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SUMMARY
In this paper, the behavioral learning of robots through spiking neural networks is studied in which
the architecture of the network is based on the thalamo-cortico-thalamic circuitry of the mammalian
brain. According to a variety of neurons, the Izhikevich model of single neuron is used for the rep-
resentation of neuronal behaviors. One thousand and ninety spiking neurons are considered in the
network. The spiking model of the proposed architecture is derived and prepared for the learning
problem of robots. The reinforcement learning algorithm is based on spike-timing-dependent plastic-
ity and dopamine release as a reward. It results in strengthening the synaptic weights of the neurons
that are involved in the robot’s proper performance. Sensory and motor neurons are placed in the
thalamus and cortical module, respectively. The inputs of thalamo-cortico-thalamic circuitry are the
signals related to distance of the target from robot, and the outputs are the velocities of actuators. The
target attraction task is used as an example to validate the proposed method in which dopamine is
released when the robot catches the target. Some simulation studies, as well as experimental imple-
mentation, are done on a mobile robot named Tabrizbot. Experimental studies illustrate that after
successful learning, the meantime of catching target is decreased by about 36%. These prove that
through the proposed method, thalamo-cortical structure could be trained successfully to learn to
perform various robotic tasks.

KEYWORDS: Reinforcement learning; Spiking neural networks; Mobile robot; Thalamo-cortico-
thalamic circuitry; Dopamine modulator.

1. Introduction
Learning procedure in mammalian brain architecture is one of the most fascinating phenomena in
the world, which is a result of evolution. Unraveling the mystery of high-level learning procedure in
the brain could be promising for online learning of robots, specifically in unknown environments. A
highlighted section of mammals’ brain named “thalamo-cortical” circuitry (which contains circuits
between thalamus and cortex) is a reputed architecture for studying complicated functions of the
brain such as learning.1 Some researchers attributed the fast learning ability of the brain to neural
circuits between thalamus and cortex,2 and others investigated action learning and controlled actions
process through thalamo-cortical circuits.3 To study the possibility of learning in thalamo-cortical
circuitry, a game world is utilized.4 One of the major responsibilities of thalamo-cortico-thalamic
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(TCT) circuitry is to involve in reinforcement learning.5, 6 It studies how biological systems can
solve instrumental conditioning problems.7 Recent researches suggest that learning and instrumental
conditioning are integrated into a network centered on thalamus.8 Besides, thalamo-cortical cir-
cuitry is connected to the motor system, so it may be the best model for motor learning of robots
through instrumental conditioning.2, 9 To apply instrumental conditioning on the detailed structure
of thalamo-cortical circuitry, the spiking model of neurons is needed. Although traditional artifi-
cial neural networks are accep tools for supervised learning, they do not show reasonable results
when there is not any desired output (as we face in reinforcement learning problems). Spiking neu-
ral networks (SNNs) are new, powerful, and biologically plausible tools for behavioral modeling of
natural neurons.10, 11 They are gaining much attention due to their biological basis, and recent devel-
opments in computational neuroscience generated infrastructure for functional study of brain based
on the SNNs.12 There are various models of spiking neurons (e.g., Integrate and Fire, Izhikevich,
and Hodgkin–Huxley), and they can be utilized based on their model complexity and computational
cost.10 Izhikevich et al. studied the large-scale model of thalamo-cortical structure of the mammalian
brain13 and proposed an algorithm for instrumental conditioning based on the SNNs.14 Although
SNN-based models of thalamo-cortical system are widely discussed in neuroscience15 and there
are some applications of them on robot learning systems,16–21 this subject still needs more work
done.

Robotic learning is a multidisciplinary field between computer science, neuroscience, and engi-
neering. Some methods of reinforcement learning are applied to robotic systems, but they are not
biologically plausible (e.g., value function17 and temporal difference18 methods). Among all works
in robotic learning, there are little studies about SNNs. However, applications of them in the learn-
ing of artificial systems and robots are growing.19 Some researchers implemented SNNs to control
iCub humanoid robot (iCub),20 DARwIn-OP humanoid robot,16 and Khepera I robot,21 but they used
only simplified two-layered sensory–motor structure. Some others studied action selection learn-
ing based on basal ganglia.5 A simplified model of thalamo-cortical circuits to use in a reinforcement
learning system is studied in ref. [5], but its application in robotics is not considered, and the model is
not biologically plausible as they used a simplified model of neurons.22 In other works on humanoid
robots, amygdala-thalamo-cortical structure is used,23 but they did not study reinforcement learning.
Studying the reinforcement learning procedure considering its biological details would be a more
realistic approach to control robots. I shows a brief study of related works in this area.

