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Direct numerical simulations (DNS) are used to examine a spatially developing
non-equilibrium three-dimensional turbulent boundary layer (3DTBL) over a flat plate.
The present flow is a ‘shear-driven’ 3DTBL owing to a sudden imposition of a surface
spanwise velocity WS. Particular attention is given to the effects of cross-flow and
Reynolds number. In the DNS, three values of the inlet momentum thickness Reynolds
number, Reθ0 = 300, 600 and 900, are used with several values of WS. The present
largest WS is twice the free-stream velocity U0, comparable to the maximum value
of the spinning cylinder experiment by Lohmann (Trans. ASME I: J. Fluids Engng,
vol. 98, 1976, pp. 354–363). After imposing WS, the mean streamwise vorticity Ω x

increasingly propagates away from the wall where there is close relationship between a
deficit of mean streamwise velocity and inviscid skewing (i.e. three-dimensionality). At
a downstream station of a 3DTBL, near-plateaus appear in the skin friction coefficients
where the magnitudes depend intrinsically on WS. The approach to the collateral state
is, however, slow for mean streamwise velocity U where the Reynolds shear stress uv

extracts energy from the mean flow inefficiently. As the Reynolds number increases, the
mean velocity magnitude Qr tends to show the log law but with a larger von Kármán
constant than in a two-dimensional turbulent boundary layer. Instantaneously, toppling
u structures dominate owing to cross-flow and become more prominent with increasing
Re. Statistically, the latter spanwise length scale increases linearly with respect to y below
y/δ99 = 0.2, which indicates that cross-flow yields a self-similar behaviour.

Key words: turbulence simulation, turbulent boundary layers

1. Introduction

Three-dimensional turbulent boundary layers (3DTBLs) are often encountered in
engineering and aeronautical applications, which are classified either by a skewed
turbulent boundary layer (TBL) caused by transverse strain (referred to as ‘Prandtl’s first
kind of secondary flow’), e.g. a flow over a swept wing, or by a stress-induced secondary
flow (referred to as ‘Prandtl’s second kind of secondary flow’), e.g. a wing–body junction
flow (see Bradshaw 1987). Detailed data for 3DTBLs, however, may not be sufficient
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902 A20-2 H. Abe

from direct numerical simulation (DNS), especially with respect to the Reynolds-number
dependence. DNS resolves all the essential motions of turbulence. The resulting data thus
have potential not only for better understanding the underlying physics of turbulence but
also for developing turbulence models.

One of the challenging issues regarding 3DTBLs is a non-equilibrium 3DTBL due
to a sudden imposition of a transverse strain to a two-dimensional turbulent boundary
layer (2DTBL). Van den Berg et al. (1975) and Bradshaw & Pontikos (1985) carried
out infinite-swept-wing experiments (the former work involves separation). Bradshaw
& Pontikos (1985) reported a significant decrease in the magnitude of the Reynolds
shear stress uv, compared with an equivalent 2DTBL. (Note that u, v and w denote the
streamwise, wall-normal and spanwise velocity fluctuations, respectively; u1, u2 and u3

are also used interchangeably with u, v and w throughout the paper; upper case refers to
an instantaneous velocity; and an overbar denotes averaging in both space and time.) They
also noted that the direction of the Reynolds stress lags behind that of the mean strain
rate. These are representative features in a non-equilibrium 3DTBL, which have also been
examined via a DNS.

A seminal DNS work was undertaken by Moin et al. (1990) in a turbulent channel
flow. In their simulation, they suddenly imposed a spanwise mean pressure gradient to
an initially two-dimensional (2-D) channel flow at the Kármán number (or equivalently,
the friction Reynolds number) Reτ (≡h+) = Uτ h/ν = 180. This flow is thus a temporally
developing non-equilibrium 3DTBL. Here, Reτ represents the ratio of the half-width of the
channel h and the viscous length scale ν/Uτ (where ν is the viscosity and Uτ ≡ (τw/ρ)1/2

is the friction velocity, with τw the wall shear stress and ρ the density of the fluid; the
superscript + denotes normalization by wall units). It was noted that the Reynolds stress
lags behind the mean strain rate; the structure parameter a1 ≡ τ/q2 is smaller than the
value of 0.15 in the 2DTBL due to the decrease in the Reynolds shear stress uv, where τ ≡
(vw2 + uv2)1/2 and q2 ≡ 2k = uiui denote the total shear stress and twice the turbulent
kinetic energy, respectively. The latter result implies that the non-equilibrium 3DTBL is
less efficient for extracting energy from mean flow than the 2DTBL. Sendstad & Moin
(1992) subsequently argued that the reduction in a1 is due not to the rotation of the stress
vector or the strain vector, but to structural changes of three-dimensionality since the total
shear stress τ and the turbulent kinetic energy k are invariant with respect to the coordinate
system. On the other hand, Coleman, Kim & Le (1996) performed a ‘shear-driven’ DNS
in a turbulent channel flow for Reτ = 180 owing to the surface spanwise velocity (the
latter magnitude being half the centreline velocity). Like Moin et al. (1990), Coleman
et al. (1996) observed a decrease in magnitude of a1 and a lag in the direction between the
Reynolds shear stress and the strain rate in their simulation. They also noted that the most
significant effect of shear-driven three-dimensionality is a modification of the interaction
between near-wall streaks and quasi-streamwise vortices, which can be attributed to the
reduction in uv and hence a1.

Subsequently, Coleman, Kim & Spalart (2000) carried out a DNS of a time-developing
strained channel flow for Reτ = 180 as an idealization of pressure-driven TBLs. They
found that the impact of the adverse pressure gradient (APG) on the outer-layer structure
is more pronounced than that of the mean three-dimensionality, i.e. the structure parameter
a1 experiences a much larger decrease when the APG strain is present. They also noted that
the temporal evolution of the Reynolds shear stress is significantly affected by the changes
to the velocity–pressure gradient correlation (VPG) term, which is primarily responsible
for the lag in direction between the mean shear and the Reynolds shear stress. The recent
3DTBL DNS of Lozano-Durán et al. (2020) in a turbulent channel flow with a sudden
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FIGURE 1. Schematic diagrams: (a) computational domain; and (b) mean velocity and
shear-stress components in a 3DTBL.

imposition of a spanwise mean pressure gradient is of note. They performed simulations
at Reτ = 500 and 1000, and noted that the flow regimes and scaling properties of the
Reynolds stress are consistent with a model comprising momentum-carrying eddies with
sizes and time scales proportional to their distance to the wall.

In the present study, we work on a ‘spatially developing’ shear-driven non-equilibrium
3DTBL via a DNS. The present DNS set-up has been established by referring to the
spinning cylinder experiments of Bissonnette & Mellor (1974), Lohmann (1976), Driver
& Hebbar (1987) and Driver & Johnston (1990) – see figure 1(a) where the computational
domain is shown; unlike in the experiments, the present flow is free of any curvature effect.
Since the shear-driven 3DTBL does not involve the spanwise pressure gradient, this flow
isolates the effect of pressure gradient. In the present simulation, a zero-pressure-gradient
(ZPG) TBL over a flat plate is subjected to a sudden surface spanwise velocity WS, the
latter yielding the secondary Reynolds shear stress vw and thus cross-flow (see § 3). The
sudden imposition of WS is important for better understanding a non-equilibrium 3DTBL
and also the approach to the equilibrium state.

In the current ‘shear-driven’ DNS, the mean streamwise vorticity Ω x is therefore
generated at the wall and diffuses into the outer region, whereas in the ‘pressure-driven’
DNS (Schlatter & Brandt 2010), three-dimensionality is introduced by prescribing varying
U and W at the upper boundary (see also McLean (2013), who explains the difference in
the mean velocity profile between shear-driven and pressure-driven flows). The transport
equation of Ω x may be expressed as follows:

DΩ x

Dt
= Ω x

∂U
∂x

+ Ω y
∂U
∂y

+ Ω z
∂U
∂z

+
(

∂2

∂z2
− ∂2

∂ y2

)
vw + ∂2

∂y∂z
(vv − ww) + ν∇2Ω x

(1.1)

(see Bradshaw 1987), where x, y and z denote the streamwise, wall-normal and spanwise
directions, respectively; t refers to time; x1, x2 and x3 are also used interchangeably with x,
y and z throughout the paper. In the present flow, the streamwise variation of Ω x may be
expressed as

U
∂Ω x

∂x
= Ω z

∂W
∂x

, (1.2)
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902 A20-4 H. Abe

since ∂U/∂z = ∂W/∂x due to the irrotational condition, i.e. the mean wall-normal
vorticity Ω y = 0 (see Bradshaw 1987; Sendstad & Moin 1992; Coleman et al. 2000).
Here, ∂W/∂x is responsible for inviscid skewing (i.e. three-dimensionality) of the mean
spanwise vorticity Ω z.

A schematic diagram of velocity profiles and wall shear-stress components in a
shear-driven 3DTBL is shown in figure 1(b). As observed in the experiments of
Bissonnette & Mellor (1974) and Lohmann (1976), when the flow enters into the region
imposing WS, i.e. Lx,WS (defined in § 2.1), the flow near a wall first approaches the
wall shear-stress direction (i.e. α), whereas the outer flow is three-dimensional (3-D)
and the Reynolds shear-stress angle lags behind the mean velocity gradient direction.
The approach to the collateral state thus depends intrinsically on Lx,WS . In this context,
Lohmann (1976) reported in his spinning cylinder experiment that the transverse mean
velocity and wall shear-stress component attain an asymptotic state in the streamwise
distance of approximately 10δ0 (where δ0 denotes the boundary layer thickness at the
reference station). This point will be examined further in § 3.1 with varying Lx,WS .

When Lx,WS is sufficiently long, the mean flow will eventually become 2-D across the
boundary layer at a downstream station. The latter is called a ‘collateral’ boundary layer in
which the mean flow direction coincides with the angle tan−1(WS/U0) (where U0 denotes
the reference free-stream velocity) – see also the seminal experimental work on a skewed
TBL over a spinning body of Furuya, Nakamura & Kawachi (1966). The mean velocity
magnitude Qr then follows the ‘law of the wall’, viz.

Q+
r ≡ Qr

Uτ

= 1
κ

ln(y+) + A, (1.3)

where κ and A denote von Kármán constant and an additive constant, respectively; and
Uτ denotes the friction velocity, defined in (3.1). Also, given the collateral state, the
logarithmic law of mean streamwise velocity can be written as

U
Uτ,x

= 1
κx

ln
(

Uτ,x y

ν

)
+ Ax , (1.4)

with Uτ,x = μ(∂U/∂y)|w, κx = κ/
√

cos α and Ax = A
√

cos α − ln(cos α)/2κx . Indeed,
relations (1.3) and (1.4) hold unambiguously in the recent DNS of a turbulent separation
bubble with sweep by Coleman, Rumsey & Spalart (2019), who provide cross-flow by
imposing spanwise velocity at the free stream (this flow is thus a pressure-driven 3DTBL).
They also noted that the non-zero spanwise component of mean velocity in the collateral
boundary layer is solely an artefact of the orientation of the coordinate system. The
approach to the collateral state will be discussed in § 3.1, with the use of (1.3) and (1.4).

In a spatially developing non-equilibrium 3DTBL, inviscid skewing has a close
relationship with the deficit of streamwise mean velocity, viz.

∂W
∂x

= −U
∂α

∂x
(1.5)

and
∂U
∂x

= −U
∂α

∂z
. (1.6)

Relations (1.5) and (1.6) are obtained using the continuity equation and irrotationality
condition, respectively (see Johnston 1960). Note that when the skewing is completed
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DNS of non-equilibrium 3DTBL over a flat plate 902 A20-5

(i.e. the collateral state is established), both (1.5) and (1.6) become negligibly small. The
relationship between (1.5) and (1.6) will be discussed in § 3.2.

In the present flow, the seminal numerical simulation was done by Kannepalli &
Piomelli (2000) with the use of a wall-resolved large-eddy simulation (LES). They
examined the effect of cross-flow for two different magnitudes of WS/U0 = 0.3 and 1.0,
where Reθ ≈ 1100 in their 3DTBL. Here, Reθ (≡ U∞θ/ν) denotes the Reynolds number
based on the local free-stream velocity U∞ and the local momentum thickness, viz.

θ ≡
∫ ∞

0

U
U∞

(
1 − U

U∞

)
dy. (1.7)

The latter magnitude increases on moving downstream (see figure 13b). Also used in this
paper is the Reynolds number Reθ0 ≡ U0θ0/ν based on the inlet momentum thickness θ0.
They observed the above-mentioned features in a non-equilibrium 3DTBL, and noted that
the reduction in a1 appears to be associated with the response of the turbulence to the
perturbation, rather than 3-D effects per se. They also found that the integral of the mean
spanwise velocity (i.e. spanwise momentum thickness),

θz ≡
∫ ∞

0
W dy, (1.8)

normalized by the surface spanwise velocity Ws, is proportional to a half-power law,
i.e. θz/Ws ∼ x1/2, as in the internal boundary layer (this refers to a new boundary layer
created inside the existing boundary layer due to a change of a surface condition) by
Antonia & Luxton (1971), who carried out an experiment in a TBL with a sudden change
of surface condition from a smooth wall to a rough wall. They demonstrated that a
half-power-law dependence in θz/Ws is intrinsically associated with the Stokes layer in
which θz ∼ t1/2. Kannepalli & Piomelli (2000) also discussed a possible scaling law of
the spanwise skin friction coefficient Cf ,z (defined in § 3.1) for WS/U0 = 1 by comparing
with the experimental data of Driver & Johnston (1990) (Reθ = 6000 in a trailing edge of
the spinning cylinder). They used a normalization by UeWs/2ρ (see relation (4.1)). This
mixed scaling was shown to be successful for a small magnitude of WS (i.e. WS/U0 ≤ 1).
However, it is not clear if this scaling law may hold for a larger value of WS than
WS/U0 = 1. Also, while Lx,WS in their simulations is within the condition of Lohmann
(1976) on the equilibrium state, their streamwise skin friction coefficient does not exhibit
a plateau in a 3DTBL (see figure 8 of their paper). This observation indicates that the
approach to the collateral boundary layer is likely to be slow in the present flow. This will
be pursued further in the present study.

