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Hepatocellular carcinoma: molecular

interactions between hepatitis C virus

and p53 in hepatocarcinogenesis

Mónica Anzola and Juan José Burgos

Hepatocellular carcinoma (HCC) is the most important primary hepatic cancer
and is a common cancer type worldwide. Many aetiological factors have been
related to HCC development, such as liver cirrhosis, hepatitis viruses and
alcohol consumption. Inactivation of the p53 tumour suppressor gene is one
of the most common abnormalities in many tumours, including HCC. p53 is of
crucial importance for the regulation of the cell cycle and the maintenance of
genomic integrity. In HCC, hepatitis B and C virus (HBV and HCV) effect
carcinogenic pathways, independently leading to anomalies in p53 function.
Several authors have reported that some HCV proteins, such as the core, NS5A
and NS3 proteins, interact with p53 and prevent its correct function. The
mechanisms of action of these HCV proteins in relation to p53 are not completely
clear, but they might cause its cytoplasmic retention or accumulation in the
perinuclear region where the protein is not functional. The identification of the
interactions between p53 and HCV proteins is of great importance for therapeutic
strategies aimed at reducing the chronicity and/or carcinogenicity of the virus.

Hepatocellular carcinoma (HCC) is the most
common primary malignant tumour of the liver,
and it ranks fifth in overall frequency relative to
all cancers. An estimated 372 000 new cases of
HCC are diagnosed each year, constituting 4.6%

of all new human cancers (6.3% in men; 2.7% in
women). HCC has the fourth highest mortality
rate of cancers worldwide and is responsible for
an estimated one million deaths annually (Refs
1, 2). The highest incidences occur in eastern and
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southeastern Asia, some of the western Pacific
islands and sub-Saharan Africa. Intermediate
incidences are found in eastern and southern
Europe, the Caribbean, Central America and
western Asia. These variations between ethnic
groups, sexes and geographical regions are
explained by the nature, frequency and time of
acquisition of the main risk factors (Ref. 3), as
discussed below.

The overall survival rate for HCC is poor.
Surgical resection and orthotopic liver
transplantation are the only curative treatment
options but are suitable for few patients. The
disease often has a fulminant course (i.e. occurring
suddenly, with great severity), and screening of
even at-risk populations has been insufficient, so
in most cases HCCs are diagnosed only at an
advanced stage when surgical therapy is not
possible. There is no standard treatment for
patients with unresectable HCC and, when
untreated, patients with inoperable HCC have a
median survival of three months (Refs 4, 5, 6).
Furthermore, following resection and liver
transplantation, there is a high recurrence rate of
HCC. However, although HCC has historically
had a dismal prognosis, it is now being detected
earlier as a result of improved radiological
imaging and surveillance. Such screening offers
the best hope for early detection, eligibility for
treatment and improved survival.

Risk factors for HCC
HCC is a multistage disease whose occurrence is
linked to environmental, dietary and lifestyle
factors. The major risk factors include: (1) chronic
infections with the hepatitis B or C virus (HBV or
HCV) (discussed further below); (2) exposure to
dietary aflatoxin B1, a potent mycotoxin produced
by fungi in peanuts, corn and grains that is
carcinogenic in humans; (3) exposure to vinyl
chloride, a propellant found in aerosols; (4)
haemochromatosis, a rare genetic disease that
results in an over abundance of iron in tissues;
and (5) alcohol consumption (Ref. 3). Many of
these factors cause cirrhosis – the formation of scar
tissue in the liver – which is also a major risk factor
for HCC: HCC develops in more than 90% of
patients with cirrhosis of different aetiologies
(Ref. 7).

The increasing prevalence of HCC seems
related to the widespread distribution of HCV
infection, as 80% of cases arise following chronic
infection caused by this agent (Ref. 8). In some

regions, such as southern Africa and Qidong
(China) (Ref. 9), infection with HBV and exposure
to aflatoxins in the diet act synergistically to
amplify risk. From a public health perspective,
hepatitis virus vaccination programs and efforts
both to reduce aflatoxin exposure and to attenuate
the toxicological consequences of unavoidable
exposure should have a major impact on the
incidence of this disease (Refs 10, 11).

