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Abstract. This article addresses some open questions about the relations between the
topological weak mixing property and the transitivity of the map f × f 2

× · · · × f m ,
where f : X→ X is a topological dynamical system on a compact metric space. The
theorem stating that a weakly mixing and strongly transitive system is 1-transitive is
extended to a non-invertible case with a simple proof. Two examples are constructed,
answering the questions posed by Moothathu [Diagonal points having dense orbit.
Colloq. Math. 120(1) (2010), 127–138]. The first one is a multi-transitive non-weakly
mixing system, and the second one is a weakly mixing non-multi-transitive system. The
examples are special spacing shifts. The latter shows that the assumption of minimality in
the multiple recurrence theorem cannot be replaced by weak mixing.

1. Introduction
The systematic study of transitivity and recurrence in dynamics dates back (as is often the
case in this subject) to Poincaré. In 1967 Furstenberg [8] published his seminal paper,
which in recent years has become the basis for a broad classification of dynamical systems
by their recurrence properties. For an account of these results and their connections with
combinatorics, harmonic analysis and number theory, we refer the reader to Glasner’s
survey [10].

Our purpose here is to study recurrence properties of f × f 2
× · · · × f m . We

clarify dependences between some variants of transitivity by solving open problems
posed by Moothathu [22]. Our interest in recurrence properties of f × f 2

× · · · × f m

is motivated by the following version of the celebrated topological multiple recurrence
theorem. From it one can deduce the famous van der Waerden theorem on the existence
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of arbitrarily long arithmetical progressions in some element of a partition of the integers
(see [12, pp. 46–47]).

TOPOLOGICAL MULTIPLE RECURRENCE THEOREM. [12, Theorem 1.56] Let f be a
minimal homeomorphism of a compact metric space X. If U is a non-empty open subset
of X, then for every positive integer n there exists a positive integer k with

U ∩ f k(U ) ∩ f 2k(U ) ∩ · · · ∩ f (n−1)k(U ) 6= ∅.

It follows that if f is a minimal homeomorphism, then for every m ≥ 1 the map
f × f 2

× · · · × f m has a residual set of recurrent points. This last observation raises some
natural questions: what other recurrence properties does f × f 2

× · · · × f m have? Can
it be minimal? Must it be at least topologically transitive? Can we replace the assumption
of minimality of f by some other recurrence assumption such as weak mixing? We
discuss some of these problems in §5. Here we note that it is an immediate consequence
of the above theorem that for every n the set N (U,U ; f )= {m > 0 : f m(U ) ∩U 6= ∅}
contains an arithmetic progression k, 2k, . . . , k(n − 1). Moreover, the same must hold if
f is continuous and topologically mixing. Then one can wonder if weak mixing is also
enough. Since weak mixing implies that N (U,U ; f ) contains arbitrarily long intervals of
consecutive integers, it is easy to see that in a weak mixing system for any non-empty open
subset of U ⊂ X and every positive integer n there exist positive integers k, m with

m + k, m + 2k, . . . , m + (n − 1)k ∈ N (U,U ; f ).

Now the question is: can we demand that m = 0? Theorem 9 shows that the answer must
be in the negative.

Another formulation and motivation comes from the notion of disjointness, introduced
to topological dynamics, as well as to the ergodic theory by Furstenberg in [8] and its
weak form developed in [1, 12–14]. Let us recall that f and g are weakly disjoint if their
Cartesian product f × g is topologically transitive. Weakly disjoint systems are in a way
of independent form one another. It is independence in a rather weak sense as it may
happen that f is weakly disjoint from itself, that is, f is weakly mixing. It is well known
that f is weakly mixing if and only if for any n ≥ 2 the Cartesian product of n copies of f ,
that is, f × · · · × f , is topologically transitive. It follows that if f is weakly mixing, then
f n is topologically transitive for any n ≥ 1.

Now it is natural to ask: can f be weakly disjoint from some of its iterates, f m ,
where m ≥ 2, and how is the weak disjointness of f and f m related to weak mixing?
These questions can be thought of as a topological dynamics counterpart of problems
considered in ergodic theory (see [11]). Here we follow [22], and we consider two
following properties, very similar to weak mixing.
(?) For each m ∈ N, the map f × f 2

× · · · × f m is topologically transitive.
(??) For each m ∈ N, there is a residual set Y ⊂ X such that for every point x ∈ Y the

tuple (x, . . . , x) ∈ Xm has a dense orbit in Xm under the map f × f 2
× · · · × f m .