Here, we carry out a series of DNS in a spatially developing shear-driven
non-equilibrium 3DTBL over a flat plate. Some preliminary results have been presented
by Abe (2018). The present inlet momentum thickness Reynolds number is equal to
Reθ0 = 300, 600 and 900. The largest Reθ0 case covers the Reynolds-number range of the
LES work by Kannepalli & Piomelli (2000) (see table 2), this latter work being compared
in the present study. Also made are comparisons with the spinning cylinder experiments
of Lohmann (1976) and Driver & Hebbar (1987) – their Reynolds numbers in a trailing
edge of the spinning cylinder are for Reθ ≈ 2420 and 6000, respectively – and with the
particle image velocimetry (PIV) measurement for a 3DTBL (generated by a spanwise
translating belt) over a flat plate by Kiesow & Plesniak (2003) – the Reynolds number is
Reθ = 1450 in their PIV measurement. Several values of WS/U0 are used in the present

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.488


902 A20-6 H. Abe

DNS. The largest WS/U0(= 2.0) is comparable to the value (=2.2) of the spinning cylinder
experiment by Lohmann (1976). Particular attention is given to the effects of cross-flow
and Reynolds number in a shear-driven non-equilibrium 3DTBL. In particular, we discuss
how the 2DTBL is turned (skewed) by an impulsive surface spanwise velocity and how the
resulting skin friction coefficients vary in a non-equilibrium 3DTBL. The latter behaviour
will be examined by decomposing the skin friction coefficients into the mean and turbulent
parts using the relation of Renard & Deck (2016) (i.e. relation (4.2)) established in a
2DTBL based on the energy balance for the mean velocity. This relation is analogous
to the FIK identity (Fukagata, Iwamoto & Kasagi 2002) derived on the basis of the mean
momentum balance. The results will be compared with the global energy balance analysis
in a turbulent channel flow by Abe & Antonia (2016) and Wei (2018), and discussed in
terms of the amount of energy extracted from the mean flow in a 3DTBL due to the work
done by the Reynolds shear stress.

We also examine how the mean velocity and the Reynolds stress are altered in a
non-equilibrium 3DTBL by comparing with those of a 2DTBL and an equilibrium 3DTBL
(Spalart 1989; Littell & Eaton 1994; Wu & Squires 1997; Kang, Choi & Yoo 1998).
Experimentally, there is evidence that the slope of the logarithmic mean velocity profile
is decreased (i.e. the von Kármán constant is thus increased) in non-equilibrium 3DTBLs
(Bissonnette & Mellor 1974; Pierce & McAllister 1983; Moin et al. 1990). This latter point
will be discussed by focusing not only on the overlap scaling of mean velocity (viz. law
of the wall) but also on that of the energy dissipation rate. We also examine turbulence
structures in a non-equilibrium 3DTBL in light of the toppling structures hypothesized
by Bradshaw & Pontikos (1985), and discuss the extent to which the interaction between
the inner and outer regions varies there, since Kevin, Monty & Hutchins (2019) recently
observed, in their 3DTBL experiment on a ribbed surface, that the inner–outer relationship
decreases above the angled ribs, as the turbulence is leaning sideways.

Focus is also put on the most energetic spanwise scales of velocity fluctuations, as was
done by Jiménez & Hoyas (2008), Hwang (2015) and Abe, Antonia & Toh (2018) in a
turbulent channel flow. In particular, we investigate if the spanwise length scales increase
linearly with distance from the wall in the present 3DTBL, and follow the attached-eddy
hypothesis (Townsend 1976) given that Lozano-Durán et al. (2020) recently reported a
self-similar response of a non-equilibrium 3DTBL in their 3-D channel with a sudden
imposition of mean spanwise pressure gradient. In the recovery region, attention is given
to what extent the present 3DTBL recovers to a ZPG TBL state after turning off WS in
light of the seminal work of Antonia & Luxton (1971) on the sudden change of surface
condition in a TBL. We hope that the present DNS analysis provides further insight into a
non-equilibrium 3DTBL.

This paper is organized as follows. Section 2 describes the DNS set-up. The present
inflow is a 2-D ZPG TBL, which is subjected to a sudden imposition of the surface
spanwise velocity WS, as in the spinning cylinder experiments (e.g. Bissonnette & Mellor
1974; Lohmann 1976; Driver & Hebbar 1987; Driver & Johnston 1990). It is thus
initially a non-equilibrium 3DTBL, which ends up by approaching an equilibrium 3DTBL
downstream. In § 3, we explain the basic features of a shear-driven non-equilibrium
3DTBL for Reθ0 = 300 with WS/U0 = 1. Section 3.1 discusses the value of Lx,WS (i.e.
the streamwise extent of imposing WS) and the approach to the collateral boundary layer.
In § 3.2, we examine the relationship between the mean streamwise velocity deficit and
inviscid skewing (i.e. (1.5) and (1.6)). Section 3.3 explains how the mean velocity and
Reynolds stress vary on moving downstream in the present 3DTBL.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.488


DNS of non-equilibrium 3DTBL over a flat plate 902 A20-7

In § 4, we investigate the effect of cross-flow in a non-equilibrium 3DTBL for Reθ0 =
300 with varying WS (i.e. WS/U0 = 0, 0.1, 0.5, 1, 1.5 and 2). Section 4.1 examines
the effect of cross-flow on the skin friction coefficients. In particular, we perform an
analysis using the relation of Renard & Deck (2016) on the mean energy balance to
gain further insight into the behaviour of the skin friction coefficients in a 3DTBL. In
§ 4.2, the variation of near-wall turbulence structures (i.e. streaks and quasi-streamwise
vortices) is discussed. Section 4.3 examines the near-wall Reynolds stresses and the
energy redistribution. In § 5, we investigate the effect of Reynolds number in both 3DTBL
and recovery regions for three Reynolds numbers (i.e. Reθ0 = 300, 600 and 900) with
intermediate and large magnitudes of cross-flow (i.e. WS/U0 = 1 and 2).

Section 5.1 discusses the Re dependence of the momentum thicknesses and skin friction
coefficients. In § 5.2, attention is given to the ‘law of the wall’ in a non-equilibrium
3DTBL with focus on the mean velocity magnitude and the energy dissipation rate.
Section 5.3 discusses asymmetric turbulence structures observed in a non-equilibrium
3DTBL. In particular, we examine the interaction between the inner and outer regions
and the most energetic spanwise scales of velocity fluctuations. Section 5.4 examines the
reduced magnitude of the primary Reynolds shear stress −uv and the implication for
turbulence modelling. In § 5.5, we investigate the recovery to a ZPG TBL. Conclusions
are given in § 6.

2. DNS set-up

2.1. Computational domain
A schematic diagram of the present computational domain is shown in figure 1(a). The
inflow is a spatially developing 2-D ZPG TBL over a flat plate (this point will be detailed in
§ 2.3). After the inlet, the present TBL develops under the ZPG in the region 0 ≤ x ≤ LWS1.
The flow is then subjected to a sudden imposition of the surface spanwise velocity WS in
the region LWS1 ≤ x ≤ LWS2 (this latter region is referred to as the ‘3DTBL region’ in this
paper). The streamwise extent of imposing WS, i.e. Lx,WS = LWS2 − LWS1, will be examined
in § 3.1 in light of Lohmann’s (1976) condition on the near-equilibrium 3DTBL state.
Note that different values of Lx,WS are used for Reθ0 = 300 and for Reθ0 = 600 and 900
(see table 1) since a longer Lx,WS is required for a lower Lx,WS to obtain a near-plateau in
both the streamwise and spanwise skin friction coefficients (see §§ 3–5). At x = LWS2, WS is
turned off. There is again a sudden change of the surface condition there. The present flow
recovers to a ZPG TBL in the region LWS2 ≤ x ≤ Lx (referred to as the ‘recovery region’
in this paper).

2.2. Numerical methodology
Numerical methodology is briefly as follows. The current DNS code has been developed
based on a DNS code for a TBL with separation and reattachment by Abe (2017).
A fractional step method is used with semi-implicit time advancement. The
Crank–Nicolson method is used for the viscous terms in the y direction, and the third-order
Runge–Kutta method is used for the other terms. A finite difference method is used as a
spatial discretization. A fourth-order central scheme (Morinishi et al. 1998) is used in the
x and z directions, whilst a second-order central scheme is used in the y direction.
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Reθ0 300 600 900

WS/U0 0, 0.1, 0.5, 1.0,
1.5, 2.0

1.0, 2.0 1.0, 2.0

Lx,WS 100θ0, 200θ0,
300θ0

100θ0 100θ0

Lx × Ly × Lz 400θ0 × 80θ0 × 160θ0
Lx × Ly × Lz 24.1δout × 4.8δout

× 9.6δout

25.6δout × 5.1δout
× 10.2δout

27.6δout × 5.5δout
× 11.0δout

Nx × Ny × Nz 512 × 160 × 512 1024 × 320 × 1024 2048 × 480 × 1536
�x+

0 , �y+
0 , �z+

0 12.4, 0.15–22.3,
4.96

11.5, 0.14–21.2,
4.59

8.24, 0.13–20.4,
4.40

TU0/θ0 5500 4125 4308
TU2

τ,0/ν 9327 11 968 16 499

TABLE 1. Domain size, grid points, spatial resolution and sampling time period. Note that δout
denotes the outlet 99% boundary layer thickness.

As for the boundary condition for W at the wall (y = 0), a slip boundary condition (i.e.
W = WS) is used in the 3DTBL region (i.e. LWS1 ≤ x ≤ LWS2), whereas a no-slip boundary
condition is used in the other x locations. For U and V at the wall, a no-slip boundary
condition is used across the x stations. On the other hand, we impose the following
boundary conditions at the upper boundary:

∂U
∂y

= 0, V = U0
∂δ2

∂x
,

∂W
∂y

= 0, (2.1a–c)

which are the same ones as for a ZPG TBL by Lund, Wu & Squires (1998). Note that
(2.1b) (i.e. the wall-normal velocity at the upper boundary) consists of the product of U0
and ∂δ2/∂x (i.e. the gradient of the displacement thickness at each x station) averaged
over the x direction. In the z direction, a periodic boundary condition is used; the spatial
averaging for mean and turbulence statistics has been made for this direction. For the
outlet, a convective boundary condition is used.

2.3. Inflow 2DTBL simulation
The present inflow is a spatially developing 2-D ZPG TBL over a flat plate, which
is generated by the rescaling–recycling method (Lund et al. 1998) with a spanwise
constant shift (Spalart, Strelets & Travin 2006). This simulation has been time-advanced
simultaneously with the shear-driven 3DTBL DNS, i.e. the ZPG data at a target Reθ are
provided as the inlet data of a shear-driven 3DTBL DNS. In the inflow simulations, the
domain size used for Reθ0 = 300 and 600 is Lx × Ly × Lz = 400θ 0 × 80θ 0 × 160θ 0 where
the inlet momentum thickness Reynolds number is set to 300 and 600. On the other hand,
the domain size used for Reθ0 = 900 is Lx × Ly × Lz = 1200θ 0 × 240θ 0 × 480θ 0 where the
inlet momentum thickness Reynolds number is set to 300. Referring to the seminal DNS
by Kong, Choi & Lee (2000), the recycling location has been set to approximately 100θ 0
for all the inflow simulations. The validation of the inflow simulation has been presented
in Abe (2017). Overall agreement with the existing DNS in a ZPG TBL (Spalart 1988;
Simens et al. 2009; Wu & Moin 2009; Schlatter & Örlü 2010) is satisfactory (see § 2 of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.488


DNS of non-equilibrium 3DTBL over a flat plate 902 A20-9

x/θ0 = 175 x/θ0 = 300

WS/U0 = 1, 2 WS/U0 = 1, 2
Reθ0 = 300 Reθ = 419, 428 Reθ = 510, 535
Reθ0 = 600 Reθ = 831, 852 Reθ = 993, 1033
Reθ0 = 900 Reθ = 1216, 1255 Reθ = 1431, 1495

TABLE 2. The momentum thickness Reynolds number Reθ in the 3DTBL (x/θ0 = 175)
and recovery (x/θ0 = 300) regions. The values tabulated have been obtained with
Lx,WS = 100θ0.

Abe 2017). In the following sections, statistics and turbulence structures for a 2DTBL will
be compared with those for a 3DTBL.

2.4. Flow parameters for the shear-driven 3DTBL DNS
The computational domain size (Lx × Ly × Lz), number of grid points (Nx × Ny × Nz),
spatial resolution at the inlet (�x0,�y0,�z0) and sampling time period (T) for the
shear-driven 3DTBL simulations are given in table 1. The present streamwise domain size
(i.e. Lx/θ0 = 400 or, equivalently, 48δ0) is comparable with Lx/θ0 ≈ 350 (note that this
latter domain size does not involve a buffer region of a fringe) of Kannepalli & Piomelli
(2000), whereas the spanwise domain size (i.e. Lz/θ0 = 160 or, equivalently, 19δ0) is a
factor of 4 larger than in Kannepalli & Piomelli (2000) – a small spanwise domain (i.e.
Lz/θ0 ≈ 40 or, equivalently, 5δ0) is used in their work. Once the velocity field reaches
the fully developed and statistically steady state (i.e. time-independent profiles of the skin
friction coefficients), the Navier–Stokes equations are integrated further in time to obtain
mean flow and turbulence statistics (we have also checked one-point statistics for the first
sampling time period (0–T/2) and those for the second sampling time period (T/2–T) and
confirmed that the difference is negligibly small).

In the present study, we examine the effects of cross-flow and Reynolds number in a
shear-driven 3DTBL. The former effect is examined for Reθ0 = 300 with varying WS/U0
(= 0, 0.1, 0.5, 1, 1.5 and 2). On the other hand, the latter effect is investigated for three
values of Reθ0 (= 300, 600 and 900) with two different magnitudes of WS/U0 (= 1 and
2). The three values of the inlet momentum thickness Reynolds number, Reθ0 = 300, 600
and 900, correspond to those of the friction Reynolds number, Reτ0 ≡ Uτ0δ990/ν = 140,
250 and 350, respectively (here Uτ0 and δ990 denote the inlet friction velocity and 99 %
boundary layer thickness, respectively). In the present flow, the momentum thickness
Reynolds number increases with increasing x (see figure 13a). Also shown in table 2 is
the momentum thickness Reynolds number Reθ in the 3DTBL (x/θ0 = 175) and recovery
(x/θ0 = 300) regions. At x/θ0 = 175, the largest Reθ (= 1255) is attained for Reθ0 = 900
with WS/U0 = 2, the latter magnitude of Reθ being close to that (i.e. Reθ = 1450) in the
PIV measurement of Kiesow & Plesniak (2003). In § 5, the effects of Reynolds number
will be discussed mainly at these two stations.

