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Abstract
In this work we analyse bucket increasing tree families. We introduce two simple stochastic growth pro-
cesses, generating random bucket increasing trees of size n, complementing the earlier result of Mahmoud
and Smythe (1995, Theoret. Comput. Sci. 144 221–249.) for bucket recursive trees. On the combinato-
rial side, we define multilabelled generalisations of the tree families d-ary increasing trees and generalised
plane-oriented recursive trees. Additionally, we introduce a clustering process for ordinary increasing trees
and relate it to bucket increasing trees. We discuss in detail the bucket size two and present a bijection
between such bucket increasing tree families and certain families of graphs called increasing diamonds,
providing an explanation for phenomena observed by Bodini et al. (2016, Lect. Notes Comput. Sci. 9644
207–219.). Concerning structural properties of bucket increasing trees, we analyse the tree parameter Kn.
It counts the initial bucket size of the node containing label n in a tree of size n and is closely related to
the distribution of node types. Additionally, we analyse the parameters descendants of label j and degree
of the bucket containing label j, providing distributional decompositions, complementing and extending
earlier results (Kuba and Panholzer (2010), Theoret. Comput. Sci. 411(34–36) 3255–3273.).

Keywords: Bucket increasing trees; clustered trees; stochastic growth processes; descendants; node-degrees; limiting
distributions
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1. Introduction
Increasing trees or increasingly labelled trees are rooted labelled trees. The nodes of a tree T of size
|T| = n are labelled with distinct integers from a label set M of size |M| = n. Here, the size |T|
of a tree denotes the number of vertices of T (and thus coincides with the number of labels). One
chooses as label set the first n positive integers, i.e.,M= [n] := {1, 2, . . . , n}, in such a way that the
label of any node in the tree is smaller than the labels of its children. As a consequence, the labels of
each path from the root to an arbitrary node in the tree are forming an increasing sequence, which
explains the name of such a labelling. Various increasing tree models turned out to be appropriate
in order to describe the growth behaviour of quantities in a number of applications and occurred
in the probabilistic literature. E.g., they are used to describe the spread of epidemics, to model
pyramid schemes, and as a simplified growth model of the world wide web. See Mahmoud and
Smythe [19] for a survey collecting results about recursive trees, a subfamily of increasing trees,
prior 1995. For recent results about increasing trees we refer to the books of Drmota [5], Flajolet
and Sedgewick [6] and references therein.
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In above definition of increasing trees each node in the tree gets exactly one label. Here in this
work we discuss an extension of increasing trees to bucket increasing trees. These aremultilabelled
increasing tree families. All the nodes v in the tree T are bucketswith amaximal capacity of b labels.
Here and throughout this work the integer b ∈N denotes the maximal capacity or bucket size. The
integer c= c(v) denotes the current capacity or load of a node v ∈ T, with 1≤ c≤ b. We always
call a node vwith capacity c(v)= b saturated and otherwise unsaturated. We impose the additional
restriction that all internal nodes (i.e., non-leaves) in the tree must be saturated. In contrast, the
leaves might be either saturated or unsaturated. The size of a tree |T| is here and throughout this
work measured by the sum of all node capacities c(v): |T| =∑v∈T c(v); equivalently, it is given
by the number of labels in the tree T. We note in passing that tree families where all leaves have
to be saturated have been considered and discussed recently in [14, 15] in connection with so-
called hook-length formulas. Moreover, closely related combinatorial objects named increasing
diamonds have been studied in [4], as discussed later.

A specific family of bucket increasing trees called bucket recursive trees has been introduced
by Mahmoud and Smythe [18]. The probabilistic description of random bucket recursive trees is
given by a stochastic growth rule: a tree grows by progressive attraction of increasing integer labels.
Such growth rules are part of a general (preferential) attachment rule with fertility and ageing, see
Berger et al. [1, 2]. A general combinatorial model for bucket recursive trees has been introduced
in [13]. Note that also different models of bucket recursive trees appeared, see for example [9],
where the capacities of internal nodes might also vary. Technically, this work and related articles
are published in a journal, though they do not seem to be written to professional standards.1

The aims of this paper are the following: first, we discuss the general combinatorial framework
for bucket increasing trees and the corresponding random tree model. We introduce and analyse
two new families of bucket increasing trees. For the two new families of (b,d)-ary increasing trees
and (b, α)-plane-oriented recursive trees we present both, a stochastic growth rule and a combi-
natorial description. Then, we prove that both descriptions are equivalent. As a byproduct of our
study we complement previous results [13, 18] for bucket recursive trees. Furthermore we present
a clustering map for ordinary increasing trees, which maps them to bucket increasing trees. In the
special case of bucket size b= 2 we state a bijection between bucket increasing trees and so-called
increasing diamonds studied in [4], providing an explanation for phenomena observed in [4]; see
Corollary 19 for the precise statement.

We obtain the combinatorial description using a generalisation of a class of weighted tree fam-
ilies, so called simple families of increasing trees, to a class of bucket trees, which we call families
of bucket increasing trees. All considered tree families will then be special instances of a bucket
increasing tree family. As in the previous analysis of bucket recursive trees the gain of the com-
binatorial description provided here is that the natural combinatorial decomposition of a bucket
increasing tree into a root bucket and its subtrees will lead to a recursive description of several
important tree parameters in random bucket recursive trees. This combinatorial decomposition
can be translated into certain differential equations for suitably defined generating functions. On
the other hand the stochastic growth rules will allow us to present decompositions of random
variables of interest.

The combination of bothmethods – a combinatorial approach leading to exact expressions and
the stochastic growth rule leading to decompositions – turns out to be a particularly useful tool
for a variety of parameters. First we study the random variables (r.v. for short) Kn counting the
size of the bucket containing label n. Explicit results for the probability mass function of Kn are
obtained by the combinatorial approach. The explicit expression for P{Kn =m} readily leads to a

1We do not see convincing evidence of a suitable level of peer review: the suggested combinatorial model turns out to be not
consistent with the proposed stochastic growth rule; moreover, unfortunately the combinatorial treatment of the enumeration
problem as well as of the parameters considered also does not match the given description.
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discrete limit law for Kn as n tends to infinity. Then, we relate Kn to the random variables Nn,k,
counting the number of buckets of capacity k, 1≤ k≤ b.

Next, we turn to the analysis of the r.v. Yn,j, counting the number of descendants of label j.
The results for Kn and its limit law are used to obtain the exact distribution of Yn,j, as well as sev-
eral limit laws depending on the growth of j= j(n) as n tends to infinity. Moreover, we study
the random variable Xn,j counting the out-degree of the bucket containing label j in a size n
bucket tree. The analysis of Xn,j is based on a stopping time closely related to Yn,j. We also provide
decompositions of the random variables Xn,j and Yn,j in terms of Kn for fixed n.

1.1. Notation.

We denote with X (d)= Y the equality in distribution of two random variables X and Y . We write
Xn

(d)−→ X for the weak convergence (i.e., convergence in distribution) of a sequence of random
variables Xn to a r.v. X. Let Hn := ∑n

k=1 1
k denote the harmonic numbers and Hn+α −Hα :=∑n

k=1 1
k+α the continuation of the harmonic numbers for a complex α ∈C \ {−1,−2,−3, . . . }.

Here and throughout this work we use the notation xs := x(x− 1) . . . (x− (s− 1)) for the
falling factorials, and xs := x(x+ 1) . . . (x+ s− 1) for the rising factorials, s ∈N0.2 Throughout
this work we will use the abbreviation (b,d)-ary ITs for (b,d)-ary bucket increasing trees and
(b, α)-PORTs for bucket (b, α)-plane-oriented increasing trees.

2. Description of bucket increasing trees
2.1. Tree evolution processes
In [18] a stochastic growth rule for bucket recursive trees has been given, generalising the rule
for ordinary random recursive trees (which are the special instance b= 1): a bucket tree grows by
progressive attraction of increasing integer labels: when inserting element n+ 1 into an existing
bucket recursive tree containing n elements (i.e., containing the labels {1, 2, . . . , n}) all n exist-
ing elements in the tree compete to attract the element n+ 1, where all existing elements have
equal chance to recruit the new element. If the element winning this competition is contained in
a node with less than b elements (an unsaturated bucket or node), element n+ 1 is added to this
node, otherwise if the winning element is contained in a node with already b elements (a saturated
bucket or node), element n+ 1 is attached to this node as a new bucket containing only the ele-
ment n+ 1. Starting with a single bucket as root node containing only element 1 leads after n− 1
insertion steps, where the labels 2, 3, . . . , n are successively inserted according to this growth rule,
to a so called random bucket recursive tree with n elements and maximal bucket size b. Of course,
the above growth rule for inserting the element n+ 1 could also be formulated by saying that,
for an existing bucket recursive tree T with n elements, the probability that a certain node v ∈ T
attracts the new element n+ 1 is proportional to the number of elements contained in v, let us
say k with 1≤ k≤ b, and is thus given by k

n . Summarising this procedure we obtain the following
definition.

Definition 1 (Bucket recursive trees). We start with a single bucket as root node containing only
label 1. Given a tree T of size n≥ 1. Let p(v)= P(n+ 1<t v | c(v)} denote the probability that node
v ∈ T attracts label n+ 1 conditioned on its capacity c(v). The family of random bucket recursive
trees is generated according to the probabilities

p(v)= c(v)
n

,

with capacity 1≤ c(v)≤ b, thus independent of the out-degree deg+(v)≥ 0 of node v.

2The notation xs and xs was introduced and popularised by Knuth; alternative notations for the falling factorials include
the Pochhammer symbol (x)s, which is unfortunately sometimes also used for the rising factorials.
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Note that here and throughout this work the capacities c(v)= cn(v) and the out-degree
deg+(v)= deg+n (v) of a node v in a tree T are always dependent on the size |T| = n.

In the following we present two new stochastic growth rules. They generate families of random
bucket increasing trees with bucket size b≥ 1. Concerning the created trees, they are by definition
unordered. For both rules there is an additional dependence on the out-degree deg+(v) of the
nodes.

Definition 2 ((b,d)-ary increasing). We start, case n= 1, with a single bucket as root node con-
taining only label 1. Given a tree T of size n≥ 1. Let p(v) denote the probability that node v ∈ T
attracts label n+ 1 in a bucket increasing tree of size n ∈N.

The family of random (b,d)-ary increasing trees, with d ∈Q such that (d− 1)b ∈N, is generated
according to the probabilities

p(v)= (d− 1)c(v)+ 1− deg+(v)
(d− 1)n+ 1

,

with 1≤ c(v)≤ b and deg+(v)≥ 0.

Definition 3 ((b, α)-plane oriented recursive trees). We start, case n= 1, with a single bucket as
root node containing only label 1. Given a tree T of size n≥ 1. The family of random (b,α)-plane
oriented recursive trees, with α > 0, is generated according to the probabilities p(v) that node v ∈ T
attracts label n+ 1:

p(v)= deg+(v)+ (α + 1)c(v)− 1
(α+ 1)n− 1

,

with 1≤ c(v)≤ b and deg+(v)≥ 0.

