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Abstract

DuFort–Frankel averaging is a tactic to stabilize Richardson’s unstable three-level

leapfrog timestepping scheme. By including the next time level in the right-hand-side

evaluation, it is implicit, but it can be rearranged to give an explicit updating formula,

thus apparently giving the best of both worlds. Textbooks prove unconditional stability

for the heat equation, and extensive use on a variety of advection–diffusion equations

has produced many useful results. Nonetheless, for some problems the scheme can

fail in an interesting and surprising way, leading to instability at very long times. An

analysis for a simple problem involving a pair of evolution equations that describe

the spread of a rabies epidemic gives insight into how this occurs. An even simpler

modified diffusion equation suffers from the same instability. Finally, the rabies problem

is revisited and a stable method is found for a restricted range of parameter values,

although no prescriptive recipe is known which selects this particular choice.

2020 Mathematics subject classification: primary 65M12; secondary 65M06.

Keywords and phrases: finite differences, numerical instability, DuFort–Frankel,

leapfrog schemes, diffusion..

1. Introduction

DuFort–Frankel(DFF) finite-differencing [2] is a standard method that is explained

in numeroustextbooks [14, 16] and websites. It is typically discussed in the context

of the heat equation, for which a von Neumann stability analysis [1] shows that the

method is unconditionally stable. DFF has been used extensively for many nonlinear

problems involving advection and diffusion, particularly in fluid dynamics (see [1, 17]

and references therein). In particular, Roberts and Weiss [18] developed algorithms

with two overlaid meshes that are staggered in space and time, saving a factor of 2 in

both storage and computing time. These were used successfully for many problems

in convection and magnetoconvection (for example, [4, 5, 7, 13, 20]), for solving
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24 D. Galloway and D. Ivers [2]

a Fokker–Planck equation [10], and for a neural network problem [6]. With one

exception, discussed in Section 6, no difficulties were encountered and the method

evolved a reputation for reliability and efficiency—although, being only second-order

accurate, it has been somewhat superseded by higher-order or spectral methods.

(Roberts and Weiss [18] gave a fourth-order version, but this has been rarely used.)

For completeness, we summarize the derivation here, in preparation for the more

complicated analyses that follow later. Richardson’s leapfrog scheme for the heat

equation is the three-level algorithm for the dependent variable un
j
, defined at x =

j∆x, j = 0, . . . , J, and t = n∆t, n = 0, 1, 2, . . . , taking the form

un+1
j
− un−1

j

2∆t
=

un
j+1
+ un

j−1
− 2un

j

(∆x)2
,

where ∆x and ∆t are the fixed mesh intervals in space and time. It is known to be

highly unstable, but if the average of time levels n − 1 and n + 1 is used for the central

element of the diffusion operator, the resulting scheme taking the form

un+1
j
− un−1

j

2∆t
=

un
j+1
+ un

j−1
− un+1

j
− un−1

j

(∆x)2

constitutes DFF. This is now implicit, but is easily rearranged to give the explicit

updating formula

(1 + α)un+1
j = (1 − α)un−1

j + α(un
j+1 + un

j−1),

where α = 2∆t/(∆x)2. Testing, for instance, the zero solution for stability, assume a

disturbance Uneikx
= Uneikj∆x; there results the linear difference equation

(1 + α)Un+1 − 2α cos(k∆x)Un − (1 − α)Un−1 = 0.

This has solutions with Un proportional to rn, where

(1 + α)r2 − 2α cos(k∆x)r − (1 − α) = 0. (1.1)

Stability or instability depends on whether the roots lie, respectively, inside or outside

the unit circle in the complex r-plane. The quadratic can be solved and shown to have

roots that lie inside (see, for example, [16]), with the exceptions that when the cosine

is −1, the negative root is −1, and when the cosine is 1, the positive root is 1. These

isolated points do not affect the stability, as they give no secular growth of any error,

but they do hint that a small perturbation might push the scheme over the edge, as in

fact we shall find later.