3. Basic features of a spatially developing non-equilibrium 3DTBL

In this section, we explain the basic features of a spatially developing shear-driven
non-equilibrium 3DTBL by showing some mean and turbulence statistics for Reθ0 = 300
with WS/U0 = 1. In this case, the surface spanwise velocity WS is equal to the free-stream
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velocity U0. The mean flow direction thus becomes tan−1(WS/U0) = −45◦ when the
collateral state is established.

3.1. Value of Lx,WS and approach to the collateral state
We first discuss the value of Lx,WS in the current 3DTBL simulation. Given that Lohmann
(1976) reported in his spinning cylinder experiment that the transverse mean velocity
and wall shear-stress component attain an asymptotic state in the streamwise distance of
approximately 10δ0, we here examine three cases with different values of Lx,WS , i.e. Lx,WS =
100θ0, 200θ 0 and 300θ 0 (or, equivalently, 12δ0, 24δ0 and 36δ0), where LWS1 = 100θ0 and
LWS2 = 200θ0, 300θ 0 and 400θ 0.

Figure 2(a,b) shows the distributions of the streamwise and spanwise skin friction
coefficients, Cf ,x ≡ τw,x/(ρU2

0/2) and Cf ,z ≡ τw,z/(ρU2
0/2), as a function of x/θ0.

Note that τw,x ≡ μ(∂Ū/∂y)|w and τw,z ≡ μ(∂(W̄ − WS)/∂y)|w, where μ = ν/ρ. After
imposing WS, Cf ,x decreases abruptly, due to a non-equilibrium effect (disorganization
of the near-wall turbulence). This drop would not appear in a laminar flow since the
independence principle, traditionally proposed for swept wings, holds exactly there (this
was pointed out by Dr P. R. Spalart, private communication 2019) (see also McLean 2013;
Coleman et al. 2019). After this drop, Cf ,x and Cf ,z increase significantly with increasing
x. We then see a near-plateau in the region x ≥ 250θ0 and x ≥ 200θ0 for Cf ,x and Cf ,z,
respectively. The angle of the mean wall shear stress, i.e. tan−1(Cf ,z/Cf ,x) (figure 2c),
however, does not approach −45°, the latter angle being expected when the collateral state
is established. Also, the magnitude of Cf ,x in the collateral boundary layer is estimated to
be a factor of 21/2 (i.e. 2 cos(−45◦)) larger than that in a 2DTBL since, in the collateral
boundary layer, U2

0 is replaced by U2
0 + W2

S . Figure 2(a) highlights that the approach
to a normal 2DTBL is slow for Cf ,x . An estimate of Lx,WS from figure 2 for reaching
the collateral state for Reθ0 = 300 would be approximately 1000θ 0 (or, equivalently,
approximately 100δ0). This condition is a factor of 10 larger than that of Lohmann (1976).

Figure 3 shows the distribution of the mean velocity magnitude normalized by the
friction velocity, Q+

r (= Qr/Uτ ), at a downstream station x/θ0 = 350 for the case with
Lx,WS = 300θ0. Note that the friction velocity in a non-zero cross-flow (W /= 0) region (i.e.
LWS1 ≤ x ≤ Lx ) is obtained such that

Uτ ≡ ([τ 2
w,x + τ 2

w,z]
1/2/ρ)1/2. (3.1)

While Cf ,x exhibits a near-plateau at this station, the agreement between Qr/Uτ and
U/Uτ,x is confined to the near-wall region, i.e. there is a departure from the collateral
state (i.e. (1.5) and (1.6)) away from the wall. In particular, the magnitude of Qr/Uτ is
smaller than that of U/Uτ,x obtained from the 2DTBL simulation. On the other hand,
the distribution of W/Uτ,z follows the collateral relation (1.4) reasonably well (note that
Uτ,z ≡ (

τw,z/ρ
)1/2). This indicates that the mean spanwise velocity develops faster than

the mean streamwise velocity. This latter behaviour will also be discussed further in § 5.

3.2. Relationship between the streamwise velocity deficit and inviscid skewing
As was mentioned in the introduction, there is close association between the mean
streamwise velocity deficit ∂U/∂x < 0 and inviscid skewing ∂W/∂x (see (1.5) and (1.6)).

Figure 4 shows the contours in the x–y plane of non-dimensionalized Ω x , ∂U/∂x
and ∂W/∂x . In the region where WS is imposed, Ω x (i.e. mean streamwise vorticity)
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FIGURE 2. Distributions of (a) Cf ,x , (b) Cf ,z and (c) tan−1(Cf ,z/Cf ,x ) as functions of x/θ0 for
Reθ0 = 300 with WS/U0 = 1. The data shown have been obtained with Lx,WS = 100θ0, 200θ0
and 300θ0.

100 101 102
0

10

20

U/Uτ = (1/0.39) ln(yUτ/ν) + 4.8
U/Uτ,x = (1/0.46) ln(yUτ,x/ν) + 4.4

y+

Q+

Reθ0
= 300, Ws/U0 = 1  (Reθ = 566)

x/θ0 = 350

 Qr / Qτ
 U / Uτ,x
 Ws−W / Uτ,z
 U+ (ZPG, Reθ = 500)

FIGURE 3. Distributions of the normalized mean velocity magnitude Qr for Reθ0 = 300 with
WS/U0 = 1 at a downstream station of a 3DTBL (x/θ0 = 350). The data shown have been
obtained with Lx,WS = 300θ0.
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FIGURE 4. Contours in the x–y plane of the normalized Ω x , ∂U/∂x and ∂W/∂x for Reθ0 = 300
with WS/U0 = 1 using Lx,WS = 100θ0 (a–c), 200θ0 (d–f ) and 300θ0 (g–i): (a,d,g) (θ0/U0)Ω x ;
(b,e,h) (θ0/U0)(∂U/∂x); and (c, f,i) (θ0/U0)(∂W/∂x).

increasingly diffuses towards the outer region until x/θ0 = 250. In the region x/θ0 ≤ 250,
there is indeed a close relationship between inviscid skewing (∂W/∂x > 0) and mean
streamwise velocity deficit (∂U/∂x < 0). After x/θ0 = 250, the development of Ω x

becomes increasingly small as we move downstream for the two cases using Lx,WS =
200θ0 and 300θ 0, where the regions of ∂U/∂x < 0 and ∂W/∂x > 0 become small, and
Cf ,x exhibits near-constancy. Note that, when Lx,WS = 100θ0 and 200θ 0, there are two
transitions from a 2DTBL to a 3DTBL and from a 3DTBL to a 2DTBL. Even in these
transitions, we do not observe mean streamwise circulation in the 3DTBL region, but see
a streamwise development of the mean streamwise vorticity (see figure 4).

The degree of skewing (turning) of the present 3DTBL can readily be confirmed in
mean velocity hodographs (figure 5a). At a downstream station of a 3DTBL where Cf ,x
starts to exhibit a plateau (i.e. x = 250θ0), the profiles (the red lines) follow the linear
solid line with the slope of −1.25. The value of arctan (−1.25) is approximately −51◦,
which agrees well with the direction of the surface shear stress, i.e. tan−1(Cf ,z/Cf ,x) (see
figure 2c). This result indicates that the mean flow has a constant flow angle near the wall.
It is well recognized that, for a small turning angle, the spanwise velocity gradient angle
is often approximated by the Squire–Winter–Hawthorne equation, i.e.

∂

∂x

(
∂W/∂y

∂U/∂y

)
= ∂

∂x

(
W

U

)
(3.2)

(see Bradshaw 1987). Note that the minus sign is omitted on the right-hand side of (3.2)
since ∂W/∂y < 0 in the present flow. Figure 5(a,b) indicates that relation (3.2) holds
reasonably at a downstream station of a 3DTBL (see the red lines representing the profiles
at x = 250θ0). The same is, however, not true for the Reynolds shear stress, i.e. there is a
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FIGURE 5. Hodograph plots in the 3DTBL region for Reθ0 = 300 with WS/U0 = 1: (a) mean
velocity hodograph; (b) mean strain-rate hodograph; and (c) Reynolds shear-stress hodograph.
The red lines refer to the data at x/θ0 = 250 where a near-plateau has been established in Cf ,x .
The data shown have been obtained with Lx,WS = 300θ0. In (b), normalization is made with
U0 and θ0.

larger departure from the −1.25 slope for the Reynolds stress hodograph (figure 5c) than
for the mean strain-rate one (figure 5b). This underlines that the Reynolds shear stress lags
behind the mean strain rate in the 3DTBL region.

3.3. Basic statistics in the present non-equilibrium 3DTBL
Here, we explain the basic features of the present non-equilibrium 3DTBL by showing
mean velocities and some turbulence statistics for the case using Lx,WS = 300θ0.

Figure 6 shows the distributions of outer-normalized mean velocities (i.e. U/U0 and
W/U0) and Reynolds shear stresses (i.e. −uv/U2

0 and vw/U2
0) at several x stations in a

3DTBL region. After imposing WS, W (i.e. cross-flow) increasingly develops from the
near-wall region to the outer layer (see figure 6b), where the secondary Reynolds shear
stress vw builds up – this quantity is amplified due to the production term −vv(∂W/∂y)

(the distribution is not shown here) – and the latter magnitude increases as x increases
(figure 6d). On the other hand, the magnitude of U is decreased in a 3DTBL region (see
figure 6a) where there is reduction in the magnitude of uv; the decreased uv propagates
outwards with increasing x (see figure 6c). Lohmann (1976) noted that the increase in
Reynolds stress causes an increasing velocity deficit to develop in the inner part of
a 3DTBL. Kiesow & Plesniak (2003) explained that the deficit of U results from an
increase in the streamwise wall shear stress. The present results indicate that the decreased
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FIGURE 6. Distributions of normalized U, W, uv and vw in the 3DTBL region for Reθ0 = 300
with WS/U0 = 1: (a) U/U0; (b) W/U0; (c) −uv/U2

0; and (d) vw/U2
0. The red lines refer to the

data at x/θ0 = 250 where a near-plateau has been established in Cf ,x . The data shown have been
obtained with Lx,WS = 300θ0.

magnitude of U/U0 is intrinsically associated with inviscid skewing (see figure 4, where
the region of ∂W/∂x > 0 corresponds well with that of ∂U/∂x < 0), consistent with the
finding of Coleman et al. (2000) in their temporally developing DNS for an idealization of
pressure-driven TBLs.

At a downstream station of a 3DTBL, the magnitude of −uv/U2
0 is smaller than that

of vw/U2
0 (see figure 6c,d), which is intrinsically associated with the inefficiency in

extracting energy from mean flow, as will be discussed in §§ 4.1 and 5.1. The decreased
magnitude of −uv/U2

0 implies a lag between the Reynolds shear stress and mean
strain-rate vectors (see the discussion in § 3.2). Note that the reduced uv is not observed
in the 3-D channel DNS of Lozano-Durán et al. (2020) at a low Reynolds number (i.e.
Reτ = 180), although in both the present and their simulations, Ω x propagates from the
near-wall region to the outer layer. This difference seems to be that between internal and
external flows (i.e. channel and boundary layer) since a channel flow has two walls and
is likely to suffer from the effect of insufficient scale separation at low Reynolds number.
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FIGURE 7. Distributions of (a) k/U2
0, (b) τ/ρU2

0, (c) εδ99/U3
0 and (d) a1 in the 3DTBL

region for Reθ0 = 300 with WS/U0 = 1. The red lines refer to the data at x/θ0 = 250 where
a near-plateau has been established in Cf ,x . The data shown have been obtained with Lx,WS =
300θ0.

On the other hand, the present 3DTBL increasingly develops from the near-wall region
towards the outer region (this latter region is initially a 2DTBL) by inviscid skewing (i.e.
three-dimensionality). The reduced uv is thus observed independent of Reynolds number.
The reason for the decrease in uv will be discussed in § 5.4.

As for the turbulence statistics, there is a sudden decrease in the magnitudes of the
turbulent kinetic energy k (figure 7a), the total Reynolds shear stress τ ≡ (vw2 + uv2)1/2

(figure 7b) and the energy dissipation rate ε ≡ νui,j(ui,j + uj,i) (figure 7c) in the region
x/θ0 = 100 ∼ 125. A similar decrease is found for the temporally developing DNS of
Moin et al. (1990) and Coleman et al. (1996), which is attributed to a non-equilibrium
effect. After this drop, the near-wall magnitudes of k/U2

0 , τ/U2
0 and εδ99/U3

0 increase with
x. In particular, εδ99/U3

0 exhibits a larger magnitude close to a wall than that for a 2DTBL
(figure 7c), qualitatively similar to those observed in the temporally developing DNS of
Moin et al. (1990). At x/θ0 = 250 (see the red lines in figure 7), the increase in k/U2

0
and τ/U2

0 from a 2DTBL is approximately a factor of 2. The latter factor is estimated by
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considering the collateral boundary layer where U2
0 is replaced by U2

0 + W2
S . This indicates

that the turbulence develops by cross-flow (arising from WS) effectively in a 3DTBL,
although the Reynolds stress anisotropy is not altered adequately with this short transition
length (see figure 6, where the peak magnitude of −uv/U2

0 is smaller than that of vw/U2
0).

Also, it would be instructive to address how the structure parameter a1 varies on moving
downstream in the present 3DTBL given that significant attention has been paid to this
quantity in the earlier experimental and DNS works. Figure 7(d) shows the distributions
of the structure parameter a1 in terms of y/δ99 in the 3DTBL region (note that δ99 denotes
the 99 % boundary layer thickness). After the initial drop, the magnitude of a1 tends to
approach that of a 2DTBL at x/θ0 = 250 below y/δ99 = 0.2, consistent with the behaviour
of k/U2

0 and τ/U2
0 . The approach to the 2DTBL is also observed in the equilibrium 3DTBL

simulations (Spalart 1989; Wu & Squires 1997). There is, however, a decrease in the
magnitude of a1 away from the wall (figure 7d) owing to the reduction of τ (figure 7b).
Note that the y location at which a1 exhibits a decreased magnitude moves outwards with
increasing x, whereas for uv, the decrease is not observed for a1 at a low Reynolds number
in a 3-D channel DNS of Lozano-Durán et al. (2020).