Hepatitis and hepatocarcinogenesis
Hepatitis is an inflammation of the liver
characterised by a diffuse or focal necrosis that
affects liver structure. It is mainly caused by
specific hepatitis viruses, or damage following
consumption of alcohol or drugs. Viral hepatitis
affects several hundreds of millions of people
worldwide and is a cause of considerable
morbidity and mortality, both from acute infection
and from chronic sequelae that include, in the case
of hepatitis B, C and D, chronic active hepatitis
and cirrhosis (Refs 12, 13).

So far, eight hepatotropic viruses in humans
have been identified, including the hepatitis A, B,
C, D, E, F and G viruses and TTV (transfusion
transmitted virus). These viruses produce a wide
range of hepatic pathology, from transient to
chronic infections, and from subclinical to
fulminant hepatic failure, cirrhosis and HCC
(Ref. 14). HBV and HCV are the main causal
agents of chronic hepatitis (Refs 15, 16), and
approximately 5–10% of HBV and 75% of HCV
cases become chronic.

Although the mechanism of HBV and HCV
chronicity is uncertain, the epidemiological
association of chronic HBV or HCV infection with
HCC has been well established and is discussed
in the following sections, particularly focusing on
the molecular interactions of HCV. It has also been
seen that HBV and HCV infection induces, by
direct and indirect mechanisms, cellular damage
that causes an increase in cellular regeneration
and proliferation, which in turn increases the
development of HCC (Ref. 17). For patients with
chronic viral hepatitis, antiviral treatment might
reduce the risk of the subsequent development of
HCC, and screening for early-stage HCC might
lead to the initiation of curative treatment
strategies. For patients with established HCC, the
presence of concurrent chronic viral hepatitis or
cirrhosis might affect prognosis and survival, and
could alter treatment options because of impaired
hepatic function.
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HBV infection and hepatocarcinogenesis
Epidemiological data have demonstrated that the
causes of HCC vary according to the geographic
region. The incidence of HCC is greater in
areas where HBV infection is endemic, as in
southeastern Asia and the centre and south of
Africa (Ref. 18). The virus is often transmitted by
a parenteral route, typically by contaminated
blood or its products (Refs 19, 20, 21, 22, 23).

The effectiveness of HBV vaccination in the
primary prevention of chronic HBV infection and
HCC has already been demonstrated in pilot
vaccination projects (Ref. 24). It has also been
shown that administration of interferon α
(IFN-α) is effective in the secondary prevention
of HCC in patients with chronic HBV infection; it
has long-term beneficial effects in terms of HBV
clearance, reduction of HCC and prolonging
survival (Refs 25, 26).

Two direct mechanisms of action have been
described for HBV in hepatocarcinogenesis. First,
following viral infection, the HBV genome might
integrate in sites within the host genome that play
a crucial role in the cell cycle, altering the function
of these genes and thereby leading to cancer
progression (Refs 27, 28, 29); second, host
oncogenes might be transactivated by the HBV
protein HBx or by another truncated protein
derived from the pre-S2/S region of the HBV
genome (both regions are commonly integrated
into the host genome) (Refs 30, 31). HBV can
also cause HCC by an indirect mechanism in
which HCC results from chronic hepatic injury
and cirrhosis caused by viral infection (Refs 32,
33, 34).

HCV infection and hepatocarcinogenesis
HCV infection has a wide spectrum of cellular
tropism (e.g. dendritic cells and peripheral blood
mononuclear cells) (Refs 35, 36, 37, 38, 39, 40) and
clinical presentations, including asymptomatic
chronic carriage, acute hepatitis, chronic hepatitis,
cirrhosis, HCC and extrahepatic manifestations
(Ref. 8). HCV is transmitted through blood
and blood products; sexual and perinatal
transmissions are less important routes.

In general, HCC develops only after two or
more decades of HCV infection and the increased
risk is restricted largely to patients with cirrhosis
or advanced fibrosis. Factors that predispose to
HCC among HCV-infected individuals include
male sex, older age, HBV coinfection, heavy
alcohol intake, and possibly diabetes and a

transfusion-related source of HCV infection
(Refs 41, 42).

Since so little is known about the biology of
HCV, it is presently unclear how this RNA virus
establishes a persistent infection. However, it is
known that there is a very rapid turnover of
plasma virus in patients, with particle half-lifes
of 100–182 min (Ref. 43). Recently, it has been
suggested that subversion of the humoral immune
response, specifically neutralising antibody
production, might allow HCV to persist (Ref. 44).