Remark 4. Panholzer and Prodinger [21] characterised increasing tree families, which can be
constructed by a simple stochastic growth rule. They obtained a unifying description based on
two parameter, leading to three different families of trees. The two growth processes for (b,d)-ary
increasing trees and (b, α)-PORTs together with the process for random bucket recursive trees
stated before, generalise the processes of [21], namely, they correspond to the special case of
bucket size b= 1. For general b ∈N, we can show [10] that the three processes introduced before
are the only ones, which can be constructed by a simple stochastic growth rule.

Remark 5 (Linear bucket increasing trees). Plane-oriented recursive trees (PORTs, i.e., (1,1)-
PORTs) and their generalisation also appeared in the literature under different names: Pittel [22]
calls such tree families linear increasing trees, also unifying recursive trees and d-ary increasing
trees into a single family. Closely related tree families are so-called scale-free trees, which can also
be generated by a preferential attachment rule.

In the spirit of Pittel, we can define linear bucket increasing trees as follows. Given a tree T of
size n≥ 1, a label n+ 1 is attracted by a node v ∈ T that is chosen with probability proportional to

α · (c(v)− 1)+ β · deg+(v)+m,
with 1≤ c(v)≤ b and deg+(v)≥ 0. Here α, β ,m ∈R denote real parameters such that the sum is
non-negative. For b= 1 we have c(v)= 1 and we reobtain Pittel’s linear increasing trees.

2.2 Combinatorial description of bucket increasing tree families
Our basic objects are rooted ordered trees T ∈ B. Here, the order of the subtrees of a node is of
relevance. The nodes of the trees are buckets with an integer capacity c, with 1≤ c≤ b for a given
maximal integer bucket size b≥ 1. We assume that all internal nodes (i.e., non-leaves) in the tree
must be saturated, while the leaves might be either saturated or unsaturated. Here B denotes the
family of all bucket ordered trees with maximal bucket size b. A tree T defined in this way is
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called a bucket ordered tree with maximal bucket size b. As already mentioned we define for
bucket ordered trees the size |T| of a tree T via |T| =∑v c(v), where c(v) ranges over all vertices
of T. An increasing labelling �(T) of a bucket ordered tree T is then a labelling of T, where the
labels {1, 2, . . . , |T|} are distributed amongst the nodes of T, such that the following conditions
are satisfied: (i) every node v contains exactly c(v) labels, (ii) the labels within a node are arranged
in increasing order, (iii) each sequence of labels along any path starting at the root is increasing.
A bucket ordered increasing tree T̃ is given by a pair T̃ = (T, �(T)).

Then a class T of a family of bucket increasing trees with maximal bucket size b can be defined
in the following way. A sequence of non-negative numbers (ϕk)k≥0 with ϕ0 > 0 and a sequence of
non-negative numbers ψ1,ψ2, . . . ,ψb−1 is used to define the weight w(T) of any bucket ordered
tree T by w(T) := ∏

v w(v), where v ranges over all vertices of T. The weight w(v) of a node v is
given as follows, where deg+(v) denotes the out-degree (i.e., the number of children) of node v:

w(v)=
{
ϕdeg+(v), if c(v)= b,
ψc(v), if c(v)< b.

Thus, for saturated nodes the weight depends on the out-degree deg+(v) and is described by
the sequence ϕk, whereas for unsaturated nodes the weight depends on the capacity c(v) and is
described by the sequence ψk.

Furthermore, L(T) denotes the set of different increasing labellings �(T) of the tree T with dis-
tinct integers {1, 2, . . . , |T|}, where L(T) := ∣∣L(T)∣∣ denotes its cardinality. The family T consists
of all trees T̃ = (T, �(T)), with their weights w(T) and the set of increasing labellings L(T) and
we define w(T̃) := w(T). Concerning bucket ordered increasing trees, note that the left-to-right

order of the subtrees of the nodes is relevant. E.g., the trees
1

32 and
1

23 are forming two
different trees.

For a given degree-weight sequence (ϕk)k≥0 with a degree-weight generating function ϕ(t) :=∑
k≥0 ϕktk and a bucket-weight sequence ψ1, . . . ,ψb−1, we define now the total weights Tn by

Tn :=
∑

T∈B : |T|=n
w(T) · L(T)=

∑
T̃=(T,�(T))∈T : |T|=n

w(T̃).

It is advantageous for such enumeration problems to describe a family of increasing trees T by
the following formal recursive equation:

T =ψ1 · 1 ∪̇ψ2 · 1 2 ∪̇ · · · ∪̇ψb−1 · 1 2 b-1... ∪̇
ϕ0 · 1 2 . . . b ∪̇ ϕ1 · 1 2 . . . b × T ∪̇ ϕ2 · 1 2 . . . b × T ∗ T ∪̇ ϕ3 · 1 2 . . . b × T ∗ T ∗ T ∪̇ · · ·

(1)

=ψ1 · 1 ∪̇ψ2 · 1 2 ∪̇ · · · ∪̇ψb−1 · 1 2 b-1... ∪̇ 1 2 . . . b × ϕ(T ),
where 1 2 ... k denotes a bucket of capacity k labelled by 1, 2, . . . , k, × the cartesian product, ∗
the partition product for labelled objects, and ϕ(T ) the substituted structure. On the other hand,
we can use standard notation [6]. Let Z denote the atomic class (i.e., a single (uni)labelled node),
A� ∗ B the boxed product (i.e., the smallest label is constrained to lie in theA component) of the
combinatorial classesA and B. Then,

T =ψ1 ·Z� +ψ2 ·
(
Z�

)2 + · · · +ψb−1 ·
(
Z�

)b−1 + (Z�
)b ∗ ϕ(T )

=
b−1∑
k=1

ψk ·
(
Z�

)k + (Z�
)b ∗ ϕ(T ).

Here the meaning of (Z�)k ∗ B is Z� ∗ (Z� ∗ ( · · · ∗ (Z� ∗ B))), with k occurrences of Z�.
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Using above formal description, one can show that the exponential generating function T(z) :=∑
n≥1 Tn

zn
n! of the total weights Tn is characterised by the following result of [13].

Proposition 6. The exponential generating function T(z) of bucket increasing trees with degree-
weight generating function ϕ(t) satisfies an ordinary differential equation of order b:

db

dzb
T(z)= ϕ(T(z)), (2)

with initial conditions
T(0)= 0, T(k)(0)=ψk, for 1≤ k≤ b− 1.

Example 7 (Bucket size one – ordinary increasing trees). In the case of bucket size b= 1 we obtain
ordinary increasing trees. We have a simple description using the boxed product:

T =Z� ∗ ϕ(T ). (3)

The exponential generating function T(z) of bucket increasing trees with degree-weight
generating function ϕ(t) is implicitly defined by∫ T(z)

0

dt
ϕ(t)
= z.

Prominent varieties include recursive trees, binary increasing and plane-oriented recursive trees;
for an overview see, e.g., [5, 6].

Example 8 (Bucket size two – bilabelled trees). Trees with bucket size b= 2, degree-weight gen-
erating function ϕ(t) and weight ψ =ψ1 ≥ 0 correspond to so-called bilabelled trees. The family
T̂ can be described by the following symbolic equation:

T =Z� ∗
(
Z� ∗ ϕ(T )) , (4)

The differential equation T′′(z)= ϕ(T(z)) can be readily translated to a first-order equation.
Namely, multiplication with T′(z) and integration leads to the first-order differential equation

T′(z)=
√
ψ2 + 2 ·�(T(z)), T(0)= 0, (5)

with�(x)= ∫ x
0 ϕ(t)dt. Hence, T = T(z) is implicitly given via∫ T

0

dx√
ψ2 + 2 ·�(x) = z.

The special choice ψ = 0 leads to so-called strict bilabelled increasing tree families. Here, due to
the choice ψ = 0, all nodes have to be saturated. Such tree families naturally give rise to hook-
length formulas; see [15] for many examples.

Example 9 (Strict b labelled tree families). Families of strictly b-labelled trees have been recently
studied due to their connection to hook-length formulas [14, 15]. Hereψ1 = · · · =ψb−1 = 0, thus
only saturated nodes are allowed.

3. Combinatorial models of the tree evolution processes
3.1 Random tree models
For each class T of bucket increasing trees associated to a given degree-weight sequence (ϕk)k≥0
and bucket-weight sequence ψ1, . . . ,ψb−1 we define in a natural way probability models for
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random (ordered) bucket increasing trees Tn of size n. We assume that each increasingly
labelled bucket ordered increasing tree T̃ = (T, �(T)) ∈ Tn of size n is chosen with a probability
proportional to its weight w(T̃).

Definition 10 (Random bucket ordered increasing trees). A probability measure on ordered
bucket increasing trees T̃ ∈ Tn of size n is defined by

P[T ]({T̃})= w
(
T̃
)

Tn
=

⎛⎝ ∏
v∈T̃ : c(v)<b

ψc(v)

⎞⎠ ·
⎛⎝ ∏

v∈T̃ : c(v)=b
ϕdeg+(v)

⎞⎠
Tn

.

We speak then about random ordered bucket increasing trees of size n of the family T under the
random tree model.

From a combinatorial point of view it is often convenient to work with ordered trees. However,
the trees generated by the tree evolution processes are by definition unordered. Thus, we turn our
attention to unordered trees. Our basic objects are unordered bucket trees T[U] together with an
increasing labelling �

(
T[U]). In order to obtain a measure on unordered bucket increasing trees

T [U] we proceed in a standard way embedding unordered trees into ordered trees. Each unordered
bucket increasing tree T̃[U] = (T[U], �

(
T[U])) corresponds to∏

v∈T[U]

deg+(v)!

different ordered bucket increasing trees. We obtain a canonical ordered representative T̃ ∈ T of
the unordered tree T̃[U] = (T[U], �

(
T[U])) by ordering the subtrees of each node v ∈ T̃[U] in an

increasing left-to-right way according to the smallest labels contained in the respective subtrees
taking into account the labelling �

(
T[U]). Let f : T [U]→ T denote this injective ordering map.

Definition 11 (Random unordered bucket increasing trees). A probability measure P[T ] on
unordered bucket increasing trees T̃[U] ∈ T [U]n of size n is defined by

P[T ]{T̃[U]}= (w ◦ f )
(
T̃[U]

)
·∏v∈T[U] deg+(v)!
Tn

.

We speak then about random unordered bucket increasing trees of size n of the family T [U] under
the random tree model.

