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Abstract

The standard penetration test (SPT) is the most common test conducted in the field, and it is used to determine in situ proper-
ties of different soils. Although it is a matter of debate, these tests are also used for the determination of the consistency of
fine-grained soils, whereby the test results can also be utilized to establish numerous empirical correlations to predict the
strength of soils in the field. In this study, unsupervised clustering algorithms were employed to classify the SPT standard
penetration resistance value (SPT-N) in the field. In this scope, shear strength and liquidity index parameters were used to
classify the SPT-N values by taking the classification system of Terzaghi and Peck (1967) into consideration. The results
showed that the input parameters were successful for classifying the SPT-N value to an acceptable degree of strength attrib-
ute. Therefore, in cases where the SPT tests are unreliable or could not be performed, laboratory tests on undisturbed speci-
mens can give valuable information regarding the consistency and SPT-N value of the soil specimen under investigation.
Data in this study is based on several tests that were conducted in a region; nevertheless, it is advised that the results of this
study should be evaluated using global data.

Keywords: Consistency; Fuzzy C-Means Method; Hard K-Means; Self-Organizing Map; Shear Strength; Standard Pe-
netration Test Data

1. INTRODUCTION

It is a commonly accepted fact that soil is an engineering ma-
terial of extremely complex and interrelated properties. A
number of factors including, but not limited to, environ-
mental effects, stress history, and drying/wetting cause varia-
tions in soil behavior. Therefore, it is usually a hard task to
simulate the engineering behavior of a soil by the tests either
in the laboratory or in the field because of its heterogeneous,
anisotropic, stress dependent, and three-phased attributes. In
this manner, complexity in determination of properties of
soils encouraged engineers to establish empirical relation-
ships between certain parameters for the prediction of tar-
geted engineering properties.

In this context, solution of geotechnical problems necessi-
tates a correct modeling of the real-life situation, and the se-
lected parameters should not be irrelevant. Therefore, the de-
sign engineer is responsible for the selection of appropriate
soil properties used in the modeling. Both laboratory and field
tests enable the engineer to determine a number of parameters

related to various soil properties, and the engineer is generally
obliged to make inferences for obtaining additional necessary
information. The cost of a comprehensive soil investigation is
generally not within the limits of many projects. Therefore,
the decision maker is responsible for striking a balance
among the extent of the testing program and the parameters
that should be determined as well as the frequency of tests
in spatial scale. Forthcoming paragraphs include studies re-
lated with correlations between several properties of soils.
The important point here is the correct evaluation of the gen-
eralization ability of the correlations. The data used in to es-
tablish the correlative expressions should be carefully exam-
ined, and the concordance between the data in hand and the
data used in establishing correlations should carefully be ex-
amined. Correlations established using engineering data be-
longing to a specific region provide better outcomes for that
region, in comparison with those obtained using global
data. Nevertheless, correlations in the literature were estab-
lished by use of the test data on insensitive clays and unaged
granular soils, which is often unsecure to use in specimens
extracted from naturally stratified soils (Terzaghi & Peck,
1967). Because sensitivity, high plasticity, overburden stress,
void ratio, calcareous material inclusion, freezing/thawing ef-
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fects, and so on, are effective on the behavior of these soils,
local correlations tend to isolate these effects (Bowles,
1996; Das, 2001).

In the light of this knowledge, the aim of this study is to
question the ability of the clustering methods for classifica-
tion of the standard penetration test (SPT) standard penetra-
tion resistance value (SPT-N) in the field. The results ob-
tained were compared with the classification by Terzaghi
and Peck (1967). The study also considered the question of
the classification ability of unsupervised clustering algorithms
using the liquidity index and shear strength parameters as in-
puts, to classify the SPT-N in the field. The results showed
that, in cases where the SPT tests are unreliable or could not
be performed, laboratory tests on undisturbed specimens can
give valuable information regarding the consistency and
SPT-N value of the soil specimen under investigation.