Successful antiviral therapy of patients with
HCV-related cirrhosis can reduce the future risk
for HCC. Nowadays, treatment of HCV infection
with pegylated IFN (a complex of IFN and
polyethylene glycol) and ribavirin is relatively
effective (Ref. 45). New therapeutic strategies
will be required in the future, the most
important challenge being the development of
an HCV vaccine.

HCV genome, proteins and
pathogenicity

Genetic organisation and protein function
HCV belongs to the Hepacivirinae genus within
the Flaviviridae family. HCV measures 30–60 µm
and is an enveloped virus with a single-stranded,
linear, positive-sense RNA genome, which is
~9.6 kb in length (Fig. 1). It contains a large open-
reading frame (ORF) capable of encoding a
polyprotein precursor of about 3010 amino acids.
This polyprotein is post-translationally cleaved
into at least ten polypeptides, including three
structural proteins (core, E1 and E2) at the
N-terminal end and multiple nonstructural
proteins (NS2 to NS5). The 5' noncoding region
precedes the large coding sequence and represents
the most highly conserved sequence among the
different viral isolates (Refs 46, 47, 48). A series of
three short ORFs exist in this region. ORF2 and
ORF3 encode peptides rich in helix-breaking
amino acids; however, the function of these small
ORFs is currently not understood (Refs 49, 50).

The core protein produced by cleavage at the
N-terminal end of the polyprotein precusor is a
nonglycosylated, basic, 19–22 kDa protein (p22)
that functions as a nucleocaspsid protein (Fig. 1).
Its amino acid sequence is highly conserved
among different isolates of HCV. The other
structural proteins thought to be formed by
cleavage at the N-terminal end are E1 (gp35) and
E2 (gp70) (sizes estimated from sequence data and
expression in vitro), which are probably surface
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Figure 1. Hepatitis C virus (HCV): model structure and genome organisation. (a) Model structure of HCV.
The left-hand side of the illustration shows the viral surface of envelope lipids and glycoproteins; the right-hand
side shows the RNA genome encased by capsid proteins. (b) Proteins encoded by the HCV genome. HCV is
formed by an enveloped particle harbouring a plus-strand RNA of ∼ 9.6 kb. The genome carries a long open-
reading frame (ORF) encoding a polyprotein precursor of 3010 amino acids. Translation of the HCV ORF is
directed via a ∼ 340 nucleotide long 5' nontranslated region (NTR) functioning as an internal ribosome entry
site; it permits the direct binding of ribosomes in close proximity to the start codon of the ORF. The HCV
polyprotein is cleaved co- and post-translationally by cellular and viral proteases into ten different products,
with the structural proteins [core (C), E1 and E2] located in the N-terminal third and the nonstructural (NS2–5)
replicative proteins in the remainder. Putative functions of the cleavage products are shown.

proteins of the viral envelope (Ref. 51). These
glycoproteins (E1 and E2) have been studied
as potential targets for viral detection and

HCV vaccine development, since they contain
hypervariable regions that are important as
immunogenic epitopes (Refs 52, 53).

a Model structure of HCV

b Proteins encoded by the HCV genome

Hepatitis C virus (HCV): model structure and genome organisation
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The NS proteins NS2–5 include enzymes
necessary for protein processing (proteases) and
viral replication (RNA polymerase) (Fig. 1). The
NS2 region is extremely hydrophobic, but its
function has not been identified. NS2/NS3
polyprotein possesses an autocatalysing
metalloprotease activity that cleaves the NS2/NS3
junction. The NS3 region encodes a 70 kDa protein
that contains two functional domains: a viral
protease involved in cleavage of the nonstructural
region of the polyprotein and a helicase enzyme
that is probably involved in unwinding the RNA
genome for replication. The NS4 region is also
extremely hydrophobic and shows 50% sequence
homology among the different HCV types, but
its function is unknown. The NS5B region encodes
a 116 kDa RNA polymerase that replicates the
RNA genome and contains the Gly-Asp-Asp
motif common to viral RNA-dependent RNA
polymerases (Refs 54, 55). No function has yet
been attributed to NS5A. However, it has been
reported to be a cytoplasmic phosphoprotein and
appears to be involved in mediating the resistance
of HCV to the action of IFN (Ref. 56).

Virus genotype considerations
HCV consists of a family of highly related but
nevertheless distinct genotypes. Phylogenetic
analysis of NS5 and E1 nucleotide sequences from
samples obtained worldwide has led to the
identification of six major genetic groups and 14
subgroups (Ref. 57). Genotypes 1–3 account for
almost all infections in Europe, whereas genotype
4 is prevalent in Egypt and Zaire, genotype 5 in
South Africa and genotype 6 in Hong Kong.