The Schur–Cohn test (that is, the Routh–Hurwitz test with the left half-plane

mapped to the interior of the unit circle) gives necessary and sufficient conditions

for the roots of a polynomial to lie inside the unit circle [8, 12]. For the quadratic

a2r2
+ a1r + a0 = 0 the conditions reduce to |a2 + a0| > |a1|, which in the current case

gives |2α| > |2α cos(k∆x)|. This is clearly always true except at the aforementioned two

points.
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[3] Slow instabilities of DuFort–Frankel 25

There is also a well-known consistency requirement: the truncation error of the

scheme is easily shown to be

O(∆t)2
+ O(∆x)2

+ O(∆t/∆x)2.

One needs ∆t = O(∆x)1+ǫ with ǫ > 0 for this to approach zero as ∆t,∆x→ 0. In

practice, for overall second-order accuracy, one takes ∆t = O(∆x)2, that is, α of order

1. We note in passing that the choice α = 1 leads to the amazingly simple scheme

un+1
j =

1
2
(un

j+1 + un
j−1),

still accurate to order (∆t)2 and (∆x)2. This choice obviates the need for an initial step

that uses some other method; in this form it is equivalent to a special case of the

forward-time centred-space method found in many textbooks (for example, [16, page

136]).

In Section 2 we present a problem which breaks DFF in an interesting and

unexpected way. Specifically, our results exhibit instability at very long times, even

after an apparent steady state has been achieved. Section 3 gives a von Neumann

stability analysis which explains how this happens; basically an eigenvalue lies outside

the unit circle, but only by a tiny amount. Errors therefore take a very long time to

accumulate. Section 4 distils the essence of the instability into a very simple model

problem, the heat equation with a linear source term. Section 5 discusses variations in

the way DFF can be applied to the original problem, and finds one variant which gives

a stable scheme for restricted parameter values. Section 6 concludes and cites other

work on instability due to nonstandard boundary conditions.

2. An example of instability

The problem we encountered arose when we applied the DFF method to solve the

following pair of equations

∂S

∂t
= −IS + bS(1 − S), (2.1)

∂I

∂t
= IS − λI +

∂2I

∂x2
(2.2)

with boundary conditions ∂I/∂x = 0 at x = 0, L and initial conditions S = 1, I a narrow

Gaussian pulse centred somewhere in the middle of the domain. This is taken from

J. D. Murray’s book on mathematical biology [15], and is a simple attempt to model

the spread of a rabies epidemic in a one-dimensional isolated country of length L. The

context is explained fully in the book, and need not concern us further here, except to

point out that the death rate λ and logistic parameter b are both positive. In the absence

of the disease, the maximum population has been scaled to unity, S = 1; in addition,

time has been scaled to give unit diffusivity.
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26 D. Galloway and D. Ivers [4]

In addition to the two trivial fixed points (S, I) = (0, 0) and (S, I) = (1, 0), it is easily

verified that the above equations have a steady-state solution

S = λ, I = b(1 − λ).

Its stability is ascertained by linearizing this steady state and evaluating the Jacobian

matrix of the right-hand side there. The eigenvalues are solutions to a quadratic, with

negative real parts or simple zeros, meaning that any disturbance decays exponentially

with time so that the solution is linearly stable.

The above equations apparently have no analytic solutions for the time-dependence.

To solve them numerically, our background led us to try a DFF treatment of the diffu-

sive term. This turns out to fail; three other methods—second order Adams–Bashforth

(AB2) or mid-point Runge–Kutta (RK2) [12], and a method of lines using MATLAB’s

ODE45 solver—all yielded successful solutions, but the DFF gave solutions unstable

at long times.

Defining ∆x and ∆t as before, the obvious DFF discretiztion of the above equa-

tions is

Sn+1
j
− Sn−1

j

2∆t
= −In

j Sn
j + bSn

j (1 − Sn
j ),

In+1
j
− In−1

j

2∆t
= In

j (Sn
j − λ) +

In
j+1
+ In

j−1
− In+1

j
− In−1

j

(∆x)2
.

The discretized equilibrium is the same, Sn
j
= λ, In

j
= b(1 − λ).

