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Abstract. Let R = K[x, σ ] be the skew polynomial ring over a field K, where σ is
an automorphism of K of finite order. We show that prime elements in R correspond to
completely prime one-sided ideals – a notion introduced by Reyes in 2010. This extends
the natural correspondence between prime elements and prime ideals in commutative
polynomial rings.
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1. Introduction. Let K be a field, let σ be an automorphism of K, let δ be a deriva-
tion of K, and let R = K[x, σ, δ] be the skew polynomial ring, where multiplication is
determined by the rule xa = aσ x + δ(a) for any a ∈ K. This ring was first studied in Ore’s
classical paper [11], who showed that many of the fundamental properties of the commu-
tative ring of polynomials K[x] have natural analogs in R. Notably, the ring R is a left and
right Euclidean domain and is generally a noncommutative unique factorization domain.
Since then, numerous works have studied these rings, and in particular their primes and
prime ideal structure (for example in [2, 3, 4]).

When attempting to define the notion of a “one-sided prime ideal” in noncommutative
algebra, the common approach adapts Krull’s definition of a two-sided prime ideal: A left
(right) ideal I in a ring R is called of prime type in [7], or simply prime (for example in
[5, 6, 9, 10]), if for any left (right) ideals A, B, the condition AB ⊆ I implies that A ⊆ I or
B ⊆ I . We observe that in the ring R = C[x, σ ], where σ denotes complex conjugation (and
with the trivial derivation δ = 0), the element f = x2 − 1 is not prime, but the left ideal
generated by f is (see Example 1 in Section 4 below). Thus, here the analogy between
K[x] and K[x, σ ] fails, as in K[x] prime elements stand in one-to-one correspondence with
nonzero prime ideals.

In this note, we show that this aspect of the analogy between K[x] and K[x, σ ] can be
restored, if instead of one-sided prime ideals in the above sense, one works with completely
prime one-sided ideals – a notion introduced by Reyes in [12]. A left ideal I of a ring R
is called completely prime if given a, b ∈ I with ab ∈ I and Ib ⊆ I , it follows that a ∈ I or
b ∈ I . We prove:

THEOREM 1.1. Let R = K[x, σ ], where σ is an automorphism of finite order of K, and
let 0 �= p ∈ R. Then p is a prime element in R if and only if Rp is a completely prime left
ideal.
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In [12] and [13], it is demonstrated that the notion of a completely prime one-sided
ideal is, in some aspects, a “better” notion of a “one-sided prime ideal” in noncommutative
algebra than the classical one mentioned above. Theorem 1.1 here gives further evidence
of that.

We note that the forward direction of Theorem 1.1 holds in greater generality, for any
skew polynomial ring R = K[x, σ, δ] (where σ is any automorphism and δ is any deriva-
tion), see Proposition 3.1 below. However, the converse generally fails: In Section 4, we
give examples demonstrating that the conditions that σ is of finite order and that δ = 0
cannot be dropped.

The note is organized as follows. In Section 2, we recall some basic properties of
skew polynomial rings. In Section 3, we prove Theorem 1.1. In Section 4, we give the
counter-examples mentioned above.

2. Preliminaries. Let R = K[x, σ, δ] be a skew polynomial ring, where K is a skew
field, σ is an automorphism of K, and δ a derivation of K. If δ = 0 is trivial, we denote
R = K[x, σ ], and if σ is the identity automorphism, we denote R = K[x, δ].

A polynomial f ∈ R is called reduced if its leading term is 1 (i.e. f is monic). A reduced
polynomial is said to be prime if it cannot be written as a product of two nonconstant
polynomials.1 Two polynomials f , g ∈ R are said to be relatively prime if they admit no
common right-hand prime divisors.

Given nonzero elements f , g ∈ R, their union [11, p. 485] is a reduced polynomial of
minimal degree that is right-hand divisible by both f and g. The union [ f , g] is determined
uniquely by f and g.