Possibly different models of randomness are introduced when generating an unordered tree of
size n according to one of the three tree evolution processes described before. Given an integer
j≥ 2 and any tree T̃[U] = (T[U], �

(
T[U])), we denote by attr(j) the node in T̃[U] that attracted label

j, and by T̃<j[U] the tree obtained from T̃[U] when restricting to labels less than j. Then we define
π (j) as the map π (j) : T̃[U]→ [0, 1] that gives the probability that label j will be attracted by node
attr(j) in T̃<j[U]:

π (j)(T̃[U])=
⎧⎨⎩P

{
j<t attr(j)

∣∣ T̃<j[U]}, |T̃[U]| ≥ j,

0, |T̃[U]|< j,

with P
{
j<t attr(j)

∣∣ T̃<j[U]} being determined by the tree evolution processes.
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The point-wise product P[e] =∏n
j=2 π (j) is then a probability measure on unordered bucket

increasing trees Tn[U] of size n. In the following we denote with a superscript the source of ran-
domness on Tn: P[T ] for the random tree model and P[e] for the tree evolution process. It holds

P[e]
{
T̃[U]

}
=

n∏
j=2

π (j)
(
T̃[U]

)
.

Let deg+<j(v) be the out-degree of node v when restricting to labels less than j. Then,
a probability measure on ordered trees is obtained via

P[e]{T̃} =
n∏
j=2

π (j)
(
T̃[U]

)
deg+<j(attr(j))

.

3.2 Combinatorial models
It was already proven in [13] that bucket recursive trees generated according to the growth process
as stated in Subsection 2.1 can be considered as a certain bucket increasing tree family. In the
following we extend this result, where, for the sake of completeness, we also collect the findings of
[13] for bucket recursive trees.

Theorem 12 (Combinatorial models for families generated by a stochastic growth rule). The
tree evolution processes that generate families of random unordered bucket recursive trees,
(b,d)-ary increasing trees and (b, α)-plane oriented recursive trees, with bucket size b≥ 1, can be
realised combinatorially by suitably chosen sequences of degree-weights (ϕk)k≥0 and bucket weights
ψ1, . . . ,ψb−1. Given an arbitrary ordered bucket increasing tree T ∈ T of size |T| = n, then it holds
that under the random tree model the probability that a new element n+ 1 is attracted by a node
v ∈ T with capacity c(v)= k is given by p(v)= P{n+ 1<t v | c(v)= k} as defined in Definitions 1-3
for the corresponding tree evolution process.

Consequently, both models of randomness for (un)ordered trees coincide: P[e] = P[T ].

1. Bucket recursive trees: a combinatorial model can be obtained from the sequences

ϕk = (b− 1)!bk
k! , for k≥ 0, ψk = (k− 1)!, for 1≤ k≤ b− 1,

such that ϕ(t)=∑k≥0 ϕktk = (b− 1)! · exp (bt). For this model of bucket recursive trees
the exponential generating function T(z) and the total weights Tn are given by

T(z)= log
(

1
1− z

)
, Tn = (n− 1)!.

2. (b,d)-ary increasing trees: a combinatorial model can be obtained from the sequences

ϕk = (b− 1)!(d− 1)b−1
(b− 1+ 1

d−1
b− 1

)(
b(d− 1)+ 1

k

)
, for k≥ 0,

ψk = (k− 1)!(d− 1)k−1
(k− 1+ 1

d−1
k− 1

)
, for 1≤ k≤ b− 1,

such that ϕ(t)= (b− 1)!(d− 1)b−1
(b−1+ 1

d−1
b−1

)
(1+ t)b(d−1)+1. For this model of (b,d)-ary

increasing trees the exponential generating function T(z) and the total weights Tn =
[zn]T(z) are given by
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T(z)= 1

(1− (d− 1)z)
1

d−1
− 1, Tn = (n− 1)!(d− 1)n−1

(
n− 1+ 1

d−1
n− 1

)
.

3. (b, α)-plane oriented recursive trees: a combinatorial model can be obtained from the
sequences

ϕk = (b− 1)!(α+ 1)b−1
(b− 1− 1

α+1
b− 1

)(
(α+ 1)b− 2+ k

k

)
, for k≥ 0,

ψk = (k− 1)!(α+ 1)k−1
(k− 1− 1

α+1
k− 1

)
, for 1≤ k≤ b− 1,

such that ϕ(t)= (b−1)!(α+1)b−1(b−1−
1
α+1

b−1 )

(1−t)(α+1)b−1 . For this model of (b, α)-plane oriented recursive
trees the exponential generating function T(z) and the total weights Tn = [zn]T(z) are
given by

T(z)= 1− (1− (α+ 1)z)
1
α+1 , Tn = (n− 1)!(α+ 1)n−1

(
n− 1− 1

α+1
n− 1

)
.

Proof. To prove that these choices of sequences (ϕk)k∈N and (ψk)1≤k≤b−1 are actually models for
bucket increasing trees generated according to the stochastic growth rules defined in Subsection
2.1, we have to show that the combinatorial families T of bucket increasing trees have the same
stochastic growth rules as the counterparts created probabilistically. Given an arbitrary bucket
increasing tree T ∈ T of size |T| = n, then the probability that a new element n+ 1 is attracted by
a node v ∈ T with capacity c(v)= k has to coincide with the corresponding probability stated in
Definitions 1–3.

We use now the notation T→ T′ to denote that T′ is obtained from T with |T| = n by incor-
porating element n+ 1, i.e., either by attaching element n+ 1 to a saturated node v ∈ T at one of
the deg+(v)+ 1 possible positions (recall that bucket increasing trees are per definition ordered
trees and thus the order of the subtrees is of relevance) by creating a new bucket of capacity 1
containing element n+ 1 or by adding element n+ 1 to an unsaturated node v ∈ T by increasing
the capacity of v by 1. If we want to express that node v ∈ T has attracted the element n+ 1 lead-
ing from T to T′ we use the notation T v−→ T′. If there exists a stochastic growth rule for a bucket
increasing tree family T , then it must hold that for a given tree T ∈ T of size |T| = n and a given
node v ∈ T the probability pT(v), which gives the probability that element n+ 1 is attracted by
node v ∈ T, is given as follows:

pT(v)=
∑

T′∈T :T
v−→T′ w(T

′)∑
T̃∈T :T→T̃ w(T̃)

=
∑

T′∈T :T
v−→T′

w
(
T′
)

w(T)∑
T̃∈T :T→T̃

w(T̃)
w(T)

. (6)

The remaining task is to simplify the expression above into the form stated in Definitions 1–3. For
a certain tree T̃ with T u−→ T̃ and u ∈ T the quotient of the weight of the trees T̃ and T is due to the
definition of bucket increasing trees given as follows, where we define for simplicity ψb := ϕ0:

w(T̃)
w(T)

=
⎧⎨⎩ψ1

ϕk+1
ϕk

, for c(u)= b and deg+(u)= k,
ψk+1
ψk

, for c(u)= k< b.

For a given tree T ∈ T we define by mk := |{u ∈ T:c(u)= k< b}| the number of unsaturated
nodes of T with capacity k< b and by nk := |{u ∈ T:c(u)= b and deg+(u)= k}| the number of
saturated nodes of T with out-degree k≥ 0. It holds then
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n=
∑
u∈T

c(u)=
b−1∑
k=1

kmk + b
∑
k≥0

nk (7)

and (where we use that there are k+ 1 possibilities of attaching a new node to a saturated node
u ∈ T with out-degree deg+(u)= k):∑

T̃∈T :T→T̃

w(T̃)
w(T)

=
b−1∑
k=1

mk
ψk+1
ψk
+
∑
k≥0

nk(k+ 1)ψ1
ϕk+1
ϕk

.

Moreover, we also have the relation

1=
b−1∑
k=1

mk −
∑
k≥0

(k− 1)nk, (8)

which follows as the difference between the node-sum and edge-sum equation for the tree T:

# nodes=
b−1∑
k=1

mk +
∑
k≥0

nk, # edges= # nodes− 1=
∑
k≥0

knk.

First we turn our attention to the family of (b,d)-ary increasing trees and the weights as given
in Theorem 12. We have

∑
T′∈T :T

v−→T′

w(T′)
w(T)

=

⎧⎪⎨⎪⎩
(k+ 1)ψ1

ϕk+1
ϕk
= b(d− 1)+ 1− k, for c(v)= b and deg+(v)= k,

ψk+1
ψk
= k(d− 1)+ 1, for c(v)= k< b,

and consequently∑
T̃∈T :T→T̃

w(T̃)
w(T)

=
b−1∑
k=1

(k(d− 1)+ 1)mk +
∑
k≥0

nk(b(d− 1)+ 1− k)

= (d− 1)

⎛⎝b−1∑
k=1

kmk + b
∑
k≥0

nk

⎞⎠+ b−1∑
k=1

mk −
∑
k≥0

(k− 1)nk = (d− 1)n+ 1,

due to equations (7) and (8). Thus, with this choice of weight sequences (ϕk)k and (ψk)k, the
probability pT(v) that in a bucket increasing tree T of size |T| = n the node vwith capacity c(v)= k
attracts element n+ 1 coincides with the corresponding probability of the stochastic growth rule
for (b,d)-ary increasing trees given in Definition 2.

We obtain then from equation (2) that the exponential generating functionT(z) := ∑
n≥1 Tn

zn
n!

of the total-weight Tn of bucket increasing trees of size n satisfies the differential equation

db

dzb
T(z)= (b− 1)!(d− 1)b−1

(b− 1+ 1
d−1

b− 1

)
(1+ T(z))b(d−1)+1, (9)

with initial conditions T(0)= 0 and dk
dzk T(z)

∣∣∣
z=0= (k− 1)!(d− 1)k−1

(k−1+ 1
d−1

k−1
)
, for 1≤ k≤ b− 1.

The solution of this equation is given by

T(z)= 1

(1− (d− 1)z)
1

d−1
− 1=

∑
n≥1

(n− 1)!(d− 1)n−1
(
n− 1+ 1

d−1
n− 1

)
zn

n! , (10)

as can be checked easily Hence the total weight of all size n (b,d)-ary increasing trees is given by
Tn = (n− 1)!(d− 1)n−1

(n−1+ 1
d−1

n−1
)
as stated in Theorem 12.
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Table 1. Summary: bucket increasing tree families and their
growth processes

Tree family Growth process : p(v)

Bucket recursive trees
c(v)
n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b,d)-ary increasing trees
(d− 1)c(v)+ 1− deg+(v)

(d− 1)n+ 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b, α)-PORT
deg+(v)+ (α + 1)c(v)− 1

(α + 1)n− 1

For (b, α)-plane oriented recursive trees and weights as given in Theorem 12 we obtain

∑
T′∈T :T

v−→T′

w(T′)
w(T)

=
{
(k+ 1)ψ1

ϕk+1
ϕk
= (α + 1)b− 1+ k, for c(v)= b and deg+(v)= k,

ψk+1
ψk
= k(α + 1)− 1, for c(v)= k< b,

and consequently

∑
T̃∈T :T→T̃

w(T̃)
w(T)

=
b−1∑
k=1

(k(α+ 1)− 1)mk +
∑
k≥0

nk((α+ 1)b− 1+ k)

= (α+ 1)

⎛⎝b−1∑
k=1

kmk + b
∑
k≥0

nk

⎞⎠−
⎛⎝b−1∑

k=1
mk −

∑
k≥0

(k− 1)nk

⎞⎠= (α+ 1)n− 1,

due to equations (7) and (8). Again, with this choice of weight sequences (ϕk)k and (ψk)k, it follows
that the probability pT(v) that in a bucket increasing tree T of size |T| = n the node v with capac-
ity c(v)= k attracts element n+ 1 coincides with the corresponding probability in the stochastic
growth rule for (b, α)-plane oriented recursive trees given in Definition 3.

