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The exponential modality of linear logic associates to every formula A a commutative

comonoid !A which can be duplicated in the course of reasoning. Here, we explain how to

compute the free commutative comonoid !A as a sequential limit of equalizers in any

symmetric monoidal category where this sequential limit exists and commutes with the

tensor product. We apply this general recipe to a series of models of linear logic, typically

based on coherence spaces, Conway games and finiteness spaces. This algebraic description

unifies for the first time a number of apparently different constructions of the exponential

modality in spaces and games. It also sheds light on the duplication policy of linear logic,

and its interaction with classical duality and double negation completion.

1. Introduction

Linear logic is based on the principle that every hypothesis Ai should appear exactly once

in a proof of the sequent

A1, . . . , An � B. (1)

This logical restriction enables one to represent the logic in monoidal categories, along

the idea that every formula denotes an object of the category, and every proof of the

sequent (1) denotes a morphism

A1 ⊗ · · · ⊗ An −→ B,

where the tensor product is thus seen as a linear kind of conjunction. Here, for clarity’s

sake, we use the same notation for a formula A and for its interpretation (or denotation)

in the monoidal category.

However, this linearity policy on proofs is far too restrictive in order to reflect traditional

forms of reasoning, where it is customary to repeat or to discard an hypothesis in the

course of a logical argument. This point is nicely resolved by providing linear logic with

an exponential modality, whose task is to strengthen every formula A into a formula !A

which may be repeated or discarded. From a semantic point of view, the formula !A

is most naturally interpreted as a comonoid of the monoidal category. Recall that a

comonoid (C, d, u) in a monoidal category C is defined as an object C equipped with two
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morphisms:

d : C −→ C ⊗ C, u : C −→ 1,

where 1 denotes the monoidal unit of the category. The morphism d and u are respectively

called the multiplication and the unit of the comonoid. The two morphisms d and u are

supposed to satisfy associativity and unitality properties, neatly formulated by requiring

that the two diagrams

C d

��

d

��
C ⊗ C

C⊗d ��

C ⊗ C

d⊗C��
C ⊗ C ⊗ C

C
d

��

d

��
id

��

C ⊗ C

u⊗C 		

C ⊗ C

C⊗u

C

commute. Note that we draw our diagrams as if the category were strictly monoidal,

although the usual models of linear logic are only monoidal.

The comonoidal structure of the formula !A enables to interpret the contraction rule

and the weakening rule of linear logic

π
...

Γ, !A, !A,Δ � B
Contraction

Γ, !A,Δ � B

π
...

Γ,Δ � B
Weakening

Γ, !A,Δ � B

by pre-composing the interpretation of the proof π with the multiplication d in the case

of contraction

Γ ⊗ !A ⊗ Δ
d−→ Γ ⊗ !A ⊗ !A ⊗ Δ

π−→ B

and with the unit u in the case of weakening

Γ ⊗ !A ⊗ Δ
u−→ Γ ⊗ Δ

π−→ B.

Linear logic also enables to permute the order of the hypothesis A1, . . . , An in a context,

and is thus interpreted in a symmetric monoidal category. Accordingly, one requires that

the comonoid !A is commutative, which means that the following equality holds:

A
d �� A⊗ A

symmetry �� A⊗ A = A
d �� A⊗ A .

When linear logic was introduced by Jean-Yves Girard, 20 years ago, it was soon realized

by Robert Seely (amongst a few others) that the multiplicative fragment of the logic

should be interpreted in a ∗-autonomous category, or at least, a symmetric monoidal

closed category C; and that the category should have finite products in order to interpret

the additive fragment of the logic, see Seely (1989). A more difficult question was to

understand what categorical properties of the exponential modality ‘ ! ’ were exactly

required, in order to define a model of propositional linear logic. . . that is, a model

including the multiplicative, the additive and the exponential components of the logic.

Yves Lafont formulated in his PhD thesis (Lafont 1988) a simple and quite general way

to define a model of linear logic. Recall that a comonoid morphism between twocomonoids
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(C1, d1, u1) and (C2, d2, u2) is defined as a morphism f : C1 −→ C2 such that the two diagrams

C1
f ��

d1

��

C2

d2

��
C1 ⊗ C1

f⊗f �� C2 ⊗ C2

C1
f ��

u1 ��

C2

u21

commute. One says that the commutative comonoid !A is freely generated by an object A

when there exists a morphism

ε : !A −→ A

such that for every morphism

f : C −→ A

from a commutative comonoid C to the object A, there exists a unique comonoid

morphism

f† : C −→ !A

such that the diagram

!A

ε

��

C

f ��

f† ��

A

(2)

commutes. So, from the point of view of provability, !A is the largest comonoid below the

object A. Lafont noticed that a model of propositional linear logic follows automatically

from the existence of a free commutative comonoid !A for every object A of a symmetric

monoidal closed category C. This is not the only way to construct a model of linear

logic. A folklore example is the coherence space model, which admits two alternative

interpretations of the exponential modality: The original one, formulated by Girard (1987)

where the coherence space !A is defined as a space of cliques, and the free construction,

where !A is defined as a space of multicliques (cliques with multiplicity) of the original

coherence space A.

In this paper, we explain how to construct the free commutative comonoid in the

symmetric monoidal categories C typically encountered in the semantics of linear logic.