Given nonzero elements f , g ∈ R, there exists a unique element fg ∈ R with the same
leading term as f such that fg · g is an associate of [ f , g]. The polynomial fg is called the
transform of f by g [11, Section 4, p. 488].2 If f and g are relatively prime, then fg is called
a special transform, and in this case, one has deg( fg) = deg( f ).

Two elements f , h ∈ R are called similar if h = fg is a special transform of f for some
g ∈ R relatively prime to f . If h is similar to f and f is prime, then so is h [11, p. 493].

The following claim [11, Theorem 11, p. 489] will be particularly useful for our needs:

LEMMA 2.1. Let f , g, h ∈ R. If fg ∈ Rh, then f ∈ Rhg.

The ring R is a unique factorization domain in the following sense [11, Theorem 1,
p. 494]:

THEOREM 2.2. Every reduced element in R can be uniquely written as a product of
primes, up to order of terms and similarity.

The ring R is left and right Euclidean [11, p. 483]. It follows that if an element f is
right-hand divisible by elements g and h, then f is right-hand divisible by [g, h].

Given an element f ∈ R and a ∈ K, there exists a unique scalar f (a) ∈ K (the substitu-
tion of a in f ) such that f − f (a) ∈ R(x − a). Substitution is generally not a homomorphism;
however, it satisfies the following product rule [8, Theorem 2.7]:

PROPOSITION 2.3. For f , g ∈ R, and a ∈ K, we have ( fg)(a) = 0 if g(a) = 0 and
( fg)(a) = f (ag(a))g(a) if g(a) �= 0, where ab = bσ ab−1 + δ(b) for any a, b ∈ K with b �= 0.

1Ore does not consider nonreduced irreducible polynomials as “prime”. We follow the same convention.
2Ore denotes the transform by gf (x)g−1. We prefer the compact notation fg .
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3. Proof of Theorem 1.1. We begin by proving the forward direction of
Theorem 1.1.

PROPOSITION 3.1. Let R = K[x, σ, δ] be a skew polynomial ring, where K is field, σ

an automorphism of K, and δ a derivation on K. Let p be a prime element in R. Then Rp is
a completely prime left ideal.

Proof. Suppose a, b ∈ R satisfy ab ∈ Rp, b /∈ Rp, and Rpb ⊆ Rp. In particular, pb ∈ Rp,
hence by Lemma 2.1 p is right-hand divisible by pb. But since p and b are relatively prime,
the transform pb is special, thus deg(pb) = deg(p) and hence pb = p. Since ab ∈ Rp, by
Lemma 2.1 a is right-hand divisible by pb = p, as needed.

For the rest of this section fix a field K, let σ be an automorphism of K of finite order
n and let R be the skew polynomial ring K[x, σ ]. Let L be the fixed field of σ in K and let
R′ be the center R. One checks directly that R′ = L[xn].

For an element g ∈ R, we denote by Rg the left ideal generated by g (as we have done
in the preceding section) and by RgR the two-sided ideal generated by g. Recall that g is
called invariant if Rg = gR = RgR. Note that RxR = Rx is the ideal of polynomials g whose
constant term g(0) is 0.

LEMMA 3.2. Let g be a reduced polynomial in R with g /∈ Rx. If g is invariant, then
g ∈ R′.

Proof. We have gx ∈ RgR = Rg, hence gx = pg for a necessarily linear polynomial p =
αx + β, α, β ∈ K. By comparing leading coefficients, we get α = 1. Then βg = pg − xg =
gx − xg ∈ RxR = Rx, hence β = 0 since g /∈ Rx. Thus, p = x, hence g commutes with x.

Similarly, given a scalar α ∈ K, we have gα = βg for some β ∈ K. Then g(0)α =
βg(0), hence α = β. Thus, g commutes with all scalars. Since R is generated by x and K,
we have g ∈ R′.

DEFINITION 3.3. We say that a polynomial f ∈ R is center-free if there exists no
nonconstant polynomial c ∈ R′ that divides f from the left (or from the right).