2. BACKGROUND

The SPT is the most common test used in determination and
evaluation of the engineering properties of different types of
tests in the field. SPT has a number of advantages, including
its simplicity and the strength of the mechanical equipment,
low cost due to its application in boreholes, and sampling.
SPT was used to determine the mechanic and dynamic prop-
erties of especially coarse-grained soils, by use of a number of
empirical correlations. Although its use in fine-grained soils
is still questioned, a number of compressive and undrained
shear parameters of fine-grained soils were correlated with
this value (Sivrikaya & Toğrol, 2002).

Several correlations were established to set up relationships
among the shear strength parameters, consistency, and
SPT-N values. Of all these, those tabulated in Table 1 were
the most widely known, which was proposed by Terzaghi
and Peck (1967).

Thereafter, many researchers were concentrated on deter-
mining the unconfined compressive strength of soils using
SPT values (Terzaghi & Peck, 1967; Sanglerat, 1972; Hara
et al., 1974; Stroud, 1974; Sowers, 1979; Nixon, 1982; Tom-

linson, 1986; Ajayi & Balogum, 1988; Décourt, 1990; Kul-
hawy & Mayne, 1990; Sivrikaya & Toğrol, 2006; Hettiarach-
chi & Brown, 2009; Mahmoud, 2013). The correlations were
given in the studies of Sivrikaya and Toğrol (2009) and Nas-
saji and Kalantari (2011). The idea behind the establishment
of these correlations was rational. These expressions were
specific to different soil classes and the coefficients were af-
fected from soil plasticity. Established correlations were in
the general form of Equation (1):

qu ¼ a:N, (1)

where qu is the unconfined compressive strength of soil, N is
the SPT-N value, and a is a coefficient. In the studies referred
above, a coefficient ranged between 6.70 and 25. It should be
mentioned that, among the relationships depicted above, so-
lely the study of Kulhawy and Mayne (1990) included an ex-
ponential relationship. These expressions were classified in
terms of plasticity and soil class, and some of the relation-
ships were specifically established for certain soils. Of all
these, Sivrikaya and Toğrol’s (2006, 2009) relatively recent
and impressive studies were specific to Turkish practice. In
detail, linear regression and statistical analyses were used to
establish simple correlations between the undrained shear
strength of soils (Su) and the SPT number. It was emphasized
that the undrained shear strength database was constituted
using three types of tests: unconsolidated-undrained triaxial
tests, field vane tests, and unconfined compression tests.
The relationships were also established for clays of high plas-
ticity, clays of low plasticity, clays, and fine-grained soils.
The extensive study on Turkish clays also made a distinction
for the coefficient of field N values and N60 values. Another
study to establish empirical correlations for estimation of Su

from different parameters was carried out by Nassaji and Ka-
lantari (2011). The study utilized nonlinear regression analy-
ses to establish relationships for estimation of N(SPT), using
water content (wn), liquid limit (wL), and plasticity index (IP)
parameters. It was emphasized that the standard deviation for
the data in their study were lower, in comparison with those
obtained in former studies.

Unsupervised clustering algorithms were used to classify
several engineering properties of soils using a number of de-
pendent parameters. In this scope, Göktepe et al. (2005) used
these algorithms to classify the Anatolian soils in terms of
their strength and plasticity characteristics. Moreover, another
study was conducted to classify the strength development in
cement-stabilized clays using their water content and uncon-
fined compressive strength (Göktepe et al., 2008). Apart from
the applications in civil engineering, particularly geotechnics,
these algorithms found applications in soil sampling planning
for rubber tree management along with spatial data (Lin et al.,
2013), assessment of pollution using a color index (Amini
et al., 2004), signal processing for positioning systems
(Cheng et al., 2013), spatial regionalization of hazardous ma-
terials (Nourzadeh et al., 2013), and even evaluation of sunk
cost industries (Arvas & Bozkır, 2013). The algorithms do

Table 1. The dependency of undrained shear strength and
SPT-N value on the consistency of fine-grained soils
proposed by several researchers

cu (kPa)

Consistency
Terzaghi &
Peck (1967)

Tschebotarioff
(1973)