To that purpose, we start from the well-known formula defining the symmetric algebra

SA =
⊕
n∈N

A⊗n / ∼n (3)

generated by a vector space A. Recall that the formula (3) computes the free commutative

monoid associated to the object A in the category of vector spaces over a given field k.
The group Σn of permutations on {1, . . . , n} acts on the vector space A⊗n, and the vector

space A⊗n/ ∼n of equivalence classes (or orbits) modulo the group action is defined as
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the coequalizer of the n! symmetries

A⊗n
symmetry ��

···
symmetry

�� A
⊗n coequalizer �� A⊗n/ ∼n

in the category of vector spaces. Since a comonoid in the category C is the same thing

as a monoid in the opposite category Cop, it is tempting to apply the dual formula to

Equation (3) in order to define the free commutative comonoid !A generated by an

object A in the monoidal category C. Although the idea is extremely naive, the resulting

formula is surprisingly close to the solution we are aiming at. Indeed, one key observation

of the paper is that the equalizer An of the n! symmetries

An equalizer �� A⊗n
symmetry ��

···
symmetry

�� A
⊗n (4)

exists in many traditional models of linear logic, and that it provides there the nth layer

of the free commutative comonoid !A generated by the object A. This general principle

will be nicely illustrated in Section 4 by the equalizer An in the category of coherence

spaces, which contains the multicliques of cardinality n in the coherence space A ; and

in Section 5 by the equalizer An in the category of Conway games, which defines the

game where Opponent may open up to n copies of the game A, one after the other, in a

sequential order.

Of course, the construction of the free exponential modality does not stop here: One

still needs to combine the layers An together in order to define !A properly. As we already

mentioned, one obvious solution is to apply the dual of formula (3) and to define !A as

the infinite cartesian product

!A =
¯
n∈N

An / ∼n . (5)

This formula works perfectly well in any symmetric monoidal category C where the infinite

product commutes with the tensor product, in the sense that the canonical morphism

X ⊗
( ¯

n∈N

An
)

−→
¯
n∈N

( X ⊗ An ) (6)

is an isomorphism. This logical degeneracy occurs in particular in the relational model

of linear logic, where the free exponential !A is thus defined according to formula (5)

as the set of finite multisets of A, each equalizer An describing the set of multisets of

cardinality n.

On the other hand, the formula (5) is far too optimistic in general, because the canonical

morphism (6) is not reversible in the typical models of linear logic, based on coherence

spaces, or on sequential games. In order to understand better what this means, it is quite

instructive to apply the formula (5) to the category of Conway games: It defines a game !A

where the first move by Opponent selects a component An, and thus decides the number n

of copies of the game A played subsequently. This departs from the free commutative

comonoid !A which we shall define in Section 5, where Opponent is allowed to open a

new copy of the game A at any point of the interaction.
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So, there remains to understand how the various layers An should be combined together

inside !A in order to perform this particular copy policy. This puzzle has a very simple

solution: One should ‘glue’ every layer An inside the next layer An+1 so as to enable the

computation to transit from one layer to the next in the course of interaction. As we

will see, one simple way to perform this ‘glueing’ operation is to introduce the notion of

pointed (or affine) object. A pointed object in a monoidal category C is defined as a pair

(A, u) consisting of an object A and of a morphism u : A −→ 1 to the monoidal unit. So,

a pointed object is something like a comonoid without a multiplication. The category C•
has the pointed objects as objects, and as morphisms

(A, u) −→ (B, v)

the morphisms f : A −→ B of the category C making the diagram below commute:

A
f ��

u

���
��

��
��

��
B

v

����
��

��
��

�

1

So, the category C• of pointed objects coincides in fact with the slice category C ↓ 1. It

is folklore that the category C• is symmetric monoidal, with monoidal structure inherited

from the category C, and more specifically, the fact that the monoidal unit 1 is a

commutative monoid. The category C• is moreover affine in the sense that its monoidal

unit 1 is terminal in the category.

Plan of the paper. The main purpose of this paper is to compute the free commutative

comonoid !A as a sequential limit of equalizers in various models of linear logic. The

construction is excessively simple and works every time the sequential limit exists, and

commutes with the tensor product in the underlying category C. We start by describing

the limit construction (in Section 2) and by explaining how this formula computes the free

commutative comonoid !A as a Kan extension along a change of symmetric monoidal

theory (in Section 3). Then, we establish that the construction works in the expected way

in the category of coherence spaces (in Section 4) and in the category of Conway games

(in Section 5). This establishes that the two modalities are defined in exactly the same

way in the two models of linear logic. So, one could say that the two modalities have the

same ‘genotype’ although their ‘phenotypes’ are different. The discovery is unexpected,

but immediately counterbalanced by the observation that the limit construction does

not work in every model of linear logic. As a matter of fact, we exhibit the instructive

counterexample of the finiteness space model introduced by Ehrhard (2005). We explain

(in Section 6) why the limit construction fails in this particular model of linear logic. This

counterexample leads us to study more closely the interaction (and possible interference)

between the free construction of the exponential modality on the one hand, and the

double negation completion to classical linear logic on the other hand. In particular, we

introduce (in Section 7) a symmetric monoidal category of configuration spaces whose full

subcategory of double negation closed objects coincides with the category of coherence

spaces. We explain (in Section 8) how the free exponential modality of the coherence
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space model is inherited from the free exponential modality of configuration space model

by a series of monoidal adjunctions. We then repeat the procedure (in Section 9) for

finiteness spaces: This enables us to recover the free exponential modality of the finiteness

space model as the double negation completion of the free exponential modality of

a configuration space model. We conclude and indicate future research directions (in

Section 10).

2. The limit construction in three easy steps

The construction of the free exponential modality proceeds along a simple recipe in three

steps, which we choose to describe here in the most direct and pedestrian way. We then

turn in the next Section to the conceptual reasons which justify the construction.

First step. The first step of the construction requires to make the mild hypothesis that the

object A of the category C generates a free pointed object (A•, u) in the category C•. This

means that there exists a morphism

εA : A• −→ A

such that for every pointed object (B, v) and every morphism f : B → A, there exists a

unique morphism h : B → A• making the two diagrams below commute:

B
h ��

v

���
��

��
��

��
� A•

u

����
��

��
��

�

1

B
h ��

f
���

��
��

��
��

A•

εA
����

��
��

��
�

A

This typically happens when the forgetful functor C• −→ C has a right adjoint. Informally

speaking, the purpose of the pointed object A• is to contain one copy of the object A, or

no copy at all. This free pointed object exists in most models of linear logic, in particular

when the underlying category has finite products: In the case of coherence spaces, it is

the space A• = A & 1 obtained by adding a point to the web of A with u : A & 1 → 1
defined as the second projection ; in the case of Conway games, it is the game A• = A

itself, at least when the category of Conway games is restricted to Opponent-starting

games.