Clearly, every nonzero element of R can be written in the form cf with c a reduced
polynomial in R′ and f center-free.

COROLLARY 3.4. Let f ∈ R be center-free with f /∈ Rx. Then RfR = R.

Proof. Since the two-sided ideal RfR is also a left ideal, we may write RfR = Rg for
some reduced polynomial g ∈ R. Then RgR = (RfR)R = RfR = Rg. Since f /∈ Rx, we also
have g /∈ Rx. By the preceding lemma, g ∈ R′. Since f ∈ RfR = gR = Rg and f is center-free,
g must be a (nonzero) constant, hence RfR = R.

LEMMA 3.5. If a, b, c, d are reduced elements of R, with a and c center-free, b, d ∈ R′,
and ab = cd, then a = c.

Proof. Let m be the maximal integer such that a ∈ Rxm. Since a is center-free and
R′ = L[xn], we have m < n. Similarly, if k is the maximal integer such that c ∈ Rxk , then
k < n. Since b, d ∈ L[xn], by comparing the lowest degree monomials in ab and cd, we
must have k = m. Replace a, c with x−ma, x−mc to assume that a, c /∈ RxR. Since b ∈ R′,
we have RabR = bRaR. By the preceding corollary, RaR = R, hence RabR = bR. Similarly,
RcdR = dR. Thus, bR = dR, hence b = d, hence a = c.

The proof of the following lemma is the first part of the proof of [1, Theorem 3.1]. We
note that in [1] K is assumed to be algebraically closed, but the mentioned part of the proof
of [1, Theorem 3.1] does not rely on this assumption.
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LEMMA 3.6. For each 0 �= f ∈ R there exists a polynomial h ∈ R such that hf is a
reduced polynomial in R′.

LEMMA 3.7. For each 0 �= f ∈ R there exists a unique polynomial f ∗ ∈ R of minimal
degree such that f ∗f is a reduced polynomial in R′.

Proof. The existence part of the claim follows from Lemma 3.6. To prove the
uniqueness, write f = fnxn + . . . + f0 and suppose that g, h are both of minimal degree
k such that gf , hf ∈ R′. If k = 0, then we must have gfn = hfn = 1, hence g = h. If k > 0
and g �= h, then g − h = ∑m

i=0(gi − hi)xi for some m < k with gm �= hm. Then (g − h)f =
gf − hf ∈ R′ = L[xn]. The leading coefficient α = (gm − hm)( f σ m

n ) of gf − hf thus belongs
to L, hence (α−1(g − h))f is a reduced polynomial in R′, and deg(α−1(g − h)) < k, a
contradiction.

DEFINITION 3.8. We call the element f ∗ given by Lemma 3.7 the dual of f .

Note that since f ∗f ∈ R′, we have f f ∗ = f ∗f . (Indeed, ( f ∗f )f = f ( f ∗f ) = ( f f ∗)f ,
hence f f ∗ = f ∗f .)

LEMMA 3.9. If f ∈ R and α ∈ K× is a constant, then (αf )∗ = f ∗α−1.

Proof. We have ( f ∗α−1)(αf ) = f ∗α · α−1f = f ∗f . If g ∈ R is such that c = g(αf ) is a
reduced element in R′, then also c = αfg, hence fg = cα−1, hence f (gα) = ((gα)f ) = c,
hence deg(g) = deg(gα) ≥ deg( f ∗) = deg( f ∗α−1). Thus (αf )∗ = f ∗α−1. Note that if f is a
nonzero constant, then f ∗ = f −1.

COROLLARY 3.10. If f ∈ R is center-free, then f ∗∗ = f .

