)

ds < ∞. (5.3)

Let a be the left-continuous derivative of A, that is, a and A are related as in (3.7).
We define a function Em by

Em(t) =
∫ t

0

em(s) ds, t � 0, (5.4)

where em is the nondecreasing, left-continuous function in [0,∞) whose generalized
left-continuous inverse e−1

m satisfies

e−1
m (t) =

⎛⎝∫ ∞

a−1(t)

(∫ s

0

(
1

a(τ)

)m/(n−m)

dτ

)−n/m
1

a(s)n/(n−m)
ds

⎞⎠m/(m−n)

for t � 0.

Then Em is a finite-valued Young function satisfying (3.10) with p = n/m (see [12,
proposition 2.2]).

Theorem 5.2. Assume that m < n and let A be a Young function satisfying (5.3).
Set

Ytarg(LA,m) =

{
L( n

m , 1, Em), the integral (5.2) diverges,
L( n

m , 1, Em) ∩ L∞, the integral (5.2) converges,

where Em is defined by (5.4).
Then Ytarg(LA,m) is the optimal (the smallest) target space for LA in (1.3).
Conversely, if A does not satisfy (5.3), then there does not exist any

rearrangement-invariant space Y for which (1.3) is true with X = LA at all.

We also provide optimal domain spaces for Lorentz–Zygmund spaces.

Theorem 5.3. Let m < n and let Y = Lp,q;A(Rn) where p, q ∈ [1,∞] and A =
[α0, α∞] ∈ R2. Assume that one of the conditions (3.6) holds. The space Xdom(Y,m)
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defined by

Xdom(Y,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1,1;A, p = n
n−m , q = 1, α0 � 0, α∞ � 0,

X1, p = n
n−m , q = 1, α0 < 0, α∞ � 0 or

p = n
n−m , q ∈ (1,∞], α∞ � 0,

Lnp/(n+mp),q;A, p ∈ ( n
n−m ,∞),

X2, p = ∞, q ∈ [1,∞), α0 + 1
q < 0 or

p = q = ∞, α0 � 0,

where

‖f‖X1 = sup
h∼f
h�0

‖t1−m/n−1/qA(t)
∫ ∞

t

h(s)sm/n−1 ds‖Lq ,

‖f‖X2 ≈ ‖t−1/qA(t)
∫ ∞

t

f∗(s)sm/n−1 ds‖Lq ,

is the optimal (the largest) domain space for Y in (1.3).
In particular, if A = [0, 0], then X1 = L1 and X2 = Ln/m,1.
Conversely, if either p = n/(n − m) and α∞ > 0 or p ∈ [1, n/(n − m)), then there

does not exist any rearrangement-invariant space X for which (1.3) is true at all.

Proof of theorem 5.1. Note that X is equivalent to a rearrangement-invariant space
by [36, theorem 7.1] under our assumptions on p, q, A, which entitles us to use
theorem 2.1. Condition (2.1) is satisfied if and only if one of the conditions (5.1)
is satisfied. We skip these straightforward computations here and merely note that
the description of X ′ is given by [36, theorems 6.2 and 6.6].

Let us turn our attention to (5.1). Using (2.2) and [36, theorems 6.2 and 6.6], we
have that

‖f‖(Ytarg(X,m))′ = ‖t1/p′−1/q′
−A(t)

[
τm/nf∗∗(τ)

]∗
(t)‖Lq′

� ‖t1/p′−1/q′
−A(t) sup

t�τ<∞
τm/nf∗∗(τ)‖Lq′

� ‖t1/p′−1/q′+m/n−A(t)f∗∗(t)‖Lq′ = ‖f‖L(np′/(n+mp′),q′;−A) ,

where np′/n + mp′ is to be interpreted as n/m if p = 1. The first inequality follows
from the very definition of the nonincreasing rearrangement. The validity of the
last inequality is due to [25, theorem 3.2] if q ∈ (1,∞]. If q = 1, then its validity is
due to the fact that

sup
t>0

t1/p′
−A(t) sup

t�τ<∞
τm/nf∗∗(τ) = sup

τ>0
τm/nf∗∗(τ) sup

0<t�τ
t1/p′

−A(t)