Second step. The object A�n is then defined (when it exists) as the equalizer (A•)
n of the

diagram

A�n equalizer �� A⊗n•

symmetry ��
···

symmetry
�� A

⊗n
• (7)

in the category C. Note that A�n is computed as the equalizer on the nth tensorial power

of the pointed object A•. The purpose of A�n is thus to describe at the same time all the

layers Ak of k copies of A, for k � n. Typically, the equalizer A�n computed in the category

of coherence spaces coincides with the space of all multicliques in A of cardinality less

than or equal to n; the equalizer A�n computed in the category of Opponent-starting
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Conway games coincides with the game where n copies of the game A are played in

parallel, and where Opponent is not allowed to play an opening move in the copy Ai+1

until all the previous copies A1, . . . , Ai have been opened.

Third step. The universal property of equalizers in the category C ensures that there exists

a canonical morphism

A�n A�n+1��

induced by the unit u : A• → 1 of the pointed object A•, for every natural number n. This

enables to define the object A∞ (when it exists) as the sequential limit of the sequence

1 A�1�� A�2�� · · ·�� A�n�� A�n+1�� · · ·�� (8)

with limiting cone defined by projection maps

A∞
projection �� A�n.

This recipe in three steps defines the free commutative comonoid !A as the sequential

limit A∞, at least when the object A satisfies the limit properties described in the next

statement.

Proposition 2.1. Consider an object A in a symmetric monoidal category C. Suppose that

the object A generates a free pointed object (A•, u) in the sense explained above. Suppose

moreover that the equalizer (7) and the sequential limit (8) exist in the category C, and

that they commute with the tensor product, in the sense that for every object X of the

category C, (a) the morphism

X ⊗ A�n X⊗ equalizer �� X ⊗ A⊗n•

defines an equalizer of the diagram

X ⊗ A⊗n•

X⊗ symmetry ��
···

X⊗ symmetry
�� X ⊗ A⊗n•

for every natural number n, and (b) the family of morphisms

X ⊗ A∞
X⊗ projection �� X ⊗ A�n

defines the limiting cone of the diagram

X ⊗ 1 X ⊗ A�1�� X ⊗ A�2�� · · ·�� X ⊗ A�n�� X ⊗ A�n+1�� · · ·�� .

In that case, the object A generates a free commutative comonoid !A in the symmetric

monoidal category C, defined as the sequential limit A∞.

3. A model-theoretic account of the construction

Although Proposition 2.1 is extremely simple to state, one needs to climb a few steps in

the conceptual ladder in order to establish the property, using the methods of functorial
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model theory initiated by Lawvere (1963). To that purpose, one starts by identifying the

limit construction A �→ A∞ as the computation of a right Kan extension of the object A

(seen as a functor) along a change of symmetric monoidal theory going from the trivial

theory to the theory of commutative comonoids. This formulation enables then to deduce

Proposition 2.1 from a general result on free constructions of algebraic theories recently

established by Melliès and Tabareau in a suitable two-categorical framework, see Melliès

and Tabareau (2008). Let us briefly explain the argument establishing the proposition.

Symmetric monoidal theories. A symmetric monoidal theory T (also called PROP in

the literature) is defined as a symmetric monoidal category whose objects are the natural

numbers, and whose tensor product on objects coincides with the sum on natural numbers:

m ⊗ n = m + n. A model M of the theory T in a symmetric monoidal category C is

defined as a monoidal functor M : T → C, understood in the strong sense. Finally, the

category Mod(T,C) has such models as objects, and monoidal natural transformations as

morphisms between them.

The simplest possible PROP is provided by the category B with finite ordinals [n] =

{0, . . . , n − 1} as objects, and with bijections as morphisms. Note that B is the free

symmetric monoidal category generated by the category with one object. Consequently,

every object A of a symmetric monoidal category C induces a model (also noted A) of

the theory B in the category C, defined as

A : [n] �→ A⊗n.

In particular, one has A([0]) = 1, A([1]) = A, A([2]) = A⊗2 and so on. The resulting functor

from the category C to the category Mod(B,C) defines an equivalence of categories, this

meaning that a model of the theory B is essentially the same thing as an object of the

underlying category C. This is the reason why the category B is often called the trivial

symmetric monoidal theory.

Now, consider the category F with finite ordinals [n] = {0, . . . , n − 1} as objects and

with functions [p] → [q] as morphisms. Its opposite category F
op defines the symmetric

monoidal theory of commutative comonoids, in the sense that the category of commutative

comonoids and comonoid morphisms in any symmetric monoidal category C is equivalent

to the category Mod(Fop,C). In particular, every model M of the theory F
op induces a

commutative comonoid C = M([1]) in the category C, whose comultiplication d : C →
C⊗2 and counit u : 1 → C are provided by the image of the (unique) morphisms [1] → [2]

and [1] → [0] in the category F
op.

Free models computed as Kan extensions. One substantial benefit of this functorial

approach to model theory is that the forgetful functor U transporting a commutative

comonoid (C, d, u) to its underlying object C in the category C is reformulated as the

functor

U : Mod(Fop,C) → Mod(B,C)

which transports (a) every model M : F
op → C to the model M ◦ i : B → C obtained

by precomposing M with the symmetric monoidal functor i : B → F
op defined as the
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identity on objects, and (b) every morphism θ : M → N of models of F
op to the

morphism θ ◦ i : M ◦ i→ N ◦ i of models of B.

Computing the free commutative comonoid !A generated by an object A in the

category C amounts then to computing the right Kan extension of the model A : B → C

along the inclusion functor i : B → F
op in the two-category SMCat of symmetric monoidal

categories, symmetric monoidal functors and monoidal natural transformations.

C

B
i

��

A

���������� ⇐

F
op

RaniA=!A
����������

The whole point of the construction is that, by definition of Kan extensions, the resulting

commutative comonoid !A satisfies the unique lifting property expressed in Diagram 2.