As it is shown in Table I, Leaky Integrate and Fire (LIF) is a dominant model in previous works, but
accurate functions of single neuron cannot be achieved through it.5 Besides, there are just a few exper-
imental implementations compared to simulation studies. Some studies were conducted to implement
the learning procedure on autonomous robots using SNNs.28 However, no one addressed the learn-
ing problem in autonomous robots using a complete model of thalamo-cortical circuits. Recently, the
functionality of excitatory and inhibitory neurons in the learning of a single joint robot is discussed in
ref. [53]. But it is done through a simple sensory–motor structure of the cortex. Through simulating
thalamo-cortical dynamics, one may include high-level functions of the mammalian brain into the
learning model of robots.

The main aim of this paper is to study the functionality of thalamo-cortical structure of the mam-
malian brain in the learning of mobile robots. It sheds new light on biological-based robotic learning
by implementing TCT architecture of mammalians’ brain on robots. The application of thalamo-
cortical structure in robotic learning is a new topic. The main contribution of this paper is to study
reinforcement learning on mobile robots in which the spiking neuronal model of TCT circuitry is
used. Dopamine-modulated spike-timing-dependent plasticity (STDP) is used to incorporate rein-
forcement learning on the model.14 Also, a new formula for releasing dopamine is proposed based
on the robots’ environmental inputs. In other words, reward delivery in the nervous system is related
to external conditions instead of internal neural pathways, which is not discussed in any of the pre-
vious works about SNNs. Among all previous studies in this area, there is no work to study the
reinforcement learning of mobile robots through the spiking structure of the thalamo-cortical system
of the mammalian brain. The rest of this paper is organized as follows: in Section 2, SNN model
of a single neuron, unsupervised learning, STDP, dopamine-modulated learning of robots, and a
new architecture of thalamo-cortical connectivity are explained. Simulation and experimental stud-
ies are presented in the third section to show the effectiveness of the proposed method. Results and
discussion are addressed in the fourth section, and finally, Section 5 concludes this paper.
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Table I. Details of recent works on SNN based learning of robots.

Neuron Experimental test
Ref No. model Network architecture bed Simulation studies

24 Izhikevich Thalamo-Cortico-Thalamic
(TCT)

Sleep Awakefullness,
SpiNNaker

NO

25 Functional TCT NO Alpha rythms in
Alzaimer

13 Izhikevich TC NO Brain simulation
26 Izhikevich

and LIF
Cerebral cortex, thalamus

and amygdala
General-Purpose

Graphics Processing
Units

NO

27 LIF BG NO Action Selection
and Oscillatory
Activity

21 LIF BG KheperaTM I (MR),
Action Selection

NO

20 LIF BG Problem solving,
iCub +5DOF arm

NO

5 LIF BG NO Action selection
15 Izhikevich BG & SNN NO Neurological
28 LIF BG NO Neurological
3, 29 LIF Cortico-basal ganglia NO Action Learning
16 Functional BG, thalamus and cortex DARwIn-OP

humanoid, Action
selection

NO

30 Izhikevich 3-layer NO TF (MR)
31 Izhikevich * TriBot (MR), OA,

TD
NO

32 Izhikevich FFN iCub NO
33 Izhikevich * NO Maze PP (MR)
34 Izhikevich * NO TF (MR)+Arm
35 LIF * NO Olivier Michel’s

Khepera Simulator,
WF

36 LIF DCS, SFCS (MR), TF, OA NO
37 LIF * Virtual (MR)
38 LIF Insect inspired model NO TF, NAV
39 LIF Self-organized network NO Pioneer-3 WF (MR)
40 LIF * Virtual insect in

Digital CMOS
12 LIF * NO Memristor + (MR)

OA
41 SRM Retina model MObiMac (MR), TF NO
42 SRM DCS (MR), WF NO
43 SRM ASNN Khepera-I OA NO
44 SRM * Bioloid Robot

walking motion
Virtual Environment

45 SRM 3-layered FSNN 2-Dof manipulator NO
46 IF * NO A mobile robot built

by Institute of
Automation,
Chinese Academy
of Sciences
(CASIA) (MR)

47 IF * 2 gripper & beaglebone
black

NO

48 IF DCS NO Corridor-Scene
Classification
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Table I. Continued.

Neuron Experimental test
Ref No. model Network architecture bed Simulation studies

49, 50 IF * NO WF,OA,TF (MR)
51 Adaptive IF Fruit fly olfactory inSpired

model
TF (MR) NO

52 SKAN * Maze solving (MR),
Field-Programmable
Gate Array

NO

Neuron model acronyms: Spike Response Model (SRM), Integrate-and-Fire (IF), Synaptodendritic Kernel Adapting Neuron model

(SKAN)

Implementation acronyms: Mobile Robot (MR)

Architecture acronyms: Basal Ganglia (BG), Thalamo-Cortico-Thalamic (TCT), Thalamo-Cortical (TC), Fuzzy Spiking Neural

Network (FSNN), Delay Coding for Sensory input (DCS), Spike Frequency Coding for sensory input (SFCS), Aplysia-like Spiking

Neural Network (ASNN), Feed Forward Network (FFN)

Task acronyms: Wall Following (WF), Obstacle Avoidance (OA), Target Detection (TD), Path Planning (PP), Target Following (TF),

Navigation (NAV)

*Unknown

2. Methods and Materials
Here, neuronal modeling is presented, reinforcement learning as well as SNNs is discussed, and then,
the new structure is presented.