Parcher &
Means (1968) SPT-N

Very soft ,12.5 ,15 ,12 ,2
Soft 12.5–25 15–30 12–25 2–4
Medium 25–50 30–60 25–50 4–8
Stiff 50–100 60–120 50–100 8–15
Very stiff 100–200 120–225 100–200 15–30
Hard .200 .225 .200 .30

Note: SPT-N, standard penetration test standard penetration resistance
value; cu, undrained shear strength.
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not necessitate training; in other words, the algorithms per-
form classification without learning process, and this advan-
tage is benefited in most of studies emphasized above. Along
with the advantage of using geographical information sys-
tems, these algorithms have the potential in providing classi-
fication and characterization of different aspects of systems as
well as processes.

Analyzing the short literature survey above, for fine-
grained soils, it is clear that the studies were particularly con-
centrated on establishment of empirical relationships among
several index properties and corrected/uncorrected SPT-N
values. However, as can be seen in Table 1, a number of in-
vestigators concentrated on the classification of these param-
eters for a better understanding of the relationship between
consistency and SPT value, as well as the shear strength of
these soils. In this study, unsupervised clustering algorithms
were employed to classify the SPT-N parameter in terms of
the variables depicted above. This will enable the reader to
check out if the former tables that are of use and accepted
by the soil scientists worldwide may be useful or not, for a
specific region (Table 1). A database constituted by use of
test results in northern Izmir was used to answer this question.

3. SPT TESTS, ATTERBERG LIMITS, AND
TRIAXIAL TEST DATA

A number of field tests including SPT, cone penetration test,
Vane, dilatometer, and pressure meter are used to characterize
the underlying soil strata during field investigations. The SPT
test is the most frequently used one of these. A thick-walled
sample tube is used in the test, which has outside diameter,
inside diameter, and length of 50, 35, and 650 mm, respec-
tively. After boring is stopped, at certain depths, this tube is
driven into the soil by dynamic effects: a slide hammer
with a weight of 63.5 kg falls from a height of 76 cm. After
the penetration of a first 15 cm, the number of blows needed
for additional two 15 cm penetration is recorded. The sum of
blows for the last 30-cm penetration is termed the standard
penetration resistance, or the N value. When the soil does
not permit 15 cm advance although 50 blows are performed,
the penetration after 50 blows is recorded. The blow counts
are used in many correlations to determine other properties
of soils. The procedure is designated in accordance with
ASTM D1586-11 procedure (ASTM, 2011). Although many
corrections are performed on test results, in this study, it was
decided to use the raw data.

Another input parameter, liquidity index is determined
using three tests: water content, liquid limit, and plastic limits
tests. In water content test, the specimen is kept in an oven at
1058C for 24 h. The ratio of water weight over weight of dry
soil is the water content of the specimen. Liquid limit is the
water content of the fine-grained soil in transition from plastic
to liquid state. In contrast, plastic limit is the water content that
is the point of transition from the semisolid to plastic state.
Liquid limit and plastic limit tests can be employed in accor-
dance with the procedure in ASTM D4318-10 (ASTM,

2010). Measuring these parameters, the liquidity index (LI)
can be calculated as

LI ¼ vn � vP

vL � vP
, (2)

where vn, vL, and vP are the water content, liquid limit, and
plastic limit of the soil, respectively (Das, 2001).

The Mohr–Coulomb strength parameters of the soils are de-
termined by consolidated-undrained triaxial tests, which were
carried out in accordance with ASTM D2850 (ASTM,
2007). In unconsolidated-undrained triaxial tests, after applica-
tion of the confining pressure, deviatoric stresses are suddenly
raised to fail the specimen. Drainage is not allowed during the
tests. Axial deformation and deviatoric stresses are measured
during the shearing phase. As a result, these values are used
to determine the Mohr–Coulomb shear strength parameters
of the soils, namely, cohesion intercept (c) and internal friction
angle (f). It should be emphasized that the relatively low inter-
nal friction angles observed in our database (38–58) are due to
tests conducted on partially saturated fine-grained soils.