Now, it is folklore that the right Kan extension of A along i may be computed in the

two-category Cat of categories and functors as the end formula

!A =

∫
[n]∈B

F
op([1], [n]) ◦ A⊗n =

∫
[n]∈B

A⊗n, (9)

where E ◦ C denotes the cotensor product of an object C of the category C by a set E,

see Kelly (1982) for details. This is precisely the reason why we considered this end

formula in the introduction, formulated there as the infinite product of equalizers (5).

The theorem established in Melliès and Tabareau (2008) ensures that the right Kan

extension RaniA computed in the two-category Cat defines a right Kan extension in

the two-category SMCat, as long as one additional condition is satisfied: The tensor

product of the category C should commute with the end formula. This means that the

end formula (9) defines the free commutative comonoid generated by the object A when

the canonical morphism

X ⊗
∫

[n]∈B

A⊗n −→
∫

[n]∈B

X ⊗ A⊗n (10)

is an isomorphism for every object X of the category C. This justifies one to apply the

limit formula (9) whenever this commutation property holds, typically in the category of

sets and relations, or in the category of modules over a commutative ring.

Performing the Kan extension in two steps. However, we observed in the introduction that

the canonical morphism (10) is not an isomorphism in most models of linear logic. This

difficulty is resolved by decomposing the computation of the right Kan extension of A in

two independent steps, taking advantage of the fact that the functor i : B → F
op factors

as

B
j
−→ I

op k−→ F
op,

where I denotes the category with finite ordinals [n] = {0, . . . , n − 1} as objects, and

injections [p] → [q] as morphisms, and j and k denote the obvious identity-on-object

functors. Note that the opposite category I
op defines the PROP for pointed objects. In

particular, its category of models Mod(Iop,C) is equivalent to the category C• of pointed
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object defined earlier. Hence, the first assumption of Proposition 2.1 means that the pointed

object (A•, u) defines the right Kan extension of the object A along the functor j : B → I
op

in the two-category SMCat, as depicted below:

C

B
j

��

A

���������� ⇐

I
op

RanjA=(A• ,u)
���������

Recall that Kan extensions may be composed in any two-category, and in particular in

the two-category SMCat. From this follows that the right Kan extension Rank(A•, u) of

the pointed object (A•, u) along the functor k (when it exists in the two-category SMCat)
defines the right Kan extension of the object A along the functor i = k ◦ j in the same

two-category SMCat, as depicted below:

C

I
op

k
��

(A• ,u)
��							 ⇐

F
op

Rank(A• ,u)=RaniA
����������

Since the right Kan extension of A along i in the two-category SMCat defines the free

commutative comonoid !A generated by the object A, there remains to compute the Kan

extension Rank(A•, u). In the same way as previously, it is well-known that the right Kan

extension is computed in the two-category Cat as the end formula:

A∞ =

∫
n∈Iop

F
op([1], [n]) ◦ (A•)

⊗n =

∫
n∈Iop

(A•)
⊗n. (11)

It is not difficult to see that this end exists and coincides with the sequential limit (8)

when the equalizers (7) and the sequential limit (8) exist in the category C. This is

precisely the second assumption of Proposition 2.1. This enables one to apply the general

theorem of Melliès and Tabareau (2008) which ensures that the Kan extension in the

two-category Cat coincides with the Kan extension in the two-category SMCat as soon

as the canonical morphism

X ⊗
∫

[n]∈Iop

A⊗n −→
∫

[n]∈Iop

X ⊗ A⊗n

is an isomorphism for every object X of the category C. This property follows from the

last assumption of Proposition 2.1 which states that the tensor product commutes with the

equalizers (7) and the sequential limit (8) in the category C. This establishes that the end

formula (11) and thus the sequential limit (8) computes the free commutative comonoid

generated by the object A, whenever the assumptions of Proposition 2.1 are satisfied.

4. Coherence spaces

In this section, we apply the recipe described in Section 2 to the category of coherence

spaces introduced by Girard (1987) and establish that it does indeed compute the free
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exponential modality in this category. Recall that a coherence space E = (|E|,��) consists

of a set |E| called its web equipped with a binary reflexive and symmetric relation �� called

its coherence relation. A clique u of E is defined as a set of pairwise coherent elements of

the web:

∀e1, e2 ∈ u, e1 �� e2.

The coherence relation induces an incoherence relation ˚ defined as

e1 ˚ e2 ⇐⇒ ¬ (e1 �� e2) or e1 = e2.

We recall below the definition of the category Coh of coherence spaces, together with

the interpretation of the logical connectives which appear in the construction of the free

exponential modality.

Product. The product E1 & E2 of two coherence spaces E1 and E2 is defined as the

coherence space whose web |E1 & E2| = |E1| � |E2| is the disjoint union of the two

webs |E1| and |E2|, and where two elements (e, i) and (e′, j) for i ∈ {1, 2} are coherent

when i �= j or when i = j and e ��Ei
e′.

Tensor product. The tensor product E1 ⊗E2 of two coherence spaces E1 and E2 is defined

as the coherence space whose web |E1⊗E2| = |E1| × |E2| is equal to the cartesian product

of the two webs |E1| and |E2| with the following coherence relation:

e1 ⊗ e2 ��E1⊗E2
e′1 ⊗ e′2 ⇐⇒ e1 ��E1

e′1 and e2 ��E2
e′2,

where e1 ⊗ e2 is a convenient notation for the pair (e1, e2) in the web |E1 ⊗ E2|.

Linear implication. The linear implication E1 � E2 of two coherence spaces E1 and E2 is

defined as the coherence space whose web |E1 � E2| = |E1|× |E2| is equal to the cartesian

product of the two webs |E1| and |E2| with the following coherence relation:

e1 � e2 ��E1�E2
e′1 � e′2 ⇐⇒

⎧⎨
⎩

e1 ��E1
e′1 ⇒ e2 ��E2

e′2
and

e2 ˚E2
e′2 ⇒ e1 ˚E1

e′1,

where e1 � e2 is a convenient notation for the pair (e1, e2) in the web |E1 � E2|.