2.1. Mathematical representation of a single spiking neuron
Neurons transmit electrical and chemical signals to send information. In the simplified model of
a single neuron, a tube-like compartment named axon is considered to conduct electrical impulses
(spikes) away from the cell body. The junction between two terminals of neurons is called synapse.
Here, the electrical properties of signal transmitting are used because of simplicity. Neuronal models
are defined in the form of Ordinary Differential Equations. Among all the proposed models in the
literature (such as the easily explained model of LIF and complex model of Hodgkin–Huxley), simple
and accurate models such as the Izhikevich are better for this work because of high accuracy in
covering the properties of neurons and low computational cost. Here, the Izhikevich differential
equations of the single neuron are used for modeling the architecture of the TCT system.54 The
dynamic equations of the single neuron are shown in Eqs. (1), (2), and (3):

dv

dt
= 0.04v2 + 5v+ 140− u+ I (1)

du

dt
= a (bv− u) (2)

if v ≥ 30 mV, then

{
v ← c

u ← u+ d
(3)

in which v and u represent the membrane potential and the membrane recovery parameter,
respectively. a, b, c, and d are the dimensionless parameters and set according to physiological
data.54

2.2. SNNs and learning procedure
SNNs are widely used in neuroscience, but their application in artificial intelligence and reinforce-
ment learning is not discussed well. Here, scaling down the mammals learning procedure comprises
sensors, processing systems, and motors sections as well as dynamic modeling of neuronal behavior
in terms of STDP and rewarding. The processing system contains N artificial spiking neurons that are
connected. It is assumed to have some excitatory and inhibitory layers. Figure 1 shows a simplified
neural model of the proposed design.
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Fig. 1. Simplified neural model of spiking neural networks.
∗ It may contain lots of excitatory and inhibitory layers.

As it is shown in Fig. 1, SNNs contain sensory neurons, some interneurons (INs), and motor
neurons. Sensory data of environment enter to network as spikes, and they continue their way through
different parts of the network toward the output parts (motor neurons). Spikes are emitted according
to the connection map of neurons and using Eqs. (1), (2), and (3). If spikes are emitted to some
neurons in the motor layer and make them fire, there will be a movement for the actuator that is
connected to those motor neurons and the amount of movement is proportional to the number of the
fired neurons at that part. This spike-based system is used as a platform for the proposed learning
algorithm.

It is supposed that specific action of the body in mammals is because of activating some specific
pathways between sensory and motor areas in the central nervous system. When the right action (e.g.,
catching the target) happens, the concentration of dopamine will be increased and synaptic weight
reinforcement of neuronal chains (neuronal pathways) that are involved in that pathway will happen.
In other words, proper movements of the body will result in giving rewards and it will strengthen
the neural pathways that are involved with this action. For example, most dopamine neurons show
activation after food rewards and conditioned stimuli.55 It is supposed that a robot, as a bio-inspired
system, has sensors, actuators, and processing systems. Sensors of the robot are activated when there
is a target in the detection range of them, and they send information regarding the distance of the
target from the robot. Hence, when a specific sensor is activated, the reinforced pathways of neurons
that result in activation of specific motor neurons are generated and some causal processes that lead
to catching the target in less time are made. Figure 2 shows the flowchart of applying reinforcement
learning on the proposed system. It iterates until to find targets for 100 times.

As it is shown in Fig. 2, there are two sources of input for the neural network: informational current
input from sensory cells and a random current input named Imotorbabbling. Informational current input
from sensory cells contains electrical current in which its intensity is analogous to the inverse of the
distance of the target from the robot. Sensory data regarding the inverse of the distance of the target
from the robot enter into the neural network as electrical current every 16 ms. Also, some random
electrical current is considered to enter into each right and left of the section in the motor area to
make random movements named motor babbling which is called Imotorbabbling. The output of the neural
network are the spikes of motor neurons which result in the movement of the robot in the environment
through motors and wheels. The specific action of the body is the result of synchronized activating of
some specific neurons (neuronal pathways) between sensory and motor areas in the nervous system.
When the right action (e.g., reaching the target) happens, the reward will be given to the system
and the concentration of dopamine will be increased. This will affect the synaptic weights of firing
neurons. In other words, when dopamine is released, neurons that are involved causally in those
pathways will be reinforced and synaptic weights of active neurons that are not involved in causal
firings of other active neurons will be decreased. Here, the learning process consists of two stages:
unsupervised and reinforcement learning. Here, the unsupervised learning stage is modeled based on
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Fig. 2. Flowchart of applying reinforcement learning on the proposed system.