Proof. By Lemma 3.9 we may divide f from the left by its leading coefficient to assume
that f is reduced, hence also f ∗ is reduced. We have f ∗f = f f ∗ ∈ R′. Suppose that g ∈ R is
a polynomial such that c = gf ∗ is a reduced polynomial in R′. Necessarily, g is reduced.
Write g = hd with h center-free and d ∈ R′ reduced. Then also h is reduced. We have cf =
gf ∗f = h(df ∗f ), hence by Lemma 3.5 we get f = h, which implies that deg( f ) ≤ deg(g).
Thus, we have ( f ∗)∗ = f .

PROPOSITION 3.11. Let f , g ∈ R with fg center-free. Then ( fg)∗ = g∗f ∗.

Proof. By Lemma 3.9 we may divide f and g from the left by their leading coefficients
to assume that both are reduced, hence also f ∗, g∗ are reduced. The polynomial

(g∗f ∗)( fg) = g∗( f ∗f )g = (g∗g)( f ∗f )

is a reduced element in R′. As in the proof of Corollary 3.10, suppose that d ∈ R′ and
h ∈ R are reduced elements with h center-free such that c = (dh)( fg) ∈ R′ is reduced. Then
c(g∗f ∗) = (dh)( fg)(g∗f ∗) = h(dgg∗f f ∗), hence by Lemma 3.5 we have g∗f ∗ = h, therefore
deg(dh) ≥ deg(g∗f ∗). Thus, ( fg)∗ = g∗f ∗.

LEMMA 3.12. Let h be an arbitrary nonzero element of R. Then h∗ is center-free.

Proof. We may assume, without loss of generality, that h is reduced. Write h∗ = fc with
f , c reduced, c ∈ R′ and f center-free. Let g be an arbitrary polynomial in R. We have

(h∗h)fg = fg(hh∗) = fghfc = fcghf = h∗ghf .
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Cancelling h∗ from the left, we get that (hf )g = g(hf ). Thus, hf ∈ R′. By the definition of
the dual, we must have deg( f ) ≥ deg(h∗), hence c must be a constant.

COROLLARY 3.13. If p ∈ R is prime and p /∈ R′, then p∗ is prime.

Proof. Suppose that p∗ = fg with both f , g ∈ R nonconstants. By Corollary 3.10, we
have p = (p∗)∗. By the preceding lemma, p∗ is center-free, hence by Proposition 3.11,
(p∗)∗ = g∗f ∗. Thus, p = g∗f ∗, hence either g∗ ∈ K or f ∗ ∈ K. Then by the definition of the
dual, either f or g is an associate of an element of R′, hence p is divisible by a nonconstant
element of R′. Since p is prime, this means that p ∈ R′ , a contradiction.

Proof of Theorem 1.1. The forward direction of the theorem is given by
Proposition 3.1. For the converse, suppose p is composite and that Rp is completely
prime. Write p = cf with c ∈ R′ and f center-free. Then pc = cp ∈ Rp hence Rpc ⊆ Rp.
Then, since Rp is completely prime, either f ∈ Rp or c ∈ Rp, which implies that either f
or c is a constant. First suppose that f is a constant. Then c is an associate of p, and since
p is composite we may write c = ab with a, b nonconstants. Then cb = bc ∈ Rc, hence
Rcb ⊆ Rc = Rp and hence a ∈ Rc or b ∈ Rc, a contradiction.

Next suppose that c is a constant. Then f is center-free and composite. Let q be a
left-hand prime divisor of f , and write f = qh with h nonconstant. Then h(q∗q) = q∗qh =
q∗f ∈ Rf . Since q∗q ∈ R′ and since Rf = Rp is completely prime, it follows that h ∈ Rf
or q∗q ∈ Rf . The first option cannot be since deg(h) < deg( f ), hence q∗q = df = dqh for
some d ∈ R. Since f is center-free, so is q, hence by Corollary 3.13, q∗ is prime. Since
h is a nonconstant, by the unique factorization in R it follows that d must be a non-zero
constant. Thus, f = (q∗q)d−1 is left-hand divisible by q∗q ∈ R′, in contradiction with f
being center-free.