≈ sup
τ>0

τm/n+1/p′
−A(τ)f∗∗(τ)

since the function t 	→ t1/p′
−A(t) is equivalent to a nondecreasing function

on (0,∞) if p > 1, and if p = 1, then the function t 	→ t1/p′
−A(t) = −A(t) is
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nondecreasing on (0,∞) as −α0 � 0 and −α∞ � 0. On the other hand,

‖f‖L(np′/(n+mp′),q′;−A) = ‖t1/p′−1/q′+m/n−A(t)f∗∗(t)‖Lq′

� ‖t1/p′−1/q′
−A(t) sup

t�τ<0
τm/nf∗∗(τ)‖Lq′

= ‖ sup
t�τ<∞

τm/nf∗∗(τ)‖Lp′,q′;−A � ‖tm/nf∗∗(t)‖Lp′,q′;−A

= ‖f‖(Ytarg(X,m))′ ,

where the last inequality is true thanks to [21, lemma 4.10].
Hence we have shown that (Ytarg(X,m))′ is equivalent to L(np′/(n+mp′),q′;−A),

that is, Ytarg(X,m) is equivalent to (L(np′/(n+mp′),q′;−A))′. The assertion then fol-
lows from the description of the associate space of L(np′/(n+mp′),q′;−A). If p < n/m,
then np′/(n + mp′) > 1 and L(np′/(n+mp′),q′;−A) is equivalent to Lnp′/(n+mp′),q′;−A

by [36, theorem 3.8] and its associate space is described by [36, theorem 6.2,
theorem 6.6]. If p = n/m, then np′/(n + mp′) = 1 and the associate space of
L(1,q′;−A) is given by [36, theorem 6.7, theorem 6.9]. �

Proof of theorem 5.2. Let X = LA. It follows from [12, theorem 3.1] (cf. also [12,
(3.1) and remark 3.2]) that∥∥∥∥t−m/n

∫ ∞

t

sm/n−1f(s) ds

∥∥∥∥
LEm (0,∞)

� ‖f‖LA(0,∞) for each f ∈ LA(0,∞).

(5.5)
In particular, if f ∈ LA(0,∞), then

∫∞
t

sm/n−1f(s) ds ∈ L(n/m, 1, Em)(0,∞).
Hence

‖g‖(L(n/m,1,Em))′ = sup
f∈L(n/m,1,Em)

f 
=0

∫∞
0

f∗(t)g∗(t) dt

‖f‖L(n/m,1,Em)

� sup
f∈LA(0,∞)

f 
=0

∫∞
0

g∗(t)
∫∞

t
sm/n−1|f(s)|dsdt

‖ ∫∞
t

sm/n−1|f(s)|ds‖L(n/m,1,Em)(0,∞)

= sup
f∈LA(0,∞)

f 
=0

∫∞
0

|f(s)|sm/n−1
∫ s

0
g∗(t) dt ds

‖t−m/n
∫∞

t
sm/n−1|f(s)|ds‖LEm (0,∞)

� sup
f∈LA(0,∞)

f 
=0

∫∞
0

|f(s)|sm/n−1
∫ s

0
g∗(t) dt ds

‖f‖LA(0,∞)

= ‖tm/ng∗∗(t)‖(LA)′(0,∞) = ‖g‖(Ytarg(X,m))′ ,

where the last inequality is true thanks to (5.5). Hence (2.5) holds with Y (0,∞) =
L(n/m, 1, Em)(0,∞) by proposition 4.1.
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If integral (5.2) diverges, we have that

‖g‖(L(n/m,1,Em))′ = sup
f∈L(n/m,1,Em)

f 
=0

∫∞
0

f∗(t)g∗(t) dt

‖f‖L(n/m,1,Em)

� sup
f∈L(n/m,1,Em)

f 
=0

‖t−m/nf∗(t)‖LEm (0,∞)‖tm/ng∗∗(t)‖(LA)′(0,∞)

‖f‖L(n/m,1,Em)

= ‖g‖(Ytarg(X,m))′ ,

where the inequality is due to [12, theorem 4.1, (4.2)]. Hence Ytarg(X,m) is equivalent
to L(n/m, 1, Em) by virtue of the equivalence of (3.3) and (3.4).