STDP. Unsupervised learning alters the weights of synaptic connections between neurons based on
the spike times of pre- and postsynaptic neurons. Assume two arbitrary neurons A and B in Fig. 1
which are connected by a synapse so that A is a presynaptic neuron and B is a postsynaptic neuron.
If neuron B fires before the firing of neuron A, it means that they have no causal relationship and
the weight of the synaptic connection between A and B will be decreased, and vice versa. However,
the rate of decrease and increase in weight of synapse depends on the temporal difference of firings.
Larger time gaps between firings of neurons A and B lead to less variation of synaptic weight. The
reason behind STDP is to magnify the synapses of neurons that are firing together (there is a causal
relationship between them) and to weaken the synapses of neurons that have no causal relationship.
The overall strength of synapses (S) determines the rate of electrical current through neural pathways
(Eq. 4), and it is modified during learning process according to the value of eligibility trace q and
dopamine d (Eq. 5).14

İ = S (4)

Ṡ= q.d (5)

q̇=− q

τq
+ STDP(τq)δ(t− tpre/post) (6)

ḋ=− d

τd
+ dop (7)

where I represents the amount of electrical current across each synapse, S shows the strength of
synapse, q is the eligibility trace, STDP is the STDP, τ shows the decay parameters of STDP, d is the
concentration of extracellular dopamine in synaptic junction, and dop shows the release of dopamine
in neural networks when external reward is given to robot. There is a time-dependent variable (q) for
each firing neuron in STDP algorithm, which is decaying by time. Assume that an arbitrary neuron
A in Fig. 1 has just spiked now. The synapses of all postsynaptic neurons of fired neuron A are
decreased by the value of q, and the synapses of all presynaptic neurons are increased by the value
of q. Therefore, if a presynaptic neuron had spiked recently, the connection between that neuron and
mentioned neuron A will be strengthening (e.g., the connection between the mentioned neuron and
a postsynaptic neuron, which fires before that, is decreased by the value of q). If the postsynaptic
neuron fired a long time ago, the value of q will be much smaller and the decrements in synapses
weight will not be significant. The coefficients of magnifying and descending synapses are important
parameters in balancing the Spiking Neural Network (SNN)s. These parameters should be tuned
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Table II. Values of a, b, c, and d parameters for neurons in the TCT structure.

Neuron name Neuron type a b c d

TCRR RS 0.02 0.2 −65 8
TCRL RS 0.02 0.2 −65 8
PYR RS 0.02 0.2 −65 8
PYL RS 0.02 0.2 −65 8
Ex.− IN RS 0.02 0.2 −65 8
IN FS 0.1 0.2 −65 2
TRN IB 0.02 0.2 −65 4
Fast− IN FS 0.1 0.2 −65 2
Slow− IN LTS 0.02 0.25 −65 2

before the beginning of the reinforcement learning process, so that after some time of running, the
value of average synaptic weights of all neurons will be the same as it is the initial value13 (If the
coefficient of magnifying is greater than the coefficient of descending, the average of all synaptic
weights of all neurons grows and the network will not be balanced). Formulation of STDP is used
beside reinforcement learning which is based on the dopamine release during reward.14

The reinforcement learning mechanism is based on the release of dopamine. In other words, the
delivery of reward is simulated as an activity of dopaminergic cells, which increases the concen-
tration of dopamine in the synaptic junction. Eqs.(5) and (7) illustrate how dopamine-modulated
STDP addresses reinforcement learning on the synaptic level. Step increasing the concentration of
dopamine (as Eq. 7), which occurs because of catching the target, results in faster synaptic changes
and magnifying synapses that are incorporated in the generation of right neural pathways to preform
current action of the body.14

2.3. TCT architecture of the SNN
Why we use the thalamo-cortical structure? Thalamo-cortical pathways play an important role in
high-level behaviors of the sensory–motor system in mammalian brains.13 In the literature, some
previous works utilized cortical sensory–motor architecture, which is very simple.56, 57 Some other
works are about the implementation of TCT on Spinnaker to study the function of the brain in
sleep states,25 which is based on the proposed model of ref. [13]. However, they used the “neural
mass model”,58 which is not realistic because of its merely functional point of view. In our work,
an improved architecture of thalamo-cortical circuit25 is used. The cortical module comprised of
the excitatory pyramidal (PY) cells, which are divided into right and left sections (PY-R and PY-L),
the excitatory INs, slow inhibitory INs, and fast inhibitory INs. The thalamic module consists of the
right and left thalamic relay cells (TCR-R and TCR-L), INs, and thalamic reticular nucleus (TRN).
TCRs have an excitatory role, while IN and TRN cells have the inhibitory role. Figure 3(b) shows
the connectivity map of subsystems, and Table II shows the values of a, b, c, and d parameters for
different neuron types of each section according to the Izhikevich model.