These equations can again be rearranged to give explicit formulae updating Sn−1
j

and In−1
j

, respectively, to Sn+1
j

and In+1
j

:

Sn+1
j = Sn−1

j + 2∆tSn
j (b(1 − Sn

j ) − In
j ),

In+1
j =

(In−1
j

(1 − α) + In
j
(Sn

j
− λ) + α(In

j+1
+ In

j−1
))

1 + α
,

where, as before, α = 2∆t/(∆x)2. The first equation can be used at both interior

and boundary points, the second only in the interior. The zero derivative boundary

conditions at points 1 and N are set after the interior points with

In+1
1 = (4In+1

2 − In+1
3 )/3, In+1

N = (4In+1
N−1 − In+1

N−2)/3,

both of which are accurate to order (∆x)2. As with all three-level schemes, the first

timestep must be carried out with a different method; we used either explicit Euler or

a second-order Runge–Kutta. Surprisingly, the choice makes a difference which will be

discussed later. We also successfully ran a few cases where RK2 was used throughout

for the timestepping. All our programs were written in MATLAB and ran in seconds

or minutes.

Both the AB2 and DFF codes were run for a wide range of values of the parameters

b and λ, for several sufficiently small values of ∆x, and consistent timesteps were

https://doi.org/10.1017/S1446181121000043 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000043


[5] Slow instabilities of DuFort–Frankel 27

0 20 40 60 80 100
0

0.5

1

t = 0

S,I     

0 20 40 60 80 100
0

0.5

1

t = 25

t = 389 t = 779

0 20 40 60 80 100
0

0.5

1

S,I     

0 20 40 60 80 100
0

0.5

1

t = 987 t = 1299

0 20 40 60 80 100
0

0.5

1

x

S,I     

0 20 40 60 80 100
0

0.5

1

x

FIGURE 1. Plots of S (the upper curves at x = 100) and I (dashed) for λ = 0.2, b = 0.1, L = 100, ∆x = 0.1,

α = 0.2 (∆t = 10−3). After a stage of propagating waves the solution closely approaches the steady state,

S = 0.2, I = 0.08 about t = 400 (see the plots at t = 389 and 779). It differs imperceptibly from these

values up to about t = 900 but by t = 950 an instability has started to erupt (see the plot at t = 987). The

evolution using AB2 is identical except that the instability never appears and the steady state is maintained

for all time.

chosen with α = 0.2. Typical plots of the solutions at various times are shown in

Figure 1, for the values λ = 0.2, b = 0.1, L = 100,∆x = 0.1. The AB2 solution was

checked against another code based on MATLAB’s ODE45 routine, and we are

confident it gives the correct solution, provided a sufficiently small timestep is

chosen—a stability analysis for AB2 similar to that described for DFF in the next

section shows α must be chosen less than 0.5 for the numerical solution to be stable.

The DFF code behaved similarly for a range of other parameter values, and the salient

features are listed as follows.

• For the early parts of each run, AB2 and DFF behave indistinguishably, with an

initial period of waves sloshing back and forth, followed by an approach to the

https://doi.org/10.1017/S1446181121000043 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181121000043
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correct steady state S = λ, I = b(1 − λ) at later times. The waves are explained

by Murray [15].

• At later times, AB2 successfully converges to the steady state. DFF almost gets

there, but becomes unstable at very long times.

• Just how long the instability takes to be significant depends on how the initial

step ∆t is carried out: using an Euler step, it is manifest sooner than with RK2.

The solution of the latter case is remarkable in showing an apparent steady state

between around t = 380 and t = 980, after which the instability finally erupts.

• The time until the onset of instability exhibits little or no dependence on the

values of ∆x and ∆t; it does, however, depend critically on the two parameters λ

and b from the original problem.

• The instability first arises in the neighbourhood of the location of the initial

pulse; even after a very long time the system still remembers the initial condition.

All these facts will find an explanation when the stability of the DFF scheme is

investigated in the next section.

3. Why the scheme fails

We can linearize the difference equations in the previous section about their

equilibrium solution and study the growth or decay of the Fourier modes by writing

Sn
j = λ + fneijk∆x, In

j = b(1 − λ) + gneijk∆x.