Following [22], we will say that f is multi-transitive if it satisfies (?) and that f is
1-transitive if (??) holds.

It is known that both properties presented above are equivalent to weak mixing if
f is a minimal homeomorphism. The proof of that equivalence using only elementary
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notions of topological dynamics is contained in [22]. The implication stating that weak
mixing implies 1-transitivity was earlier proved by Glasner (see [11]) with the help of the
general structure theorem for minimal homeomorphisms. In [22] the question whether this
implication holds for non-necessarily invertible continuous maps was left open. Here we
answer it affirmatively providing a simple proof for the general case; see Theorem 4 below.

Moreover, we solve another open problem stated in [22]. We show that in general there
is no connection between weak mixing and multi-transitivity by constructing examples of
weakly mixing but non-multi-transitive (Theorem 9) and multi-transitive but non-weakly
mixing (Theorem 8) systems. Finally, in §5 we offer some remarks regarding the last
question of [22] in which Moothathu asked if there is a non-trivial minimal system
f : X→ X such that f × f 2

× · · · × f m
: Xm
→ Xm is minimal for some m ≥ 2.

2. Preliminaries

Let X be a compact metric space and f : X→ X be a continuous map. For every m ≥ 1,
denote the Cartesian product of m copies of X with itself by Xm and define two maps of
Xm to itself: f (×m)

= f × · · · × f and f (∗m) = f × f 2
× · · · × f m .

Given any sets U, V ⊂ X , we denote N (U, V ; f )= {n > 0 : f n(U ) ∩ V 6= ∅}. If the
map f is clear from the context, we simply write N (U, V ).

A map f is minimal if it has no proper closed invariant set, that is, if K ⊂ X is non-
empty, closed and f (K )⊂ K , then K = X . We say that f is (topologically) transitive if
N (U, V ) 6= ∅ for any pair of non-empty open sets U, V ⊂ X . A set S ⊂ Z+ is syndetic if
there is a constant L > 0 such that for every n ≥ 0 we have [n, n + L] ∩ S 6= ∅. Then we
say that a map f is syndetically transitive if N (U, V ) is syndetic for any non-empty open
sets U, V ⊂ X . If f × f is transitive, then we say that f is weakly mixing. If for any non-
empty open set U ⊂ X there is M > 0 such that

⋃M
j=1 f j (U )= X , then f is said to be

strongly transitive. It immediately follows from the definition that any strongly transitive
map is syndetically transitive.

Let f and g be two continuous surjective maps acting on compact metric spaces X and
Y , respectively. We say that a non-empty closed set J ⊂ X × Y is a joining of f and g if
it is invariant for the product map f × g and its projections on first and second coordinate
are X and Y respectively. If X × Y is the only joining of f and g, then we say that f and
g are disjoint.

The notion of disjointness was first introduced by Furstenberg in [8]. It is well known
that if f and g are disjoint, then at least one of them is minimal. It is also not so hard to
verify that if f, g are both minimal, then they are disjoint if and only if f × g is minimal.

3. Strong transitivity and 1-transitivity

The main result of this section (Theorem 5) is obtained as a corollary from Theorem 4
below. The Theorem 4 was proved in [22, Theorem 4] with the additional assumption
that f is a homeomorphism. Here we present it with a new proof, which works for any
continuous map.

We recall two results from [22], first modifying them to a suitable form.
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THEOREM 1. [22, Proposition 1] Let X be a compact metric space. A continuous
map f : X→ X is 1-transitive if and only if for each m ≥ 1 and non-empty open sets
U, V1, . . . , Vm ⊂ X, there exists n ≥ 1 such that

U ∩
m⋂

i=1

f −in(Vi ) 6= ∅.

THEOREM 2. [22, Corollary 2] Let X be a compact metric space. If f : X→ X is a
weakly mixing and syndetically transitive continuous map, then f (∗m) is also weakly
mixing and syndetically transitive for any m ≥ 1. In particular, f is multi-transitive.

The induction step in the proof of Theorem 4 is based on the following lemma.