The category of coherence spaces. The category Coh of coherence spaces has coherence

spaces as objects and cliques of E1 � E2 as morphisms from E1 to E2. Note that the

web of E1 � E2 is equal to the cartesian product |E1| × |E2|. This enables one to see a

morphism as a relation between the sets |E1| and |E2| satisfying additional consistency

constraints. In particular, identity and composition are defined in the same way as in the

category of sets and relations. The category Coh is ∗-autonomous and defines a model of

the multiplicative and additive fragment of linear logic.

On the other hand, it is easy to see that the tensor product does not commute with

finite products. Typically, the canonical morphism

E ⊗ (1 & 1) −→ (E ⊗ 1) & (E ⊗ 1)
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is not an isomorphism. This explains why the formula (5) does not work in the category

of coherence spaces. Hence, the construction of the free exponential modality proceeds

along the recipe in three steps described in Section 2.

First step: Compute the free affine object. Computing the free pointed object (E•, u)

generated by a coherence space E is straightforward because the category Coh has finite

products: The pointed object is thus defined as

E• = E & 1

equipped with the second projection u : E & 1 → 1. Recall that a multiclique of the

coherence space E is defined as a multiset on |E| whose underlying set is a clique of E.

It is useful to think of E & 1 as the space of multicliques of E with at most one element.

This defines (as we will see) the very first layer of the construction of the free exponential

modality. In that respect, the unique element ∗ of the web of 1 denotes the empty clique,

whilst every element e of E denotes the singleton clique [e].

Second step: Compute the symmetric tensor power. We would like to compute the equalizer

of the n! symmetries

(E & 1)⊗n
symmetry ��

···
symmetry

�� (E & 1)⊗n (12)

on the coherence space (E & 1)⊗n in the category of coherence spaces. We claim that this

equalizer is provided by the coherence space E�n defined as follows:

— Its web |E�n| = M�n
fin (|E|) contains the multicliques of E with at most n elements, seen

equivalently as the multicliques of n elements in E & 1.

— Two elements u and v are coherent in E�n precisely when their union u � v is a

multiclique

together with the morphism

E�n equalizer �� (E & 1)⊗n

defined as the clique containing all the elements of the form

[e1, . . . , en] � e1 ⊗ · · · ⊗ en,

where [e1, . . . , en] is a multiclique of n elements in E & 1. Here, we take advantage of

the fact that every multiclique [e1, . . . , en] may be seen alternatively as a clique of p � n

elements in E, completed by n − p occurrences of the element ∗. It is not difficult to

establish that E�n defines the expected equalizer. Simply observe that a clique

X
R �� (E & 1)⊗n

equalizes the n! symmetries precisely when R factors as

X
S �� E�n equalizer �� (E & 1)⊗n ,
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where S is defined as the clique

S = { x � [e1, . . . , en] | x � e1 ⊗ · · · ⊗ en ∈ R }.

This factorization is moreover unique. This establishes that E�n is the equalizer of the

diagram (12). The recipe described in Section 2 requires also to check that this equalizer

commutes with the tensor product, in the sense that the morphism

X ⊗ E�n X⊗ equalizer �� X ⊗ (E & 1)⊗n (13)

defines the equalizer of the n! symmetries on the coherence space X ⊗ (E & 1)⊗n for every

coherence space X. So, suppose that a morphism

Y
R �� X ⊗ (E & 1)⊗n

equalizes the n! symmetries, in the sense that the n! composite morphisms are equal in

the diagram below:

Y
R �� X ⊗ (E & 1)⊗n

X⊗symmetry ��
···

X⊗symmetry
�� X ⊗ (E & 1)⊗n.

In that case, it is easy to see that the morphism R factors as

Y
S �� X ⊗ E�n X⊗ equalizer �� X ⊗ (E & 1)⊗n ,

where the morphism S is defined as the clique

S = { y � x ⊗ [e1, . . . , en] | y � x⊗ e1 ⊗ · · · ⊗ en ∈ R },

where e1, . . . , en are elements of the web |E & 1| = |E| � {∗}. This is moreover the unique

way to factor R through the morphism (13). This concludes the proof that E�n defines

the equalizer of n! symmetries in Equation (12).

Third step: Compute the sequential limit. We compute the limit of the sequential diagram

E�0 = 1 E�1 = (E & 1)�� E�2�� E�3 · · ·�� ,

where each morphism E�n+1 → E�n is defined as the clique

{ [e1, . . . , en, ∗] � [e1, . . . , en] | [e1, . . . , en] ∈ |E�n| }.

Note that the morphism enables one to see the coherence space E�n as the coherence

space E�n+1 restricted to its multisets [e1, . . . , en, ∗] containing k � n elements of the

original coherence space E. It is nearly immediate that this limit is provided by the

coherence space !E defined as follows:

— Its web |!E| = Mfin(|E|) contains the finite multicliques of E.

— Two elements u and v are coherent in !E precisely when their union u�v is a multiclique

together with the family of projections πn : !E → E�n defined by restricting the coherence

space !E to its multisets containing k � n elements of the original coherence space E.
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At this point, there simply remains to check that the sequential limit commutes with the

tensor product. Consider a family of morphisms

Y
Rn �� X ⊗ E�n

which makes the diagram

X ⊗ E�n

Y

Rn
��

Rn+1 ��
X ⊗ E�n+1

��

commute for every natural number n. In that case, every morphism Rn factors as

Y
S �� X⊗!E

X⊗πn �� X ⊗ E�n ,

where the morphism S is defined as the clique

S = { y � x⊗ [e1, . . . , en] | y � x⊗ [e1, . . . , en] ∈ Rn },

where e1, . . . , en are elements of the web of the original coherence space E. Moreover,

there exists a unique such morphism S satisfying the equality Rn = (X ⊗ πn) ◦ S for every

natural number n. This establishes that the assumptions of Proposition 2.1 are satisfied,

and consequently, that the sequential limit !E defines the free commutative comonoid

generated by the coherence space E in the category Coh.