4. Effect of cross-flow

Here, we investigate the effect of cross-flow in a shear-driven non-equilibrium 3DTBL
for Reθ0 = 300 with varying WS, viz. WS/U0 = 0, 0.1, 0.5, 1.0, 1.5 and 2.0. For this
purpose, we here use Lx,WS = 200θ0 (or, equivalently, 24δ0), where LWS1 = 100θ0 and
LWS2 = 300θ0. In this case, a near-plateau is obtained for both the streamwise and spanwise
skin friction coefficients in the 3DTBL region (x ≥ 250θ0) at this inlet Reynolds number
(i.e. Reθ0 = 300).

4.1. Skin friction coefficients
Figure 8(a,b) shows the distributions of the streamwise and spanwise skin friction
coefficients, Cf ,x and Cf ,z, as a function of x/θ0. After imposing WS, Cf ,x decreases
abruptly in the 3DTBL region (i.e. 100 ≤ x/θ0 ≤ 300) when WS/U0 ≥ 0.5. This is due
to a non-equilibrium effect. After this decrease, Cf ,x and Cf ,z increase significantly
with increasing WS. The rates of increase in Cf ,x and Cf ,z from WS/U0 = 1 and 2 (i.e.
tan−1(WS/U0) = −45◦ and −63◦) are approximately 1.2 and 2.5, respectively, at x/θ0 ≈
250, while 1.5 (= 5 cos(−63◦)/2 cos(−45◦)) and 3.0 (= 5 sin(−63◦)/2 sin(−45◦)) are
estimated from the collateral state. The approach to the collateral state is slower for Cf ,x
than for Cf ,z, which is intrinsically associated with the inefficiency in extracting energy
from mean flow by the Reynolds shear stress −uv. This point will be discussed below.

For Cf ,z, Kannepalli & Piomelli (2000) proposed a mixed scaling such that

Cf ,z mixed = τw,z/(ρU0WS/2). (4.1)

Figure 8(c) demonstrates that this scaling holds reasonably well for WS/U0 ≤ 1, but
not for WS/U0 > 1 inside the 3DTBL region (100 ≤ x/θ0 ≤ 300). This is essentially
associated with the departure from the half-power law of θz, as will be discussed in
§ 5 (see figure 13b). On the other hand, (4.1) holds excellently in the recovery region
(300 ≤ x/θ0 ≤ 400) independent of WS. The forcing (i.e. the imposition of WS) thus most
likely yields the departure from (4.1).

To gain further insight into the behaviour of the skin friction coefficients, we here
examine the mean energy balance, by referring to the work of Renard & Deck (2016)
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FIGURE 8. Distributions of (a) Cf ,x , (b) Cf ,z and (c) Cf ,z mixed as functions of x/θ0 for Reθ0 =
300 with varying WS. The data shown have been obtained with Lx,WS = 200θ0.

in a 2DTBL, for the streamwise skin friction coefficient Cf ,x , i.e.

Cf ,x = 2
U3

0

∫ ∞

0
ν

(
∂U
∂y

)2

dy

︸ ︷︷ ︸
Cf ,x vis

+ 2
U3

0

∫ ∞

0

(
−uu

∂U
∂x

− uv
∂U
∂y

)
dy

︸ ︷︷ ︸
Cf ,x turb

+ 2
U3

0

∫ ∞

0
(U − U0)

(
U

∂U
∂x

+ V
∂U
∂y

)
dy

︸ ︷︷ ︸
Cf ,x conv

.

(4.2)

Note that the x derivative term is included in the second term on the right-hand side in (4.2)
since this term may not be dismissed in a 3DTBL. Using a boundary layer approximation
and by multiplying the relation for the total streamwise shear stress, viz.

τx total

ρ
= ν

(
∂U
∂y

)
− uv, (4.3)

by ∂U/∂y, Rotta (1962) obtained the following relation:

1
ρ

∂τw,x Ū
∂y

= −uv
∂Ū
∂y

+ ν

(
∂Ū
∂y

)2

. (4.4)
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Here, (1/ρ)(∂τw,x U/∂y) represents the rate of energy transfer from the outer part of the
boundary layer to the inner region. The energy is partly dissipated directly by viscosity
(the second term on the right-hand side of (4.4)) and partly extracted to turbulence via the
work done by the primary Reynolds shear stress −uv (the first term on the right-hand side
of (4.4)). The integrals of (4.2) thus represent the amounts of direct viscous dissipation
(the first term on the right), the energy extracted from the mean flow by the work of the
Reynolds stress (the second term on the right) and that associated with convection (the
third term on the right).

Similarly, the transverse skin friction coefficient Cf ,z may be expressed as

Cf ,z = − 2
U2

0WS

∫ ∞

0
ν

(
∂W − WS

∂y

)2

dy

︸ ︷︷ ︸
Cf ,z vis

− 2
U2

0WS

∫ ∞

0

(
−uw

∂W
∂x

− vw
∂W
∂y

)
dy

︸ ︷︷ ︸
Cf ,z turb

− 2
U2

0WS

∫ ∞

0
W

(
U

∂W
∂x

+ V
∂W
∂y

)
dy

︸ ︷︷ ︸
Cf ,z conv

.

(4.5)
Note that the total spanwise shear stress may be written as

τz total

ρ
= ν

(
∂W − WS

∂y

)
− vw. (4.6)

In (4.5) and (4.6), WS = 0 outside the 3DTBL region (i.e. 100 ≤ x/θ0 ≤ 300).
Figure 9(a) shows the distributions of normalized Cf ,x vis, Cf ,x turb and Cf ,x conv in (4.2)

as a function of x/θ0 for Reθ0 = 300 with WS/U0 = 1.0. While the magnitude of Cf ,x turb
is smaller than that of Cf ,x vis in a 2DTBL, the relative magnitude of Cf ,x turb to Cf ,x vis
is increased in a 3DTBL due to the increased mean straining, so that they are nearly
equal at a downstream station of a 3DTBL. The magnitudes of Cf ,z turb and Cf ,z viz are
also almost the same in a 3DTBL for Reθ0 = 300 with WS/U0 = 1.0 (the distributions
are not shown here). The magnitudes of the viscous and turbulent parts in (4.2) and (4.5),
however, depend intrinsically on WS in a 3DTBL. Here, we normalize the skin friction
coefficients by (C3/2

f /21/2), which yields the inner-normalized integral (i.e. U0/Uτ ) and
may readily be compared with the analysis in 2-D flows by Renard & Deck (2016), Abe &
Antonia (2016) and Wei (2018). Figure 9(b) shows the distributions of (21/2/C3/2

f )Cf ,x vis
for Reθ0 = 300 with varying WS. In the 2DTBL region (0 ≤ x/θ0 ≤ 100), the current result
is essentially identical with that (= 9.13) in a 2-D flow by Renard & Deck (2016), Abe &
Antonia (2016) and Wei (2018). In the 3DTBL region (100 ≤ x/θ0 ≤ 300), the magnitude
of (21/2/C3/2

f )Cf ,x vis decreases significantly with increasing WS due to the change of the
surface shear-stress direction.

As for the turbulent parts in (4.2) and (4.5), the magnitudes of (21/2/C3/2
f )Cf ,x turb

and (21/2/C3/2
f )Cf ,z turb are decreased and increased, respectively, in a 3DTBL with

increasing WS for WS/U0 ≤ 1.0 (see figure 9c,d). When WS/U0 = 1, the magnitude of
(21/2/C3/2

f )Cf ,z turb is 30 % greater than (21/2/C3/2
f )Cf ,x turb (note that Cf ,x turb = Cf ,z turb is

expected in the collateral state). This result highlights that, in a non-equilibrium 3DTBL,
the primary Reynolds shear stress uv is less efficient in extracting energy from the
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FIGURE 9. Distributions of terms on the right-hand side of (4.2) and (4.5) as functions of x/θ0

for Reθ0 = 300: (a) Cf ,x vis, Cf ,x turb and Cf ,x conv with WS/U0 = 1; (b) (21/2/Cf
3/2)Cf ,x vis with

varying WS; (c) (21/2/Cf
3/2)Cf ,x turb with varying WS; and (d) (21/2/Cf

3/2)Cf ,z turb with varying
WS. The data shown have been obtained with Lx,WS = 200θ0.

mean flow than the secondary Reynolds shear stress vw. For WS/U0 ≥ 1.0, the increase
in (21/2/C3/2

f )Cf ,z turb seems to be saturated. This is probably associated with a reduced
magnitude of the pressure strain term for vv (active motion) as WS increases given that the
production for vw consists of the product of vv and (∂W/∂y). The Re dependence will be
discussed in § 5.

4.2. Near-wall streaks and vortical structures
The increased drag in the 3DTBL region has a close relationship with the energized
near-wall vortical structures by cross-flow. Figure 10 shows the isosurfaces of the
instantaneous streamwise velocity fluctuation u and a positive value of the second invariant
of the velocity gradient tensor Q( ≡ −ui,juj,i/2) with a magnified view in the near-wall
region. After imposing WS at x/θ0 = 100, the near-wall streaks and quasi-streamwise
vortices are weakened due to a non-equilibrium effect. The latter becomes more
pronounced as WS increases. On moving downstream, they then reappear and rotate their
directions to those of the surface shear stress. Both the streaks and vortical structures
become more energetic with increasing WS due to the increased straining by cross-flow,
indicating that turbulence develops efficiently by cross-flow. In particular, near-wall
vortices show a clustering for larger WS. These behaviours can be quantified by examining
the streamwise normal Reynolds stress uu/U2

0 and the enstrophy ω∗
i ω

∗
i in the 3DTBL
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FIGURE 10. Isosurfaces of u and Q for Reθ0 = 300 with WS/U0 = 0.5, 1.0 and 1.5 : (a,c,e)
red, u/U0 > 0.15; blue, u/U0 < −0.15; (b) white, Qθ2

0 /U2
0 > 0.01; (d) white, Qθ2

0 /U2
0 > 0.02;

( f ) white, Qθ2
0 /U2

0 > 0.04. The fluid flows from bottom left to top right. The magnitudes of
WS/U0 are 0.5 (a,b), 1.0 (c,d) and 1.5 (e, f ), respectively. Note that the data below y/δ99,0 ≈ 0.2
have been plotted for highlighting the near-wall structures. The data shown have been obtained
with Lx,WS = 200θ0.

region (see figure 11) (note that a superscript * denotes the normalization by U0 and δ99).
Indeed, near-wall ω∗

i ω
∗
i is more increased than uu/U2

0 as WS increases, consistent with the
experimental results of Kiesow & Plesniak (2003). The increase is also observed for the
energy dissipation rate ε∗ (distributions not shown here). This indicates that small scales
are affected efficiently by cross-flow due to the increased mean straining. The behaviour
of ω∗

i ω
∗
i is also linked to the increased magnitude of the pressure fluctuation (distribution

of prms/ρU2
0 not shown here), although their characteristic y scales are different (see Abe

et al. 2018).
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FIGURE 11. Distributions of uu/U2
0 and ω∗

i ω∗
i in the 3DTBL region (x/θ0 = 275) for Reθ0 =

300 with varying WS: (a) uu/U2
0; and (b) ω∗

i ω∗
i . The data shown have been obtained with Lx,WS =

200θ0.

4.3. Reynolds stress and energy redistribution
We now discuss the near-wall distributions of the Reynolds stress and the energy
redistribution. Figure 12(a–d) shows the distributions of the inner-normalized Reynolds
normal stresses (i.e. u+u+, v+v+ and w+w+) and Reynolds shear stress (i.e. −u+v+) at a
downstream station of the 3DTBL region (x/θ0 = 275). Whilst all the Reynolds normal
stresses normalized by U2

0 increase with cross-flow, the inner-normalized Reynolds normal
stresses exhibit a different behaviour. That is, u+u+ decreases and w+w+ increases
(figure 12a,c) with increasing WS; and v+v+ (figure 12b) decreases slightly. Also, k+

(not shown here) increases gradually with increasing WS due to the increase in Reynolds
number in a 3DTBL. This indicates that the anisotropy in the Reynolds normal stress is
altered with increasing WS. The primary Reynolds shear stress (−u+v+) also decreases
with increasing WS, as observed in the recent DNS work by Lozano-Durán et al. (2020) in
a turbulent channel flow with a sudden spanwise pressure gradient. Not only the inactive
motion (u+u+ and w+w+) but also the active motion (v+v+ and −u+v+) are changed in
a 3DTBL. Note that, given the original idea of Townsend’s (1976) hypothesis, ‘inactive’
denotes a smaller contribution of larger motions to the Reynolds shear stress compared
to that of smaller motions, while ‘active’ refers to the contribution exclusively to the
Reynolds shear stress; see § 5.3 of Hwang (2015). In this sense, large scales contain half
of the Reynold shear stress in the log region or the outer region of a pipe flow (Guala,
Hommema & Adrian 2006) and of a channel and 2DTBL (Balakumar & Adrian 2007)
(see also the spectral analysis in § 5.3).

To gain further insight into the variation of the Reynolds stresses, we here examine the
pressure strain term (see figure 12e–h), which can be obtained by splitting the VPG (Π+

ij )
into the pressure strain (φ+

ij ) and pressure diffusion (ϕ+
ij ) terms, respectively:

Π+
ij = p+

(
∂u+

i

∂x+
j

+ ∂u+
j

∂x+
i

)
︸ ︷︷ ︸

φ+
ij

−
(

∂

∂x+
i

u+
j p+ + ∂

∂x+
j

u+
i p+

)
︸ ︷︷ ︸

ϕ+
ij

. (4.7)

The pressure strain term is responsible for the energy redistribution for the Reynolds
normal stress but for the destruction for the Reynolds shear stress. In a 2DTBL, the
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FIGURE 12. Distributions of the inner-normalized Reynolds stresses and the pressure strain
terms in the 3DTBL region (x/θ0 = 275) for Reθ0 = 300 with varying WS: (a) u+u+; (b) v+v+;
(c) w+w+; (d) −u+v+; (e) φ+

11; ( f ) φ+
22; (g) φ+

33; and (h) φ+
12. The data shown have been obtained

with Lx,WS = 200θ0.

pressure strain plays a role in redistributing the energy from uu to vv and ww. In the
present 3DTBL, once the magnitude of ww/U2

τ exceeds that of uu/U2
τ , the pressure strain

for uu and ww show negative and positive values, respectively The energy redistribution
for the inactive motion (uu and ww) is indeed varied as the magnitude of cross-flow
increases, whereas φ+

22 for the active motion (vv) decreases slightly. This indicates
that the energy redistributes from ww to uu in the 3DTBL region when WS becomes
sufficiently large. The largest values of φ+

11 and φ+
33 (≈ 0.08) are approximately one-fifth

of the maximum value of P+
11 (≈ 0.5) in a 2DTBL. The magnitude of φ+

12 (and thus the
active motion) also decreases with increasing WS, which was recently pointed out by
Lozano-Durán et al. (2020) in a turbulent channel flow with a sudden spanwise pressure
gradient. They associated this behaviour with the self-similar behaviour in a 3DTBL. The
self-similarity will be discussed in the next section. The present results indicate that the
pressure strain term may not be dismissed when considering the modelling of uiuj in a
3DTBL.