LEMMA 3. Let X be a compact metric space. If f : X→ X is a multi-transitive
continuous map, then for any m ≥ 1 and non-empty open sets V1, . . . , Vm ⊂ X, there is a
sequence of integers {kn}

∞

n=0 such that for each n ≥ 0 we have kn − n > 0, and for each

i = 1, . . . , m there is a sequence {V (n)
i }
∞

n=0 of non-empty open subsets of Vi such that

f ik j− j (V (n)
i )⊂ Vi

for i = 1, . . . , m, and j = 0, . . . , n.

Proof. Let V1, . . . , Vm be non-empty open subsets of X . Set W = V1 × · · · × Vm . We
proceed by induction on n. From the multi-transitivity of f , there is k0 > 0 such
that ( f (∗m))k0(W ) ∩W 6= ∅, or, equivalently, f −ik0(Vi ) ∩ Vi 6= ∅ for i = 1, . . . , m. Put
V (0)

i = f −ik0(Vi ) ∩ Vi ⊂ Vi for i = 1, . . . , m to complete the base step.
For the induction step, suppose that n ≥ 1 and we have found a sequence k0, . . . , kn−1,

and for each i = 1, . . . , m we have a non-empty open set V (n−1)
i ⊂ Vi such that

f ik j− j (V (n−1)
i )⊂ Vi and k j − j > 0 (1)

holds for j = 0, . . . , n − 1. For i = 1, . . . , m, let Ui = f −n(V (n−1)
i ). Put U =

U1 × · · · ×Um . By multi-transitivity, we get an integer kn such that kn − n > 0 and
( f (∗m))kn (U ) ∩W 6= ∅, or, equivalently, f −ikn (Vi ) ∩Ui 6= ∅, for i = 1, . . . , m. Fix 1≤
i ≤ m. We have

f ikn (Ui ) ∩ Vi = f ikn ( f −n(V (n−1)
i )) ∩ Vi = f ikn−n(V (n−1)

i ) ∩ Vi .

By the above, V (n)
i = V (n−1)

i ∩ f −ikn+n(Vi ) is non-empty, open, and clearly

f ikn−n(V (n)
i )⊂ Vi . Moreover, V (n)

i ⊂ V (n−1)
i . Using (1), we conclude that

f ik j− j (V (n)
i )⊂ Vi

for j = 0, . . . , n. This completes the proof. 2

THEOREM 4. Let X be a compact metric space. If f : X→ X is a weakly mixing and
strongly transitive continuous map, then f is 1-transitive.

Proof. First, note that f is multi-transitive by Theorem 2. In particular, it is transitive and
surjective.

To prove that f is 1-transitive, we are going to use the equivalent condition provided
by Theorem 1. We will prove by induction on m that for any non-empty open
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sets U, V1, . . . , Vm ⊂ X , there exists n ≥ 1 such that

U ∩
m⋂

i=1

f −in(Vi ) 6= ∅.

For m = 1, this statement simply follows from the transitivity of f . Assume that we
established the result for some m ≥ 1. We fix non-empty open sets U and V1, . . . , Vm+1,
and we want to show that there are n > 0 and z ∈U such that f in(z) ∈ Vi for i =
1, . . . , m + 1. By strong transitivity,

⋃N
j=1 f j (U )= X for some N > 0. Lemma 3 gives

us non-empty open sets V (N )
1 , . . . , V (N )

m+1 and integers k0, . . . , kN such that

f ikl−l(V (N )
i )⊂ Vi and kl > l

for i = 1, . . . , m + 1 and l = 0, . . . , N . By the induction hypothesis, we can find x ∈
V (N )

1 and n > 0 such that f in(x) ∈ V (N )
i+1 for i = 1, . . . , m. Clearly, there is y ∈ X such

that f n(y)= x , but strong transitivity gives us f j (z)= y for some z ∈U and 0≤ j ≤ N .
From the above, we get

f i(n+k j )(z) = f i(n+k j )− j (y)= f ik j− j ( f in(y))

= f ik j− j ( f (i−1)n(x)) ∈ f ik j− j (V (N )
i )⊂ Vi

for any i = 1, 2, . . . , m + 1. We showed that

z ∈U ∩ f −s(V1) ∩ · · · ∩ f −s·(m+1)(Vm+1),

where s = n + k j , which completes the proof. 2

THEOREM 5. Let X be a compact metric space. If f : X→ X is a weakly mixing and
minimal continuous map, then f is 1-transitive.