The shear strength values are calculated by the Mohr–Cou-
lomb criterion:

t ¼ cþ s tanf: (3)

Therefore, a database was constituted concerning several pa-
rameters related to strength, consistency, and field test results.
For clustering, four of these were selected: the percentage of
material passing through a number 200 sieve (no. 200), the LI
as indicated in Equation (2), the shear strength of soil from
laboratory triaxial test results at a certain depth (t), and the
SPT blow counts in the field (SPT-N). In the construction
of the database, SPT blow counts were noted for the nearest
elevation from which the undisturbed specimen was extracted.
In addition, if two SPT tests were close to an undisturbed speci-
men, attention was paid to recording the SPT test results per-
formed on the same classes of soils with the ones on which
the shear strength tests were employed.

4. UNSUPERVISED CLASSIFICATION
TECHNIQUES

Clustering algorithms are generally known as mathematical
processes that are employed to find out structures and behav-
iors as well as different groups in a data set. A cluster can
therefore be defined as a group of elements of data that are or-
ganized similarly. Similarity here is defined by the Euclidean
distances of the elements to cluster centers. The methods are
advantageous in classification of multidimensional data so
that the “distance” term is well defined.

4.1. Hard k-means (HKM) classifier

An HKM classifier segments the data in hand to a predefined
number of clusters, and this is accomplished by an iterative
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procedure. In the calculation procedure, the center points are
dynamic. Decision of a data point’s cluster is made by the
comparison of the Euclidean distances from the point to the
center of each cluster, of which their number is fixed a priori.
The algorithm moves the cluster centers after every iteration.
In HKM, a data point can only belong to a certain cluster
(Şen, 2004). The first step algorithmically is taking each point
in the data set in hand and later associating it to the nearest
centroid. Minimization of the squared error objective function
(J ) in Equation (4) leads to clustering of n data points to c
clusters (Ross, 1995):

J(U, v) ¼
Xn

j¼1

Xc

i¼1
kij xj � vi

�� ��2 ¼
Xn

j¼1

Xc

i¼1
kij d2

ij

h i

¼
Xn

j¼1

Xc

i¼1
kij

Xm
t¼1

x jt � vit

� �2
� �

, (4)

where J is the minimization function, U is the partition ma-
trix, v is the matrix of center clusters, m is the number of fea-
tures in input matrix, d is the similarity measure taking the
Euclidean distance calculation as a guide, and k is a function
in the calculation of the partition matrix defined as

U ¼ k1, k2, : : : , ki (5)

for any xj, so that if ki is equal to 1, xj is the element of ith
cluster and the contrary is true if ki ¼ 0.

Regarding this knowledge, cluster centers are computed as
in Equation (6):

vit ¼
Pn

k¼1 kik xktPn
k¼1 xik

(for t ¼ 1:m and i ¼ 1:c): (6)

As a consequence, the difference between obtained dissimi-
larity matrices is calculated and compared with the error cri-
terion (1). The iteration is accomplished when the difference
is below 1. The elements of the similarity matrix (d ) can be

updated using the following formulation (Şen, 2004):

if dik(s) ¼ min dik(s)½ �kij(sþ 1) ¼ 1
otherwise, kij(sþ 1) ¼ 0

�
8j [ c, (7)

where s is the number of iteration step. Unsuccessful out-
comes may be obtained when data is noisy, duplicate, or
not convex shaped (Ross, 1995).

4.2. Fuzzy c-means (FCM) algorithm

The HKM method is a crisp classification technique, and as
can be derived from its formulation, a data point can belong
to a certain cluster or not. Instructing the partial belonging-
ness concept by advantage of fuzzification, the FCM method
was developed by Bezdek (1981). Derived from the Eucli-
dean distance of a data point to a certain cluster center, com-
putation of a membership value enables the determination of
a data point’s partial belonging to any certain cluster. The pri-
mary difference between the crisp and fuzzy classification
concepts is sketched in Figure 1. Assuming that there are
two cluster centers, from the figure, it is clear that the points
A and B belong to the first and second cluster centers, respec-
tively. In the light of this, crisp classification techniques com-
pute the mA2 and mB1 values as 0. In contrast, mA1 and mB2

values will be 1. In fuzzy classification, the membership of
a point to every cluster is calculated in each calculation
step, and the greatest value of membership determines which
cluster this point belongs to. Therefore, a comparative evalu-
ation of memberships reveal that mA1 . mA2 and mB2 . mB1.
As will be mentioned, membership values range between 0
and 1 (Wu & Yang, 2002; Miyamoto et al., 2008).