Neglecting the quadratic terms yields

fn+1 = fn−1 − 2λ∆t(gn + bfn),

gn+1 =
(1 − α)gn−1 + 2b∆t(1 − λ)fn + 2α cos(k∆x)gn

1 + α
.

We can turn this into a system of four first-order homogeneous difference equations by

writing fn−1 = An, gn−1 = Bn, fn = Cn, and gn = Dn:



An+1

Bn+1

Cn+1

Dn+1


=



0 0 1 0

0 0 0 1

1 0 −2bλ∆t −2λ∆t

0
1 − α

1 + α

2b∆t(1 − λ)

1 + α

2α cos(k∆x)

1 + α





An

Bn

Cn

Dn.


.

This system has solutions proportional to rn, where r is any one of the eigenvalues of

the Jacobian coefficient matrix on the right-hand side. These satisfy the quartic

(1 + α)r4
+ 2{λb∆t(1 + α) − α cos(k∆x)}r3 − {4b(∆t)2λ(λ − 1) + 2

+ 4bαλ∆t cos(k∆x)}r2
+ 2(b∆t(α − 1)λ + α cos(k∆x))r + 1 − α = 0. (3.1)
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TABLE 1. Eigenvalues ri (to six decimal places) for selected parameter pairs (α, λ).

(α, λ) (0.4, 0.1) (0.4, 0.2) (0.8, 0.1) (0.8, 0.2)

r1 0.999 979 0.999 959 0.999 959 0.999 919

r2 0.654 653 0.654 653 0.333 333 0.333 333

r3 −0.654 653 −0.654 653 −0.333 333 −0.333 333

r4 −1.000 019 −1.000 039 −1.000 039 −1.000 079

λ

α

FIGURE 2. Illustration of the linear dependence of the minimum eigenvalue near −1, varying λ (with

b = 0.8, α = 0.4), b (with λ = 0.5, α = 0.4) and α = 200∆t (with λ = 0.5, b = 0.8) with ∆x = 0.1.

The formula for the roots of a quartic can be applied to this, but the results are far

too complicated to yield any insight. Another possibility is to use the Schur–Cohn test

on the coefficients; the formulae are given at the end of [8] (with a typo) but again

the results are too involved to be any use. What does work is simply to calculate the

eigenvalues numerically with MATLAB in many cases; fortunately, when this is done,

a clear pattern emerges. Table 1 shows some typical values.

From numerous similar computations we observe that there are always eigenvalues

near ±1, and they are almost insensitive to cos(k∆x), with their differences from ±1

approximately proportional to ∆t, b and λ (see Figure 2). The eigenvalue just below −1
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provokes the instability and its closeness to −1 is why the latter takes so long to

appear.

Armed with these facts, we can algebraically seek Taylor expansions for the roots

near ±1 by writing r = ±1 + ǫ, keeping just the constants and the terms linear in ǫ.

This can be done by hand and verified with computer algebra. When this is done, the

constant term reassuringly vanishes to zero order in ∆t and ∆x. The eigenvalue near 1

is 1 − bλ∆t + · · · ; the one near −1 is −1 − bλ∆t + · · · . This is enough to explain the

facts listed at the end of the previous section.

• A similar analysis for AB2 gives eigenvalues just within the unit circle providing

α < 1/2, so while DFF fails for any value of α, AB2 is conditionally stable and

succeeds.

• The amplitude of the error depends on its initial value. With an Euler first step

the error introduced is proportional to (∆t)2; with RK2 it is proportional to (∆t)3.

This explains why the error takes longer to develop with RK2. The Fourier modes

of the initial error derive from the nonnegligible parts of the initial condition;

these are what are amplified, explaining the fact that the system remembers

them.

• For λ > 0, the eigenvalue near −1 is the cause of the instability. The value −1

indicates that the instability should flip sign between odd and even steps of length

∆t; this prediction is borne out by the numerical results. At each timestep any

error is amplified by an approximate factor −1 − bλ∆t; after a total integration

time T = n∆t the amplification factor is (−1 − bλT/n)n. As n→ ∞, this tends

to (−1)nebλT , explaining why the growth time is almost independent of the

timestep. In fact, with an Euler (or RK2) first step, the time for an initial error of

order (∆t)2 (or (∆t)3) to become of order 1 is estimated by −2 log(∆t)/(λb) (or

−3 log(∆t)/(λb)). So an RK2 first step means that the integration appears correct

for 1.5 times longer, and there is a weak logarithmic dependence on ∆t. This is

approximately what is observed computationally.