Now, assume that integral (5.2) converges. Then∥∥∥∥∫ ∞

t

f(s)sm/n−1 ds

∥∥∥∥
L∞(0,∞)

� ‖tm/n−1‖LÃ(0,∞)‖f‖LA(0,∞)

≈
(∫ ∞

0

Ã(s)
s1+n/(n−m)

ds

)(n−m)/n

‖f‖LA(0,∞),

where the integral on the right-hand side is finite thanks to [12, lemma 2.3]. This
together with the estimate at the beginning of this proof ensures that (1.3) is true
with Y = L(n/m, 1, Em) ∩ L∞ by virtue of theorem 2.3. The optimality can be
shown along the same lines of [12, theorem 1.1, pp. 457] and we omit it here.

Finally, should tm/n−1χ(1,∞)(t) ∈ (LA)′(0,∞) for a Young function A, then (5.3)
is necessarily satisfied. This can be proved along the lines of [12, corollary 2.1].
Hence if (5.3) is not true, then there is no target space for LA in (1.3) by theorem 2.1.

�

By theorem 2.6 the description of the optimal domain space for Y can be signif-
icantly simplified provided that the operator Tm/n, defined by (2.10), is bounded
on the representation space of Y ′. For this reason, it is convenient to know when
the operator is bounded on the associate spaces of Lorentz–Zygmund spaces.

Proposition 5.4. Let X(0,∞) = Lp,q;A(0,∞), where A = [α0, α∞], and assume
that one of the conditions (3.6) holds. Let α ∈ (0, 1). Then Tα is bounded on
X ′(0,∞) if and only if

either p =
1

1 − α
, q = 1, α0 � 0 and α∞ � 0

or p ∈
(

1
1 − α

,∞
]

.

Proof. If p = 1/(1 − α), q = 1, α0 � 0 and α∞ � 0, or p ∈ (1/(1 − α),∞), or p =
q = ∞ and α∞ � 0, then Tα is bounded on X ′(0,∞). On the other hand, if p ∈
[1, 1/(1 − α)), or p = 1/(1 − α), q = 1, α0 < 0 or α∞ > 0, or p = 1/(1 − α) and
q ∈ (1,∞], then Tα is not bounded on X ′(0,∞). These facts follow from the fact
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that the associate space of X(0,∞) is Lp′,q′;−A (cf. [36, theorem 6.2, theorem 6.6])
and the fact that Tα is bounded on X(0,∞) if and only if

either p ∈
[
1,

1
α

)
or p =

1
α

, q = ∞, α0 � 0 and α∞ � 0,

which was shown in the proof of [21, theorem 4.5].
Now, we shall prove that Tα is bounded on X ′(0,∞) in the remaining cases,

that is, p = ∞ and q ∈ [1,∞), or p = q = ∞ and α∞ < 0. Assume that p = q = ∞,
α∞ < 0. Then by [36, theorem 6.2] the norm on X ′(0,∞) is given by

‖f‖X′(0,∞) = ‖−α0(t)f∗(t)‖L1(0,1) + ‖f‖L1(0,∞),

and Tα is bounded on X ′(0,∞) because

‖Tαf‖X′(0,∞) =
∫ 1

0

−α0(t)
[
s−α sup

s�τ<∞
ταf∗(τ)

]∗
(t) dt

+
∫ ∞

0

[
s−α sup

s�τ<∞
ταf∗(τ)

]∗
(t) dt

=
∫ ∞

0

(
−α0(t)χ(0,1)(t) + 1

) [
s−α sup

s�τ<∞
ταf∗(τ)

]∗
(t)

�
∫ ∞

0

(
−α0(t)χ(0,1)(t) + 1

)
sup

t�s<∞
s−α sup

s�τ<∞
ταf∗(τ) dt

=
∫ ∞

0

(
−α0(t)χ(0,1)(t) + 1

)
t−α sup

t�τ<∞
ταf∗(τ) dt

�
∫ ∞

0

(
−α0(t)χ(0,1)(t) + 1

)
f∗(t) dt

= ‖f‖X′(0,∞),

where the last inequality is true due to [25, theorem 3.2].
If p = ∞, q ∈ [1,∞) and α∞ + 1/q � 0, then X ′ is L(1,q′;B,C) for appropriate

B, C ∈ R2 (cf. [36, theorem 6.2, theorem 6.6]). It follows from [33, lemma 4.1] that

(Tαf)∗∗(t) � Tαf∗∗(t) for each f ∈ M(0,∞), t > 0.