An additional parameter instructed to the HKM algorithm
is the fuzzification parameter (m0), ranging between 1 and a
feature number (n). For every data point, the greatest member-
ship value to any cluster indicates which cluster this data
point belongs to. Similar to HKM, the dissimilarity function
in Equation (8) is minimized to terminate the algorithm after
supplying a satisfactory amount of error e, belonging to the
data point of the cluster. The dissimilarity function [Equation

Fig. 1. Definition of membership values: x and y are dependent parameters.
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(8)] was minimized to create a criterion for the algorithm ter-
mination step (Lanhai, 1998):

min Jm U, vð Þ½ � ¼ min
Xn

k¼1

Xc

i¼1
mikð Þm

0

� dikð Þ2
� �

, (8)

where mik is the membership degree of the kth data point in the
ith cluster and dik is the Euclidean distance between kth data
point and ith cluster center, which is depicted in Equation (9).

dik ¼ kxk � vik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1 (xki � vi)2
q

: (9)

The centroids herein may be calculated by

vij ¼
Pn

k¼1 m
m0
ik � xkjPn

k¼1 m
m0
ik

(for j ¼ 1:m and i ¼ 1:c), (10)

where v is the matrix composed of cluster centers, x is the data
point, and m0 is the fuzzification parameter or weighting coef-
ficient. A series of iterative calculations are used to employ
fuzzy partitioning (Bezdek, 1981):

uik(wþ 1) ¼
Xc

j¼1

dik(w)
djk(w)

	 
 2
m0�1

" #�1

, (11)

where w is the calculation step. In any step, the following cri-
terion is the key to terminate the algorithm:

kUwþ1 � Uwk � 1: (12)

Generally speaking, minimization of the objective function,
satisfying the criterion in Equation (12), leads to optimized
cluster centers.

4.3. Self-organizing maps (SOMs)

SOMs utilize a competitive learning process, which is based
on a “winner takes all” rule to categorize features without
feedback. Consisting of two layers, input layer is one dimen-
sional, and output neurons are arranged in two dimensions.
Briefly, with the aid of the topological neighboring concept,
a winning neuron in the output, which is a competitive layer.
is determined Haykin (1996). Many topological shapes could
be utilized for neighborhood detection (Şen, 2004), but the
most common shape, rectangular neighborhood, was used
in this study.

In the algorithm, output of each neuron is calculated as
follows:

Oj ¼
Xn

i¼1
wijXi, (13)

where O denotes the output vector, w is the weight matrix, and
X is the input vector. The weights of the output unit with the
highest activation are updated. Euclidean distance is usually
leveraged to determine the distance between the winning neu-

ron and the processing neuron in the output layer:

dj ¼ kXj � wijk: (14)

In Equation (14), d is the lateral distance vector. The best choice
for the quantification of the topological neighborhood function
is the Gaussian distribution function. Because this function is
bell shaped, it can comfortably satisfy the criteria above:

hij ¼ exp [�(d2
ij=2s2)], (15)

where hij is the topological neighborhood and s is the neigh-
borhood width parameter. As a consequence, the weights of
the neighboring neurons were updated after the determination
of the winning neuron via the following equation:

wij(t þ 1) ¼ wij(t)þ h(t)hij(t)bX j(t)� wij(t)c: (16)

In Equation (16), t is the iteration step, and h is the learning
rate parameter, which diminishes through the iterative pro-
cess. The iterative process ends when a stable output lattice
is obtained (Kohonen, 1982, 1998; Göktepe et al., 2008).