4. Some counter-examples. One might initially expect a correspondence between
prime ideals and prime elements in skew polynomial rings. In Example 1 below we give a
counter-example to this, which motivated this paper. We first prove the following:

PROPOSITION 4.1. Let K be a field, σ an automorphism of K and δ a derivation on K.
Let R = K[x, σ, δ] and let z ∈ K. Then the left ideal R(x − z) in R is prime, in the sense of
[9] or [5].

Proof. Write g = x − z, and suppose a, b ∈ R are such that (Ra)(Rb) ⊆ Rg. That is,
afb ∈ Rg for all f ∈ R. Suppose b /∈ Rg, that is, b(z) �= 0, and put β = b(z). Take f = x −
zβ + β−1. Then by the product formula (Proposition 2.3), ( fb)(z) = f (zβ)β = β−1β = 1.
Again by the product formula, we have (afb)(z) = a(z1) · 1 = a(z). Thus, a(z) = 0, hence
a ∈ R(x − z).

LEMMA 4.2. Let R = C[x, σ ], where σ denotes complex conjugation, and let z, w ∈ C

with |z| = |w| = 1 and z �= w. If f ∈ R(x − z) and f ∈ R(x − w), then f ∈ R(x2 − 1).

Proof. We have x2 − 1 = (x + zσ )(x − z) = (x + wσ )(x − w) hence x2 − 1 is the union
of x − z, x − w. Thus, f ∈ R(x2 − 1).

EXAMPLE 1. Let R = C[x, σ ], where σ denotes complex conjugation. Consider the
nonprime element g = x2 − 1 = (x − 1)(x + 1), which belongs to the center R[x2] of R. The
ideal Rg = gR in R is prime. Indeed, suppose a, b ∈ R are such that (Ra)(Rb) ⊆ Rg. That
is, afb ∈ Rg for all f ∈ R. Note that for any z ∈ C with |z| = 1 we have g = (x + zσ )(x − z),
hence afb ∈ R(x − z) for all f ∈ R. Since R(x − z) is prime by Proposition 4.1, this implies
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that for such z we have a ∈ R(x − z) or b ∈ R(x − z). Thus, at least one of a and b belongs
to infinitely many such ideals R(x − z), which implies that it belongs to R(x2 − 1), by the
preceding lemma.

We now wish to show that the assertion of Theorem 1.1 fails for the rings K[x, σ ] and
K[x, δ], where K = C(t) is the field of complex rational functions in the variable t, δ is the
differentiation map on K, and σ is the C-automorphism given by t → t + 1. Clearly, σ is
of infinite order. Note that if f ∈ C(t) is fixed by σ , then f is a scalar in C.

LEMMA 4.3. Let R = K[x, σ ] or R = K[x, δ]. The polynomials x − t and x + t are not
similar in R.

Proof. We first consider the case where R = K[x, σ ]. If x − t is similar to x + t in R,
then there exists a reduced polynomial f ∈ R which is not right-hand divisible by x − t
such that [x − t, f ] = (x + t)f . Then the substitution a = f (t) ∈ K is nonzero, while
((x + t)f )(t) = 0. Thus by Proposition 2.3 we have 0 = ta + t = aσ ta−1 + t = t(aσ a−1 + 1),
hence aσ = −a. Then aσ 2 = −aσ = a, which implies that a is a scalar in C. But this means
that aσ = a, and hence we got that a = −a, a contradiction.

Next consider the case where R = K[x, δ]. We must show that if g ∈ R satisfies
[x + t, g] = (x − t)g, then g is right-hand divisible by x + t. Indeed, if [x + t, g] = (x − t)g,
then the substitution ((x − t)g)(−t) of −t in (x − t)g gives 0. Denote by y ∈ K the substi-
tution g(−t). We need to show that y = 0. Assume the contrary, then by Proposition 2.3 we
have (−t)y · y = 0, where (−t)y = −t + y′

y . We have obtained the linear ordinary differen-

tial equation −t + y′
y = 0, which clearly has no rational solutions – one gets ln(y) = t2

2 + c,

hence y = exp( t2

2 + c).