Proof. It is well known that any minimal map (invertible or not) on a compact metric space
is strongly transitive (see [19, Theorem 2.5(8)] for a proof). We apply Theorem 4 to finish
the proof. 2

Now we may formulate a general version of [22, Corollary 7], which was stated there
for homeomorphisms. Only the implication given by Theorem 5 is new here. The rest of
the proof is identical to that in [22].

THEOREM 6. Let f : X→ X be a minimal continuous map on a compact metric space X.
Then the following are equivalent.
(1) f × f 2 is transitive.
(2) f is multi-transitive.
(3) f is weakly mixing.
(4) f is 1-transitive.

4. Weak mixing and multi-transitivity
In [22, p. 10]Moothathu asked the following question.

Question 1. Are there any implications between weak mixing and multi-transitivity?

The aim of this section is to show that these notions are not related in a general situation,
that is, a continuous map can be multi-transitive and not weakly mixing, or weakly mixing
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and not multi-transitive. As this is often the case, to finish our task we will construct a
symbolic system.

Consider the set A = {0, 1} endowed with the discrete topology. Let 6 denote the
set of all infinite sequences of zeros and ones regarded as the product of infinitely many
copies of A with the product topology. All sequences x ∈6 are indexed by non-negative
integers, x = x0x1x2 . . . . Then the shift transformation is a continuous map σ :6→6

given by σ(x)= y, where x = (xi ), y = (yi ) and yi = xi+1 for i = 0, 1, . . . . Any closed
subset X ⊂6 invariant for σ is called a subshift of 6. A word is a finite sequence of
elements of {0, 1}. The length of a word w is just the number of elements of w, and
is denoted by |w|. We say that a word w = w1w2 · · · wl appears in x = (xi ) ∈6 at
position t if xt+ j−1 = w j for j = 1, . . . , l. If X is a subshift, then the language of X
is the set L(X) of all words which appear at some position in some element x ∈ X . For
any word w, let [w]t denote the element of the sequence w standing at position t , and
let Sp(w)= {|i − j | : [w]i = [w] j = 1, i 6= j}. The set Ln(X) consists of all elements of
L(X) of length n.

Let P be a set of non-negative integers. We say that a word w = w1w2 · · · wl is P-
admissible if wi = w j = 1 for some 1≤ i < j ≤ l implies |i − j | ∈ P , equivalently, if
Sp(w)⊂ P . Let 6P be the subset of 6 consisting of all sequences x such that every word
which appears in x is P-admissible. It is easy to see that 6P is a subshift, and L(6P ) is
the set of all P-admissible words. We will write σP for σ restricted to 6P , and call the
dynamical system given by σP :6P →6P a spacing shift. The class of spacing shifts was
introduced by Lau and Zame in [20], and for a detailed exposition of their properties we
refer to [4].

Let w be a P-admissible word. By [w]P we denote the set of all x ∈6P such that
the word w appears at position 0 in x . We call the set [w]P a P-admissible cylinder (a
cylinder for short). The family of P-admissible cylinders is a base of the topology of
6P inherited from 6. It is easy to see that the definition of a spacing shift implies that
N ([1]P , [1]P ; σP )= P . Moreover, σP is weakly mixing if and only if P is a thick set
(see [4, 20]). A thick set is a subset of integers that contains arbitrarily long intervals (P is
thick if and only if, for every n, there is some k such that {k, k + 1, . . . , k + n − 1} ⊂ P).
If w is a word and n ≥ 1, then by wn we denote a word which is a concatenation of n
copies of w. If n = 0, then wn is the empty word.

4.1. Multi-transitive and not weakly mixing example. The results of this section
generalize construction of the totally transitive not weakly mixing spacing shift presented
in [4].

We say that a finite set S ⊂ N is q-dispersed, where q ≥ 2, if for every a, b ∈ S ∪ {0}
such that a 6= b, we have |a − b| ≥ q .