We obtain then from equation (2) that the exponential generating functionT(z) := ∑
n≥1 Tn

zn
n!

of the total-weight Tn of (b, α)-plane oriented recursive trees of size n satisfies the differential
equation

db

dzb
T(z)= (b− 1)!(α+ 1)b−1

(b− 1− 1
α+1

b− 1

)
1

(1− T(z))b(α+1)−1
, (11)

with initial conditions T(0)= 0 and dk
dzk T(z)

∣∣∣
z=0= (k− 1)!(α+ 1)k−1

(k−1− 1
α+1

k−1
)
, for 1≤ k≤ b− 1.

Again it can be checked easily that the solution of this equation is given by

T(z)= (1− (α+ 1)z)
1
α+1 − 1=

∑
n≥1

(n− 1)!(α+ 1)n−1
(
n− 1− 1

α+1
n− 1

)
zn

n! . (12)

Hence the total weight of all size n (b, α)-plane oriented recursive trees is given by Tn = (n−
1)!(α+ 1)n−1

(n−1− 1
α+1

n−1
)
, which finishes the proof of Theorem 12

In Tables 1–2 we summarise the combinatorial properties as well as the growth processes of the
bucket increasing tree families considered in this work.
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Table 2. Summary: bucket increasing tree families and their combinatorial properties

Tree family Degree-weight GF ϕ(t) initial weightsψk , 1≤ k≤ b− 1

Bucket recursive trees (b− 1)! exp (b · t) (k− 1)!


(b,d)-ary increasing trees (b− 1)!(d− 1)b−1(b−1+ 1
d−1

b−1
)
(1+ t)b(d−1)+1 (k− 1)!(d− 1)k−1(k−1+ 1

d−1
k−1

)


(b, α)-PORT
(b− 1)!(α+ 1)b−1(b−1− 1

α+1
b−1

)
(1− t)(α+1)b−1 (k− 1)!(α + 1)k−1(k−1− 1

α+1
k−1

)

Figure 1. A plane-oriented recursive tree T of size eleven, the clustered tree with b= 2 and the corresponding bilabelled
increasing ordered tree T̃ = C(T).

4. Clustering process and weight sequences
Up to this point, no indication has been given how to find the weight sequences in Theorem 12.
Similarly, we did not give any motivation behind the definition of the growth processes. Here, as
Algorithm 1 we will present a clustering map for ordinary increasing trees, case b= 1. It leads
directly to the stated weight sequences and serves as a motivation behind the definition of the
growth processes and weight sequences.

Let T [b] denote the family of ordered bucket increasing trees with maximal bucket size b, such
that T [1] denotes the family of ordinary ordered increasing trees. Algorithm 1, which defines a
map C : T [1]→ T [b], is given as follows; furthermore it is illustrated in Figure 1.

Proposition 13. The map C : T [1]→ T [b] defined in Algorithm 1 is not injective, but surjective.

Remark 14. Note that for arbitrary increasing tree families the map C does neither take into
account the weight sequence (φk)k≥0 of T [1], nor it determines (ϕk)k≥0 and (ψk)1≤k≤b−1 of T [b].
We will see later, see Examples 16 and 17, that the map can be modified to obtain bijections
between ordinary increasing trees and specific families of bucket increasing trees.

Proof.Apparently, all trees T ∈ T [1] of size k, 1≤ k≤ b, are mapped to a tree C(T) consisting only
of a single bucket v of capacity c(v)= k, thus the map is not injective, except for degenerate choices
of the weight sequence. However, the map C is surjective: every size n bucket increasing tree can
be created by clustering an ordinary increasing tree. Given a bucket increasing tree T̃ ∈ T [b], we
can replace all buckets by corresponding increasing chains, holding the corresponding labels. This
gives an ordinary ordered increasing tree T ∈ T [1] with C(T)= T̃.

Given a family of ordinary increasing trees T [1] with weights (φk)k≥0, we are interest in the
resulting clustered tree families and its properties. Since we can freely choose the weight sequences
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.

Algorithm 1 ClusteringIncreasingTrees (T,b)

Input: Ordered Increasing tree T ∈ T [1], integer b≥ 2
Result: Ordered bucket increasing tree T̃ = C(T) ∈ T [b]

1: V← V(T), T̃←∅
2: do

3: Choose vmin ∈ V , the node with minimal label
4: if |subtree(vmin)| ≥ b then s← b

5: else s←|subtree(vmin)|
6: end If

7: Merge s smallest labelled nodes vmin = v1, v2, . . . , vs ∈ subtree(vmin) into new bucket v.
8: V← V \ {v1, . . . , vs}
9: Redirect all the edges starting at any of these s nodes to the new bucket.

10: T̃← T̃ ∪ {v}
11:While V 
= ∅

(ϕk)k≥0 and (ψk)1≤k≤b−1 of the associated bucket increasing families, we choose them in a weight
preserving way, depending on the given weights (φk)k≥0.

Definition 15 (Weight preserving bucket trees). Given a family of ordinary increasing trees T [1]

with weights (φk)k≥0. We call a family T [b] of bucket increasing trees with weights (ϕk)k≥0 and
(ψk)1≤k≤b−1 weight preserving, if it holds, for all T̃ ∈ Tn,

w(T̃)=
∑

T∈T [1] : C(T)=T̃
w(T). (13)

Given (φk)k≥0, the total weights Tn of the bucket increasing trees, with weight preserving
(ϕk)k≥0 and (ψk)1≤k≤b−1, equals the weight Tn of their ordinary increasing trees counterpart:∑

T̃∈T [b],|T̃|=n
w(T̃)=

∑
T̃∈T [b],|T̃|=n

∑
T∈T [1] : C(T)=T̃

w(T)=
∑

T∈T [1],|T|=n
w(T)= Tn.

Moreover, we directly obtain from (13)

ψk = Tk, 1≤ k≤ b− 1, ϕ0 = Tb,

where Tk denotes the total weight of size k trees of the ordinary increasing tree family.
Next, we consider star-shaped trees T̃ of size b+ k and root degree k. We get

w
(
T̃
)
= ϕk ·ψk

1 .

On the other hand, we can describe all trees T ∈ T [1] satisfying C(T)= T̃. Namely, all such
trees can be created by taking an arbitrary tree of size b and attaching k new nodes labelled
k+ 1, . . . , k+ b to any of the existing b nodes. We denote by v1, . . . , vb the nodes labelled 1, . . . ,
b in T, by deg+≤b(vm) the out-degree of node vm when restricting to labels ≤ b, and by jm the
number of nodes with labels> b attached to vm. This gives∑

T∈T [1] : C(T)=T̃
w(T)= φk0

∑
T∈T [1] : |T|=b

w(T)
∑

∑b
s=1 js=k,
js≥0

b∏
m=1

φdeg+≤b(vm)+jm
φdeg+≤b(vm)

(
deg+≤b(vm)+ jm

jm

)
.
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We use ψ1 = φ0 = T1 and obtain for ϕk the expression

ϕk =
∑

T∈T [1] : |T|=b
w(T)

∑
∑b

s=1 js=k,
js≥0

b∏
m=1

φdeg+≤b(vm)+jm
φdeg+≤b(vm)

(
deg+≤b(vm)+ jm

jm

)
. (14)

As mentioned earlier, it has been shown in [21] that only three families of increasing trees
can be constructed using a stochastic growth process. These are ordinary recursive trees, gen-
eralised plane-oriented recursive trees and d-ary increasing trees, and they are determined by the
degree-weight sequences φk = 1

k! , φk =
(k+α−1

k
)
and φk =

(d
k
)
, k≥ 0, respectively. The three weight

sequences (φk)k≥0 together with (14) directly lead to the result of Theorem 12. Below we present
the calculations for (b, α)-plane oriented recursive trees derived from generalised plane-oriented
recursive trees with φk =

(k+α−1
k
)
. Using

φdeg+≤b(vm)+jm
φdeg+≤b(vm)

(
deg+≤b(vm)+ jm

jm

)
=
(
deg+≤b(vm)+ jm + α − 1

jm

)

and

∑
∑b

s=1 js=k,
js≥0

b∏
m=1

(
deg+≤b(vm)+ jm + α − 1

jm

)
=

∑
∑b

s=1 js=k,
js≥0

b∏
m=1

[tjm]
1

(1− t)deg
+
≤b(vm)+α

= [tk]
1

(1− t)b−1+bα
=
(
b+ bα + k− 2

k

)
,

we get indeed the result stated in Theorem 12:

ϕk =
∑

T∈T1 : |T|=b
w(T) ·

(
b+ bα + k− 2

k

)
= Tb ·

(
b+ bα + k− 2

k

)
. (15)

Example 16 (Bijection between PORTs and three-bundled bilabelled bucket ordered increasing
trees). Following the terminology of [8], we call an ordered (bucket) increasing tree d-bundled, if
every node has d positions, with a (possibly empty) sequence of d-bundled trees (with disjoint sets
of labels) attached to each position. Equivalently, one may think of each node of the ordered tree
as having d− 1 separation walls, which can be regarded as a special type of edges or half-edges,
that separate the subtrees of each node into d bundles. t is known that d-bundled increasing trees
correspond to ordinary ordered increasing trees with degree-weight generating function ϕ(t)=
1/(1− t)d; analogous the familyBd of d-bundled bucket increasing trees corresponds to the family
of bucket ordered increasing trees with ϕ(t)= 1/(1− t)d.

Given an ordinary plane-oriented recursive tree with degree-weight generating function φ(t)=
1/(1− t), we modify the clustering map C defined in Algorithm 1 to a map C∗, such that the
corresponding bilabelled bucket ordered increasing tree is three-bundled: when redirecting edges
to the buckets, we keep track of their previous ancestor. Given a resulting bucket v= (�min, �max),
edges originally incident to the node with smaller label �min that are lying to the left of the node
with larger label �max are grouped into the first bundle, whereas edges incident to �min lying to the
right of �max are grouped into the third bundle. All edges incident to the node with larger label
�max are put into the second bundle, the centre.
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Figure 2. The plane-oriented recursive tree T of size eleven from Figure 1, the corresponding clustered tree with b= 2, and
the corresponding bilabelled 3-bundled increasing ordered tree T̃ = C∗(T).