Hence

‖Tαf‖X′(0,∞) = ‖t1−1/q′
B(t)C(t)(Tαf)∗∗(t)‖q′

� ‖t1−1/q′
B(t)C(t)Tαf∗∗(t)‖q′

� ‖t1−1/q′
B(t)C(t)f∗∗(t)‖q′ = ‖f‖X′(0,∞),

where the last inequality is true thanks to [25, theorem 3.2] if q ∈ (1,∞). If q =
1, then the last inequality is in fact an equality (up to a positive multiplicative
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constant), which follows from interchanging the order of the suprema and the fact
that the function

t 	→ tB(t)C(t)

is equivalent to a nondecreasing function on (0,∞).
Finally, if p = ∞, q ∈ [1,∞) and α∞ + 1/q < 0, we can proceed similarly,

omitting the proof here. �

Proof of theorem 5.3. Since a rearrangement-invariant space X is the optimal (the
largest) domain space for a given rearrangement-invariant space Y in inequality
(1.3) if and only if X ′ is the optimal (the smallest) range partner for Y ′ with respect
to Mm (cf. remark 2.4), the theorem follows from theorem 2.5, [21, theorem 4.5],
theorem 2.6 and proposition 5.4 with α = m/n. �

6. Optimal embeddings of Orlicz–Sobolev spaces into Orlicz spaces

By theorem 2.3 the question of optimality in (1.3) is equivalent to the ques-
tion of optimality in the one-dimensional inequality (2.5). The latter question
was extensively studied (among other things) within the class of Orlicz spaces
in [31, chapter 3]. This enables us to look for optimal spaces in (1.3) within the
class of Orlicz spaces. Since the optimal Orlicz space (provided that it exists) for
an Orlicz space is sometimes simpler to describe than the corresponding optimal
rearrangement-invariant space, especially in limit cases, the optimal Orlicz space is
sometimes more convenient for applications.

We say that an Orlicz space LB over Rn is the optimal target space within the
class of Orlicz spaces for an Orlicz space LA over Rn in (1.4) if (1.4) is satisfied
and whenever (1.4) is satisfied for another Orlicz space LC over Rn in place of
LB , LC is larger than LB , that is, LB ↪→ LC . We say that an Orlicz space LA

over Rn is the optimal domain space within the class of Orlicz spaces for an Orlicz
space LB over Rn in (1.4) if (1.4) is satisfied and whenever (1.4) is satisfied for
another Orlicz space LC over Rn in place of LA, LC is smaller than LA, that is,
LC ↪→ LA. We stress that the key difference from the prior sections is that the
competing spaces are from the class of Orlicz spaces only, not from the class of all
rearrangement-invariant spaces.

As it was already noted in remark 2.4, there is an intimate connection between
inequality (1.4) and the boundedness of the fractional maximal operator. Optimality
of Orlicz spaces for the latter was studied in [31,32]. The combination of these
results with appropriate duality principles appears to be useful for our purposes.
We omit proofs in this section because they are lengthy and technical. The interested
reader can trace the key ideas in [31,32].

Let m < n and let A be a Young function satisfying (5.3). We set

H∞ = lim
t→∞Hm(t)

where Hm is defined by

Hm(t) =

(∫ t

0

(
s

A(s)

)m/(n−m)

ds

)(n−m)/n

, t � 0.
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Note that H∞ = ∞ if and only if integral (5.2) diverges. Finally, we define

Dm(t) =

⎧⎪⎨⎪⎩
(

t
A(H−1

m (t))
H−1

m (t)

)n/(n−m)

, 0 � t < H∞,

∞, H∞ � t < ∞.

(6.1)

The following theorem is an application of theorem 2.3 and [31, theorem 3.4.1].