5. RESULTS AND DISCUSSION

The strength behavior of fine-grained soils is highly depen-
dent on consistency because water existence can change the
behavior of clay from quick clay to a stiff medium. As stated
above, past researchers classified the consistency and strength
in terms of the SPT-N parameter. In this study, an aim was
that the results could be a way of estimation of SPT-N of soils
when the field values sound unreliable. The opposite can also
be considered. When the shear strength parameter is not ex-
perienced within the expected range in the laboratory, the
SPT-N and liquidity index parameters can be questioned
for estimation of shear strength. The results of this study re-
vealed that this is somehow possible with the aid of unsuper-
vised clustering algorithms; however, it should be underlined
that the data in this study is regional. It is impossible to state
whether the use of a clustering method or a tabulated classi-
fication technique depicted in the background section is
more advantageous; however, use of field data and correlation
with the laboratory test ensures the strength of the method
proposed in this study. Because it is known that a fine-grained
soil gets softer as its SPT-N value decreases, and soils of
higher liquidity index are weaker, it is apparent that these pa-
rameters are indicators of the strength of the soils. In this re-
gard, use of unsupervised clustering algorithms and benefit-
ing from their ability of clustering data in a neighboring
and proximity- based manner, unsupervised clustering algo-
rithms step forward due to their classification ability and
the flexibility in selection of the dependent parameters, which
can always be reevaluated for different soil conditions.

In this scope, boring results obtained from the Karşıyaka mu-
nicipality to the north of Izmir city were collected and arranged.
Evaluating in detail, it was decided to simplify the classification
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problem by use of three input parameters; later, the dimension
of input space was reduced to two. Investigation of the scatter
plot in Figure 2 provided determination of parameters seeming
to have a valid trend with the SPT-N value. Initial clustering at-
tempts were conducted using no. 200, LI, and shear strength pa-
rameters. However, the results were unsuccessful because the
shear strength values in all considered classes were including
a wide range of no. 200 sieve material (Fig. 2). Compared to
t or LI, it was apparent that there were no correlative relation-
ships among the no. 200 parameter and SPT-N or the rest of
the parameters. Therefore, a second attempt in clustering was
made neglecting this parameter. Subsequent paragraphs in-
clude information about these attempts. It should be empha-
sized that, in addition to shear strength, many clustering at-
tempts using plasticity index, water content, liquid limit, and
no. 200, as well as their combinations, were made, and classi-
fication based on LI and t parameters yielded the best results.

5.1. Statistical analysis of the database

A basic statistical analysis of the dependent parameters tabu-
lated in Table 2 revealed that, as the SPT-N value increases,
the average value of shear strength increases, whereas the li-
quidity index values showed a decreasing trend with fluctua-
tions. The same trend seemed to exist in minimum and max-
imum values, so these were the signs of distinct clusters.
Parallel to the increase in average of the shear strength, an in-
creasing trend was also noted down for the standard deviation
of this parameter. The skewness coefficient for t indicated that
bulk values lie to the right of the mean up to an SPT value of
30. For the skewness of LI, the same interpretation can be
made; however, this time all the skewness values were posi-
tive. These parameters indicate that the tail on the right side
of the probability density function was longer than on the

left side, for each SPT class. This was a good outcome, espe-
cially for the LI parameter, because the ability of classification
was prone to increase due to this finding. The same conclu-
sions can be derived from box-whisker plots given in Figure 3.
From Figure 3a, it was clear that the range of the data increases
as the SPT-N number increases. All the clusters had outliers
that did not fall in the interquartile range. From Figure 3b, sim-
ilar to Figure 3a, outliers were observed and data interquartile
ranges were close to each other, except the SPT-N range (4–8).

Unifying the ranges of very soft and soft classes (Table 1)
in one cluster, five clusters were pronounced for the classifi-
cation tables of Terzaghi and Peck (1967), Tschebotarioff
(1973), and Parcher and Means (1968). Analyzing the center
points and the range of the clusters as well as the extreme val-
ues for shear strength, the clusters seemed to be in accordance
with Tschebotarioff (1973). It should be noted that, the field
values did not coincide with the ranges given in Tschebotari-
off (1973) in a strict manner; however, they were in accor-
dance to a reasonable degree.