LEMMA 7. Let M, N be positive integers such that M ≥ 3 and let A ⊂ N be an M-
dispersed finite set. Then there exists an M-dispersed finite set B containing A and such
that for k =max(A)+ 1 and any pair of sequences of words u1, . . . , uN and v1, . . . , vN

from Lk(6B), there is n ≥ 0 such that

σ in([ui ]B) ∩ [vi ]B 6= ∅ for i = 1, . . . , N .
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Proof. Let k =max(A)+ 1. Let m = |Lk(6A)|
2N be the cardinality of the set of all N -

element sequences of pairs of words from Lk(6A). We enumerate all members of this set
as a list W (1), . . . , W (m). Hence, each W ( j) is an ordered list of N pairs of words from
Lk(6A):

W ( j)
= ((u( j)

1 , v
( j)
1 ), . . . , (u( j)

N , v
( j)
N )) for each j = 1, . . . , m,

where (u( j)
i , v

( j)
i ) ∈ Lk(6A)× Lk(6A) for every i = 1, . . . , N . Choose integers

l1, . . . , lm fulfilling the following conditions:

l1 ≥ 2k + M − 1, (2)

l j+1 ≥ (N + 1) j l j . (3)

Given 1≤ i ≤ N and 1≤ j ≤ m, we define

w
( j)
i = u( j)

i 0il j−kv
( j)
i ,

where l1, . . . , lm are as above. Using (2) and (3), it is easy to see that

[ilα − k + 1, ilα + k − 1] ∩ [ jlβ − k + 1, jlβ + k − 1] = ∅ (4)

for 1≤ α, β ≤ m, α 6= β and 1≤ i, j ≤ N . Let

B =
m⋃

j=1

N⋃
i=1

Sp(w( j)
i ).

If n ∈ A, then let u = 10n−110k−n−1. Clearly, n ∈ Sp(u) and u ∈ Lk(6A), since k =
max(A)+ 1. This gives A ⊂ B. The construction of w( j)

i implies that for 1≤ i ≤ N and
1≤ j ≤ m we have

Sp(w( j)
i )\A ⊂ [il j − k + 1, il j + k − 1]. (5)

Therefore,
min(B\A)≥ l1 − k + 1≥ M + k. (6)

In particular, min B =min A ≥ M . Moreover, we conclude from (4) and (5) that if
r ∈ B\A, then there are unique indexes i(r) and j (r) such that r ∈ Sp(w( j (r))

i(r) ).
Next, we are going to prove that B is M-dispersed, that is, |q − p| ≥ M for each

q, p ∈ B, q 6= p. We consider three cases.
Case I: Both p and q belong to A.
Case II: Both p and q belong to B\A.
Case III: None of the above cases hold.

The first case is clear, since A is M-dispersed. The third case follows from (6). To prove the
remaining case, case II, we consider subcases. First note, however, that in the computations
below we use (2)–(5) without further reference. Given p, q ∈ B\A, consider the following.

Case IIA: j (p) 6= j (q). Without loss of generality, we assume j (q) > j (p). We have

q ≥ i(q)l j (q) − k + 1≥ l j (q) − k + 1

≥ (N + 1)l j (p) − k + 1≥ Nl j (p) − k + 1+ l1

≥ i(p)l j (p) + k + M ≥ p + M.

https://doi.org/10.1017/S0143385711000599 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000599


1668 D. Kwietniak and P. Oprocha

But then
q − p ≥ M.

Case IIB: j (p)= j (q), but i(p) 6= i(q). Without loss of generality, we assume
i(q) > i(p). Let j = j (p)= j (q). Then

q ≥ i(q)l j − k + 1≥ (i(p)+ 1) · l j − k + 1

≥ i(p)l j − k + 1+ l1 ≥ i(p)l j + k + M ≥ p + M.

Hence,
q − p ≥ M.

Case IIC: j (p)= j (q), and i(p)= i(q). Let j = j (p)= j (q) and i = i(p)=
i(q). For r ∈ {p, q}, we define

s(r)=min{s : [w( j)
i ]s = [w

( j)
i ]s+r = 1}.

Clearly, either s(p) 6= s(q), or s(p)+ p 6= s(q)+ q. We have

|q − p| = |(s(q)+ q)− s(q)− (s(p)+ p − s(p))|

= |(s(q)+ q)− (s(p)+ p)− (s(q)− s(p))|

≥ ||(s(q)+ q)− (s(p)+ p)| − |s(q)− s(p)||,

but
|(s(q)+ q)− (s(p)+ p)|, |s(q)− s(p)| ∈ A ∪ {0},

so either
|(s(q)+ q)− (s(p)+ p)| 6= |s(q)− s(p)|

and then
|(s(q)+ q)− (s(p)+ p)| − |s(q)− s(p)| ≥ M,

or |(s(q)+ q)− (s(p)+ p)| = |s(q)− s(p)| 6= 0, and then

|q − p| ≥ 2M.