Theorem 6.1. Let m < n and let A be a Young function satisfying (5.3). Define
the Young function Am by

Am(t) =
∫ t

0

Dm(s)
s

ds, t � 0, (6.2)

where the function Dm is defined by (6.1).
Then the Orlicz space LAm is the optimal (the smallest) target space for LA in

(1.4) within the class of Orlicz spaces.
Conversely, if (5.3) is not true, then there does not exist any Orlicz space LB for

which (1.4) is true at all.

Remark 6.2. Condition (5.3) is, in fact, also necessary for existence of a target
space even in the wider class of rearrangement-invariant spaces (cf. theorem 5.2).

It is worth noting that (see [31, (3.3.6)]) Am is equivalent to Dm globally. More-
over, either Am is equivalent to A ◦ H−1

m globally if integral (5.2) diverges or Am

is equivalent to A ◦ H−1
m near zero and Am(t) = ∞ near infinity if integral (5.2)

converges (see [31, (3.3.10)]).
If IA < n/m, where IA is the upper Boyd index of A, defined by (3.9), then

(see [31, (3.4.2)])

A−1
m (t) ≈ A−1(t)t−m/n for t > 0.

By standard calculations, one can use theorem 6.1 to obtain optimal Orlicz spaces
for some customary Orlicz spaces.

Theorem 6.3. Let p0, p∞ ∈ [1,∞) and α0, α∞ ∈ R. Assume that if p0 = 1, then
α0 � 0, and if p∞ = 1, then α∞ � 0. Let A(t) be a Young function that is equivalent
to {

tp0α0(t) near zero,

tp∞α∞(t) near infinity.

The Young function Am(t), defined by (6.2), is equivalent to{
tnp0/(n−mp0)nα0/(n−mp0)(t), p0 ∈ [1, n

m ),
e−tn/(n−(1+α0)m)

, p0 = n
m , α0 > n−m

m ,
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near zero and to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tnp∞/(n−mp∞)nα∞/(n−mp∞)(t), p∞ ∈ [1, n
m ),

etn/(n−(1+α∞)m)
, p∞ = n

m , α∞ < n−m
m ,

eetn/(n−m)

, p∞ = n
m , α∞ = n−m

m ,

∞, p∞ = n
m , α∞ > n−m

m or
p∞ ∈ ( n

m ,∞),

near infinity and the Orlicz space LAm is the optimal (the smallest) target space for
LA in (1.4) within the class of Orlicz spaces.

Conversely, if either p0 = n/m and α0 � (n − m)/m or p0 ∈ (n/m,∞), then
there does not exist any Orlicz space LB for which (1.4) is true at all.

To complement theorem 6.1, we now address the question of optimal domain
spaces within the class of Orlicz spaces. If m < n and B is a Young function
satisfying

sup
0<t<1

B(t)
tn/(n−m)

< ∞, (6.3)

we define the function Gm by

Gm(t) = t inf
0<s�t

B−1(s)s(m−n)/n, t > 0. (6.4)

It follows from (6.3) that Gm is a positive function on (0,∞).
The following theorem is an application of theorem 2.3 and [31, theorem 3.6.1].

Theorem 6.4. Let m < n and let B be a Young function satisfying (6.3). Define
the Young function Bm by

Bm(t) =
∫ t

0

G−1
m (s)
s

ds, t � 0, (6.5)

where the function Gm is defined by (6.4).
If IBm

< n/m, then the Orlicz space LBm is the optimal (the largest) domain
space for LB in (1.4) within the class of Orlicz spaces.

If IBm
� n/m, then there is no optimal Orlicz domain space for LB in (1.4) in

the sense that whenever LA is an Orlicz space that renders (1.4) true, there exists
an Orlicz space LC such that LA � LC that still renders (1.4) with LC instead of
LA true.

Conversely, if (6.3) is not true, then there does not exist any Orlicz space LA for
which (1.4) is true at all.