5. Effect of Reynolds number

In this section, we discuss the Re dependence in a shear-driven 3DTBL for three
Reynolds numbers (Reθ0 = 300, 600 and 900) with intermediate and large magnitudes
of WS (i.e. WS/U0 = 1 and 2) by focusing on the behaviours of the mean velocity and the
Reynolds stress. For this purpose, we here use Lx,WS = 100θ0 (or, equivalently, 12δ0) where
LWS1 = 100θ0 and LWS2 = 200θ0; a near-plateau is obtained in the 3DTBL region for both
the streamwise and spanwise skin friction coefficients for Reθ0 = 600 and 900, but not for
Reθ0 = 300 (see § 3.1).
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FIGURE 13. Distributions of Reθ , θ/θ0 and θz/θ0 as functions of x/θ0: (a) Reθ ; (b) θ/θ0 for
Reθ0 = 900 with WS/U0 = 1 and 2; (c) θz/θ0 for Reθ0 = 300, 600 and 900 with WS/U0 = 1;
and (d) θz/θ0 for Reθ0 = 900 with WS/U0 = 1 and 2. The data shown have been obtained with
Lx,WS = 100θ0.

5.1. Momentum thickness and skin friction coefficients
Figure 13 shows the distributions of the streamwise and spanwise momentum thicknesses,
θ and θz (viz. (1.7) and (1.8)), and the momentum thickness Reynolds number, Reθ , as
a function of x/θ0. For the streamwise momentum thickness θ , the magnitude increases
almost linearly with x/θ0. The imposition of WS yields an increase in θ , where the rate
of increase is greater for a larger WS (see figure 13b). The increased momentum thickness
is essentially associated with inviscid skewing since the latter yields the deficit of U. The
increased magnitude of θ is also linked to that of Cf ,x (see figure 14a) as ∂θ/∂x = Cf ,x/2
in the present flow due to the absence of the streamwise mean pressure gradient. The
momentum thickness Reynolds number Reθ thus depends intrinsically on both cross-flow
and Reynolds number (see figure 13a). For the largest Reθ0 and WS (i.e. Reθ0 = 900
and WS/U0 = 2), Reθ indeed varies from 900 (at the inlet) to 1550 (at the outlet). For
the spanwise momentum thickness θz, on the other hand, the magnitude for WS/U0 = 1
increases with a x1/2 dependence in the 3DTBL region for all three Reynolds numbers
(see figure 13c), which corroborates the LES result of Kannepalli & Piomelli (2000)
for Reθ ≈ 1100. The rate of increase for WS/U0 = 1 is identical with that of Antonia &
Luxton (1971) in their experiment in TBLs on the sudden change of the surface condition.
However, θz develops more significantly for WS/U0 = 2 than for WS/U0 = 1, the former
showing a departure from a x1/2 dependence (see figure 13d). This latter trend seems to
hold for a further larger WS. The x1/2 behaviour is essentially associated with the Stokes
layer θz = √

νt, whereas the departure from the x1/2 behaviour is due to the increased
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FIGURE 14. Distributions of Cf ,x and Cf ,z as functions of x/θ0: (a) Cf ,x for Reθ0 = 300, 600
and 900 with WS/U0 = 1; (b) Cf ,x for Reθ0 = 900 with WS/U0 = 1 and 2; (c) Cf ,z for Reθ0 =
300, 600 and 900 with WS/U0 = 1; and (d) Cf ,z for Reθ0 = 900 with WS/U0 = 1 and 2. The
data shown have been obtained with Lx,WS = 100θ0.

turbulent eddy viscosity θz = √
νt,zt (see figure 22(b) where the magnitude of νt,z/νt,x

increases with cross-flow at a large Re). The latter behaviour was also reported in the
recent temporally developing DNS work of Lozano-Durán et al. (2020).

Figure 14(a,c) shows the distributions of the streamwise and spanwise skin friction
coefficients, Cf ,x and Cf ,z, as a function of x/θ0 for all three Reynolds numbers with
WS/U0 = 1. Also compared are the LES data of Kannepalli & Piomelli (2000) and the
experimental data of Driver & Hebbar (1987) – their Reynolds numbers in a near-trailing
edge of the 3DTBL region are Reθ ≈ 1100 and 6000, respectively. After imposing WS, we
see a sudden decrease in the magnitudes of Cf ,x and Cf ,z for all three Reynolds numbers.
The streamwise locations at which both Cf ,x and Cf ,z attain near-plateaus become smaller
in terms of x/θ0 as the Reynolds number increases, while that for Cf ,x is not obtained
for Reθ0 = 300 using Lx,WS = 100θ0. The streamwise extent for obtaining a plateau in
Cf ,x is 150θ0, 165θ0 and 40θ0 (or, equivalently, 18δ0, 8δ0 and 5δ0) for Reθ0 = 300, 600
and 900, respectively (note that 150θ 0 for Reθ0 = 300 has been obtained from the data
using Lx,WS = 200θ0 and 300θ 0 shown in § 3.1). Note that Cf ,x obtained from the LES
of Kannepalli & Piomelli (2000) does not exhibit a plateau in the 3DTBL region, which
seems to be due to the coarse streamwise spatial resolution in their simulation given that
the agreement with the data for Reθ0 = 600 is excellent except for the 3DTBL region. The
streamwise extent for Reθ0 = 900 (i.e. 5δ0 or 40θ0) is approximately half that of Lohmann
(1976) in this spinning cylinder experiment. The reason for the difference is likely to be
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because the imposition of WS yields a 3DTBL more efficiently over a flat plate than over a
spinning cylinder. With increasing WS, the streamwise locations at which both Cf ,x and Cf ,z
attain near-plateaus remain essentially unchanged, whereas the magnitudes for WS/U0 = 2
is greater than that for WS/U0 = 1 (see figure 14b,d) as observed in Lohmann’s (1976)
experiment. The increased magnitudes of Cf ,x and Cf ,z are intrinsically associated with
the energized vortical structures, as will be discussed in § 5.3.

In the recovery region, the magnitude of Cf ,x tends to approach that of a 2DTBL
when x/θ0 reaches approximately 300. The Reynolds-number dependence of Cf ,x is also
significant. In the latter context, Kannepalli & Piomelli (2000) used a power-law relation
on the basis of a 1/7 power-law mean velocity in a 2DTBL, i.e.

Cf ,x = 0.020Re−1/6
δ , (5.1)

(see (6-68) of White 1991), for estimating the Reynolds-number dependence (here Reδ

denotes the Reynolds number based on U0 and δ99). They noted that, if the experimental
Cf ,x by Driver & Johnston (1990) is multiplied by (Reδ,exp/Reδ,LES)

1/6, the resulting Cf ,x
agrees well with the LES data of Kannepalli & Piomelli (2000). Close inspection of
the present DNS data at x/θ0 = 300 has shown that, while the prediction of (5.1) is
excellent for Reθ0 = 300, (5.1) underestimates Cf ,x by approximately 14 % for Reθ0 =
900. The latter result is attributed to the increased momentum thickness and Reynolds
number in the 3DTBL and recovery regions owing to the effect of three-dimensionality
(see figure 13c,d), whilst the boundary layer thickness remains invariably unchanged by
cross-flow (the distribution is not shown here). Indeed, the power-law relation of Smits,
Matheson & Joubert (1983), viz.

Cf ,x = 0.024Re−1/4
θ , (5.2)

which predicts Cf ,x in a 2DTBL excellently over a wide range of Reynolds number (see
Schlatter & Örlü 2010), leads to a better prediction of Cf ,x for Reθ0 = 900 in the recovery
region (i.e. the difference between the DNS data and (5.2) is approximately 5 % for Reθ0 =
900 at x/θ0 = 300).

To examine the Re dependence of Cf ,x and Cf ,z further, figure 15 shows the distributions
of inner-normalized viscous (Cf ,x vis and Cf ,z vis) and turbulent (Cf ,x turb and Cf ,z turb) parts
in the mean energy balances (i.e. (4.2) and (4.5)) as a function of x/θ0 for Reθ0 = 300,
600 and 900 with WS/U0 = 1. In the 2DTBL region (0 ≤ x/θ0 ≤ 100), (21/2/C3/2

f )Cf ,x vis
remains essentially unchanged independently of the Reynolds number (figure 15a), whilst
(21/2/C3/2

f )Cf ,x turb increases with increasing Reynolds number (figure 15b). This latter
behaviour is consistent with the Re dependence in a 2-D flow by Renard & Deck (2016),
Abe & Antonia (2016) and Wei (2018). In the 3DTBL region (100 ≤ x/θ0 ≤ 200), the
magnitudes of both the viscous and turbulent parts decrease significantly due to the
change of the surface shear-stress direction, and depend less on the Reynolds number
at a downstream station of a 3DTBL. The latter Re independence is most likely due
to the effect of the mean spanwise shear resulting from the imposition of WS. For all
three Reynolds numbers, the magnitude of Cf ,z turb is greater than that of Cf ,x turb, which
highlights that, in a 3DTBL, uv is less efficient in extracting energy from mean flow than
vw. Also, the increase in WS yields less extraction of energy from uv, while Cf ,z turb (i.e.
the energy extracted from vw) contributes almost exclusively to Cf turb (the distributions
for WS/U0 = 2 are not shown here). In the recovery region (200 ≤ x/θ0 ≤ 400),
there is an increased magnitude of the turbulent part (Cf ,x turb) for a larger Reynolds
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FIGURE 15. Distributions of terms on the right-hand side of (4.2) and (4.5) as functions of x/θ0

for Reθ0 = 300, 600 and 900 with WS/U0 = 1: (a) (21/2/C3/2
f )Cf ,x vis and (21/2/C3/2

f )Cf ,z vis;

and (b) (21/2/C3/2
f )Cf ,x turb and (21/2/C3/2

f )Cf ,z turb. The data shown have been obtained with
Lx,WS = 100θ0.

number (figure 15b). Also, non-zero values of Cf ,z vis and Cf ,z turb are observed for the three
Reynolds numbers. These behaviours underline that the effect of three-dimensionality
propagates into the recovery region. This point will be discussed further in § 5.5.

5.2. Departure from the ‘law of the wall’ in a non-equilibrium 3DTBL
Here, we discuss the ‘law of the wall’ in a non-equilibrium 3DTBL. In this context,
the inner-layer scaling of the relative mean velocity (or, equivalently, the mean velocity
magnitude), i.e.

Qr ≡ (U
2 + (W − WS)

2)1/2, (5.3)

has been intensively examined in a 3DTBL. There have been a number of observations
indicating that the law of the wall, viz. (1.3), holds approximately in a shear-driven 3DTBL
but with a larger magnitude of the von Kármán constant κ (see, for example, Bissonnette &
Mellor 1974; Pierce & McAllister 1983; Moin et al. 1990) than κ = 0.39 in a 2DTBL (see
Marusic et al. 2013). Given that the present 3DTBL will eventually approach the collateral
state at a far-downstream station, the departure from the classical log law is intrinsically
associated with a 3-D effect in a 3DTBL where there is a close relationship between a
deficit of U and inviscid skewing (i.e. three-dimensionality) (see § 3.2).

Also, the classical inner scaling for the energy dissipation rate ε may be expressed as

ε+ ≡ εν/U4
τ = 1/κ y+. (5.4)

In the latter context, Abe & Antonia (2016) made the matching argument to ε in a turbulent
channel flow on the basis of the scaling arguments of Townsend (1976) (see § 8.8 of his
book). They obtained the following relation by assuming that the Reynolds number is large
enough to have a clear distinction between inner and outer regions, and there is a region
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where the inner and outer scalings overlap, viz.

εy/U3
τ = 1/κε, (5.5)

where κε is a constant. In (5.5), the relevant length scale is the distance from the wall,
y, to be distinguished unambiguously. Note that κε is identical with κ when the Reynolds
number is sufficiently large enough to establish the velocity log law, where the constant
shear stress (i.e. τ � ρU2

τ ) and energy equilibrium (i.e. Pk � ε) assumptions also hold.
Abe & Antonia (2016) noted that εy/U3

τ approaches 2.54 (i.e. 1/κε = 1/0.39) in a channel,
pipe and ZPG 2DTBL where the finite Re correction is required for a channel and a pipe
due to the presence of the mean pressure gradient (see relations (4.22) and (4.23) of their
paper).

Figure 16(a,b) shows the distributions of the inner-normalized mean velocity magnitude
Qr and energy dissipation rate ε, respectively, with the semi-logarithmic coordinates, for
Reθ0 = 300, 600 and 900 with WS/U0 = 1.0 and for Reθ0 = 900 with WS/U0 = 2.0 in a
near-equilibrium 3DTBL (x/θ0 = 175). As the Reynolds number increases, the magnitude
of Q+

r ( = Qr/Uτ ) becomes smaller away from the wall than in a 2DTBL. For Reθ0 = 900,
the velocity log law (i.e. (1.3)) tends to hold but with a larger magnitude of the von Kármán
constant κ = 0.44, in particular, for a larger WS, i.e. WS/U0 = 2 (see figure 16a), where the
experimental data of Lohmann (1976) for WS/U0 = 1.75 agree reasonably well with the
present distribution for Q+

r for WS/U0 = 2.0; the constant shear stress (i.e. τ � ρU2
τ ) and

energy equilibrium (i.e. Pk � ε) assumptions also hold approximately for Reθ0 = 900 with
WS/U0 = 2.0 (the distributions are not shown here). In the latter region, the production
of k (i.e. Pk ≡ −uiujSij) shows a smaller magnitude than for a 2DTBL (see figure 16c)
(note that Sij ≡ (Ui,j + Uj,i)/2), which indicates that the present 3DTBL is less efficient in
extracting energy from the mean velocity than in a 2DTBL.