Then, the map C∗ : T [1]→ B3, with bucket size b= 2 of bucket three-bundled ordered
increasing trees, is a bijection. This bijection is illustrated in Figure 2.

Example 17 (Bijection between recursive trees and two-bundled bilabelled bucket recursive
trees).We introduce two-bundled bucket recursive treesBR2 with bucket size two. Each saturated
node has an half-edge that separates its subtrees into two bundles. The tree family corresponds
to the degree-weight generating function ϕ(t)= exp (2t) and ψ1 = 1. Then, we modify the clus-
tering map C again to a map Ĉ, such that the corresponding bilabelled bucket recursive tree is
two-bundled: when redirecting edges to the buckets, we keep track of their previous ancestor.
Given a resulting bucket v= (�min, �max), all edges originally incident to the smaller label �min are
grouped into the first bundle, whereas all edges incident to the larger label �max are put into the
second bundle.

Then, the map Ĉ : R→ BR2 from ordinary recursive trees to two-bundled bilabelled bucket
recursive trees is a bijection.

Similar bijections for bucket size b= 2 can be obtained also for binary increasing trees and
variants.

5. Increasing diamonds and bucket increasing trees
5.1 Symbolic description and bijections
We consider trees with bucket size b= 2, degree-weight generating function ϕ(t) and weight ψ =
ψ1 = 1. As stated in Example 8 they allow the symbolic description

T =Z� +Z� ∗
(
Z� ∗ ϕ(T )) . (16)

The exponential generating function T(z) satisfies the first-order differential equation

T′(z)=√1+ 2 ·�(T(z)), T(0)= 0,

with�(x)= ∫ x
0 ϕ(t)dt. Moreover, T = T(z) is implicitly given via∫ T

0

dx√
1+ 2 ·�(x) = z.

On the other hand, increasing diamonds as proposed in [4] are defined by the symbolic equation

F =Z� +Z� ∗ ϕ(F) ∗Z�, (17)
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Figure 3. Two different increasing diamonds of size nine and fourteen, respectively.

where the latter boxed product constrains the largest label. They constitute a combinatorial family
of labelled, directed acyclic graphs (DAGs) with a source and a sink such that the labels along
any path are increasing. The functional operation ϕ occurring in (17) is here specifying possible
degrees respectively their weights, see [4] for more details. Figure 3 illustrates two examples of
increasing diamonds.

The symbolic description (17) of increasing diamonds leads to exactly the same exponential
generating function as for bucket increasing trees with bucket size b= 2 described formally via
(16). Thus, it is natural to ask for a bijection between these combinatorial objects of a given size,
where the size of an increasing diamond is given by the number of its nodes.

Before stating such a bijection we note that it is convenient to think of an increasing diamond
F ∈F as having three types of nodes stemming from the recursive combinatorial construction
given in (17), which partitions the set of nodes into small nodes, inner nodes and large nodes, i.e.,

V(F)=VS(F) ∪̇VI(F) ∪̇VL(F).

Namely, if F has size one its only vertex is assigned to an inner node. Otherwise, the smallest node
and the largest node of F are assigned to the respective node type; furthermore by removing these
two nodes of F we obtain a (possibly empty) sequence of increasing diamonds F1, . . . , Fr , and to
each of these structures we apply this assignment recursively.

Theorem 18. The family of ordered increasing diamondsFn of size n, with degree-weight generating
function ϕ(t), are in a natural bijectionM with ordered bucket increasing trees Tn of size n with the
same degree-weight generating function, Fn ∼= Tn.

The bijection M together with the characterisation given in Theorem 12 provides a charac-
terisation of families F of increasing diamonds with a total weight Tn, resembling the weights of
ordinary increasing trees and thus leading to simple counting formulas. In particular, this explains
the strikingly simple formula observed in [4], which we collect in the next statement.

Corollary 19. The number Tn of increasing diamonds of size n with degree-weight generating func-
tion ϕ(t)= 1/(1− t)3 equals the number of plane-oriented recursive trees of size n. It is given by the
simple formula

Tn = (2n− 3)!! = (2n− 2)!!
2n−1(n− 1)! , n≥ 1.

Proof of Corollary 19. By bijection M in Theorem 18 increasing diamonds F with degree-
weight generating function ϕ(t)= 1/(1− t)3 are mapped to three-bundled bilabelled bucket
ordered increasing trees B3 with the same degree-weight generating function. Furthermore, the
refined clustering map C∗ maps the family B3 bijectively to a family of ordinary increasing
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.

Algorithm 2: DiamondToBucket (F)

Input: Increasing Diamond F ∈F
Result: Bucket size two increasing tree T̃ ∈ T of same size and with same label set

1: T̂← DiamondToIncdesc(F)

2: T̃← IncdescToBucket(T̂)

3: Return T̃

trees T [1], called plane-oriented recursive trees, with degree-weight generating function φ(t)=
1/(1− t). Symbolically, we have (

C−1∗ ◦M
)
(F)= T [1].

The number of plane-oriented recursive trees of size n is well known [3, 5, 6, 23, 24] and obtained
from the the classical generating function of the total numbers T(z)= 1−√1− 2z, satisfying

T′(z)= φ(T(z))= 1
1− T(z)

, T(0)= 0.

Extraction of coefficients gives
Tn = n![zn]T(z)= (2n− 3)!!

Proof. Our bijection M:Fn→ Tn uses two steps: first we construct recursively intermediate
objects that we call increasing-decreasing bilabelled trees, where each bucket holds the smallest
as well as the largest label in its subtree. Thus, when considering a tree T̂ ∈ ID of this family and
restricting to the smaller or larger labels in each bucket, it is an increasing or decreasing tree,
respectively. Then we give a recursive procedure that transforms, by using cyclic permutations
of the labels, such trees to bucket increasing trees of the same shape. These recursive procedures
are given as Algorithms 3–4; combining them leads to Algorithm 2 and thus the map M. We
further observe that the weight sequence (ϕk)k≥0 is not involved in the bijection, as the weights
are directly preserved: if a certain substructure of an increasing diamonds F decomposes into the
node with smallest label, the node with largest label and r≥ 0 increasing subdiamonds, then the
corresponding subtree in the bucket increasing tree T̃ =M(F) decomposes into the root bucket
and exactly r subtrees. We also note that the reverse map M−1 is readily obtained by inverting
the recursive procedures in a natural way.

The bijectionM is illustrated in Figures 4–5 for the increasing diamonds given in Figure 3.
The map also gives a correspondence between quantities in increasing diamonds and bucket

increasing trees. Let In denote the random variable counting the number of inner nodes in a ran-
dom increasing diamond of size n. Moreover, let Nn denote the number of nodes with capacity
one in a random bucket increasing tree of size n. Then we get the following corollary.

Corollary 20. Under the bijectionM given in Theorem 18 the number of inner nodes in an increas-
ing diamond F coincides with the number of nodes of capacity one in the corresponding bucket
increasing treeM(F). Consequently, the r.v. In and Nn are equal in distribution, In

(d)= Nn.

We note that a refined enumeration of increasing diamonds according to the number of inner
nodes is possible in a rather direct way. Let

f (z, u)=
∑
n≥1

n∑
j=1

Tn,j

n! z
nuj =

∑
n≥1

Tn ·E
(
uIn
)

n! zn

denote the refined generating function with f (z, 1)= T(z).
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.

Algorithm 3: DiamondToIncdesc (F)

Input: Increasing diamond F ∈F
Result: Increasing-decreasing bilabelled tree T̂ ∈ ID of same size and with same label set

1: F̂← F

2: n← size of F̂

3: if n= 1 then
4: form a bucket b̂= (vI | ) with vI the single node of F̂
5: T̂← tree consisting of single bucket b̂

6: Return T̂

7: else

8: form a bucket b̂= (vS | vL) with vS and vL the nodes with smallest and largest label of F̂
9: F̂1, . . . , F̂r← sequence of increasing diamonds obtained by removing vS and vL from F̂

10: for j= 1 to r do
11: T̂j← DiamondToIncdesc(F̂j)

12: end for

13: T̂← tree with root bucket b̂ and subtrees T̂1, . . . , T̂r attached to it

14: Return T̂

15: end if

.

Algorithm 4: IncdescToBucket(T̂)

Input: Increasing-decreasing bilabelled tree T̂ ∈ ID
Result: Bucket size 2 increasing tree T̃ ∈ T of same size, same shape and with same label set

1: T̃← T̂

2: n← size of T̃

3: if n= 1 then
4: Return T̃

5: else

6: let �1 < �2 < · · ·< �n be the labels of T̃ in increasing order
7: define π← (�1)(�2 �3 . . . �n) permutation in cycle notation

8: permute labels of T̃ according to permutation π

9: b̃← root bucket of T̃

10: T̂1, T̂2, . . . , T̂r← subtrees of root of T̃

11: for j= 1 to r do
12: T̃j← IncdescToBucket(T̂j)

13: end for

14: T̃← tree with root bucket b̃ and subtrees T̃1, . . . , T̃r attached to it

15: Return T̃

16: end if

Then from the symbolic equation (17) and the resulting differential equation for f (z,u) one gets
that f = f (z, u) is characterised implicitly via∫ f

0

dx√
u2 + 2 ·�(x) = z.
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Figure 4. The increasing diamond of size nine from Figure 2 with three different label types is mapped to an increasing-
decreasing bilabelled tree and then to a bucket increasing tree.
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Figure 5. The increasing diamond from Figure 2 of size 14 with three different label types is mapped to an increasing-
decreasing bilabelled tree and then to a bucket increasing tree.

Many interesting concrete generating functions and examples can be obtained by specialising ϕ(t);
the authors are currently investigating into this matter.

6. Initial bucket size of a specified element
We consider now the random variable Kn, which denotes the size of the bucket containing ele-
ment n in a random bucket increasing tree (with maximal bucket size b) of size n. Note that by
definition 1≤Kn ≤ b. As it will turn out later, the precise analysis of Kn is required in order to
obtain distributional decompositions for two further r.v. of interest, the number of descendants
Yn,j of label j as well as the out-degree Xn,j node j. We derive the probability mass function of
Kn using a generating function approach. Then, we relate the parameter Kn to the distribution of
node types in bucket increasing trees.

6.1. The generating functions approach
In order to study Kn for bucket increasing trees we introduce the bivariate generating function

N(z, v) :=
∑
n≥0

∑
m≥0

P{Kn+1 =m}Tn+1
zn

n! v
m. (18)

To establish a functional equation for N(z,v) from the formal recursive equation (1) it is now
convenient to think of specifically bicoloured bucket increasing trees, where the colouring is as
follows: exactly one element, namely the element with largest label, is coloured red, and all ele-
ments having a label smaller than the red element are coloured black. Let us first assume that the
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red element of T is not contained in the root node. Then the red element is located in one of the
r subtrees of the root of T; let us assume that it is in the j-th subtree. Let us now consider these r
subtrees. After order preserving relabellings, each subtree S1, . . . , Sr is an bucket increasing tree
by itself, where one of the r subtrees contains the red element. Note the obvious fact that the size
of the bucket of the red element is the same in T and in the respective subtree Sj.