5. Conway games

In this section, we apply the recipe described in Section 2 to the category of Conway

games introduced by André Joyal in Joyal (1977) and establish that, just as in the case of

coherence spaces, it computes the free exponential modality in this category.

Conway games. A Conway game A is an oriented rooted graph (VA, EA, λA) consisting of

(a) a set VA of vertices called the positions of the game; (b) a set EA ⊂ VA × VA of edges

called the moves of the game; (c) a function λA : EA → {−1,+1} indicating whether a

move is played by Opponent (−1) or by Proponent (+1). We write �A for the root of the

underlying graph. A Conway game is called negative when all the moves starting from its

root are played by Opponent.

A play s = m1 ·m2 · . . . ·mk−1 ·mk of a Conway game A is a path s : �A � xk starting from

the root �A

s : �A
m1−→ x1

m2−→ . . .
mk−1−−→ xk−1

mk−→ xk .

Two paths are parallel when they have the same initial and final positions. A play is

alternating when

∀i ∈ {1, . . . , k − 1}, λA(mi+1) = −λA(mi).

We note PlayA the set of plays of a game A.
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Dual. Every Conway game A induces a dual game A∗ obtained simply by reversing the

polarity of moves.

Tensor product. The tensor product A ⊗ B of two Conway games A and B is essentially

the asynchronous product of the two underlying graphs. More formally, it is defined as

— VA⊗B = VA × VB,

— its moves are of two kinds:

x⊗ y →
{
z ⊗ y if x→ z in the game A,

x⊗ z if y → z in the game B,

— the polarity of a move in A⊗ B is the same as the polarity of the underlying move in

the component A or the component B.

The unique Conway game 1 with a unique position � and no move is the neutral element

of the tensor product. As usual in game semantics, every play s of the game A⊗B can be

seen as the interleaving of a play s|A of the game A and a play s|B of the game B.

Strategies. Remark that the definition of a Conway game does not imply that all the

plays are alternating. The notion of alternation between Opponent and Proponent only

appears at the level of strategies (i.e. programs) and not at the level of games (i.e. types).

A strategy σ of a Conway game A is defined as a non-empty set of alternating plays of

even-length such that (a) every non-empty play starts with an Opponent move; (b) σ is

closed by even-length prefix; (c) σ is deterministic, i.e. for all plays s, and for all moves

m, n, n′,

s · m · n ∈ σ ∧ s · m · n′ ∈ σ ⇒ n = n′.

The category of Conway games. The category Conway has Conway games as objects,

and strategies σ of A∗ ⊗ B as morphisms σ : A → B. The composition is based on the

usual ‘parallel composition plus hiding’ technique and the identity is defined by a copycat

strategy. The resulting category Conway is compact-closed in the sense of Kelly and

Laplaza (1980).

The category Conway does not have finite nor infinite products (Melliès 2005). For

that reason, we compute the free exponential modality in the full subcategory Conway of

negative Conway games, which is symmetric monoidal closed and has products. The linear

implication A � B is obtained by restricting the plays of A∗ ⊗ B to opponent starting

plays. We explain in a later stage how the free construction on the subcategory Conway
induces the free construction on the whole category Conway.

First step: Compute the free pointed object. The monoidal unit 1 is terminal in the

category Conway . In other words, every negative Conway game may be seen as an affine

object in a unique way, by equipping it with the empty strategy tA : A→ 1. In particular,

the free affine object A• is simply A itself.
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Second step: Compute the symmetric tensor power. We would like to compute the equalizer

of the n! symmetries

A⊗n
symmetry ��

···
symmetry

�� A
⊗n (14)

on the coherence space A⊗n in the category of negative Conway games. We claim that

this equalizer is provided by the Conway game A�n defined as follows:

— The positions of the game A�n are the finite words w = x1 · · · xn of length n, whose

letters are positions xi of the game A, and such that for every 1 � i < n, the position

xi+1 is the root �A of the game A whenever the position xi is the root �A of the game A.

— Its root is the word �A�n = �A · · · �A consisting of n positions at the root �A of the

game A.

— a move w → w′ is a move played in one copy:

w1 x w2 → w1 y w2,

where x→ y is a move of the game A. Note that the condition on the positions implies

that when a new copy of A is opened (that is, when x = �A) no position in w1 is at

the root, and all the positions in w2 are at the root,

— the polarities of moves are inherited from the game A in the obvious way.

It is equipped with the morphism

A�n equalizer �� A⊗n

defined as the strategy containing every even-length play s of A�n � A⊗n such that

∀t ≺even s , t|A�n = 〈t|A⊗n〉,

where ≺even is the prefix order restricted to the even-length plays and 〈t|A⊗n〉 is the play of

the game A�n obtained from the play t|A⊗n of the game A⊗n by reordering the copies of A

so that every occurrence of �A appears at the end of each position of the play.

It is not difficult to establish that A�n defines the expected equalizer. Simply observe

that a strategy

X
σ �� A⊗n

equalizes the n! symmetries precisely when σ factors as

X
τ �� A�n equalizer �� A⊗n ,

where τ is defined as the strategy containing every even-length play s of X � A�n such

that

∀t ≺even s , ∃t′ ∈ σ, t|X = t′|X and t|A�n = 〈t′|A⊗n〉.
This factorization of the strategy σ is moreover unique. This establishes that A�n is the

equalizer of the diagram (14). The recipe described in Section 2 also requires to check

that this equalizer commutes with the tensor product. So, suppose that a morphism

Y
σ �� X ⊗ A⊗n
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equalizes the n! symmetries. In that case, it is easy to see that the morphism σ factors as

Y
τ �� X ⊗ A�n X⊗ equalizer �� X ⊗ A⊗n ,

where the morphism τ is defined as the strategy containing every even-length play s of

the game Y � X ⊗ A�n such that

∀t ≺even s , ∃t′ ∈ σ, t|Y = t′|Y and t|X = t′|X and t|A�n = 〈t′|A⊗n〉.