It remains to prove that for any pair of sequences of words u1, . . . , uN and v1, . . . , vN

from Lk(6B), there is n ≥ 0 such that

σ in([ui ]B) ∩ [vi ]B 6= ∅ for i = 1, . . . , k.

Observe that Lk(6B)= Lk(6A), since min(B\A)≥ k, max(A)+ 1= k, and A ⊂ B.
Therefore, according to our notation defined at the beginning of the proof, for any two
sequences of words u1, . . . , uN and v1, . . . , vN from Lk(6B), there is j = 1, . . . , m
such that

W ( j)
= ((u1, v1), . . . , (uN , vN )).

Let w( j)
i = ui 0il j−kvi as above. Clearly, w( j)

1 , . . . , w
( j)
N ∈ L(6B), and from the definition

of w( j)
i we conclude that

σ in(w
( j)
i ) ∈ σ in([ui ]B) ∩ [vi ]B for n = l j .

Hence,
σ in([ui ]B) ∩ [vi ]B 6= ∅ for i = 1, . . . , N ,

where n = l j . 2
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THEOREM 8. There exists a set P ⊂ N such that the spacing shift (6P , σP ) is multi-
transitive but not weakly mixing.

Proof. Fix any integer M ≥ 3 and denote P0 = {M}. Define a sequence of sets Pn ⊂ N
(n ≥ 1) inductively by putting Pn+1 = B, where B is the set obtained for A = Pn , N = n,
and M as above by Lemma 7. Denote

P =
∞⋃

n=0

Pn .

Easy induction gives |p − q| ≥ M for every distinct p, q ∈ P and P0  P1  P2  · · · .
In particular, P is not thick, so 6P is not weakly mixing. We are going to show that
σP × σ

2
P × · · · × σ

m
P is transitive for any m = 1, 2, . . . . Fix any integer m ≥ 1 and

choose any open sets U1, . . . ,Um, V1, . . . , Vm ⊂6P . Without loss of generality, we
may assume that for each 1≤ i ≤ m there are words ui , vi ∈ L(6P ) such that [ui ]P ⊂Ui ,
and [vi ]P ⊂ Vi . We may also assume that for each 1≤ i ≤ m we have ui , vi ∈ Lk(6Pl )

for some l ≥ m and k =max(Pl)+ 1. The last equality implies that Lk(6Pl )= Lk(6P ).
If m < l, then we put u j = v j = um for j = m + 1, . . . , l.

Now, by Lemma 7, there is j > 0 such that

σ
i j
P (Ui ) ∩ Vi ⊃ σ

i j ([ui ]P ) ∩ [vi ]P

⊃ σ i j ([ui ]Pl ) ∩ [vi ]Pl 6= ∅

for i = 1, . . . , l. We have just proved that σP × σ
2
P × · · · × σ

m
P is transitive for any

m = 1, 2, . . . , which in other words means that σP is multi-transitive. 2

It is clear from the construction of P in Lemma 7, that the spacing shift σP from
the assertion of Theorem 8 is not syndetically transitive, since the set P , and as a result
N ([1]P , [1]P ), have thick complement. Then the following question arises.

Question 2. Does every multi-transitive and syndetically transitive system have to be
weakly mixing?

4.2. Weakly mixing and not multi-transitive example. Fix m ≥ 2. Let

B(m, k)= {m2k−1, m2k−1
+ 1, . . . , m2k

− 1} and P(m)=
∞⋃

k=1

B(m, k).

Observe that for every m ≥ 2 the set P(m) has the following property:

p ∈ P(m) H⇒ m · p /∈ P(m). (7)

THEOREM 9. Let m ≥ 2 and P = P(m) be as defined above. Then τ = σP × · · · × σ
m−1
P

is transitive, but τ × σm
P is not transitive. In particular, the spacing shift (6P , σP ) is

weakly mixing, but not multi-transitive.

Proof. It is easy to see that P is thick, hence σP is weakly mixing. To prove that
τ = σP × · · · × σ

m−1
P is transitive, we fix open cylinders:

[u(1)]P , . . . , [u
(m−1)
]P , [v

(1)
]P , . . . , [v

(m−1)
]P ∈ L(6P ).
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Without loss of generality, we may assume that there is k ≥ 1 such that for any i =
1, . . . , m − 1 we have |u(i)| = |v(i)| = t , where t = m2k . Set s = m2k+1

+ m2k and define

w(i) = u(i)0is−tv(i) where i = 1, . . . , m − 1.