We also note that ε+ shows a better collapse for y+ > 20 than Q+
r , where (5.5) with

κε = 0.44 provides a good fit to the DNS data (see figure 16b,d). Indeed, an apparent
plateau appears in the distribution of εy/U3

τ in the region y+ = 20 to y/δ99 = 0.15 (see
figure 16d). This underlines that the overlap scaling holds more clearly for small scales
than for large scales. The constant value of εy/U3

τ (i.e. (5.5)) is approximately 2.27, i.e.
1/κε = 1/0.44. Indeed, κε is identical with κ when Reθ0 = 900. The implication at higher
Reynolds number is that small scales are likely to lose the Re dependence more rapidly
than large scales given a more distinct overlap scaling for ε than for U; see also the DNS
works in a turbulent channel flow by Abe & Antonia (2016, 2017), who noted that the
overlap scaling for the energy and scalar dissipation rates is in fact established at a smaller
value of Reτ than that at which the mean velocity and scalar log laws hold. Also, the
clear plateau of εy/U3

τ (see the distribution in figure 16(d) for a larger WS case) indicates
self-similarity in small scales, which is intrinsically due to the mean spanwise shear arising
from WS. This point will be discussed further in the next subsection by focusing on the
most energetic spanwise wavelengths of velocity fluctuations.

5.3. Turbulence structures and energetic spanwise scales in a non-equilibrium 3DTBL
In this subsection, we first discuss asymmetric turbulence structures observed in the
present 3DTBL. Figure 17 shows the contours in the y–z plane of the instantaneous
streamwise velocity fluctuation u together with those of a positive value of Q for the
three Reynolds numbers in a near-equilibrium 3DTBL (x/θ0 = 175). As the Reynolds
number increases, large-scale toppling u structures dominate in the outer region where the
negative u structures preferentially correlate with the positive Q structures, the latter being
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FIGURE 16. Distributions of Q+
r , ε+, Pk y/U3

τ and εy/U3
τ in the 3DTBL region (x/θ0 = 175):

(a) Q+
r for Reθ0 = 300, 600 and 900 with WS/U0 = 1 and for Reθ0 = 900 with WS/U0 = 2;

(b) ε+ or Reθ0 = 300, 600 and 900 with WS/U0 = 1 and for Reθ0 = 900 with WS/U0 = 2;
(c) Pk y/U3

τ for Reθ0 = 900 with WS/U0 = 1 and 2; and (d) εy/U3
τ for Reθ0 = 900 with

WS/U0 = 1 and 2. The data shown have been obtained with Lx,WS = 100θ0. Also plotted for
comparison are the DNS data of a ZPG 2DTBL for Reθ = 1000 obtained in the present work.

stretched by cross-flow. Indeed, not only near-wall streaks but also outer-layer structures
exhibit asymmetries due to the straining by cross-flow, which are reminiscent of the
‘toppling structures’ hypothesized by Bradshaw & Pontikos (1985). The energized vortical
structures are intrinsically associated with the abruptly increased drag (figure 14). We
note that, for the largest Reθ0 with a large WS (i.e. Reθ0 = 900 and WS/U0 = 2), both the
u and Q structures are stretched significantly by cross-flow, showing asymmetries with
approximately −30° (see figure 17d). The asymmetric vortical structures are most likely
associated with the excellent overlap scaling established for the energy dissipation rate
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FIGURE 17. Contours in the y–z plane of u (colour) and a positive value of Q (line) in the
3DTBL region (x/θ0 = 175) for Reθ0 = 300, 600 and 900: (a) u/U0 for Reθ0 = 300 with
WS/U0 = 1; (b) u/U0 for Reθ0 = 600 with WS/U0 = 1; (c) u/U0 for Reθ0 = 900 with WS/U0 =
1; and (d) u/U0 for Reθ0 = 900 with WS/U0 = 2. The data shown have been obtained with
Lx,WS = 100θ0.

ε (figure 16d). This figure also highlights an intrinsic difference between the shear-driven
and pressure-driven 3DTBLs, i.e. both the near-wall and outer-layer structures are affected
by cross-flow in the shear-driven 3DTBL, whilst the outer-layer structures are exclusively
altered in the pressure-driven 3DTBL (see figure 5 of Schlatter & Brandt 2010).

In figure 17, we also see an interface between the 2-D and 3-D structures at y/δ99 =
0.3 ∼ 0.4 for all three Reynolds numbers, which indicates that there is a reduced
interaction between the inner and outer regions due to inviscid skewing. A similar
behaviour was observed in the recent experimental work of Kevin et al. (2019) in a 3DTBL
with an angled ribbed surface. In this context, wall-normal two-point correlations, defined
such that

Raa(yr, y) = a(yr)a( y)

a(yr)a(yr)
, (5.6)
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FIGURE 18. Wall-normal two-point correlations for Reθ0 = 300 with WS/U0 = 1: (a) Ruu
(yr, y); and (b) Rww(yr, y). The averaging is based on a time period t+ ≈ 2332. The data have
been obtained in both the 2DTBL and 3DTBL regions (x/θ0 = 50 and 175) at two reference
stations (i.e. yr/δ99 ≈ 0.1 and 0.4). The data shown have been obtained with Lx,WS = 100θ0.

where yr is a reference y location and a ≡ u, v or w, have been examined. Figure 18
shows the distributions of Ruu(yr, y) and Rww(yr, y) in the 2DTBL and 3DTBL regions
(x/θ0 = 50 and 175) at two reference stations (i.e. yr/δ99 ≈ 0.1 and 0.4). Note that,
for this quantity, the data have been obtained for Reθ0 = 300 with WS/U0 = 1, using
Lx,WS = 100θ0; averaging is based on a time period of t+ ≈ 2332. This figure indicates
that the u and w correlations in the 3DTBL region approach zero at a smaller separation
than those in the 2-D region (a similar trend is observed for the v correlations (not shown
here)). This result highlights that there is a reduced correlation of velocity fluctuations in
the present 3DTBL.

It was also reported that in a 2DTBL (Hutchins & Marusic 2007) and a channel flow
(Abe, Kawamura & Choi 2004), large-scale footprints exist in the near-wall region as
a consequence of the interaction between the inner and outer regions. Footprints are,
however, not observed clearly in the present 3DTBL, which is most likely due to the
reduced interaction between the inner and outer regions (the instantaneous u contours
in the x–z plane near a wall are not shown here).

To provide further statistical evidence regarding the reduced interaction, one-dimensional
spanwise spectra, i.e.∫ ∞

0
φaa(kz) dkz =

∫ ∞

0
kzφaa(kz) d(log kz) = aa, (5.7)

have been investigated, where φ denotes the spectral density, kz the spanwise wavenumber,
λz = 2π/kz being the corresponding wavelengths, and a ≡ u, v or w. Figure 19(a,b) shows
the λz − y contours of the normalized premultiplied spanwise u spectra kzφuu(kz) (line)
and uv co-spectra kzCouv(kz) (colour) in the 2DTBL and 3DTBL regions (x/θ0 = 50 and
175). Note that the uv co-spectra denote the real part of the cross-spectra; the same dataset
as for the wall-normal two-point correlations has been used for this spectral analysis. In the
2-D region, the global spectral mode is observed in the outer region for both the u spectra
and the uv co-spectra at large λz (≥ 0.6δ99) where the correspondence between the two
spectra is reasonably good (see figure 19a). This behaviour highlights that the large-scale
u structures are active for transporting the momentum.
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FIGURE 19. Contours in the λz − y plane of normalized premultiplied spanwise u spectra
kzφuu(kz), uv co-spectra kzCouv(kz) and weighted uv co-spectra −4kz( y/δ99)Couv(kz)(1 −
y/δ99) in the 2DTBL and 3DTBL regions (x/θ0 = 50 and 175) for Reθ0 = 300 with WS/U0 = 1:
(a) kzφuu(kz)/U2

0 (line) and kzCouv(kz)/U2
0 (colour) at x/θ0 = 50; (b) kzφuu(kz)/U2

0 (line) and
kzCouv(kz)/U2

0 (colour) at x/θ0 = 175; (c) −4kz( y/δ99)Couv(kz)(1 − y/δ99)/U2
0 at x/θ0 = 50;

and (d) −4kz( y/δ99)Couv(kz)(1 − y/δ99)/U2
0 at x/θ0 = 175. The averaging is based on a time

period t+ ≈ 2332. The data shown have been obtained with Lx,WS = 100θ0.

The global mode, however, becomes weakened in the 3-D region, indicating the reduced
interaction between the inner and outer regions (see figure 19b) – note that the reduced
spectral energy in the outer layer is also observed for the premultiplied spanwise v and w
spectra, kzφvv(kz) and kzφww(kz) (not shown here) in the 3DTBL region. In particular, we
observe the decreased magnitude of kzCouv(kz)/U2

0 at y/δ99 = 0.3 ∼ 0.4 in the 3DTBL
region, consistent with the reduced magnitude of −uv in the outer region. This reduced
kzφuu(kz)/U2

0 is intrinsically associated with a smaller magnitude of Cf ,x turb than in the
collateral state and thus the lower efficiency in extracting energy from the mean flow
(see § 4.1).
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FIGURE 20. One-dimensional premultiplied spanwise u spectra at y/δ99 = 0.2 of a 3DTBL
and the most energetic spanwise scales, λz,max , obtained from peaks of premultiplied
spanwise spectra below y/δ99 = 0.2: (a) kzφuu (kz) /uu for Reθ0 = 900 with WS/U0 = 1 and 2;
(b) λz,max/δ99 for u for Reθ0 = 300, 600 and 900 with WS/U0 = 1 and 2; and (c) λz,max/δ99 for
w for Reθ0 = 300, 600 and 900 with WS/U0 = 1. In (a), the spectra are compared with those in a
turbulent channel flow of Abe et al. (2018) (black solid line) and Hoyas & Jiménez (2008) (black
dashed line) for h+ = 1020 and 2003 at y/h = 0.2, respectively. Also included are the spectra of
Tomkins & Adrian (2005) in a ZPG TBL for δ+ = 2216 at y/δ = 0.2 (circle) and those of Ahn
et al. (2015) in a turbulent pipe for R+ = 3008 at y/R = 0.1 (triangle). In (b,c), the dashed lines
denote the linear fittings. In (a–c), the data shown have been obtained with Lx,WS = 100θ0.

In the latter context, it would also be instructive to pay attention to the spectral analysis
by Deck et al. (2014), who discussed how Cf ,x in a 2DTBL is related to the spatial changes
in turbulence motions. They focused on the contribution of the uv term to Cf ,x in the
FIK identity (Fukagata et al. 2002), and examined the streamwise weighted uv co-spectra,
i.e. −4kx( y/δ99)Couv(kx)(1 − y/δ99). Note that kx denotes the streamwise wavenumber;
the factor of ( y/δ99) arises from the uv term in the FIK identity. Deck et al. (2014)
noted that in a 2DTBL, large scales in the outer region make a major contribution to
Cf ,x . A similar inspection has been made for the present spanwise weighted spectra, i.e.
−4kz( y/δ99)Couv(kz)(1 − y/δ99) (see figure 19c,d), which display an outer energetic mode
more clearly than kzCouv(kz) (see figure 19a,b) in both the 2DTBL and 3DTBL regions.
Also, we see in figure 19(c,d) that the weighted co-spectra in a 3DTBL exhibit a decreased
magnitude of the global energetic mode at large λz (≥ 0.6δ99) compared with those in a
2DTBL. This result underlines the close relationship between the reduced Cf ,x and the
decreased interaction between the inner and outer regions in the 3DTBL region.
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We next quantify the spanwise organization of the u structures in a 3DTBL with the
use of the energy spectra. Figure 20(a) shows the spanwise spectral density of u, kzφuu(kz),
normalized by uu, at y/δ99 ≈ 0.2, compared with those in a 2DTBL (present DNS; Tomkins
& Adrian 2005), channel flow (Hoyas & Jiménez 2008; Abe et al. 2018) and pipe flow
(Ahn et al. 2015). Abe et al. (2018) noted that, while the outer flow is completely
different between the internal and external flows (e.g. the presence of the λz/h = 1.3–1.6
or λz/R = 1.3 mode in the internal flows, where R denotes the pipe radius), there is some
similarity in the spectral peak at a lower wavelength (λz/h = 0.8–0.9 (channel), λz/R = 0.7
(pipe) and λz/δ99 = 0.8 (boundary layer)). They associated this similarity with the fact that
the magnitude of the von Kármán constant κ does not differ significantly between the
three flows and is approximately 0.39 at extremely large Reynolds number (Marusic et al.
2013). Figure 20(a) highlights that the peak wavelength of kzφuu(kz) in a 3DTBL appears at
a shorter wavelength than that in a 2DTBL, due to the turning of large-scale u structures by
inviscid skewing (see figure 21, where the contours in the x–z plane of the instantaneous
streamwise and spanwise velocity fluctuations, u and w, are shown for Reθ0 = 900 with
WS/U0 = 1 and 2 together with those in a 2DTBL).

We now examine the most energetic spanwise scales of the asymmetric u structures,
λz,max , by plotting the peak wavelengths of the premultiplied spectra kzφuu(kz) below
y/δ99 ≈ 0.2 in figure 20(b). Also plotted in figure 20(c) is the distribution of λz,max for w
for comparison. Note that the peak wavelength of the premultiplied spectrum corresponds
to the most energetic scale contributing to the mean-square value; a least-squares fitting
has been made for the spectral peak to obtain λz,max . While the self-similar behaviour is
not observed clearly in a 2DTBL due to the effect of large scales (see Jiménez & Hoyas
2008; Abe et al. 2018), the linear increase in λz,max is indeed observed for the u spectra
in a 3DTBL below y/δ99 = 0.2 for both WS/U0 = 1 and 2. Note that in a 3DTBL, there is
also a linear increase in λz,max for the w spectra with WS/U0 = 1 (figure 20c), but not with
WS/U0 = 2 (not shown here) due to the presence of large-scale elongated w structures (see
figure 21f ).