This factorization of the strategy σ through the morphism X ⊗ equalizer is moreover

unique. This concludes the proof that A�n defines the equalizer of n! symmetries in

Equation (14).

Third step: Compute the sequential limit. We compute the limit of the sequential diagram:

A�0 = 1 A�1 = A�� A�2�� A�3�� · · ·�� ,

where each morphism A�n+1 → A�n is defined as the partial copycat strategies A�n ←
A�n+1 identifying A�n as the subgame of A�n+1, where only the first n copies of A can be

played. It is easy to check that the limit of this diagram in the category Conway is the

Conway game A∞ defined as follows:

— The positions of the game A∞ are the infinite words w = x1 · x2 · · · of positions of A

for which there exists an n such that

x1 · · · xn ∈ VA�n

and xi is the root �A for all i � n + 1.

— Its root is the infinite word �A∞ = �ωA , where every position is at the root of A.

— A move w → w′ is a move played in one copy:

w1 x w2 → w1 y w2,

where x→ y is a move of the game A,

— The polarities of moves are inherited from the game A in the obvious way.

The Conway game A∞ comes together with the family of projections πn : A∞ → A�n

defined as the strategy containing every even-length play s of A∞ � A�n such that

∀t ≺even s , t|A∞ = 〈t|A�n〉∞.

In the equation above, we use the fact that the game A�n can be seen as a subgame of A∞

obtained by expanding every position with �ωA . We note 〈−〉∞ this embedding.

At this point, there simply remains to check that the sequential limit commutes with

the tensor product. Consider a family of morphisms

Y
σn �� X ⊗ A�n

https://doi.org/10.1017/S0960129516000426 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129516000426


P.-A. Melliès, N. Tabareau and C. Tasson 1270

which makes the diagram

X ⊗ A�n

Y

σn
��

σn+1 ��
X ⊗ A�n+1

��

commute for every natural number n. In that case, every morphism σn factors as

Y
τ �� X ⊗ A∞

X⊗πn �� X ⊗ A�n ,

where the morphism τ is defined as the strategy containing every even-length play s of

the game Y � X ⊗ A∞ such that

∀t ≺even s , ∃t′ ∈ σ, t|X = t′|X and t|Y = t′|Y and t|A∞ = 〈t′|A�n〉∞.

Moreover, τ is the unique morphism satisfying the equality σn = (X ⊗ πn) ◦ τ for every

natural number n. This establishes that the assumptions of Proposition 2.1 are satisfied,

and consequently, that the sequential limit A∞ defines the free commutative comonoid

generated by the negative Conway game A in the category Conway .

The free exponential in the whole category Conway. At this stage, it is worth observing

that the free construction in the category Conway extends in fact to the whole category

of Conway games. The reason is that every commutative comonoid K in the category

of Conway games is in fact an Opponent-starting game. The proof is extremely simple:

Suppose that there exists an initial Player move m in a commutative comonoid (K, d, u).

In that case, the equality

K
d �� K ⊗K

K⊗u �� K = K
id �� K

ensures that the strategy d : K1 → K2 ⊗ K3 reacts to the move m played in the

component K1 by playing a move n in the component K2 or K3. Then, the equality

K
d �� K ⊗K

σ �� K ⊗K = K
d �� K ⊗K

implies that the strategy d reacts by playing the same move n in the other component K3

or K2. This contradicts the fact that the strategy d is deterministic, and establishes that

every commutative comonoid is negative. Moreover, the inclusion functor from Conway
to Conway has a right adjoint, which associates to every Conway game A the negative

Conway game A obtained by removing all the Proponent moves from the root �A. By

combining these two observations, one obtains that the game (A )∞ is the free commutative

comonoid generated by a Conway game A in the category Conway.

6. An instructive counterexample: finiteness spaces

We have just established that the very same limit formula enables one to compute the free

exponential modality in the coherence space model as well as in the Conway game model.

Interestingly, this does not mean that the formula works in every model of linear logic.
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This is precisely the purpose of this section: We explain why the formula does not work

in the finiteness space model of linear logic, an important relational model introduced by

Ehrhard (2005). Our purpose is not only to analyse the reasons for the defect, but also to

pave the way for the solution based on configuration spaces developed in the subsequent

Sections 7–9.

6.1. The category of finiteness spaces

The definition of a finiteness space is based on the notion of an orthogonality relation,

defined as follows. Let E be a countable set. Two subsets u, u′ ⊆ E are called orthogonal

precisely when their intersection u ∩ u′ is finite:

u ⊥fin u′ ⇐⇒ u ∩ u′ finite. (15)

The orthogonal of a set of subsets F ⊆ P(E) is then defined as

F⊥ = { u′ ⊆ E | ∀u ∈ F, u ⊥fin u′ } .

A finiteness space E = (|E|,F(E)) consists of a countable |E| called its web and of a

set F(E) ⊆ P(|E|) called its finiteness structure. One requires moreover that the finiteness

structure is equal to its biorthogonal:

F(E)⊥⊥ = F(E).

The elements of F(E) (resp. F(E)⊥) are called finitary (resp. antifinitary).

Finite product. The product E1 & E2 of two finiteness spaces E1 and E2 is defined by its

web |E1 & E2| = |E1| � |E2| and by its finiteness structure F (E1 & E2) = F (E1) � F (E2).

Tensor product. The tensor product E1 ⊗ E2 of two finiteness spaces E1 and E2 is defined

by |E1 ⊗ E2| = |E|1 × |E2| and by

F (E1 ⊗ E2) =

{
w ⊆ |E|1 × |E2|

∣∣∣∣ ΠE1
(w) ∈ F (E1) ,

ΠE2
(w) ∈ F (E2)

}
,

where ΠE1
(w) = {e1 ∈ |E1| | ∃e2 ∈ |E2|, (e1, e2) ∈ w}. The unit of the tensor is defined by

|1| = {∗}, and F (1) = {�, {∗}}. Note that the definition of the tensor product is valid

because the set F (E1 ⊗ E2) is equal to its biorthogonal, see Ehrhard (2005) for details.