We introduce now generating functions, with exponential variable z, where z marks the black
elements, f (z)=∑n≥0 fn zn

n! for sequences fn and f (z, v)=∑n,m≥0 fn,m zn
n! v

m for sequences fn,m,
where v counts the initial bucket size of the red element. With this setting, the total weight of
all suitably bicoloured bucket increasing trees, where the initial bucket size of the red element is
exactlym, is given by P{Kn+1 =m}Tn+1, and thus its generating function is given by

∑
n≥0

∑
m≥0

P{Kn+1 =m}Tn+1
zn

n! v
m =N(z, v),

whereas the total weight of suitably monocoloured ordinary bucket increasing trees is Tn and its
generating function is given by

∑
n≥1

Tn
zn

n! = T(z).

The r− 1monocoloured trees and the bicoloured bucket tree lead then to the expression T(z)r−1 ·
N(z, v). Since the red element can be in the first, second, . . . , r-th subtree, we additionally get a
factor r. Furthermore, the event that the root has out-degree r leads to a factor ϕr . Summing over
all r≥ 1 leads thus to

∑
r≥1 rϕrT(z)r−1N(z, v)= ϕ′(T(z))N(z, v). Since the elements labelled by

1, 2, . . . , b contained in the root node are all coloured black (which again means that b elements
in a labelled object are fixed), equation (1) leads thus to the following differential equation of order
b for N(z,v):

∂b

∂zb
N(z, v)= ϕ′(T(z)) ·N(z, v). (19)

The cases, where the red element is contained in the root of the tree do not appear explicitly in
the differential equation itself, but will be described by the initial conditions. Since P{Kn = n} = 1,
for 1≤ n≤ b (if element n is contained in the root node then all elements with a label≤ n are also
contained in the root node), we obtain the following initial conditions, for 0≤ �≤ b− 1:

∂�

∂z�
N(z, v)

∣∣∣∣
z=0
=
∑
m≥0

P{K�+1 =m}T�+1vm = T�+1v�+1,

with Tn = n![zn]T(z) and T(z) as characterised in Proposition 12 for the particular tree families.
Now we can specify the sequences according to the tree family of interest. Note that for bucket

recursive trees the initial bucket size of node nwas already (implicitly) characterised in [13], hence
we will skip this case. For (b,d)-ary increasing trees we obtain the following Cauchy-Euler type dif-
ferential equation together with the initial conditions for the bivariate generating functionN(z,v):

∂b

∂zb
N(z, v)= Tb+1

(1− (d− 1)z)b
N(z, v),

∂�

∂z�
N(z, v)

∣∣∣∣
z=0
= T�+1v�+1, for 0≤ �≤ b− 1.

(20)
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For (b, α)-plane oriented recursive trees we obtain a very similar Cauchy-Euler type differential
equation together with the initial conditions for the bivariate generating function N(z,v):

∂b

∂zb
N(z, v)= Tb+1

(1− (α + 1)z)b
N(z, v),

∂�

∂z�
N(z, v)

∣∣∣∣
z=0
= T�+1v�+1, for 0≤ �≤ b− 1.

(21)

6.2. The distribution of the initial bucket size
In order to obtain the exact distribution of the r.v. Kn we will give the exact solution of the
homogeneous differential equations (20), (21), which are of Cauchy-Euler-type. Plugging in the
Ansatz N(z, v)= 1

(1−(d−1)z)λ for (b,d)-ary increasing trees, and N(z, v)= 1
(1−(α+1)z)λ for (b, α)-

plane oriented recursive trees, with unspecified λ, into equations (20), (21) leads to the indicial
equation

λb =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Tb+1

(d− 1)b
,

Tb+1
(α+ 1)b

,
or equivalently

(
λ+ b− 1

b

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(b+ 1
d−1
b

)
, (b,d)-ary ITs,

(b− 1
α+1
b

)
, (b, α)-PORTs.

(22)

Similar equations have been studied in [18] for bucket recursive trees. It is convenient to give a
unified analysis of the indicial equations for all three models. Let

κ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, bucket recursive trees,
1

d− 1
, (b,d)-ary ITs,

− 1
α + 1

, (b, α)-PORTs.

(23)

Then, the indicial equations can be written in a unified way:

λb = (b+ κ)b. (24)

Equations of this or similar kind have been treated in [13, 17, 18]. It follows from these con-
siderations that, for κ given in (23), all solutions λ1, λ2, . . . , λb of (24) are simple, and when
arranging them in descending order of real parts it further holds 1+ 1

d−1 = λ1 >�(λ2)≥�(λ3)≥
· · · ≥ �(λb) for (b,d)-ary increasing trees and 1− 1

α+1 = λ1 >�(λ2)≥�(λ3)≥ · · · ≥ �(λb) for
(b, α)-plane oriented recursive trees. Thus the general solutions of (20), (21) are given by

N(z, v)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

b∑
i=1

βi(v)
(1− (d− 1)z)λi

, (b,d)-ary ITs,

b∑
i=1

βi(v)
(1− (α+ 1)z)λi

, (b, α)-PORTs,

(25)

with certain functions βi(u, v), which are specified by the initial conditions as given in (20), (21).
When these initial conditions are plugged into (25) this leads to the following system of linear
equations for the unknown functions βi(v), 1≤ i≤ b:
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b∑
i=1

λ�i βi(v)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v�+1l!

(
�+ 1

d−1
�

)
, (b,d)-ary ITs,

v�+1l!
(
�− 1

α+1
�

)
, (b, α)-PORTs.

Using the abbreviations

s� := s�(v) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v�+1

(
�+ 1

d−1
�

)
, (b,d)-ary ITs,

v�+1
(
�− 1

α+1
�

)
, (b, α)-PORTs,

(26)

we obtain the following system of linear equations for the unknown βi = βi(v), 1≤ i≤ b:

b∑
i=1

(
λi + �− 1

�

)
βi = s�, for 0≤ �≤ b− 1. (27)

To obtain the solution of (27) we can use results and respective computations given in [13, equa-
tions (22) and (30)], slightly adapted to κ occurring in the indicial equation (24) of the tree families
considered.

Lemma 21 ([13]). For given numbers λi, with 1≤ i≤ b, specified as the solutions of equation (24),
and numbers s�, 0≤ �≤ b− 1, the system of linear equations with unknowns βi,

b∑
i=1

(
λi + �− 1
�− 1

)
βi = s�, 0≤ �≤ b− 1,

has the exact solution

βi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b−1∑
r=0

sr

(
λi+b−1
b−r−1

)
(b
r
)
(b− r)

(b+ 1
d−1
b
) (

Hλi+b−1 −Hλi−1
) , 1≤ i≤ b, (b,d)-ary ITs,

b−1∑
r=0

sr

(
λi+b−1
b−r−1

)
(b
r
)
(b− r)

(b− 1
α+1
b
) (

Hλi+b−1 −Hλi−1
) , 1≤ i≤ b, (b, α)-PORTs.

An application of Lemma 21 immediately gives the values βi(v) with respect to the initial
conditions (26). Thus extracting coefficients yields

[zn−1vm]N(z, v)= P{Kn =m} Tn
(n− 1)! =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

b∑
i=1

(
λi + n− 2
n− 1

)
(d− 1)n−1[vm]βi(v), (b,d)-ary ITs,

b∑
i=1

(
λi + n− 2
n− 1

)
(α+ 1)n−1[vm]βi(v), (b, α)-PORTs,
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and by specifying Tn as given in Theorem 12 and s�(v) as given in (26) we obtain the exact
distribution of Kn stated in the following theorem.

Theorem 22. The probability mass function of the random variable Kn counting the initial bucket
size of node n in a random bucket tree of size n is given by the following closed formula.

P{Kn =m} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

b∑
i=1

(
λi+n−2
n−1

)(
λi+b−1
b−m

)(m−1+ 1
d−1

m−1
)

(n−1+ 1
d−1

n−1
)( b

m−1
)
(b−m+ 1)

(b+ 1
d−1
b
) (

Hλi+b−1 −Hλi−1
) , for (b,d)-ary ITs,

b∑
i=1

(
λi+n−2
n−1

)(
λi+b−1
b−m

)(m−1− 1
α+1

m−1
)

(n−1− 1
α+1

n−1
)( b

m−1
)
(b−m+ 1)

(b− 1
α+1
b
) (

Hλi+b−1 −Hλi−1
) , for (b, α)-PORTs,

for 1≤m≤ b.

For n tending to infinity the random variable Kn converges in distribution to a limit K, whose
discrete distribution is given as follows.

P{K =m} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b+ 1
d−1

b−m
)(m−1+ 1

d−1
m−1

)
( b
m−1

)
(b−m+ 1)

(b+ 1
d−1
b
) (

Hb+ 1
d−1
−H 1

d−1

) , (b, d)−aryITs,

(b− 1
α−1

b−m
)(m−1− 1

α+1
m−1

)
( b
m−1

)
(b−m+ 1)

(b− 1
α+1
b
) (

Hb− 1
α+1
−H− 1

α+1

) , (b, α)−PORTs,

for 1≤m≤ b.

Remark 23. The corresponding results for bucket recursive trees were already derived in [13]
(although not stated explicitly):

P{Kn =m} =
b∑

i=1

(
λi+b−1
b−m

)(
λi+n−2
n−1

)( b
m−1

)
(b−m+ 1)

(
Hλi+b−1 −Hλi−1

) ,
for 1≤m≤ b. Furthermore, for bucket recursive trees the random variable Kn converges, for n→
∞, in distribution to a Zipf-distributed limit K:

P{K =m} = 1
mHb

, 1≤m≤ b.

Proof. It remains to show the stated limiting distribution results. We apply Stirling’s formula for
the Gamma-function


(z)=
(z
e

)z √2π√
z

(
1+O

(
1
z

))
,

and get

(
n− 1+ 1

d−1
n− 1

)
=



(
n+ 1

d−1
)



(
1+ 1

d−1
)

(n)

= n
1

d−1



(
1+ 1

d−1
) (1+O

(
n−1

))
,
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as well as (
n− 1− 1

α+1
n− 1

)
=



(
n− 1

α+1
)



(
1− 1

α+1
)

(n)

= n−
1
α+1



(
1− 1

α+1
) (1+O(n−1)

)
.

Concerning the roots of the indicial equations recall from remarks stated past equation (24) that

λ1 =
⎧⎨⎩1+

1
d−1 , (b,d)-ary ITs,

1− 1
α+1 , (b, α)-PORTs.