5.2. SPT-N clustering using shear strength and LI
parameters

The three algorithms were used to cluster the input data in
terms of shear strength and LI parameters. Comparing with
real SPT-N values, the performances of the classifiers were
evaluated in terms of classification rates. The results obtained
from clustering sessions are given in Figure 4, where
Figure 4a includes the SPT clusters obtained from field tests.
Figure 4b–d shows the results of clustering attempts using t

Fig. 2. Scatter plots of the parameters considered in this study. Note that the
no. 200 parameter was discarded later. LI, Liquidity index; SPT-N, standard
penetration test standard penetration resistance value.

Table 2. Descriptive statistics of the classifiers in SPT-N
clusters

Shear Strength
(kg/cm2)

SPT-N Range

0–4 4–8 8–15 15–30 .30

Count 70 36 54 67 32
Average 0.15 0.44 0.92 1.51 2.10
Median 0.13 0.38 0.92 1.51 2.23
Minimum 0.06 0.20 0.18 0.74 0.70
Maximum 0.40 1.47 1.97 2.72 2.75
Standard deviation 0.07 0.22 0.20 0.30 0.48
Skewness 1.327 3.118 1.736 1.492 -1.613
Kurtosis 1.579 12.709 15.802 6.767 2.534

Liquidity Index

Count 70 36 54 67 32
Average 1.166 0.282 0.540 0.415 0.448
Median 1.133 0.212 0.424 0.278 0.273
Minimum 0.108 20.077 20.132 20.217 20.077
Maximum 2.333 1.583 2.333 2.625 1.742
Standard deviation 0.343 0.325 0.446 0.446 0.425
Skewness 0.288 2.439 1.666 2.606 1.481
Kurtosis 2.003 7.195 4.197 9.931 2.362

Note: SPT-N, standard penetration test standard penetration resistance
value.
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and LI data. Big circular marks that are interconnected with
solid lines represent the cluster centers. A crude examination
of these graphs gives the conclusion that the results of the
clustering sessions are not different from each other. Never-
theless, this is an expected conclusion that can be drawn
from the scatter plot given in Figure 2. It should be empha-
sized that the graphs, including results of the clustering ses-
sions, indicate that these parameters can be used for classifi-
cation of SPT-N in the field. The results seem to be in
accordance with real life data.

Analyzing the data given in Table 3 in detail, the variety in
the LI component of the center points is greater than those of
t. As expected, center coordinates of the FCM algorithm for
five clusters are not close to those of HKM and SOM. The
variation among the center points of the HKM and SOM al-
gorithms are on the order of 5%; however, greater values are
pronounced for the variations among HKM/FCM and SOM/
FCM. To our surprise, this result did not positively affect on
the classification rates of FCM.

The true classification rates of the three algorithms are
given in Table 4. The overall classification rates showed
that a SOM algorithm employed for 200 iterations classified
the data slightly better than the two remaining algorithms.
The classification rates of the SOM, FCM, and HKM algo-
rithms are 84.9%, 84.2%, and 83.8%. Analyzing in detail,
FCM produced better outcomes for extremely close clusters
(0–4) and (4–8); however, it produced slightly worse perfor-
mance in comparison with HKM and SOM. This is also seen
in partial membership values plotted in Figure 5. The data
was arranged in an ascending manner by means of SPT-N,
and it was noticed that the membership of the data belonging
to the (0–4) and (4–8) clusters were greater, in comparison
with the remaining three cluster of the higher SPT-N ranges.
Moreover, the multiple peaks and reduced maximum member-
ship values in Figure 5c–e confirms these findings. As a result,
none of the classifiers here can be pointed to as a better classi-
fier, and it can be stated that three of the algorithms here serve
the needs for SPT-N classification. However, it should not be

Fig. 3. Box-whisker plots of the data to be classified. SPT-N, Standard penetration test standard penetration resistance value.
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ruled out that the data in this study is regional, and further
attempts should be made to classify these data including
different types of laboratory tests, SPT-N equipment, and
soil types.