Figure 3(b) shows the connectivity map of sub systems.
As it is shown in Fig. 3(b), PY and TCR sections are divided into two subsections because of two

sensors and two motors; in addition, it is inspired by two hemispheres of the mammalian brain. The
details of connections between neurons of each part are demonstrated in Table III.

The first column in Table III demonstrates the type of neurons in each part of the TCT architecture.
In Table III, “1” means that there is a connection from the module in the row to the module in the
column, while “0” means there is no connection between them. The number of synapses of each
connection is available in the second row of Table III. A full model of thalamo-cortical system is
presented in ref. [13], but it has more computational cost than the current model. More recently, a
simplified version of this structure is discussed in ref. [24], in which TCT architecture based on the
Izchevich model of a single neuron is implemented on Spinnaker to study sleep and wakefulness
cycles of the brain. Here, the connectivity details in Table III are based on ref. [24]. The number of
neurons in the cortex module is also scaled down as it was in ref. [13].

The proposed learning system with TCT architecture is tested on a robot. Sensory data, as a spike
of neurons, come into the thalamic system through electrical current, which results in the spiking
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Table III. Detailed parameters of the architecture.

From\to TCRR TCRL PYR PYL Ex.IN IN TRN Fast IN Slow IN

Number of synapses 6 6 75 75 22 2 6 6 13 13 12

Neuron index No. of neurons Type of neurons

TCRR 0–25 25 RS 0 0 1 1 0 0 1 0 0 0 0
TCRL 26–50 25 RS 0 0 1 1 0 0 1 0 0 0 0
PYR 51–350 300 RS 1 1 0 0 1 1 1 0 1 1 1
PYL 351–650 300 RS 1 1 0 0 1 1 1 0 1 1 1
Ex.IN 651–830 180 RS 0 0 1 1 0 0 0 0 0 0 0
IN 831–840 10 FS 1 1 0 0 0 1 0 0 0 0 0
TRN 841–890 50 IB 1 1 0 0 0 0 1 1 0 0 0
Fast-IN 890–1000 110 FS 0 0 1 1 0 0 0 0 0 0 0
Slow-IN 1001–1090 90 LTS 0 0 1 1 0 0 0 0 0 1 0

FS, fast spiking; RS, regular spiking; IB, intrinsically bursting; LTS, low-threshold spiking. “1” means there is connection between two parts. For Example, the first row of the
table shows that the TCRR section is connected to PYR, PYL, and TRN. There are 25 RS neurons in the TCRR part. The second row in the table shows the number of synapses
for each part. For instance, there are 75 synapses from TCRR to PYR.
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Fig. 3. (a) Schematics of reinforcement learning system. (b) TCT architecture used in this study.

Fig. 4. Schematic of the test setup comprised of a mobile robot and a target.

of the related neurons. According to the connection map of TCT circuitry, spiking of presynaptic
neurons in SNNs may cause to the spiking of postsynaptic neurons. So, if synaptic weight is large
enough to make membrane voltage of neuron reach to action potential threshold, propagation of
spikes in the network will be continued until the firing of motor neurons. Besides, there are some
random electrical currents for motor neurons to simulate motor babbling in the central nervous sys-
tem of mammals. Excitation of any specific actuator of the robot is related to the rate of spikes of
neurons in each specific motor subsection.

3. Simulation and Experimental Studies
Suppose that a linear mobile robot has a neural network structure shown in Fig. 3 alongside its param-
eters in Table III and there is a target in environment. Target foraging task is chosen to implement
the proposed learning architecture. When the robot moves and catches the target, the reward will be
given to the robot as a step increase of dopamine in SNN.

3.1. Simulation studies
This test aims to train the robot to move towards the target and catch it. When the robot catches the
target, another target will appear randomly. The initial position of both robot and target is assumed
to be in the context of the line (limitation of movement is 100cm) and they are randomly generated
to produce equal probabilities of detection for left and right sensors (Fig. 4).