The sequence differences observed between
HCV groups suggest that virus–host interactions
might vary, which could result in differences in
pathogenicity and the response to antiviral
therapy. Several reports have suggested
correlation among the various genotypes with the
severity of liver disease, the outcome of IFN
treatment, and the development of HCC (Refs 58,
59, 60, 61). Genotype 1, most commonly found in
the USA, is less amenable to treatment than are
genotypes 2 or 3. Thus, information on the
genotype of the virus is important to guide
treatment decisions and clinical trials. The
diversity of HCV might also explain the multiple
infections and coinfections with different HCV
subtypes in the same individuals (Refs 62, 63).
Furthermore, this heterogeneity makes the control
of HCV by vaccination difficult.

In addition to the sequence diversity observed
between HCV groups, there is considerable
sequence heterogeneity among almost all HCV
isolates in the N-terminal region of E2, implying
that this region might be under strong immune
selection. Indeed, sequence changes within this
region might occur during the evolution of disease
in individual patients and play an important role
in progression to chronicity (Refs 64, 65).

Role of p53 in mechanisms of
hepatocarcinogenesis

Hepatocarcinogenesis is a complex process
associated with the accumulation of genetic and
epigenetic changes that run through steps of
initiation, promotion and progression. Molecular
genetic studies have revealed that genetic
alterations of proto-oncogenes and tumour
suppressor genes are of great importance in
human carcinogenesis (Ref. 18). Indeed, more than
20 genes involved in at least four carcinogenic
pathways are implicated in the development of
HCC (Refs 66, 67). These multiple genetic
alterations seem to be correlated with multistep
carcinogenesis and tumour progression.
Activation of oncogenes of the ras family and
others has been detected during chemically
induced HCC in rodents, but there is little
evidence of such activation in human tumours
(Ref. 68); alterations in oncogenes have been
detected in only a small proportion of HCC cases
(Ref. 69). By contrast, there is evidence that
tumour suppressor genes such as those encoding
p53, pRb and p16INKa are altered in different
stages of hepatocarcinogenesis and that this
might directly or indirectly cause chromosomal
instability, and promote cellular proliferation and
neovascularisation (Refs 70, 71). Frequent loss of
one allele of the p53 tumour suppressor gene,
located at chromosome 17p13.1 (Ref. 72), and
mutations in the remaining allele have been
reported to occur in diverse human cancer types
including HCC (Refs 73, 74, 75, 76). p53 encodes a
393 amino acid nuclear phosphoprotein, p53, that
binds specific DNA sequences in the human
genome (Ref. 77) (Fig. 2).

p53 function
Although it might yet be found to have other
functions, the p53 protein has been shown to
function as a transcriptional regulatory protein
(Refs 78, 79, 80). It activates the transcription of
several genes with roles in the control of the cell
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cycle, including GADD45 (a growth arrest, DNA-
damage-inducible gene) (Ref. 81) and those
encoding p21WAF1/CIP1 (an inhibitor of cyclin-
dependent kinase activity, and hereafter referred
to as p21) (Ref. 82), MDM2 (a negative regulator
of p53) (Ref. 83) and 14-3-3σ (a regulator of G2–M
progression) (Ref. 84). It also activates various
genes that probably function in apoptosis,
including the gene for Bax (a pro-apoptotic,
Bcl-2-related protein) and several genes encoding
proteins involved in the generation of reactive
oxygen species (Refs 78, 80, 85).

p53 has been implicated in the control of the
cell cycle (arresting the cycle at G1 and G2 to assess
genomic integrity), DNA repair and synthesis, cell
differentiation, repression of transcription,
genomic plasticity and apoptosis (Refs 72, 73, 86,
87, 88, 89, 90, 91). It plays a key role in the
recognition and response to DNA damage. When
DNA is damaged, the cell expresses a higher level
of p53. This protein then blocks the G1 phase,
allowing the cell to activate the DNA repair
systems. When the damage is too great to be
repaired, p53 overexpression activates apoptosis,
destroying the cell (Refs 86, 92, 93, 94, 95).

p53 regulation
The p53 protein is subject to tight regulation at
multiple levels. Three major levels of regulation
are recognised: protein stability, protein activity

and subcellular distribution. Comprehensive
reviews on other aspects of p53 regulation, such
as p53 post-translational modifications and their
effects on p53 activities have been published
recently (Refs 96, 97).