6. CONCLUSIONS

In this study, three classifiers (HKM, FCM, and SOM) are
employed to classify the SPT-N parameter in terms of the
shear strength and LI parameters. It was aimed to classify
the SPT-N value in the field using various parameters. More-
over, three classifiers were evaluated and the outcomes and
their classification abilities were compared as well. The fol-
lowing results can be drawn from this study:

1. As observed from the studies in the past, the partial be-
longingness concept in the FCM parameter encourages
its use due to its increased classification ability. Although
this algorithm was successful in classification of close
clusters in this study, the classification rates overall are
not markedly greater than the SOM and FCM.

2. In addition to the shear strength parameter, many input
parameters were tried for better classification rates in-
cluding plasticity index, no. 200 sieve, water content,
and liquid limit. Classification based on the LI and

Fig. 4. Two-dimensional plots of (a) field data, (b) hard k-means clustering
results, (c) fuzzy c-means clustering results, and (d) self-organizing map clus-
tering results

Table 3. Center points of the clusters obtained using different
classifiers

Shear Strength
(kg/cm2)

SPT-N Range

0–4 4–8 8–15 15–30 .30

HKM 0.26 0.35 0.92 1.51 2.29
FCM 0.17 0.41 0.95 1.50 2.32
SOM 0.26 0.36 0.94 1.51 2.31

Liquidity Index

HKM 1.283 0.285 0.436 0.319 0.452
FCM 1.217 0.232 0.567 0.274 0.322
SOM 1.279 0.272 0.452 0.326 0.424

Note: SPT-N, standard penetration test standard penetration resistance
value; HKM, hard k-means; FCM, fuzzy c-means; SOM, self-organizing
map.

Table 4. Performances of classification algorithms

True Classif.
Rate (%)

SPT-N Range

0–4 4–8 8–15 15–30 .30 Overall

HKM 87.3 83.3 81.5 80.6 84.4 83.8
FCM 91.5 83.3 79.6 80.6 81.3 84.2
SOM 88.7 83.3 83.3 83.6 81.3 84.9

Note: SPT-N, Standard penetration test standard penetration resistance
value; HKM, hard k-means; FCM, fuzzy c-means; SOM, self-organizing
map.
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the shear strength parameters produced the best out-
comes. The overall classification rates of the three algo-
rithms were between 83.8% and 84.9%. These values
are acceptable for classification of a highly variable
SPT-N parameter, which is affected from field and test-
ing conditions as well as water existence.

3. When two of them are reliable and one is ambiguous,
the results of this study have a potential to confirm
SPT-N, liquidity index, or shear strength parameters.
However, it should be taken into account that the data
in this study is regional, and further attempts should
be made to classify these data, including different types

of laboratory tests, SPT-N equipment, and soil types
from various parts of the world.

4. These clustering algorithms can be used in classifica-
tion of various types of scientific data, as stated in the
past studies. The clustering algorithms, along with the
benefits of using geographical information systems,
can provide powerful insight in spatial characterization,
regionalization, and classification of various data ob-
tained in studies conducted in any branch of engineer-
ing or life sciences, including interdisciplinary research.
Nonetheless, as stated in the Background Section, apart
from classification of civil engineering field data, these

Fig. 5. Membership values of the standard penetration test standard penetration resistance value classes in the fuzzy c-means algorithm (a)
0–4, (b) 4–8, (c) 8–15, (d) 15–30, and (e) .30.
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classifiers have found application areas in agricultural
engineering, signal processing, environmental engi-
neering and management, industrial engineering, and
administrative sciences as well. Because these classifi-
ers do not require a learning process and their ability
in clustering utilizing multidimensional data is remark-
able, their use can be beneficial. Moreover, the simple
algebra in the background of the algorithms makes their
use possible and plausible to classify and evaluate dif-
ferent types of data.
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