We will be using the above Taylor expansion procedure repeatedly, for solutions

of equation (3.1) and later for three other cases in Section 5, and some remarks are

in order. One can formally set ∆t to zero in equation (3.1) with α nonzero, which

drastically simplifies the Jacobian matrix. Writing C = cos(k∆x), the eigenvalues r

then satisfy a quartic which factorizes as

(r2 − 1){(1 + α)r2 − 2αCr − (1 − α)} = 0.

The two roots ±1 are consistent with what was found above for nonzero ∆t. The

other two roots {αC ±
√
α2(C2 − 1) + 1}/(1 + α) were treated in equation (1.1): if

|C| < 1 these roots are stable with modulus less than unity; if C = 1 the roots are

1, (α − 1)/(α + 1), and if C = −1 they are −1,−(α − 1)/(α + 1). This differs from the

heat equation case in (1.1) since ±1 are double roots in (3.1) if C = ±1, changing the

forms of the expansions for nonzero ∆t.
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We now expand the solutions near ±1 in powers of ∆t. We know that since the

coefficients of the quartic are analytic functions of the parameters, in particular of ∆t,

the resulting Taylor series are themselves analytic in a neighbourhood of ∆t = 0 (see,

for example, [9, page 82 Ch. II Theorem 2.3]). This means our expansion procedure

is valid. Thus we expand r = ±1 + a1∆t + a2(∆t)2
+ · · · , substitute this into the full

quartic, and calculate the coefficient of ∆t on the left-hand side. For the −1 expansion,

if this coefficient is negative, the associated eigenvalue gives instability; if it is positive

there is stability. (In general, there is one unique value, and the coefficient is real.) The

reverse is true for the +1 expansion. This gives the results referred to earlier.

For the special cases C = ±1, the coefficient of ∆t in the expansion of the quartic

vanishes, because of the double root when ∆t = 0. The expansion must then be carried

out to order (∆t)2; this shows that a1 satisfies a quadratic with two possible values,

with a2 appearing with a factor (C ± 1) and thus making no contribution at this

order. This has no consequences for the standard case discussed here, because the

C , ±1 modes are all unstable, but it affects things interestingly for Variant 3 in

Section 5.

4. A simpler example

The above instability arises, at least to first order in ∆t, from the death rate term

in the equation for I. This suggests that the following problem may give a distillate of

what is happening. Consider the modified heat equation

∂u

∂t
= −λu +

∂2u

∂x2

with a Gaussian initial condition and zero-derivative boundary conditions. Clearly

u→ 0 as t → ∞ when λ > 0.

Naive DFF gives the difference scheme

(1 + α)un+1
j = (1 − α)un−1

j − 2∆tλun
j + α(un

j+1 + un
j−1). (4.1)

A stability analysis of the zero solution proceeds as for the ordinary heat equation; the

timestep dependence is proportional to rn, where

r2(1 + α) + 2[λ∆t − α cos(k∆x)]r − (1 − α) = 0.

Again using the Schur–Cohn test (see Section 1) for the quadratic a2r2
+ a1r + a0 = 0,

the condition |a2 + a1| > |a0| for stability gives

|α| > |λ∆t − α cos(k∆x)|.

This condition is violated when k∆x is sufficiently close to an odd multiple of π.

For the special case α = 1 the roots of the quadratic are r = 0 (superstable) and r =

cos(k∆x) − λ∆t, so modes k = π/∆x, k = 3π/∆x, . . . are all unstable with growth factor

−1 − λ∆t + · · · . Thus for the modified heat equation DFF is predicted to fail for very

large times as in the rabies problem (2.1) and (2.2), with a growing perturbation that
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FIGURE 3. Plots of u for λ = 0.2, ∆x = 0.1, α = 1 (∆t = 5 × 10−3). The solution closely approaches

the steady state, u = 0. Between t = 30 and t = 140, u differs imperceptibly from 0, but by t = 150 an

instability has started to erupt. The solid appearance of the solution in the final plot is due to the high wave

numbers of the most unstable modes, and the negative values arise because the instability is associated

with an eigenvalue just below −1.

flips sign between odd and even timesteps. This behaviour is shown by the numerical

solution in Figure 3, which uses α = 1 in (4.1), obviating the need for a special starting

step.