The p53 protein shuttles between the
cytoplasmic and nuclear compartments in a cell-
cycle-dependent fashion (Refs 98, 99). The
accumulation of p53 in the nucleus is crucial for
its tumour suppressive activity. Prevention of
nuclear accumulation provides an efficient
mechanism by which tumour cells might continue
to proliferate in the presence of wild-type p53.
Indeed, cytoplasmic sequestration of p53 has been
commonly observed in certain tumours, such as
neuroblastomas, and breast and colon cancer
(Refs 100, 101, 102). In at least a subset of
these tumours, MDM2 is responsible for the
cytoplasmic accumulation of p53 (Ref. 103), and
other proteins have also been implicated in
cytoplasmic retention (Refs 104, 105, 106, 107,
108). Several viral proteins also influence p53
localisation, such as human papilloma virus
(HPV) E6 protein (Ref. 109), adenoviral E1B 55
kDa protein and the HBV HBx protein (Refs 110,
111, 112). In addition, defects in p53 import/export
have also been reported in different tumour types
(Refs 113, 114). As a shuttling protein, p53 is
constantly transported through the nuclear pore
complex. p53 nucleocytoplasmic transport is

Figure 2. p53 protein structure. The 53 kDa nuclear phosphoprotein p53, of 393 amino acids, comprises
several domains, including an acidic N-terminal region containing the transactivation domain, a core containing
the sequence-specific DNA-binding domain and a complex C-terminal domain with multiple functions.

p53 protein structure
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carried out by a bipartite nuclear localisation signal
(NLS) located at its C-terminal domain and two
nuclear export signals (NESs), located in its N- and
C-terminal regions. Mutations disrupting the NLS
block p53 export and prevent MDM2-mediated
cytoplasmic degradation (Ref. 115).

p53 alterations and hepatocarcinogenesis
Approximately 50% of all cancers involve a
defective p53 gene, usually inactivated by a point
mutation or gene deletion. These alterations are
thought to prevent oligomerisation and formation
of the p53 tetrameric complexes that bind to
specific DNA sequences, thereby altering the
physiological function of the wild-type protein
(Refs 72, 86, 88, 92, 116, 117). Human cancers
containing a p53 mutation are more aggressive,
more apt to metastasise, and more often fatal.
Thus, detection of p53 abnormalities might
reveal clues about the aetiology and molecular
pathogenesis of human cancer (Refs 93, 118).

p53 gene mutations and HBV DNA integration
in the genome of the host are the most frequent
genetic changes known in human HCC. p53 gene
alterations are present in 30–60% of patients with
HCC (Ref. 119), and a mutation hotspot in p53
has been described in HCC patients in areas of
high aflatoxin exposure (Ref. 120). Metabolites of
aflatoxin B1 promote apurinic sites and G to T
mutations in chromosomal DNA, and 50% of
HCC patients from high aflatoxin exposure areas
were found to harbour a codon 249 G to T
transversion in p53 (Ref. 120); thus, the aflatoxin
B1 that contaminates foods in endemic areas has
a clear role in hepatocarcinogenesis.

Wild-type p53 is polymorphic at residue 72,
where a single-base change causes a substitution
of proline (Pro) for arginine (Arg) (CCC→CGC)
in the transactivation domain (Ref. 121). Although
the clinical significance of the variants is not
known, several studies have been carried out on
the frequency of these two alleles and the possible
relationship with risk of cancer development. One
study has shown that frequent loss of the proline
allele in HCV-associated carcinogenesis of the
liver might play a role in hepatocarcinogenesis.
However, further studies on this matter should
be carried out to clarify this point (Ref. 122).
Furthermore, Okada et al. (Ref. 123) found a
significant correlation between male homozygotes
for p53Pro with HCV type 1b infection. Thus,
there might be a relationship between this
polymorphism in p53 and HCV infection.

Relationship between HCV proteins and
p53 in hepatocarcinogenesis

Various HCV proteins have been reported to be
involved in the process of hepatocarcinogenesis,
but principal roles for three proteins has been
reported – core, NS3 and NS5A proteins – through
interactions with p53 in particular (see below).
In addition, NS4A and NS4B inhibit p21
expression post-transcriptionally, and mediate
translational inhibition and, probably, increased
degradation of certain cellular proteins (Refs 124,
125, 126, 127).