Given the notion of Nickels et al. (2007) that any eddy with a size that scales
with its distance from the wall may be considered to be attached to the wall, the
well-established linear dependence of λz,max for u in a 3DTBL is intrinsically associated
with the attached-eddy hypothesis of Townsend (1976). Inspection of the instantaneous u
contours in the x–z plane (figure 21a,c,e) indicates that large-scale u structures become
less anisotropic with increasing WS. These results underline that the spanwise mean shear
resulting from the imposition of WS yields a self-similar behaviour in the asymmetric u
structures. The departure from self-similarity due to the large-scale contamination was
indeed reported in a turbulent channel flow by Jiménez & Hoyas (2008), Hwang (2015)
and Abe, Antonia & Toh (2018). Note that, while some u structure are aligned with the
shear-stress direction in the collateral state (i.e. α = −45◦ and −60◦) (see the black solid
lines in figure 21c–f ), most of the u structures are altered slowly compared with the w
structures. This slow turning of the u structures is most likely associated with the slower
approach to the collateral state for U than W. We also note that λz,max for w also shows a
linear increase with respect to y for WS/U0 = 1, but not for WS/U0 = 2 (see figure 20c)
since large scales dominate for w for a larger WS (see figure 21f ).

As for vortical structures in a 2DTBL, Adrian, Meinhart & Tomkins (2000) reported
hairpin vortical structures and noted the relationship with the negative u structures. In
the present 3DTBL, Kiesow & Plesniak (2003) hypothesized skewing of hairpin vortices.
Inspection of the contours in the x–y plane (not shown) and x–z plane (figure 21) has
revealed that, as observed in a 2DTBL by Adrian et al. (2000), the low-momentum regions
preferentially correlate with vortical structures. With increasing WS, the correlation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.488


902 A20-34 H. Abe

2

0
0 2 4

x/δ99
z/

δ 99
z/

δ 99
z/

δ 99
x/δ99

6

2

0
0 2 4 6

2

0
0 2 4 6

2

0
0 2 4 6

2

0
0 2 4 6

2

0
0 2 4 6

−1.20×10−1 1.20×10−1−6.00×10−2 6.00×10−20×100

−1.20×10−1 1.20×10−1−6.00×10−2 6.00×10−20×100

−2.00×10−1 2.00×10−1−1.00×10−1 1.00×10−10×100 −2.00×10−1 2.00×10−1−1.00×10−1 1.00×10−10×100

−1.00×10−1 1.00×10−1−5.00×10−2 5.00×10−20×100

−1.00×10−1 1.00×10−1−5.00×10−2 5.00×10−20×100

(a) (b)

(c) (d )

(e) ( f )

FIGURE 21. Contours in the x–z plane of u (colour) (a,c,e) and w (colour) (b,d, f ) together
with those of a positive value of Q (line) in 2DTBLs and 3DTBLs: (a) u/U0 in a 2DTBL for
Reθ ≈ 1000; (b) w/U0 in a 2DTBL for Reθ ≈ 1000; (c) u/U0 in a 3DTBL for Reθ0 = 900 with
WS/U0 = 1; (d) w/U0 in a 3DTBL for Reθ0 = 900 with WS/U0 = 1; (e) u/U0 in a 3DTBL
for Reθ0 = 900 with WS/U0 = 2; and ( f ) w/U0 in a 3DTBL for Reθ0 = 900 with WS/U0 = 2.
In (c–f ), structures in the 3DTBL region have been visualized with an enlarged view; the data
shown in these panels have been obtained with Lx,WS = 100θ0. In (c,d) and (e, f ), the solid lines
denotes the direction of α = −45◦ and −60◦, respectively, which correspond to the surface
shear-stress direction in the collateral state.

between the u structures and vortical structures becomes weaker due to the breakdown of
large-scale u structures (figure 21c,e). On the other hand, the w structures tend to exhibit
elongated structures in the shear-stress direction (see also the black solid line in figure 21f )
where vortical structures are aligned with the w structures (figure 21d, f ). Indeed, the
vortical structures change their directions due to inviscid skewing.

5.4. Behaviour of the primary Reynolds shear stress uv in a non-equilibrium 3DTBL
Recently, Lozano-Durán et al. (2020) discussed the reduced behaviour of the primary
Reynolds shear stress uv in their 3-D channel DNS with a sudden imposition of mean
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FIGURE 22. Distributions of the outer-normalized −uv, the correlation coefficient −Ruv ,
the turbulent eddy viscosity ratio νt,z/νt,x and the structure parameter a1 in the 3DTBL
region (x/θ0 = 175): (a) −uv/U2

0 for Reθ0 = 900 with WS/U0 = 1 and 2; (b) νt,z/νt,x for
Reθ0 = 900 with WS/U0 = 1 and 2; (c) −Ruv for Reθ0 = 300, 600 and 900 with WS/U0 = 1
and Reθ0 = 900 with WS/U0 = 2; and (d) a1 for Reθ0 = 300, 600 and 900 with WS/U0 = 1 and
Reθ0 = 900 with WS/U0 = 2. The data shown have been obtained with Lx,WS = 100θ0. Also
plotted for comparison are the DNS data of a ZPG 2DTBL for Reθ = 1000 obtained in the
present work.

spanwise pressure gradient. They explained it as a non-equilibrium effect rather than
three-dimensionality. Here, we examine the behaviour of uv in the present 3DTBL and
the implication for turbulence modelling.

Figure 22(a) shows the distributions of uv, respectively, at a downstream station of
the 3DTBL region (x/θ0 = 175) for Reθ0 = 900 with WS/U0 = 1 and 2. The magnitude
of −uv/U2

0 in the inner region (y/δ99 ≤ 0.2) is increased significantly with cross-flow,
whereas there is a reduced magnitude of −uv/U2

0 in the outer region. The latter decrease
is also observed in the recent experiment by Kevin et al. (2019) in their 3DTBL on a
ribbed surface. Close inspection of the instantaneous product uv (not shown here) shows
a decrease in magnitude at the interface between the 2-D and 3-D structures (see figure 17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.488


902 A20-36 H. Abe

where the u contours in the y–z plane are shown), which supports the hypothesis of
Bradshaw & Pontikos (1985) that rapid decreases of shear stress are caused by the sideways
tilting of the large eddies away from their preferred orientation. In the uv co-spectra (see
figure 19), we also see the statistical evidence on a decreased global mode at large λz
(≥ 0.6δ99) in the 3DTBL region. These results indicate that the reduction in uv/U2

0 in the
present shear-driven flow is intrinsically associated with a reduced interaction between the
inner and outer regions due to inviscid skewing. Inspection of figure 22(a) has revealed
that the relative reduction of uv/U2

0 (i.e. the dip at y/δ99 ≈ 0.4) to the value of a 2DTBL is
approximately 25 %, the latter value being identical with the result of Lozano-Durán et al.
(2020) in the 3-D channel DNS. In the latter DNS, a mean spanwise pressure gradient is
imposed, which is equivalent to applying a spanwise motion to the walls, in the opposite
directions (this was pointed out by Dr G. N. Coleman, private communication 2019). There
is thus a similarity between the present 3DTBL and that of Lozano-Durán et al. (2020).
In both 3DTBLs, the mean streamwise vorticity Ω x propagates from the near-wall region
to the outer layer. Also, a self-similar behaviour is observed. Given these similarities, a
non-equilibrium effect reported by Lozano-Durán et al. (2020) may involve a reduced
interaction between the inner and outer regions due to three-dimensionality.

At this x station (x/θ0 = 175), there appear a deficit of U (not shown here) and also a
decreased magnitude of the correlation coefficient −Ruv(= −uv/urmsvrms) as in the APG
TBL (see figure 22c where the present −Ruv is nearly identical with that of Gungor et al.
(2014) in a strong APG 2DTBL; see also figure 11 from Abe (2019)). This result, however,
does not imply the similarity between the present 3DTBL and APG 2DTBL. Figure 22(d)
shows the distributions of the structure parameter a1 in the 3DTBL region (x/θ0 = 175).
This figure highlights that the present magnitude attains a1 ≈ 0.14 at y/δ99 ≈ 0.1 where
there is a maximum streamwise mean velocity deficit (the distribution of U is not shown
here). The present value of a1(≈0.14) is greater than a1 = 0.11 in the APG TBL by Spalart
& Watmuff (1993). This result supports the finding of Coleman et al. (2000) that the
impact of the APG on the outer-layer structure is more pronounced than that of the mean
three-dimensionality. Also, the present distribution of a1 in the inner region of a 3DTBL
(y/δ99 ≤ 0.2) agrees well with the experimental results of Littell & Eaton (1994) in the
rotating disk and the DNS and LES results of Spalart (1989) and Wu & Squires (1997) in
the equilibrium 3DTBL (see figure 22d).

On the other hand, as for uv/U2
0 , the significant decrease in magnitude of a1 is observed

in the present 3DTBL, as in a ‘pressure-driven’ skewed TBL by Anderson & Eaton
(1989). This supports the notion of Eaton (1995) that the reduction of the Reynolds
shear stress by the mean flow three-dimensionality is a common feature in 3DTBLs.
Note that the reduction is also observed in the Reynolds normal stresses in the outer
region – see figure 23(c,d) where the present DNS data for uu/U2

0 and vv/U2
0 agree

well with the experiment by Kiesow & Plesniak (2003). As noted by Kiesow & Plesniak
(2003), the near-wall Reynolds normal stresses, normalized by U2

0 , increase with the
magnitude of cross-flow (the distribution of ww/U2

0 is not shown here). In particular, the
two wall-parallel inactive motions (i.e. uu/U2

0 and ww/U2
0) increase significantly with WS.

For all three Reynolds numbers (i.e. Reθ0 = 300, 600 and 900), the energy redistribution
between the Reynolds normal stresses is also altered when WS/U0 = 2, i.e. the energy
redistributes from ww to uu away from the wall independently of the Reynolds number
(the distributions of the pressure strain for Reθ0 = 600 and 900 are not shown here).

We now discuss the implication of the reduced uv for the turbulence modelling. The
reduced magnitude of uv (figure 22a) implies a lag between the Reynolds stress vector
and the mean strain-rate one, which is intrinsically linked to the anisotropy of the turbulent
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FIGURE 23. Distributions of the normalized mixing and dissipation lengths (�m and �d) and
Reynolds normal stresses in the 3DTBL region (x/θ0 = 175) for Reθ0 = 300, 600 and 900
with WS/U0 = 1 and for Reθ0 = 900 with WS/U0 = 2: (a) �m/δ99; (b) �d/δ99; (c) uu/U2

0; and
(d) vv/U2

0. In (c,d), the triangle denotes the experimental data of Kiesow & Plesniak (2003)
for Reθ = 1450. The data shown have been obtained with Lx,WS = 100θ0. Also plotted for
comparison are the DNS data of a ZPG 2DTBL for Reθ = 1000 obtained in the present work.

eddy viscosity (see Anderson & Eaton 1989; Óęlcmen & Simpson 1995; Johnston & Flack
1996). The ratio of the spanwise eddy viscosity,

νt,z = −vw/(∂W/∂y), (5.8)

to the streamwise eddy viscosity,

νt,x = −uv/(∂U/∂y), (5.9)

has been intensively examined in 3DTBLs, where the magnitude is often below unity (see
Anderson & Eaton 1989; Óęlcmen & Simpson 1995; Johnston & Flack 1996). Figure 22(b)
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demonstrates that the present magnitude of νt,z/νt,x is indeed below unity in the outer
region of a near-equilibrium 3DTBL and decreases down to 0.6 at y/δ99 = 0.4 ∼ 0.5 since
vw > uv there.

On the other hand, the magnitude of νt,z/νt,x is greater than unity in the inner region of
a 3DTBL. These behaviours highlight the anisotropy of the turbulent eddy viscosity in the
present non-equilibrium 3DTBL. In this context, Rotta (1979) introduced an empirical
parameter T (being identical with the ratio νt,z/νt,x ) into a mixing length model for
predicting a non-equilibrium 3DTBL. While his model is not Galilean-invariant, it indeed
provides an improved prediction (see Anderson & Eaton 1989; Óęlcmen & Simpson 1993).
In Rotta’s (1979) model, the primary Reynolds shear stress is calculated such that

− uv = νt,xx(∂U/∂y) + νt,xz(∂W/∂y), (5.10)

where two anisotropic forms of the turbulent eddy viscosity, i.e.

νt,xx = νt(U
2 + TW

2
)/Q2

r (5.11)

and
νt,xz = νt(1 − T)U W/Q2

r , (5.12)

are used. Here, we test Rotta’s T model for the present 3DTBL by inserting the current
DNS datasets into the right-hand sides of (5.10)–(5.12). Note that in (5.11) and (5.12), the
effective turbulent eddy viscosity νt = −uiujSij/2SklSkl (Spalart & Strelets 2000) is used,
which is a coordinate-invariant form and can be described as a least-squares fit to the
Reynolds stress tensor. The optimal value of T differs in different flows (see Anderson &
Eaton 1989; Óęlcmen & Simpson 1993). In the present study, T = 0.9 is used for yielding
the closest prediction to the DNS data. Indeed, the calculated uv agrees reasonably well
with the DNS data in the present flow (see figure 22a), which indicates that the effect
of three-dimensionality (i.e. the Reynolds stress lags behind the mean strain) cannot be
dismissed when predicting the present flow.

Also, the mixing length �m for a 3DTBL may be obtained as

�m = (vw2 + uv2)
1/4

/⎡
⎣(∂U

∂y

)2

+
(

∂W
∂y

)2
⎤
⎦1/2

(5.13)

(see Rotta 1979; Bradshaw 1987), which is a coordinate-invariant form. Figure 23(a)
shows the distributions of normalized �m in the 3DTBL region (x/θ0 = 175).
Clearly, the distributions follow the relation �m ≈ 0.4y in the inner region (y/δ99 ≤ 0.1),
whereas the magnitudes are reduced significantly in the outer region (i.e. 0.1 ≤ y/δ99 ≤
0.6) and the latter are below the value of a 2DTBL (i.e. �m/δ99 ≈ 0.1). This result also
agrees reasonably well with the PIV measurement by Kiesow & Plesniak (2003) in the
present flow (see figure 23a). A similar decrease is observed in the dissipation length
scale, viz.