For (b,d)-ary increasing trees we obtain the following asymptotic expansions:

(
n− 2+ λi
n− 1

)
= nλi−1


(λi)
(
1+O(n−1)

)=
⎧⎪⎪⎨⎪⎪⎩

n
1

d−1


(
1+ 1

d−1
) (1+O(n−1)

)
, i= 1,

O
(
n�λi−1

)
, 2≤ i≤ b.

For (b, α)-plane oriented recursive trees we have the corresponding results

(
n− 2+ λi
n− 1

)
=

⎧⎪⎪⎨⎪⎪⎩
n−

1
α+1



(
1− 1

α+1
) (1+O(n−1)

)
, i= 1,

O
(
n�λi−1

)
, 2≤ i≤ b.

Thus, for n→∞, the dominant contribution in the asymptotic expansions of P{Kn =m} and the
finite sum stems from the index i= 1 and λ1, leading to the stated result.

6.3 Relation to node types in bucket increasing trees
Let Nn,j denote the random variable counting the number of nodes with capacity c(v)= j, 1≤ j≤
b. Furthermore, let Nn denote the random vector (Nn,1, . . . ,Nn,b). Mahmoud and Smythe [18]
considered bucket recursive trees. They proved a multivariate central limit theorem for Nn for
trees with bucket size b≤ 26. For trees with b> 26 a phase change in the limiting distribution of
Nn was detected and the central limit theorem does not hold anymore. In the following we are
going to analyse the limiting distribution of the random vector Nn for (b,d)-ary increasing trees
and (b, α)-plane oriented recursive trees. We also summarise the main results for bucket recursive
trees. There is a close connection between the random variablesKn andNn. The distribution of the
initial bucket sizeKn+1 depends on the different node types present at time n, n≥ 1. Let vk = vn,m,k
denote the buckets of capacitym contributing to Nn,m, with 1≤m≤ b and 1≤ k≤Nn,j. Then, by
definition of the growth processes

P {Kn+1 = 1 |Nn} =
Nn,b∑
k=1

P
{
n+ 1<t vn,b,k

}
and, for 2≤m≤ b,

P {Kn+1 =m |Nn} =
Nn,m−1∑
k=1

P
{
n+ 1<t vn,m−1,k

}
.
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Of course, for each k, the probabilities P{n+ 1<t vn,b,k} coincide and are given according to
Definitions 1–3:

P{n+ 1<t vn,m,k} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m
n
, bucket recursive trees,

(d− 1)m+ 1− deg+(v)
(d− 1)n+ 1

, (b,d)-ary ITs,

deg+(v)+ (α+ 1)m− 1
(α+ 1)n− 1

, (b, α)-PORTs.

Note that for 1≤m≤ b− 1 the individual nodes vk = vn,m,k are unsaturated, such that
deg+(vn,m,k)= 0. Consequently, summation leads to the following result.

Proposition 24. The random variable Kn counting the initial size of the bucket containing label
n is related to the number of nodes Nn = (Nn,1, . . . ,Nn,b) with respective capacities as follows. For
2≤m≤ b it holds

P{Kn+1 =m} =E(Nn,m−1) ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

m− 1
n

, bucket recursive trees,

(d− 1)(m− 1)+ 1
(d− 1)n+ 1

, (b,d)-ary ITs,

(α + 1)(m− 1)− 1
(α+ 1)n− 1

, (b, α)-PORTs.

and

P{Kn+1 = 1} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
(
Nn,b

) · b
n
, bucket recursive trees,

E(Nn,b) · (d− 1)b+ 1
(d− 1)n+ 1

+ 1−∑b
j=1 E(Nn,j)

(d− 1)b+ 1
, (b,d)-ary ITs,

E(Nn,b) · (α + 1)b− 1
(α + 1)n− 1

+ −1+
∑b

j=1 E
(
Nn,j

)
(α + 1)n− 1

, (b, α)-PORTs.

In the following we consider generalised Pólya-Eggenberger urn models (see, e.g., [7]) with
b different types of balls. For bucket recursive trees Mahmoud and Smythe [18] studied the
following urn model.

Urn 25 (Bucket recursive trees) Consider a balanced urn with balls of b colours and let Qn,m
denote the number of balls of typem, 1≤m≤ b, in the urn after n draws. (Qn,1, . . . ,Qn,b) denotes
the corresponding random vector at time n. At each time step, draw one ball at random from the
urn, observe its colour, and add balls according to the ball replacement matrix

M=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 2 0 . . . 0

0 −2 3 . . . 0
...

. . .
...

0 . . . 0 −(b− 1) b

1 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and initial composition a single ball of type one. Then, the random variables Qn,m are related to
the node types via

Nn,m = Qn,m
m

, 1≤m≤ b.

The characteristic polynomial ofM is given

χM(λ)= det (M− λI)= (− 1)b
(
λb − b!

)
. (28)

For b≤ 26 and b> 26, respectively, there occurs a phase change: the limit law changes from nor-
mal to non-normal, which is due to the structure of the characteristic polynomial and the general
results revealed in [7]. We assume that the eigenvalues λ1, . . . , λb are indexed according to their
real parts

1=�λ1 ≥�λ2 · · · ≥ �λb.
If the real part of λ2 exceeds 1

2 then the limit law changes. In the following we denote the random
vector of ball types as Qn = (Qn,1, . . . ,Qn,b).

Theorem 26 (Mahmoud and Smythe [18]). For b≤ 26 the limit law of 1√
n
(
Qn −E(Qn)

)
is

asymptotically normal. For b> 26 there is no normal limit law (under the same normalisation).

Here we introduce two new urn models.
Urn 27 ((b, α)-plane oriented recursive trees) Consider the urn with ball replacement matrix

M=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α 2α+ 1 0 . . . 0

0 −(2α+ 1) 3α + 2 . . . 0
...

. . .
...

0 . . . 0 −((b− 1)α+ b− 2) bα + b− 1

α 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and initial composition α balls of type one. Then, the random variables Qn,m are related to the
node types by

Nn,m = Qn,m
mα +m− 1

, 1≤m≤ b.

The characteristic polynomial ofM is given

χM(λ)= det (M− λI)= (− 1)b(α+ 1)b
((

λ− 1
α + 1

)b
−
(

α

α + 1

)b
)
. (29)

Urn 28 ((b,d)-ary increasing trees) Consider the urn with ball replacement matrix

M=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−d 2d− 1 0 . . . 0

0 −(2d− 1) 3d− 2 . . . 0
...

. . .
...

0 . . . 0 −((b− 1)d− (b− 2)) bd− (b− 1)

d 0 0 . . . −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and initial composition d balls of type one. Then, the random variables Qn,m are related to the
node types by

Nn,m = Qn,m
md− (m− 1)

, 1≤m≤ b.

The characteristic polynomial ofM is given

χM(λ)= det (M− λI)= (− 1)b(d− 1)b
((

λ+ 1
d− 1

)b
−
(

d
d− 1

)b
)
. (30)

As indicated by the connection between Kn and Nn, there is also a close connection between
the characteristic polynomials (28), (29), (30) and the indicial equation (24):

λb = (b+ κ)b.
In particular, there is an affine transformation between these two polynomials. We note in passing
that the general theorems of Janson [7] and Müller [20] allow to describe a phase change in the
limit laws for Nn similar to the results of Mahmoud and Smythe [18].

7. Applications
In the following we present a few applications of the results obtained in Section 6. The stochastic
growth rule discussed in Subsection 2.1 and the analysis of the initial bucket size Kn can be used to
analyse several parameters. We consider in the following the random variable Yn,j, which counts
the number of descendants of element j, i.e., the total number of elements with a label greater or
equal j contained in the subtree rooted with the bucket containing element j, in a random bucket
increasing tree (with maximal bucket size b) of size n. For this random variable we provide the
exact distribution, as well as a decomposition of the random variable of interest in terms of the
initial bucket size Kn. Then we apply our results to the root degree as well as the out-degree Xn,j of
the node containing element j. There we also present a decomposition of the random variable of
interest, complementing earlier results.

7.1 Descendants in bucket increasing trees
In order to avoid degeneracy we assume that j≥ b+ 1 (for 1≤ j≤ b it holds Yn,j = n+ 1− j).
Explicit results for the probability mass functions and themoments of both r.v. Yn,j andXn,j can be
obtained in principle by purely combinatorial means and a generating functions approach similar
to the parameter initial bucket size treated above. However, here we take a different point of view
utilising the previous results for the initial bucket size to provide concise decompositions of the
random variables based on results already known in the literature. Such decompositions readily
lead to limit laws and seem to be more difficult to obtain by using a purely analytic combinatorial
approach.

In order to obtain to analyse Yn,j, we introduce a refinement of this r.v.: let Yn,�,j = Yn,j |Kj = �
denote Yn,j conditioned on the event Kj = �. According to the stochastic growth processes defined
in Subsection 2.1 we obtain the recurrence relation

P{Yn+1,�,j =m} = c1(m+ �− 2)+ c2
c1n+ c2

P{Yn,�,j =m− 1} + c1(n+ 1−m− �)
c1n+ c2

P{Yn,�,j =m},
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form≥ 1 and the initial value Yj,�,j = 1. The parameters c1, c2 occurring in this description of the
law of Yn,�,j are determined by the fraction c2

c1 = κ as given in (23). Alternatively, Yn,�,j can be
described as follows.

Proposition 29. The r.v. Yn,�,j can be described by a sum of dependent random variables Ai,�,j, i≥ j,
all taking values in {0, 1}, and initial value Aj,�,j = 1, where Ai,�,j denotes the indicator variable of
the event that label i is a descendant of label j conditioned on the event Kj = �, and we get

Yn,�,j =
n∑
i=j

Ai,�,j, P{Ai+1,�,j = 1 | Yi,�,j} = c1
(
�− 1+ Yi,�,j

)+ c2
c1i+ c2

. (31)

Proof. It suffices to show that the probabilities P{Ai+1,�,j = 1 | Yi,�,j} are indeed given as stated
above. Given Kj assume that node v containing label j has m≥ 1 descendants at time i≥ j. If
m< b+ 1−Kj then node v has out-degree zero and capacity c(v)=Kj +m− 1. It attracts a new
label i+ 1 with probability p(v)= pi+1(v) determined directly by the stochastic growth rules:

p(v)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kj +m− 1
i

, bucket recursive trees,

(d− 1)(Kj +m− 1)+ 1
(d− 1)i+ 1

, (b,d)-ary ITs,

(α + 1)(Kj +m− 1)− 1
(α+ 1)i− 1

, (b, α)-PORTs.