Core protein
The HCV core protein is a structural viral protein
that packages the viral genomic RNA. In addition
to this function, the core protein can have
opposing effects on cell growth – promoting both
apoptosis and cell proliferation – depending on
its subcellular localisation and consequent effect
on the cell cycle inhibitor p21 (Refs 126, 128, 129,
130, 131, 132, 133, 134, 135) (Fig. 3).

The HCV core protein is produced as an innate
form (amino acids 1–191), with a mature form
(amino acids 1–173) formed by processing. In the
cytoplasm, the innate form binds to the mature
form to give a heteromultimer, which prevents
transportation of the mature form to the nucleus.
In the cytoplasm, the innate form activates p53,
which in turn, as a transcription factor for p21,
enhances the expression of p21. It is not clear how
the innate form activates p53, but it binds to
p53 and this might lead to p53 activation by
stabilisation of the protein (Refs 129, 130, 136).
If the level of mature core protein exceeds the
binding capacity of the innate form, it enters the
nucleus, where it can reduce p21 expression by a
pathway independent of p53 (Refs 137, 138,
139). The p21 promoter has a core-responsive
element, exactly overlapping tumour growth
factor (TGF)/butyrate-responsive elements. In
this case, core protein activates p21 through the
element by stimulating a butyrate pathway
(Ref. 128).

In addition, HCV core protein regulates p73, a
member of the p53 tumour suppressor family. p73
is involved in neurogenesis and natural immune
responses, and seems to be strongly involved in
malignancy acquisition and maintenance (Ref.
140). The interaction between p73 and the HCV
core protein results in nuclear translocation of the
core protein. Furthermore, the interaction with
core protein prevents p73α-, but not p73β-,
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dependent cell growth arrest in a p53-dependent
manner. Thus, the effect of the HCV core protein
on p73 function might contribute to HCV
pathogenesis (Ref. 135).

NS3 protein
The HCV NS3 protein might exert its

hepatocarcinogenic effect at an early stage on
host cells. It has also been postulated that it
might bring about mutation of the p53 gene
and transformation of hepatocytes, but this is
controversial (Refs 141, 142, 143, 144).

Wild-type p53 forms a complex with the NS3
protein (Ref. 141). A portion near the C-terminus
of wild-type p53 (amino acids 301–360), which
contains the oligomerisation domain, is important
for this complex formation with NS3. Consistent
with this finding, NS3 protein can specifically

repress the promoter activity of p21 in a dose-
dependent manner by modulating the activity of
p53 (Ref. 145). The effect is not cell-type specific
and is synergistic with the effect of the HCV core
protein.

NS5A protein
The HCV NS5A protein is a 56–58 kDa
phosphoprotein. Although associated with
other virus-encoded proteins as part of the viral
replicase complex positioned on the cytoplasmic
side of the endoplasmic reticulum, a role for
NS5A in viral  repl icat ion has  not  been
defined. Post-translational modifications of
NS5A include phosphorylation and potential
proteolytic processing to smaller molecular
weight forms able to translocate to the nucleus
(Ref. 146). Truncated versions of NS5A can act

Figure 3. Possible model for HCV core protein and p53 interactions. The HCV (hepatitis C virus) core
protein has two forms: a mature form and an innate one formed by processing. (a) In the cytoplasm, the innate
form binds to the mature form; formation of this heteromultimer prevents transportation of the mature form to
the nucleus. In the cytoplasm the innate form activates p53, which in turn, as a transcription factor for p21,
enhances the expression of p21. (b) In the nucleus, the mature form reduces p21 expression by a pathway
independent of p53. A core-responsive element overlaps the TGF-β/butyrate-responsive element on the p21
pathway; the core activates p21 by stimulating a butyrate pathway.
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Figure 4. Possible model for HCV NS5A protein and p53 interactions. (a) Initially, NS5A protein is associated
with other viral-encoded proteins as part of the viral replicase complex on the cytoplasmic side of the endoplasmic
reticulum. p53 transcription mediated via hTAFs (essential coactivators of p53 transcription), and p21 expression
mediated by p53 proceed as normal, allowing apoptosis. (b) During HCV (hepatitis C virus) infection, NS5A
partially sequestrates hTAF(II)32 and hTAF(II)28 in the cytoplasm. In addition, post-translational modifications
of NS5A give rise to smaller molecular weight forms that are able to translocate to the nucleus and interact with
TATA-box-binding protein (TBP), p53 and excision repair cross complementing factor 3 (ERCC3). These
interactions lead to inhibition of p53 transcription and action, and thereby inhibit apoptosis.