The proof of the following proposition is technical, and we postpone it to the appendix
below.

PROPOSITION 4.4. Let R = K[x, σ ] or R = K[x, δ]. The polynomial g = (x + t)(x − t)
has a unique presentation3 as a product of primes in R. That is, x − t is the only right-hand
prime divisor of g.

Even though (x + t)(x − t) is obviously not a prime in K[x, σ ] or K[x, δ], we have

PROPOSITION 4.5. Let R = K[x, σ ] or R = K[x, δ] and let g = (x + t)(x − t) in R. The
left ideal Rg is completely prime.

Proof. Suppose that a, b ∈ R satisfy ab ∈ Rg, Rgb ⊆ Rg. In particular, gb ∈ Rg ⊆
R(x − t). First, suppose that b ∈ R(x − t) and write b = c(x − t) for some c ∈ R. Then from
gb = gc(x − t) ∈ Rg = R(x + t)(x − t) we get that gc ∈ R(x + t). If c ∈ R(x + t), then b ∈ Rg
and we are done. Suppose that c /∈ R(x + t). By Lemma 2.1, we have g ∈ R((x + t)c).
By Proposition 4.4, we have (x − t) = (x + t)c, hence x − t and x + t are similar, in
contradiction with Lemma 4.3.

Next, suppose that b /∈ R(x − t). Then (x − t)b is prime. By Lemma 2.1, since gb ∈
R(x − t), we have g ∈ R((x − t)b). By the unique factorization of g, we have (x−t)b = x−t.
That is, [x − t, b] = (x − t)b, which implies by Proposition 2.3 that tb(t) = t, where b(t) is
the substitution of t in b. If R = K[x, δ], then this implies that b(t)′b(t)−1 = 0, hence b(t)
is a scalar β ∈ C×. Similarly, if R = K[x, σ ], we get b(t)σ tb(t)−1 = t, hence b(t)σ = b(t),
which again implies that b(t) is a scalar β ∈ C×.

3Not even up to order or similarity.
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By left division with remainder in the ring R, we have b = h(x − t) + b(t) = h(x − t)
+ β for some h ∈ R. Since gb = gh(x − t) + gβ = gh(x − t) + βg ∈ Rg, we have gh(x − t)
∈ Rg, hence gh ∈ R(x + t). If h /∈ R(x + t), then by Lemma 2.1, g ∈ R((x + t)h), which
by the unique factorization of g implies that (x − t) = (x + t)h, in contradiction with
Lemma 4.3. Thus, h = f (x + t) for some f ∈ R. Then since ab = ah(x − t) + aβ = af (x + t)
(x − t) + aβ = afg + aβ ∈ Rg we have aβ = βa ∈ Rg, hence a ∈ Rg, as needed.

ACKNOWLEDGEMENT. We thank the anonymous referee for his/her thorough reading and
helpful comments.

Appendix: Proof of Proposition 4.4 We keep the notation of Section 4 through-
out this appendix and fix g = (x + t)(x − t). We first prove Proposition 4.4 in the case
where R = K[x, σ ]. We must show that the only zero of g in K is t. Suppose a ∈ K sat-
isfies g(a) = 0. Then4 we have aaσ − a = t2. Write a = p(t)

q(t) with p(t), q(t) ∈ C[t], q(t) �= 0.
We may assume without loss of generality that p and q are coprime. We now have
p(t)p(t + 1) − p(t)q(t + 1) = t2q(t)q(t + 1), hence

p(t)(p(t + 1) − q(t + 1)) = t2q(t)q(t + 1).

If deg(p) ≤ deg(q), then the degree of the left-hand side is at most deg(p) + deg(q),
while the degree of the right-hand side is 2 + 2 deg(q), a contradiction. Thus, deg(p) >

deg(q) and we get 2 deg(p) = 2 + 2 deg(q), hence deg(p) = deg(q) + 1.
Suppose p(0) �= 0. Then, since p and q are coprime, p must divide q(t)σ = q(t + 1).