Remark 6.5. Assume that Y = LB is an Orlicz space. Note that conditions (6.3)
and (2.7) are equivalent. Hence not only is there no Orlicz space LA for which (1.4)
is true if (6.3) is not satisfied, but there is no rearrangement-invariant space X
for which (1.3) is true at all. We would also like to stress the significant dif-
ference between theorems 6.4 and 2.5. Whereas there always exists the optimal
rearrangement-invariant domain space for a given rearrangement-invariant space Y
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in (1.3) if there exists any rearrangement-invariant domain space, the situation is
more complicated within the class of Orlicz spaces. If a Young function B satisfies
(6.3), we can define the Young function Bm by (6.5). If IBm

� n/m, then (1.4) with
LBm on the right-hand side is not satisfied because the Orlicz space LBm is ‘too
large’; however, there still exist some Orlicz spaces LA that render (1.4) true but
none of them is optimal. In this situation, we have, loosely speaking, an open set
of Orlicz spaces LA that renders (1.4) true.

It can be shown (see [31, (3.5.8)]) that

B−1
m (t) ≈ Gm(t) for t > 0.

Moreover, if iB > n/(n − m), where iB is the lower Boyd index of B, defined by
(3.8), then (see [31, (3.6.3)])

B−1
m (t) ≈ B−1(t)tm/n for t > 0 (6.6)

and IBm
< n/m is equivalent to IB < ∞.

Theorem 6.6. Let p0, p∞ ∈ [1,∞) and α0, α∞ ∈ R. Assume that if p0 = 1, then
α0 � 0, and if p∞ = 1, then α∞ � 0. Let B(t) be a Young function that is equivalent
to {

tp0α0(t) near zero,

tp∞α∞(t) near infinity.

If either p0 = n/(n − m) and α0 � 0 or p0 ∈ (n/(n − m),∞), then the Young
function Bm(t), defined by (6.5), is equivalent to

tnp0/(n+mp0)nα0/(n+mp0)(t) near zero

and to ⎧⎪⎪⎪⎨⎪⎪⎪⎩
tnp∞/(n+mp∞)nα∞/(n+mp∞)(t), p∞ ∈ ( n

n−m ,∞) or,
p∞ = n

n−m , α∞ > 0,

t, p∞ = n
n−m , α∞ � 0 or,

p∞ ∈ [1, n
n−m ),

near infinity and the Orlicz space LBm is the optimal (the largest) domain space for
LB in (1.4) within the class of Orlicz spaces.

Conversely, if either p0 = n/(n − m) and α0 > 0 or p0 ∈ [1, n/(n − m)), then
there does not exist any Orlicz space LA for which (1.4) is true at all.

Remark 6.7. Loosely speaking, the optimal domain space for LB in (1.4) within
the class of Orlicz spaces exists provided that the Orlicz space LB is ‘far from
L∞’. On the other hand, Orlicz domain spaces for Orlicz spaces ‘near L∞’ can
be essentially enlarged within the class of Orlicz spaces. For example, if B(t) is a
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Young function that is equivalent to{
e−tβ0 for some β0 < 0 or
0

near zero, or equivalent to {
etβ∞ for some β∞ > 0 or
∞

near infinity, then (6.3) is satisfied but each Orlicz space LA that renders (1.4) true
can be essentially enlarged to a bigger Orlicz space that still renders (1.4) true.

We conclude this paper with a reduction principle for inequality (1.4). This
principle follows from theorem 2.3 and [31, theorem 3.3.2, proposition 3.3.4,
theorem 3.5.2].

Theorem 6.8. Assume that m < n and let A and B be Young functions. Then the
following four statements are equivalent.

(1) There exists a positive constant C1 such that

‖u‖LB � C1‖∇mu‖LA for each u ∈ V m
0 LA(Rn).

(2) The Young function A satisfies (5.3) and there exists a positive constant C2

such that

B(t) � Am(C2t) for each t � 0,

where the Young function Am is defined by (6.2).

(3) The Young function B satisfies (6.3) and there exists a positive constant C3

such that ∫ t

0

Ã(s)
sn/(n−m)+1

ds � B̃m(C3t)
tn/(n−m)

for each t � 0,

where the Young function Bm is defined by (6.5).

(4) There exists a positive constant C4 such that∫ ∞

0

B

( ∫∞
t

|f(s)|sm/n−1 ds

C4

(∫∞
0

A(|f(s)|) ds
)m/n

)
dt

�
∫ ∞

0

A(|f(t)|) dt for each f ∈ LA(0,∞).

Moreover, the positive constants C1, C2, C3 and C4 depend only on each other, on
m and on the dimension n.
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