As it is shown in Fig. 4, the test setup includes a 1-degree-of-freedom (DOF) linear mobile robot
equipped with two proximity sensors on its right and left sides, and a target. D shows the distance of
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the target from the robot which is detected by sensors. When we start the test, the robot will move
to the left and right sides randomly according to random spikes of neurons in the motor section (PY
neurons) which is called motor babbling inputs. In this stage, there is no clear pathway from the
input sensors to the motors so the robot is somehow blind. When the target is at the right or left
side of the robot, right or left sensory neurons in “Thalamic Relay Cells (TCR)” in section TCRR or
TCRL receive normally distributed input current from the right and left sensor, respectively. Distance
signals from sensors enter the neural network every 16 ms and the mean value of this normally
distributed electrical current is analogous to distance inverse of the target from the robot (Eqs. 8
and 9). Simulated program is running in the frequency of 4 kHz.

if DR < Thsensor −→ ITCRR = poiss_rand (α) (8)

if DL < Thsensor −→ ITCRL = poiss_rand (β) (9)

Where DR and DL show distance of the target from the robot according to Fig. 4. Thsensor is the
detection range of the sensor, α and β are tunable parameters (which are related to distance of the
target from robot), ITCRR and ITCRL are right and left TCR cells input currents, respectively. If the target
is at the right side of the robot and in the detection range of robots, DR will be a positive number and
DR will be zero. On the other hand, when the target is at the left side of the robot and in the detection
range of the sensor, DL will be a positive number and DR will be zero. So, spikes will be emitted
through the network according to Eqs. (1), (2), and (3) and synaptic weights of neurons will be
affected and altered according to Eqs. (4), (5), and (6) and connection map of neurons. Propagation
of spikes is continued to affect motor neurons of a cortical column. The difference between the
number of spikes in right and left PY cortical neurons sections is assumed to determine the direction
and velocity of the robot (as Eq. 10).

Vel= SPPYR − SPPYL (10)

Where Vel is the velocity of robot, SPPYR and SPPYL are the number of spikes in right and left PY
(PY motor neurons of cortex), respectively, which are calculated every 16 ms. If Vel is positive, the
robot will moves to the right, otherwise, it will move to left. The rewarding system is based on the
dopamine release. If the robot happens to catch the target randomly, dopamine will be released and
will affect all neurons of the network according to Eqs. (7) and (11). In other words, it accelerates the
strengthening of synapses that have a positive amount of STDP and weakening synapses that have
negative STDP value.

ifDi < δ −→ dop= γ

tms
(11)

Where Di is the distance of robot from the target in ith step, δ and γ are tunable parameters, dop is
the amount of Dopamine that will be released and tms is the number of iterations. Dividing the value
of dopamine into the No. of iterations results in a more effective learning process according to the
instrumental conditioning methods.14 Simulation is run for 12000 s and data is recorded to evaluate
the results. In simulation studies, δ and γ are taken to be 0.007 m and 1, respectively. The sensor
range value is taken 100 cm and the sampling time of sensors and motors are set to be 16 ms.

3.2. Experimental studies
The trained network is implemented on a mobile robot named Tabrizbot. It is a mobile robot equipped
with ultrasonic proximity sensors on its left and right side and has Wi-Fi communication as well as
an onboard liquid crystal display, which makes it suitable to run the program and debug it. The robot
has two DC-Motors connected to two active wheels and there are also two passive wheels to prevent
tipping over. Figure 5(a) shows functional block diagram of the robot.

As is seen in Fig. 5, the proposed algorithm is executed in a mathematical software on the PC and
communicates with the robot through the Wi-Fi connection and TCP/IP protocol using ESP 8266 Wi-
Fi Module. LPC1768 (ARM CORTEX-M3) Microcontroller with real-time operating system (RTOS)
programming is used in the Tabrizbot to achieve maximum time optimization. The frequency of
communication between PC and microcontroller is set 10 Hz. Right and left ultrasonic sensors (SRF-
04) continuously send distance data to the main program. On the other hand, the computer runs the
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Table IV. Parameters of the Tabrizbot robot.

Parameter Value Unit

Distance between two wheels 15 cm
Mass of robot 0.768 kg
Mass of wheel 0.033 kg
I robot 3.22908e-3 kg m2

I wheel 1.03978e-6 kg m2

Ultrasonic sensors measuring range 80 cm
Motors RPM 560 RPM

RPM: rotation per minute
I: moment of inertia

Fig. 5. (a, b) Tabrizbot and its functional block diagram. (c) Target attraction experiment.

SNNs and the value of the velocity of actuators are calculated at each iteration according to Eq. (10).
Velocity parameters are sent back to the mobile robot. After decoding data, the microcontroller in
the robot drives the motors with the appropriate pulse width modulation values. The characteristics
values of the Tabrizbot robot are shown in Table IV.