An obvious possible cure is to extend the DFF averaging to the death rate term. The

algorithm then becomes

(1 + α + λ∆t)un+1
j = (1 − α − λ∆t)un−1

j + α(un
j+1 + un

j−1),

and the special choice removing the un−1
j

term is α = 1 − λ∆t, that is, ∆t = ∆x2/(2 +

λ(∆x)2). When implemented, this scheme is stable, and in fact the stability eigenvalues

are then r = 0 and r = cos(k∆x). This motivates us always to use averaging in both the

death rate and diffusive terms in the algorithms to be discussed in the next section.

Of course, if an integrating factor eλt is used, this problem reduces to the ordinary

heat equation, for which DFF then gives the correct solution!
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5. Attempts to fix the rabies problem

There are several ways to introduce extra DFF averaging into the rabies equations

with the goal of finding a stable algorithm. Guided by the results in the previous

section, we restrict ourselves to the case where the death rate term is also averaged.

There are then three possibilities.

5.1. Variant 1 We do no further averaging in the nonlinear terms. The resulting

difference equations are then

Sn+1
j = Sn−1

j + 2∆tSn
j (b(1 − Sn

j ) − In
j ),

In+1
j =

In−1
j

(1 − α − λ∆t) + In
j
Sn

j
+ α(In

j+1
+ In

j−1
)

1 + α + λ∆t
.

These can be rearranged as before to give explicit updating formulae, which turn out

to be always unstable.

We can analyse the stability exactly as for the standard case; this time the four

homogeneous difference equations have a right-hand-side matrix

M =



0 0 1 0

0 0 0 1

1 0 −2bλ∆t −2λ∆t

0
1 − α − λ∆t

1 + α + λ∆t

2b∆t(1 − λ)

1 + α + λ∆t

2α cos(k∆x) + 2λ∆t

1 + α + λ∆t


.

Again this has two eigenvalues close to 1 and −1; Taylor series expansions of the roots

of the resulting quartic about these points start with r = 1 − bλ∆t and r = −1 − bλ∆t,

just as before.

5.2. Variant 2 We average in the death rate term and in addition we average I but

not S in the nonlinear term. This replaces IS in both equations with (In+1
j
+ In−1

j
)Sn

j
/2,

so that there is still conservative transfer between the two equations. Provided we store

In−1
j

and update In−1
j

to In+1
j

first, an explicit rearrangement is still possible, giving

Ĩn−1
j = In−1

j ,

In+1
j =

In−1
j

(1 − α − λ∆t + ∆tSn
j
) + α(In

j+1
+ In

j−1
)

1 + α + λ∆t − ∆tSn
j

,

Sn+1
j = Sn−1

j − ∆t(2Sn
j (b(1 − Sn

j ) − In+1
j − Ĩn−1

j ).

Application of this algorithm turns out to be unstable again.
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Analysing the stability is slightly more complicated than before as an additional

elimination stage is necessary. The resulting right-hand-side matrix is

M =



0 0 1 0

0 0 0 1

1 −
2∆tλ

1 + α
−

2bλ∆t(1 + α + ∆t(1 − λ))

1 + α
−

2λ∆t α cos(k∆x)

1 + α

0
1 − α

1 + α

2b∆t(1 − λ)

1 + α
−

2α cos(k∆x)

1 + α



.

Yet again, a stability analysis gives two eigenvalues close to 1 and −1; Taylor series

expansions around these points give r = 1 − bλ∆t and r = −1 − bλ∆t, as before.

5.3. Variant 3 We average in the death rate term but this time in addition we

average S rather than I in the nonlinear term. This replaces IS in both equations

with (Sn+1
j
+ Sn−1

j
)In

j
/2, again giving conservative transfer between the two equations.