as transcriptional activators, whereas other
recently characterised interactions of NS5A with
cellular proteins – including members of the
cellular signalling apparatus, transcription
activation machinery and cell-cycle-regulatory
kinases – indicate its pleiotropic role in HCV–
host interactions (Refs 146, 147, 148, 149). Many
of these interactions block the apoptotic cellular
response to persistent HCV infection, which
suggests a potential function of NS5A in inducing
chronic liver diseases and HCC associated with
HCV infection.

NS5A can suppress the binding of p53 to its
specific DNA sequences by localising p53 in the
perinuclear region. In this way NS5A inhibits
p21 expression and apoptosis mediated by p21
(Refs 127, 150, 151, 152). NS5A also binds to
TATA-box-binding protein (TBP) and p53,
forming an heteromeric complex and inhibiting
the binding of both p53 and TBP to their specific
DNA binding sequences (Ref. 125). In addition,
NS5A inhibits the formation of p53–TBP–excision
repair cross complementing factor 3 (ERCC3)
complex (Ref. 125). Furthermore, NS5A protein

Possible model for HCV NS5A protein and p53 interactions
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might inhibit p53 function by sequestering
hTAF(II)32 and hTAF(II)28, which are essential
coactivators of p53 (Refs 127, 153) (Fig. 4).

NS5A has recently been reported to inhibit
single-strand RNA-dependent protein kinase
(PKR), an IFN-induced kinase. NS5A might thus
contribute to IFN resistance in HCC (Refs 150,
154).

Implications for immunohistochemistry
analysis
The presence of p53 alterations has been widely
evaluated by immunohistochemistry (IHC):
mutant p53 has a much longer half-life than wild-
type p53, which leads to accumulation of the
protein in the nucleus, where it can be detected
by IHC. The interactions between p53 and HCV
proteins lead to nonfunctional p53 without p53
mutation and nuclear accumulation. The possible
interaction between HCV proteins and p53 must
therefore be taken into account in HCV-positive
patients when evaluating p53 functionality, to
avoid false negative results from classical analysis.

Concluding remarks and
clinical implications

Chronic infection with HCV often results in
cirrhosis and enhances the probability of
developing HCC. Although the underlying
mechanisms that lead to malignant
transformation of infected cells remain unclear, it
is known that the products encoded by the HCV
genome interfere with and disturb intracellular
signal transduction. One of the most common
proteins affected by HCV proteins is the p53
tumour suppressor protein. Some HCV proteins
have been shown to interact with p53, interfering
with p53-dependent cell cycle control: core,
NS3 and NS5A proteins bind to and modulate
the activity of p53, causing the abrogation of
apoptosis and uncontrolled cell proliferation.
Identification of the interactions between p53 and
HCV proteins and their effects on cell-cycle
control should be of great importance; therapeutic
strategies to inhibit protein–protein interactions
might provide a first step towards reducing the
chronicity and/or carcinogenicity of the virus.
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Features associated with this article

Figures
Figure 1. Hepatitis C virus (HCV): model structure and genome organisation.
Figure 2. p53 protein structure.
Figure 3. Possible model for HCV core protein and p53 interactions.
Figure 4. Possible model for HCV NS5A protein and p53 interactions.
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Further reading, resources and contacts

The p53 website (created by the Thierru Soussi lab) at the Institut Curie provides information on the
structure, evolution and tumour association of p53:

http://p53.curie.fr/

The International Agency for Research on Cancer (IARC) TP53 database includes all TP53 gene mutations
identified in human cancers and published in the peer-reviewed literature:

http://www.iarc.fr/p53/

The Human Gene Mutation Database Cardiff has a database of p53 mutations and their tumour association:

http://uwcmml1s.uwcm.ac.uk/uwcm/mg/search/120445.html

Hepatitis Central is a website on hepatitis diseases and provides information on the symptoms and
treatment of each disease:

http://www.hepatitis-central.com/

Journals of the American Association for Cancer Research (AACR):

http://www.aacrjournals.org/

34130, PubMed: 10924497
154 Pawlotsky, J.M. and Germanidis, G. (1999) The

non-structural 5A protein of hepatitis C virus. J
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