In each experiment, as it is shown in Fig. 5, a target is placed on one side of the robot in random
distances and the robot is expected to eventually succeed to catch it. Pseudocode of reading the
sensors data and flowchart of implementing code for experimental setup is shown in the Appendix.
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Fig. 6. Average weight of synapses of thalamic neurons to cortical neurons.

Fig. 7. The distribution of all synaptic weights in the network.

4. Results and Discussion
Simulation studies showed that the robot learns how to catch the target and some experimental tests
are done to show the effectiveness of the proposed method. Experiments are repeated 10 times, and
the behavior of robot before learning and after learning is compared in terms of foraging time and
average synaptic weights between thalamic and cortical modules. The mean time of catching the
target for the untrained system is 22.1, and the standard deviation is 14.8 s, while these values for the
trained system are 14.3 and 13.4 s, respectively. Application of Student’s paired t-test on two series
of data showed that probability associated with a two-tailed distribution is less than 0.25. Figure 6
shows the average weight of synapses in the thalamic system to the cortical section of the proposed
architecture.

Figure 6 shows that the “average synaptic weight of left thalamic sensory cells (TCRL) to left
cortical motor cells (PYL) sections” and “average synaptic weight of right thalamic sensory cells
(TCRL) to right cortical motor cells (PYR) sections” are less than “average synaptic weight of right
thalamic sensory cells (TCRR) to left cortical motor cells (PYL) sections” and “average synaptic
weight of left thalamic sensory cells (TCRL) to right cortical motor cells (PYR) sections”. In other
words, the pathways between sensors and motors on the same side are strengthened compared to
those of the opposite side. It shows that the robot is successfully trained to approach the target. The
distribution of synaptic weights in the trained network is shown in Fig. 7 (The maximum strength of
synaptic weights is taken to be 3 mV). Figure 7 demonstrates that most of the synapses at the end
of the training have weights less than 0.5 mV, while the weight of some synapses is around 3 mV,
which are belonged to amplified pathways. Furthermore, Fig. 8 shows the spiking frequency of each
subsection during the training procedure.

As it is shown in Fig. 8, the frequency of spikes of inhibitory spiking neurons is increased after
2× 104 s of running time. This is because of the saturation of fast spiking inhibitory neurons regard-
ing their physiological properties, but it does not affect the learning process. A sample diagram of
STDP release which occurs after a spike and its duration is shown in Fig. 9.

As it is shown in Fig. 9, the effective STDP duration (the time in which variation of synaptic
weight is possible) is about 100 ms, and after 80 ms, the amount of STDP will be very small to have
effect on variation of synaptic weight (Eq. 6). Figure 10 shows the distance of the target from the
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Fig. 8. (a) Sample of spikes of neural network, (b) Spiking frequency of subsections.

Fig. 9. Example of release and duration of STDP in synapses.

Fig. 10. Right and left sensor values in the experimental study. (a) Target is located on the left side of the robot.
(b)Target is located on the right side of the robot.

robot in two case studies (after learning). In one case study, the target is located on the right side of
the robot and in another one it is located on the left side.

As it is shown in Fig. 10, when the target is on the right side of the robot in an arbitrary distance
of 30 cm, at first, the robot goes a little farther in the opposite side of the target. However, after
some back and forth movements, the robot approaches the target and catches it. In this test, the left

https://doi.org/10.1017/S0263574719001632 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001632


Experimental study of reinforcement learning 1571

Table V. Experimental study results.

Initial target distance from the robot 20 cm 30 cm 40 cm

Accomplishment time (target on the right side) 51±9 s 55±13 s 69±16 s
Accomplishment time (target on the left side) 89±12 s 81±16 s 92±19 s

sensor does not sense anything in the range of 100 cm, so the maximum value of 100 cm is depicted
in the figure. Figure 10 shows the same state when the target is on the left side. This test proves that
the robot has successfully learned the target attraction task. The reason that the measurements seem
discontinues is that the robot moves discontinuously. Table V shows the test results for three different
distances when the target is on the right or left side of the robot. In each test, the robot accomplished
the target attraction task.

During experimental tests, it is observed that the overall latency in the system, including the com-
munication latency and response time of the robot, changes the behavior of the system compared
to the simulation scenario, where the program could run up to 4 kHz. Dividing movements of the
robot into discontinuous periods solves this problem and effectively overcomes all the system delays
(e.g., robot does not continue moving after executing one command and stops for a small time).
Experimental studies show that the robot eventually converges to the target, even if it oscillates back
and forth for a few seconds. These tests prove that through the proposed method, the thalamo-cortical
structure is trained successfully to perform different tasks. This is valuable because the architecture
assimilates the real architecture of the mammalian brain. Therefore, this ushers a very bright future
for this kind of bio-inspired systems and proves that even more complex tasks will eventually be
handled by this structure. However, more complex systems of mammalian brain, for example, basal
ganglia and cerebellum, may be helpful for future studies. Here, two sensors and motors are consid-
ered for the robot, but it may be increased for detection of obstacle and more complex robot. In the
case of mobile robots with rotation ability (e.g., when there are two differential wheels), the left and
right sections in the “PY” area of neural networks are connected to the left and right motors of the
robot. To evaluate the effectiveness of algorithm for differentially driven mobile robot, after learn-
ing process, the average synaptic weights of TCRR section to PYL section (and the average synaptic
weights of TCRL section to PYR section) should be more than average synaptic weights of TCRR

section to PYR section (and the average synaptic weights of TCRL section to PYL section).