Write qσ = ph for h ∈ C[t]. Then p(pσ − ph) = t2pσ−1
hσ−1

ph, hence pσ − ph = t2pσ−1
hσ−1

h,
which implies that h divides pσ . Since p and q are coprime, so are pσ , qσ , hence h must be
a (nonzero) constant. Then deg(q) = deg(qσ ) = deg(p), a contradiction.

Thus, p(0) = 0, and we may write p = tmr with m ≥ 1 and r ∈ C[t] coprime to q
and t. Then tmr((t + 1)mrσ − qσ ) = t2qqσ , and since r is coprime to q and t, r must
divide qσ . Write qσ = hr for h ∈ C[t]. We then get tmr((t + 1)mrσ − hr) = t2hσ−1

rσ−1
hr,

hence tm((t + 1)mrσ − hr) = t2hσ−1
rσ−1

h, hence h must divide tm(t + 1)mrσ = tmpσ . Since
pσ , qσ are coprime, h must divide tm. Write h = αtk with α ∈ C× and 0 ≤ k ≤ m. Then
p = tmr, qσ = αtkr. Since deg(p) = deg(q) + 1 = deg(qσ ) + 1, we must have m = 1 + k.
We then have tk+1((t + 1)k+1rσ − αtkr) = α2t2(t − 1)krσ−1

tk . Dividing by tk+1, we get

(t + 1)k+1rσ − αtkr = α2t(t − 1)krσ−1
.

Suppose that k > 0. Substituting t = 0 in the last equation we get that rσ (0) = 0, hence
r(1) = 0. Substituting t = 1 in the same equation, we get that rσ (1) = 0, hence r(2) = 0.
We claim that r(i) = 0 for all i ∈ N. Indeed, suppose we have proven the claim for all
i = 1, . . . , n, with n > 1. In particular, r(n − 1) = 0, hence rσ−1

(n) = 0. Putting t = n, we
get that rσ (n) = 0, hence r(n + 1) = 0, as claimed. It follows that r = 0, hence q = 0, a
contradiction.

Thus, k = 0, and we have

(t + 1)rσ − αr = α2trσ−1
.

Putting t = 0 in this equation, we get r(1) = αr(0). Note that since r is coprime to t,
r(0) �= 0. Putting t = 1, we get that 2r(2) − α2r(0) = α2r(0), hence r(2) = α2r(0). We
prove by induction that r(n) = αnr(0) for all n ∈ N. Indeed, assume that the claim holds

4Substitution of a in x2 gives aσ a.
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up to a given n > 1, then putting t = n in the last presented equation we get (n + 1)

r(n + 1) − α · αnr(0) = α2n · αn−1r(0), hence (n + 1)r(n + 1) = αn+1(n + 1)r(0), hence
r(n + 1) = αn+1r(0), which completes the induction.

Thus, the polynomial r(t)r(0)−1 coincides with the function t �→ αt at infinitely many
points, which can only happen for α = 1. Thus, r(n) = r(0) for all n ∈ N, hence r must be
a constant. We thus have p = tr, qσ = r, hence also q = r. Then p

q = t, as claimed.
Next, we prove Proposition 4.4 in the case where R = K[x, δ]. Suppose g = (x − b)

(x − a) = x2 − (b + a)x − a′ + ba for a, b ∈ K, then b = −a and −a′ − a2 = −a′ + ba =
−(1 + t2). The differential equation y2 + y′ − (1 + t2) = 0 is a Ricatti equation, whose gen-
eral solution is given by y = u + t, where u is a solution to the first-order Bernoulli equation
u′ + u2 + 2tu = 0. One checks that the latter equation has no nonzero rational solutions,
hence the only function a ∈ C(t) satisfying a2 + a′ − (1 + t2) = 0 is a = t.
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