Clearly,
[w(i)]P ⊂ (σ

i
P )
−s([v(i)]P ) ∩ [u

(i)
]P ,

and therefore

[w(1)]P × · · · × [w
(m−1)
]P

⊂ τ−s([v1
]P × · · · × [v

(m−1)
]P ) ∩ ([u

(1)
]P × · · · × [u

(m−1)
]P ),

so it is enough to prove that [w(i)]P 6= ∅, that is, w(i) ∈ L(6P ). It follows from the
definition of w(i) that

Sp(w(i))= Sp(u(i)) ∪ Sp(v(i)) ∪ {l − k : (l, k) ∈1},

where 1 is some subset of

{0, . . . , m2k
− 1} × {i · m2k+1

+ i · m2k, . . . , i · m2k+1
+ (i + 1) · m2k

− 1}.

Hence, we have

l − k ∈ {m2k+1, . . . , m2k+2
− 1} ⊂ B(m, k + 1),

andw(i) ∈ L(6P ), as desired. We proved that τ = σP × · · · × σ
m−1
P is transitive. To finish

the proof, it is enough to show that σP × σ
m
P is not transitive. Let U = V = [1]P × [1]P .

It is easy to see from (7) that

(σP × σ
m
P )

n(U ) ∩ V = ∅

for every n ≥ 0, so σP × σ
m
P cannot be transitive. 2

In the literature other recurrence properties stronger than weak mixing are considered,
see [10] for example. It is natural to ask if we can replace weak mixing by one of these
properties in Theorem 9. In the view of the above results, we would like to pose the
following problem.

Question 3. Is there any non-trivial characterization of multi-transitive weakly mixing
systems?

5. Minimal self-joinings
The last question in [22] asks: can f × f 2

× · · · × f m
: Xm
→ Xm be minimal if m ≥ 2

and X has at least two elements? Let us call a map f : X→ X providing an affirmative
answer to the above question multi-minimal. Apparently, Moothathu, when posing his
problem, was not aware that examples of multi-minimal homeomorphisms are known. But
since their existence is stated in language slightly different to the terminology used in [22],
we find it necessary to add some explanations. In fact, the construction of multi-minimal
systems is related to considerations of multiple disjointness.

The first example of a system disjoint from any of its iterates (we are aware of ), is the
example of a POD (proximal orbit dense) minimal homeomorphism given by Furstenberg
et al in [9]. By [21, Theorem 2.6], every POD system has positive topological minimal
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self-joinings (see [21]). It also follows from [21, Proposition 2.1] that every homeo-
morphism possessing positive topological minimal self-joinings is multi-minimal, and so
is the example from [9]. Furthermore, del Junco’s work [15], together with his joint work
with Rahe and Swanson [16], shows that Chacon’s example [7] is POD, and hence also
multi-minimal. In [2], Auslander and Markley introduced the class of graphic minimal
systems, which generalizes POD homeomorphisms. They also proved that each graphic
flow is multi-minimal [2, Corollary 22]. Moreover, as reported in [2, p. 490], Markley
constructed an example of a graphic homeomorphism which is not POD, hence it is another
kind of multi-minimal homeomorphism.

More information about minimal subsystems of f × f 2
× · · · × f m is to be found

in [3, 5, 6, 17, 18], to name but a few. There is also the, in some sense, parallel and certainly
deep theory of minimal self-joinings (a part of ergodic theory) introduced by Rudolph [23];
see Glasner’s book [12]. We remark that although every weak mixing minimal map
is multi-transitive, it is not necessarily multi-minimal. Discrete horocycle flow h is
an example of a weakly mixing minimal homeomorphism such that h is topologically
conjugated to h2, and hence it is not multi-minimal (see [12, pp. 26, 105–110]). The facts
gathered above prompt us to raise following questions.

Question 4. Is there any non-trivial characterization of multi-minimality in terms of some
dynamical properties?

It is also interesting to ask if it is it possible to characterize multi-minimal systems
adding some mild assumptions to Theorem 6. In particular, we do not know the answer to
the following question.

Question 5. Assume that f is a weakly mixing map such that f × f 2 is minimal. Is f
necessarily multi-minimal?
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