5. Conclusion and Future Works
Neurons are basic blocks of information processing systems in nature. Connecting neurons results in
complex networks that are used to process information in simpler organisms from C-elegance worm
with 302 neurons to mammals with complex thalamo-cortical architecture. Recent studies in neuro-
science show that circuits between thalamus and sensory–motor sections of cortex play an important
role in coordinating motor learning,59 and plasticity of thalamo-cortical projections onto neurons of
sensory–motor cortex is effective in learned motor tasks.60 Action learning of robots in an unknown
environment is mostly related to “reinforcement learning” in robot–environment interaction and the
findings of this paper, for the first time, studies it based on the TCT structure. A new reinforcement
learning method based on the SNN model of the TCT architecture is investigated. The total number
of 1090 neurons in two main sections of thalamus and cortex are considered in the network with an
exact connection map. Spiking behavior of each neuron is modeled through the Izhikevich method.
Dopamine-modulated STDP is used for learning algorithm in which dopamine delivery is related to
external conditions, instead of internal neural pathways. The proposed architecture contains corti-
cal module comprised of the left and right PY cells as motor neurons, TRCs as sensory cells, and
inhibitory cell of cortex as TRN. The evidence from simulation studies alongside the experimental
tests on a mobile robot named Tabrizbot points towards the feasibility of using more realistic models
and architectures of SNNs in reinforcement learning of robots. The effectiveness of the proposed
method is evaluated by comparing the results before and after the learning process in terms of “for-
aging time” and “variation of synaptic weights.” After learning, the meantime of catching the target
is decreased by about 36% and synaptic weights of specified neurons are increased according to
the desired benchmark. This method could be developed for learning problems of fix robots, obsta-
cle avoidance of mobile robots in cluttered environments, and concurrent target attraction-obstacle
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avoidance tasks. Moreover, this method is very beneficial for the learning problem of large-scale
robots, which have complex dynamics. In the future, we are planning to develop SNNs for applica-
tions in reinforcement learning of large-scale robots with more DOFs and more sensors. Also, we will
study the integration of optimal control and reinforcement learning to teach path planning to a robot.
Implementation of more complex algorithms, including the function of basal ganglia, is another
interesting topic that is useful in the development of reinforcement learning systems for robots.
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Appendix
To achieve the highest efficiency, the program of the robot is implemented using RTOS and every
different function is performed in its task. The simplified pseudocode of the robot’s program is shown
in Algorithm A1. Each task runs every 50 ms. Also, some other parts of the program are written in
the interrupt-based mode to avoid blocking the rest of the program. For instance scanning, multiple
ultrasonic sensors demand interrupt-based coding. In every sequence, the program triggers the ultra-
sonic sensor and starts the timer. When the emitted wave reflects from the obstacle and returns to
the sensor, the program will read it from interrupt subroutine. furthermore, communication with the
ESP module also requires many waiting sequences, and we overcome this problem by handling the
related tasks in interrupt subroutines. The simplified flowchart of the robot is shown in Fig. A1.

Algorithm A1 TABRIZBOT simplified algorithm
1: procedure READ SENSOR( )
2: while 1 do
3: right_sensor_value← read_right_sensor()
4: left_sensor_value← read_left_sensor()
5: procedure ESP COMMUNICATE( )
6: while 1 do
7: ESP_Send_To_PC(right_sensor_value, left_sensor_value)
8: motor_speed← ESP_Recieve_From_PC()

9: procedure MOTOR DRIVE( )
10: while 1 do
11: if motor_speed > 0 then
12: CWDrive_Left_Motor(motor_speed) � clock wise drive
13: CWDrive_Right_Motor(motor_speed)

14: else
15: CCWDrive_Left_Motor(−motor_speed) � counter clock wise drive
16: CCWDrive_Right_Motor(−motor_speed)

17: procedure LCD UPDATE( )
18: while 1 do
19: Lcd_show(ESP_status)
20: Lcd_show(motor_speed)

21: Lcd_show(right_sensor_value)
22: Lcd_show(left_sensor_value)
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Fig. A1. Simplified flowchart of the implemented code for the experimental setup.
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