�d = (vw2 + uv2)3/2/ε (5.14)

(see figure 23b). This result is not surprising given that a near-energy-equilibrium
condition (i.e. Pk � ε) is satisfied approximately there (the distribution is not shown here).
These results indicate that the effect of three-dimensionality dominates in the 3DTBL
region, which has an important implication for turbulence modelling, viz. the length scale
reduction needs to be taken into account when developing a turbulence model for a 3DTBL
given that the turbulent eddy viscosity is represented by νt ∝ k1/2�.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.488


DNS of non-equilibrium 3DTBL over a flat plate 902 A20-39

0

10

20

30

Q+

Q+ = (1/0.39) ln(y+)+4.7

0.5 1

0.05

0.1

0.15

0
y/δ99


m = 0.1δ99



m

/δ
99

100 101 102 103

100 101 102 103

0

1

2

3

4

5

100 101 102 103
0

1

2

3

4

y+

y+

y+

k+

x/θ0 = 300

x/θ0 = 300

p rm
s+


m = 0.4y

Reθ0
= 900, WS/U0 = 1 (Reθ = 1431)

Reθ0
= 900, WS/U0 = 2 (Reθ = 1495)

ZPG (Reθ = 1000)

Reθ0
= 900, WS/U0 = 1 (Reθ = 1431)

Reθ0
= 600, WS/U0 = 1 (Reθ = 993)

Reθ0
= 300, WS/U0 = 1 (Reθ = 510)

Reθ0
= 900, WS/U0 = 2 (Reθ = 1495)

ZPG (Reθ = 1000)

(a) (b)

(c) (d )

FIGURE 24. Distributions of the normalized Qr, �m, k, prms in the recovery region (x/θ0 =
300): (a) Q+

r for Reθ0 = 300, 600 and 900 with WS/U0 = 1 and Reθ0 = 900 with WS/U0 = 2;
(b) �m/δ99 for Reθ0 = 300, 600 and 900 with WS/U0 = 1 and for Reθ0 = 900 with WS/U0 = 2;
(c) k+ for Reθ0 = 900 with WS/U0 = 1 and 2; and (d) p+

rms for Reθ0 = 900 with WS/U0 = 1
and 2. The data shown have been obtained with Lx,WS = 100θ0. Also plotted for comparison are
the DNS data of a ZPG 2DTBL for Reθ = 1000 obtained in the present work.

5.5. Recovery to a 2DTBL
Finally, we discuss the recovery of a 3DTBL to a normal 2DTBL in light of the seminal
work of Antonia & Luxton (1971) on a sudden change of a surface condition given the
presence of the internal boundary layer (i.e. after turning off WS, a new boundary layer
develops inside a 3DTBL).

Figure 24 shows the distributions of the inner-normalized Qr for Reθ0 = 300, 600 and
900 with WS/U0 = 1 and for Reθ0 = 900 with WS/U0 = 2 at a downstream station of
the recovery region (x/θ0 = 300) in which the spanwise friction coefficient becomes
negligibly small (figure 14c,d). While the near-wall distributions become closer to those
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FIGURE 25. Contours in the y–z plane of u and p (colour) and a positive value of Q (line) in the
recovery region compared with those in a ZPG 2DTBL: (a) u/U0 for a ZPG 2DTBL for Reθ =
1000; (b) u/U0 at x/θ0 = 300 for Reθ0 = 900 with WS/U0 = 2; and (c) p/ρU2

0 at x/θ0 = 300
for Reθ0 = 900 with WS/U0 = 2. The data shown have been obtained with Lx,WS = 100θ0.

in a 2DTBL, we see a discernible departure from the classical log law in Qr away from the
wall. The reason for the departure is due to the effect of a 3DTBL persisting in this region,
in particular, for a larger WS (i.e. the cross-flow (the distribution of W is not shown here)
is still present away from the wall). On the other hand, there is rather quick recovery to a
2DTBL in the inner region. In this context, Bassina, Strelets & Spalart (2001) examined the
performance of several eddy viscosity models, i.e. SA (Spalart & Allmaras 1994) and SST
(Menter 1994) models, in the recovery region of the present flow. They noted that, while
the eddy viscosity models cannot reproduce the significant deviation between the Reynolds
stress and mean shear-stress vectors present in the recovery region, the agreement of the
computations with the data on the mean flow characteristics is unexpectedly good. They
pointed out that the inner layer has much control over the skin friction and does not contain
protracted 3-D effects. This latter behaviour is consistent with that observed in the present
DNS.

As for turbulence statistics, a large outer peak appears for k+ (figure 24c) and p+
rms

(figure 24d) especially for a larger WS, where the distribution of p+
rms shows a larger
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magnitude than that for a 2DTBL. Inspection of the instantaneous fields shows that vortical
structures are energized in the outer layer compared with those in a 2DTBL (see figure 25).
Also, whilst the negative region of the large-scale u structures is preferentially associated
with vortical structures in the outer region of a 2DTBL (see figures 21a and 25a; also
Adrian et al. 2000), both the positive and negative regions of the u structures tend to
correlate with vortical structures in the outer layer of the recovery region (see figure 25b),
which are also active in generating the Reynolds shear stress (the instantaneous product
uv is not shown here). This latter behaviour is intrinsically linked to the increased outer
peaks of k+ (figure 24c) and τ+ (not shown here) in the recovery region, which indicates
that the recovery to the ZPG TBL state is slow due to the effect of three-dimensionality.
Also, wall-attached structures with a size of δ99 are observed for the pressure fluctuation p
(see figure 25c), which are not only inclined in the z direction but also become energetic
due to the effect of three-dimensionality. This behaviour is consistent with the significant
increase in p+

rms in the recovery region (see figure 24d).
We also note that, in the outer region of the recovery region, the magnitude of the

mixing length �m/δ99 is smaller than the value of a 2DTBL (i.e. �m/δ99 ≈ 0.1) (see
figure 24b). The magnitude of a1 is also smaller than those for a 2DTBL (not shown here)
since the Reynolds normal stress is more enhanced by the effect of three-dimensionality
than the Reynolds shear stress (see the large outer peak in the distribution of k+ shown in
figure 24c). A similar trend is observed in the experiment of Antonia & Luxton (1972) on
the sudden change of the surface condition (i.e. a rough to smooth wall surface), while the
data of Antonia & Luxton (1972) show a much larger decrease than the present DNS
data. The difference between the present study and that of Antonia & Luxton (1972)
is most likely because the effect of a rough wall diffuses more significantly into the
outer region than that of inviscid skewing. These results underline that the effect of
three-dimensionality persists in the recovery region.

6. Conclusions

In the present study, we have performed a series of DNS of a shear-driven
non-equilibrium 3DTBL over a flat plate. The present DNS set-up is analogous to the
spinning cylinder experiment (Lohmann 1976; Driver & Hebbar 1987; Driver & Johnston
1990) but without a curvature effect. In the DNS, three values of the inlet momentum
thickness Reynolds number Reθ0 (300, 600 and 900) are used with several values of
WS. The present largest WS/U0 (= 2) is comparable to the value (= 2.2) of the spinning
cylinder experiment by Lohmann (1976). Particular attention has been given to the effects
of cross-flow and Reynolds number on the mean flow statistics and Reynolds stress in a
non-equilibrium 3DTBL. The main conclusions are summarized as follows.

After imposing WS, the mean streamwise vorticity Ω x increasingly propagates towards
the outer region where there is a deficit of the mean streamwise velocity Ū. The mean
streamwise velocity deficit is shown to be essentially due to inviscid skewing (i.e.
three-dimensionality) (see relations (1.5) and (1.6)). The increase in the value of Lx,WS (i.e.
the streamwise extent of imposing WS) leads to the further propagation of Ω x downstream
of a 3DTBL. The approach to the collateral state is, however, slow in the present 3DTBL
especially for U.

In the present 3DTBL, near-plateaus are obtained in the skin friction coefficients, as in
the experiment of Lohmann (1976). Indeed, the magnitudes of the plateaus increase with
increasing WS, while showing a departure from the collateral state. Inspection of the mean
energy balance has revealed that, even when WS/U0 = 1 (i.e. tan−1(WS/U0) = −45◦ and
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−uv ≈ vw is thus expected), the primary Reynolds shear stress uv extracts energy from
the mean flow less efficiently than the secondary Reynolds shear stress vw. The increase
in WS yields a smaller extraction of the energy from the work done by uv, while the vw
contribution to the skin friction increases with increasing WS. The near-wall Reynolds
stresses, normalized by U2

0 , also increase with cross-flow due to the increased straining.
This behaviour corroborates the PIV measurement by Kiesow & Plesniak (2003). Also,
near-wall vortical structures become intensified with increasing WS, essentially associated
with the increased skin friction coefficients. When the normalization is made with
inner variables, the magnitude of ww/U2

τ exceeds that of uu/U2
τ when WS/U0 ≥ 1. The

inter-component energy transfer (pressure strain) is indeed changed, viz. the energy is
transferred from the w component to the u component.

As the Reynolds number increases, the streamwise locations at which both Cf ,x and
Cf ,z attain near-plateaus become smaller in terms of x/θ0. The streamwise extent for
obtaining a plateau in Cf ,x is 150θ 0, 165θ 0 and 40θ 0 (or, equivalently, 18δ0, 8δ0 and
5δ0) for Reθ0 = 300, 600 and 900, respectively. The streamwise extent for Reθ0 = 900 (i.e.
5δ0 or 40θ0) is approximately a half that of Lohmann (1976) in this spinning cylinder
experiment. The reason for the difference is likely to be because the imposition of WS
yields a 3DTBL more efficiently over a flat plate than over a spinning cylinder. When
near-plateaus are obtained for the skin friction coefficients in a 3DTBL, the present
structure parameter a1 becomes identical with that in the inner region (y/δ99 ≤ 0.2) of
an equilibrium 3DTBL. The largest magnitude of a1 (= 0.14) comparable to that for a
2DTBL is attained at the y location where the deficits of Ū and ∂W/∂x > 0 are the
largest. The present results indicate that the plateau is an indicator, not for the collateral
state, but for a state with a constant flow angle in the near-wall region. On the other
hand, the mean velocity magnitude Qr exhibits a discernible departure from the classical
log law at a downstream station of a non-equilibrium 3DTBL (i.e. a larger von Kármán
constant κ = 0.44 than in a 2DTBL). At the largest Reθ0 (= 900) with a large magnitude of
cross-flow (i.e. WS/U0 = 2), the energy equilibrium (Pk � ε) and constant shear stress
(τ � ρU2

τ ) assumptions are satisfied approximately; the overlap scaling is established
unambiguously for ε but with a large value of κε = 0.44, the latter value being larger
than κε = 0.39 in a 2DTBL (Abe & Antonia 2016). This indicates a better self-similar
behaviour for small scales than for large scales. As for a 2-D flow (see the DNS works in
a turbulent channel flow by Abe & Antonia 2016, 2017), small scales are likely to lose the
Re dependence more rapidly than large scales in the present 3DTBL.

The instantaneous fields highlight the presence of asymmetric turbulence structures
(i.e. toppling structures) due to cross-flow in the present 3DTBL where the negative u
structures preferentially correlate with vortical structures (see figure 17). In the outer
region, the large-scale u structures exhibit a less anisotropic behaviour with increasing WS
than those in a 2DTBL (see figure 21). Inspection of the spanwise u spectra below y/δ99 =
0.2 has revealed that the most energetic length scale increases linearly with distance from
the wall y, which indicates a self-similar behaviour in the toppling u structure. This latter
finding supports the self-similar response of a non-equilibrium 3DTBL recently reported
by Lozano-Durán et al. (2020) in a temporally developing 3-D channel DNS.

We also note that there is a significantly decreased magnitude of the primary Reynolds
shear stress uv and thus a1 in the present 3DTBL, which is commonly observed in
3DTBLs (see Eaton 1995). The reason for the reduction in the present flow is due to
the reduced interaction between the inner and outer regions by inviscid skewing (i.e.
three-dimensionality). The latter is intrinsically associated with the reduced Cf ,x (see the
spectral analysis in § 5.3). Note that the reduction in uv observed in the present study
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is most likely identical with that recently reported by Lozano-Durán et al. (2020) in the
3-D channel DNS since, in both 3DTBLs, the mean streamwise vorticity Ω x propagates
towards the outer region (see § 3.2), and mean spanwise shear yields a self-similar
behaviour (see § 5.3). The decreased uv is also associated with the lag between the
mean strain and Reynolds shear-stress vectors and thus the anisotropy in the turbulent
eddy viscosity. Indeed, the anisotropy of the turbulent eddy viscosity is observed in a
near-equilibrium 3DTBL where Rotta’s (1979) T model reproduces uv reasonably with
T = 0.9.

After turning off WS, there is again a sudden change of the surface condition (i.e.
from 3-D to 2-D). Whilst the near-wall region adjusts to a new boundary condition rather
quickly, there appears a large departure from a 2DTBL in the outer region since the effect
of three-dimensionality persists there. In particular, the Reynolds normal stress is more
enhanced than the Reynolds shear stress (see the large outer peak in the distributions of k+

and p+
rms shown in figure 24c,d), yielding a smaller magnitude of the mixing length scale

(i.e. �m/δ99) than in a 2DTBL (see figure 24b). These behaviours are qualitatively similar
to those observed in the experiment of Antonia & Luxton (1972) on the response of a TBL
to a step change of the surface condition. In both flows, the perturbations are generated in
a near-wall region and then diffuse outwards on moving downstream.

The present shear-driven 3DTBL DNS convincingly showed the propagation of the
mean streamwise vorticity Ω x into the outer region. The effect of inviscid skewing (i.e.
three-dimensionality) is indeed significant. In particular, the approach to the collateral
boundary layer is slow for U since, in a non-equilibrium 3DTBL, the primary Reynolds
shear stress uv extracts energy from the mean flow less efficiently than the secondary
Reynolds shear stress vw. Also, the cross-flow affects the turbulence significantly,
and yields a self-similar behaviour in the toppling u structures. These behaviours
are major differences between the 2DTBL and non-equilibrium 3DTBL due to the
three-dimensionality. The slow transition from 2DTBL to 3DTBL cannot be dismissed
when modelling the present flow.
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