Otherwise, assume that the number of descendants is given by m≥ b+ 1−Kj. Thus, node v is
saturated and the remainingm− (b+ 1−Kj) labels are distributed amongst the r non-root nodes
u1, . . . , ur in the subtree rooted at v. The probability P{i+ 1<d j} that label i+ 1 is a descendant
of label j is given by

P{i+ 1<d j} = P{i+ 1<c v} +
r∑

k=1
P{i+ 1<c uk},

where P{i+ 1<c x} denotes the probability that label i+ 1 is contained in the node x. We note
that

r∑
k=1

c(uk)=m− (b+ 1−Kj
)
, deg+(v)+

r∑
k=1

deg+(uk)= r.

For bucket recursive trees we obtain

P
{
i+ 1<d j

}= b
i
+

r∑
k=1

c(uk)
i
= b+m− (b+ 1−Kj

)
i

= Kj +m− 1
i

.

For (b,d)-ary increasing trees we have

P{i+ 1<d j} = (d− 1)c(v)+ 1− deg+(v)
(d− 1)i+ 1

+
r∑

k=1

(d− 1)c(uk)+ 1− deg+(uk)
(d− 1)i+ 1

= (d− 1)b+ r+ 1+ (d− 1)(m− (b+ 1−Kj))− r
(d− 1)i+ 1

= (d− 1)(Kj +m− 1)+ 1
(d− 1)i+ 1

.
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Finally, for (b, α)-plane oriented recursive trees we get

P
{
i+ 1<d j

}= deg+(v)+ (α+ 1)c(v)− 1
(α + 1)i− 1

+
r∑

k=1

deg+(uk)+ (α + 1)c(uk)− 1
(α + 1)i− 1

= r+ (α + 1)(b+m− (b+ 1−Kj))− r− 1
(α + 1)i− 1

= (α+ 1)(Kj +m− 1)− 1
(α+ 1)i− 1

.

Summarising we obtain the probabilities

P
{
i+ 1<d j | Yi,�,j =m

}=
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�− 1+m
i

, bucket recursive trees,

(d− 1)(�− 1+m)+ 1
(d− 1)i+ 1

, (b,d)-ary ITs,

(α+ 1)(�− 1+m)− 1
(α+ 1)i− 1

, (b, α)-PORTs,

thus leading to the decomposition stated in (31).

We remark in passing that, alternatively, Yn,�,j can also be described via a generalised Pólya urn
model; see [16].

It is a key observation that the distribution of Yn,�,j is identical to the distribution of a r.v.
Dn,�,j, counting so-called generalised descendants Dn,�,j in ordinary families of increasing trees,
which has been introduced and studied in [12]. Namely, the r.v. Dn,�,j also admits a descrip-

tion as a sum of dependent r.v. equivalent to (31), see [12, equations (7)–(8)], thus Yn,�,j
(d)= Dn,�,j.

Unconditioning immediately leads to the following result.

Proposition 30 (Decomposition of the number of descendants). The random variable Yn,j count-
ing the number of descendants of label j in a bucket increasing tree of size n for the families bucket
recursive trees, (b,d)-ary increasing trees, and (b, α)-plane oriented recursive trees is related to the
random variable Dn,�,j, counting generalised descendants with parameter � for the corresponding
ordinary increasing tree families as studied in [12], where the parameter � is given by the random
variable Kj measuring the initial bucket size of label j:

Yn,j
(d)=Dn,Kj,j.

The probability mass function of Dn,�,j as well as limit laws have been obtained in [12] using
lattice path counting arguments. Using them this easily leads to the following limiting distribution
result of Yn,j, also slightly refining the results of [13] for bucket recursive trees. We thus omit the
details.

Corollary 31 (Limit laws for the number of descendants). For n→∞ and j= j(n), the random
variable Yn,j has the following limit laws, depending on the random initial bucket size Kj or its
limit K.

1. The region for j fixed. The normalised random variable Yn,j is asymptotically Beta-

distributed, Yn,j/n
(d)−→β(Kj + c2

c1 , j−Kj
)
.

2. The region for small j: j→∞ such that j= o(n). The normalised random variable jYn,j/n is

asymptotically Gamma-distributed, jYn,j/n
(d)−→γ (K + c2

c1 , 1
)
.
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3. The central region for j: j→∞ such that j∼ ρn, with 0<ρ < 1. The shifted random variable
Yn,j − 1 is asymptotically negative binomial-distributed, Yn,j − 1 (d)−→NegBin

(
K + c2

c1 , ρ
)
.

4. The region for large j: j→∞ such that k := n− j= o(n). The random variable Yn,j has
asymptotically all its mass concentrated at 1, P{Yn,j = 1} = 1+O

( k
n
)
.

Remark 32. We mention the possibility to improve the distributional convergence of Yn,j in sev-
eral ways. First, one can prove moment convergence. Second, local limit theorems can be deduced
using the explicit expressions for the probability mass functions of Kj and Dn,�,j. Third, for fixed j
one can measure the difference between Yn,j/n and the limiting beta random variable in terms of
a so-called martingale tail sum using discrete martingales.

7.2 Node degrees in bucket increasing trees
Let Xn,j denote the random variable counting the out-degree of the bucket containing label j in
a size n random bucket increasing tree. By definition, we can decompose Xn,j into a sequence of
dependent indicator variables

Xn,j =
n∑

�=j+1
I{� <a j},

where {� <a j} denotes the event that label � is attached as a new node to the node containing
label j. Similar to the case b= 1, see for example [11], the random variable Xn,j does not obey a
uniform behaviour, but it is similar to the r.v. number of descendants considered before. Basically,
we will observe that for b> 1 the random variable Xn,j behaves similar to the case b= 1 once the
bucket containing the label j is fully saturated. Compared to the two “stages” of Yn,j, insertion of
label j into a node of size Kj and then attraction of new labels, we have three stages: first, label j
is inserted into a node v of size Kj; second, node v attracts new labels until it is fully saturated;
then, until time n the node v attracts new labels and its out-degree increases. In order to state
the precise decompositions of Xn,j we utilise our previous results for Kj and Yn,j. We also collect
known results about additional random variables.

We introduce first the stopping time τn,j := minj≤�≤n{Y�,j = b+ 1−Kj} until the node con-
taining label j is saturated. Let ∇ denote the backward difference operator, i.e., ∇xk := xk − xk−1.
The random variable τn,j can be expressed in terms of indicator variables as follows:

τn,j =
n∑
k=j

I
{
Yk,j = b+ 1−Kj, ∇Yk,j = 1

} · k+ I
{
Yn,j < b+ 1−Kj

} · n,
where Yj−1,j = 0. Let P{m<t v | c(v)= b− 1} denote the conditional probability that node v,
containing label j, attracts label m conditioned on the event c(v)= b− 1, as determined by the
stochastic growth processes of the three tree families considered:

P{m<t v | c(v)= b− 1} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b− 1
m− 1

, bucket recursive trees,

(d− 1)(b− 1)+ 1
(d− 1)(m− 1)+ 1

, (b,d)-ary ITs,

(α + 1)(b− 1)− 1
(α+ 1)(m− 1)− 1

, (b, α)-PORTs.
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The probability mass function P{τn,j =m} is readily obtained in terms of the probability mass
functions ofKj, Yn,j and thus Yn,�,j, where the constants c1, c2 are determined by (23) via c2/c1 = κ .
Lemma 33 (Distribution of the saturation time). For 1≤ j≤ b the random variable τn,j is determin-
istic: τn,j = b.

For j≥ b+ 1 the probability mass function P{τn,j =m} is given as follows:
Form= j we have

P{τn,j = j} = P{Kj = b},
for j+ 1≤m< n we get

P{τn,j =m} =
b−1∑
�=1

P{Kj = �} · P{Ym−1,�,j = b− �} · P{m<t v | c(v)= b− 1},

whereas form= n we obtain

P{τn,j = n} =
b−1∑
�=1

P{Kj = �} ·
(
P{Yn,�,j < b+ 1− �} + P{Yn−1,�,j = b− �} · P{n<t v | c(v)= b− 1}).

Remark 34. In the case j= b+ 1 the expressions above simplify due to the fact that Kb+1 = 1,
which is evident from the stochastic growth rules.

Proof. For 1≤ j≤ b there is only one bucket present. It is saturated after the insertion of label b.
Assume that j≥ b+ 1. The probability P{τn,j = j} is given by

P
{
Yj,j = b+ 1−Kj, ∇Yj,j = 1

}= P
{
1= b+ 1−Kj, Yj,j − Yj−1,j = 1

}= P{Kj = b}.
For j<m< n we obtain the probability of the event {Yk,j = b+ 1−Kj, ∇Yk,j = 1} by condition-
ing on the initial bucket size Kj. Finally, for j= n we also take into account the probability of the
event {Yn,j < b+ 1−Kj}.

Let Be(p) denote a Bernoulli-distributed random variable:

P{Be(p)= 1} = p, P{Be(p)= 0} = 1− p.

Furthermore, letWN(w0, b0) denote the number of white balls at timeN in a triangular urn model
with balls of two colours and initial values w0 > 0 and b0 > 0, whose balanced replacement matrix
given by

(
1 α

0 1+α
)
.

We obtain the following result.

Theorem 35. The random variable Xn,j counting the out-degree of label j in a random bucket
increasing tree of size n, with 1≤ j≤ n, satisfies the following.

• For bucket recursive trees, Xn,j is distributed as a random sum of mutually independent
indicator variables:

Xn,j
(d)=

n∑
�=τn,j+1

I(� <c j), with I
(
� <c j

)= Be
(
b
�

)
.

• For (b, α)-plane oriented recursive trees, Xn,j is distributed as the number of white balls in the
balanced triangular urn model described above:

Xn,j
(d)=Wn−τn,j(w0, b0), w0 = b(α + 1)− 1, b0 = (α + 1)(τn,j − b).

In both cases, the stopping time τn,j := minj≤�≤n{Y�,j = b+ 1−Kj} depends on Kj as well as
on Yn,j.
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Remark 36. A similar result holds for (b,d)-ary increasing trees; however, the random variable
Xn,j is by definition bounded, thus we leave the result to the interested reader. We further note
that the probability mass functions of Xn,j can alternatively be obtained by a generating functions
approach, but without revealing the structural decompositions (compare with the corresponding
results of [13] for bucket recursive trees).

8. Conclusion
In this work we introduced two new families of bucket increasing trees, which can be generated
by a stochastic growth process.

We introduced a clustering process C for ordinary increasing trees that generate bucket
increasing trees. Moreover, by modifying the map C we obtain bijections between certain ordi-
nary increasing tree families and families of bilabelled bucket increasing trees. Additionally, we
obtained a bijection between increasing diamonds and bilabelled bucket increasing trees.

We analysed structural properties of bucket increasing trees, in particular, the tree parameter
Kn, counting the initial bucket size of the node containing label n in a random tree of size n. Using
the combinatorial description as well as the tree evolution process, a study of further quantities
in bucket increasing tree families is possible, e.g., we want to mention node distances. Moreover,
there exist relations of bucket increasing trees to further combinatorial structures as, e.g., certain
models of series-parallel networks, see [17].
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