Provided we store Sn−1
j

and update Sn−1
j

to Sn+1
j

first, an explicit rearrangement is still

possible, giving

S̃n−1
j = Sn−1

j ,

Sn+1
j = Sn−1

j − ∆t((Sn+1
j + Sn−1

j )In
j − 2bSn

j (1 − Sn
j ),

In+1
j =

In−1
j

(1 − α + ∆t(̃Sn−1
j
− λ)) + α(In

j+1
+ In

j−1
)

1 + α + ∆t(Sn+1
j
− λ)

.

This algorithm was coded up and run for many parameter values. It was found to give

the correct stable solution in some but not all cases.

The stability of the scheme can be investigated using the same methods and notation

as before; however, the analysis again requires an extra elimination stage, and this time

the algebra is yet more complicated. We have

M =



0 0 1 0

0 0 0 1
1 − (1 − λ)b∆t

1 + (1 − λ)b∆t
0

2b(1 − 2λ)∆t

1 + (1 − λ)b∆t
−

2λ∆t

1 + (1 − λ)b∆t

2b(1 − λ)∆t

D

1 − α − λ∆t

1 + α + λ∆t

N1

D

N2

D



, (5.1)

where

N1 = 2b2(∆t)2(1 − λ)(1 − 2λ),

N2 = 2[α cos(k∆x)(1 + (1 − λ)b∆t) + λ∆t],

D = (1 + (1 − λ)b∆t)(1 + α + λ∆t).

The eigenvalues determining the stability can again be evaluated in particular cases

using MATLAB or Mathematica; for example, for ∆t = 0.002, ∆x = 0.1, λ = 0.2,
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b = 0.1, and cos(k∆x) = 1, their moduli are 0.999 720, 0.999 980, 0.999 980, 0.428 163

(the middle pair are complex conjugates). So this case is stable.

Two of the eigenvalues are again very close to ±1 so we can expand the quartic

about these points in powers of ∆t. Setting r = ±1 + a1∆t + a2(∆t)2
+ · · · , we find

approximate solutions r = 1 + 4(C − 1)αbλ∆t (always less than or equal to 1), and

r = −1 + 4(1 + C)αb(2 − 3λ)∆t. This predicts the algorithm should be stable or

unstable according as λ < 2/3 or λ > 2/3, with the root near −1 producing the

instability. However, this is not confirmed by actual calculations. From the MATLAB

eigenvalue calculator, we find that in fact the critical value is exactly 0.6. What is going

on here?

The answer is subtle: note that for the special modes where C = ±1, the order-∆t

correction to the equation for the eigenvalues near ±1 of the matrix M in (5.1) vanishes.

For these cases we actually need to expand the equation to order (∆t)2 to get the

corrections. Because r = ±1 are double roots of the ∆t = 0 quartic, the coefficient a1

satisfies a real-coefficient quadratic with one solution for each of the finite ∆t branches

bifurcating from this double root. The quadratic is derived using Mathematica, and

the product of its roots is found to be b(3 − 5λ)λ (this is for the case near r = −1,

which becomes unstable for lowest λ; the root near r = +1 has a factor 1 − λ replacing

3 − 5λ). When λ > 3/5 both roots are real and one of them has to be negative, so the

corresponding r is less than −1 and there is instability.

We thus have the strange situation that there is an isolated discrete spectrum

of k values giving modes more unstable than the case for general k. In the range

3/5 < λ < 2/3, the growth factor per ∆t timestep is −1 − |a1|∆t. For a total time

T = N∆t the overall factor becomes (−1)N(1 + |a1|∆t)T/∆t, which tends to (−1)Ne|a1 |T∆t

for large N. The growth of catastrophic errors is again independent of the timestep, but

as one approaches λ = 3/5 from above, its appearance should take longer and longer.

When the finite-difference code for Variant 3 is run, we find there is yet another twist

to the story. When λ < 3/5, the steady solution is always stable. When λ > 2/3 it is

always unstable. But for intermediate values of λ there can be solutions whose stability

depends on the amplitude of the initial Gaussian pulse given to the infectives I.

Table 2 shows the stability of integrations to t = 9000 for a range of λ with α = 0.2

and the initial amplitude of the infectives 0.5. Instability always manifested itself

at about t = 3000 and thereafter sloshed around at large but finite amplitude; the

stable cases showed no sign of instability up to t = 9000. The first unstable case,

λ = 0.632 395 019 531 25, became stable when the initial amplitude of the infectives

was reduced to 0.25. The last stable case, λ = 0.632 387 695 312 5, became unstable

when the timestep was doubled by setting α = 0.4. In the range 3/5 < λ < 2/3 stability

is determined nonlinearly by a variety of factors and a complete understanding is

beyond the scope of this paper.

While it is interesting to have found a variant that works under certain circum-

stances, it is unsatisfactory in that we have no obvious reason why this option should

be the one that works, beyond saying that it is the only variant that introduces some

averaging for S as well as I. At this stage, it is worth adding that, for the standard
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TABLE 2. Stability for varying λ for α = 0.2, b = 0.1 and the initial amplitude of the infectives set to 0.5.

λ

0.631 25 stable

0.632 187 5 stable

0.632 343 75 stable

0.632 373 046 875 stable

0.632 387 695 312 5 stable

0.632 395 019 531 25 unstable

0.632 402 343 75 unstable

0.632 421 875 unstable

0.6325 unstable

0.635 unstable

0.637 unstable

0.64 unstable

0.66 unstable

0.68 unstable

case, including a small DFF-averaged diffusion term in the first equation (with extra

zero-derivative boundary conditions on S) was tried but was still unstable.

6. Conclusion

We have discovered a straightforward problem which breaks DFF in a disconcerting

way; the scheme gives every indication that it is working until it has been run for a

very long time. Our analysis has shown that the instability is inherent in the equations

themselves, and not the choice of boundary conditions. Taylor [19] discussed how

Robin boundary conditions can destabilize the standard DuFort–Frankel treatment of

the heat equation, and gave a method to fix the problem. Fornberg [3] gave a treatment

of leapfrog instabilities in general, without specific mention of DFF. We have been

unable to find other references where the algorithm fails, with the following exception.

Zheligovsky and Galloway [21] attempted to solve a problem in three-dimensional

magnetohydrodynamic dynamo theory using an expansion in hexagonally symmetric

Fourier modes in the horizontal. Each Fourier mode was evolved with DuFort–Frankel

finite-differencing in the vertical direction, giving a large system of heat-like equations

with additional advective terms. The context and details are explained fully in the

paper; the diffusion coefficient in this case is magnetic diffusivity η. Only when η is

tiny is a dynamo possible, so the object was to compute with η as small as feasible.

Two versions of the code were produced: one with zero or zero-derivative boundary

conditions for all three magnetic field components, and one where the various modes

of the z-component satisfied Robin boundary conditions at the top boundary. The first

of these worked for all cases considered, but the second (which was the one needed for
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the problem being addressed) only gave apparently converged solutions for η values

larger than 0.005. Smaller η became unstable at the long times necessary to reach

a state of steady magnetic field growth, with the instability flipping sign from one

timestep to the next. This is indicative of an eigenvalue falling below −1 by a very

small amount just as for the rabies problem, though in this case a detailed stability

analysis would be impossible. The mechanism is likely to be that described by Taylor

[19], since problems only arose when using the Robin boundary conditions. In the

end, this dynamo problem had to be solved by a much less efficient iteration method

involving large matrices. In view of the experience, here it might be worth revis-

iting it with Adams–Bashforth timestepping, which is only slightly more expensive

than DFF.

Given that there is a long history of successful use of DFF, it is inappropriate to

counsel against using it; rather, anyone applying the method should be aware of what

can occasionally happen and proceed with caution. Some of its earlier triumphs might

have become unstable if the apparent steady states had been continued for much longer,

but there is little doubt that those steady states were largely correct. The pernicious

feature of the instability described here is that it takes a remarkably long time to

develop. To paraphrase Kramer [11], when DuFort–Frankel is good, it is very very

good, but when it is bad, it is horrid!
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