Linear implication. A finitary relation R from a finiteness space E1 to another one E2 is

defined as a subset of |E1| × |E2| such that

∀u ∈ F(E1), R(u) = { e2 ∈ |E2| | ∃e1 ∈ u, e1 R e2 } ∈ F(E2),

∀v′ ∈ F(E2)
⊥, tR(v′) = { e1 ∈ |E1| | ∃e2 ∈ v′, e1 R e2 } ∈ F(E1)

⊥.

The linear implication E1 � E2 is defined as the finiteness space with web |E1 � E2| =
|E|1 × |E2| and with finiteness structure F (E1 � E2) the set of finitary relations.

The exponential modality. The exponential modality ! is defined as follows: Given a

finiteness space E, the finiteness space !E has its web |!E| = Mfin(|E|) defined as the set
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of finite multisets μ : |E| → N and its finiteness structure defined as

F(!E) = { M ⊆Mfin(|E|) | ΠE(M) ∈ F(E) },

where the support ΠE(M) of a set of finite multisets M ∈Mfin(|E|) is defined as

ΠE(M) = { e ∈ |E| | ∃μ ∈M, μ(e) �= 0 }.

The category of finiteness spaces. The category Fin of finiteness spaces has finiteness spaces

as objects and finitary relations as morphisms, composed in a relational way. Observe

in particular that the identity relation on the web |E| of a finiteness space E defines

a finitary relation between E and itself, and that relational composition of two finitary

relations defines a finitary relation. The category Fin of finiteness spaces is ∗-autonomous

and provides a model of propositional linear logic.

6.2. The counter-example

Christine Tasson observes in her PhD thesis that the exponential modality ! defined

by Ehrhard associates to every finiteness space E its free commutative comonoid !E in

the category Fin, see Tasson (2009) for details. On the other hand, it appears that the

finiteness space E∞ computed by the limit formula (9) does not coincide with the finiteness

space !E, and in fact, does not define (in any obvious way) a commutative comonoid in

the category Fin. So, let us proceed along the recipe explained in Section 2, and see where

the construction goes wrong. The first step of the construction is to compute the free

pointed object E• generated by a finiteness space E. Since the category Fin has cartesian

products, the object E• is simply defined as

E• = E & 1.

The second step of the construction is to compute the symmetric tensor power E�n of

the finiteness space E, defined as the equalizer of the n! symmetries over the finiteness

space (E•)
⊗n. A simple computation shows that the web of E�n is equal to the set of

multisets of elements of |E| of cardinality less than n:

|E�n| = M�n
fin (|E|)

and that its finiteness structure is equal to

F(E�n) = { Mn ⊆M�n
fin (|E|) | ΠE(Mn) ∈ F(E) }.

Moreover, this equalizer commutes with the tensor product in the expected sense. This

completes the second step of the construction.

The third and last step in order to compute the limit formula (9) is to take the sequential

limit E∞ of the finiteness spaces E�n. The web of this sequential limit is equal to the set

|E∞| = Mfin(|E|) of finite multisets of elements of |E|, and its finiteness structure to

F (E∞) =

{
M ∈Mfin(|E|)

∣∣∣ ∀n ∈ N,
Mn = M ∩M�n

fin (|E|),
ΠE(Mn) ∈ F(E).

}
.
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Note that the webs of !E and of E∞ are equal, and coincide in fact with the free

exponential in the relational model. However, the finiteness structures of !E and E∞ do

not coincide in general:

F(!E) � F (E∞) .

We illustrate that point on the finiteness space Nat whose web |Nat| = N is the set of

natural numbers and whose finiteness structure F (Nat) is the collection Pfin(N) of finite

subsets. Note that Nat is the interpretation of the formula (!1)⊥ in the category Fin. It

is easy to see that the finiteness spaces !Nat and Nat∞ have the same web Mfin(N), but

different finiteness structures:

F (!Nat) = {M ⊆Mfin(N) | ΠNat(M) finite}
= {M ⊆Mfin(N) | ∃N ∈ N,M ⊆Mfin({0, . . . , N})} ,

F (Nat∞) = {M ⊆Mfin(N) | ∀n ∈ N, ΠNat(M ∩Mn
fin(N)) finite} .

For instance, let μn = [0, . . . , n] be the set of all natural numbers k � n seen as a multiset.

Then, the set of all these multisets

M = { μn | n ∈ N }

is an element of F (Nat∞) but not an element of F (!Nat). Considering the content of

Proposition 2.1, the reason for the failure of the construction is that the sequential

limit (8) does not commute with the tensor product. Let us illustrate that interesting point

by comparing Nat ⊗ Nat∞ with the sequential limit lim(Nat ⊗ Nat�n) of the diagram of

finiteness spaces:

Nat⊗ 1 Nat⊗ Nat�1�� · · ·�� Nat⊗ Nat�n�� Nat⊗ Nat�n+1�� · · ·�� .

The two finiteness spaces Nat⊗Nat∞ and lim(Nat⊗Nat�n) have the same web N×Mfin(N)

but different finiteness structures:

F (Nat⊗ Nat∞) = {M ⊆ N×Mfin(N) |∃N,M ⊆ {0, . . . , N} ×Mfin({0, . . . , N})} ,
F

(
lim(Nat⊗ Nat�n)

)
= {M | ∀n ∈ N, ∃Nn, Mn ⊆ {0, . . . , Nn} ×Mfin({0, . . . , Nn})},

where Mn = M ∩ (N ×Mn
fin(N)) denotes the subset of M made of pairs whose second

component is a multiset containing exactly n elements. Typically, the set of pairs

M ′ = { (n, μn) | n ∈ N }

is an element of F
(
lim(Nat⊗ Nat�n)

)
but not of F (Nat⊗ Nat∞) because its projection

on the first component Nat has the infinite support N. This subtle phenomenon comes

from the fact that an infinite directed union of finitary sets in a finiteness space E is

not necessarily finitary in that space. This departs from the coherence space model where

an infinite directed union of cliques of a space E is a clique of that space, a fact which

explains the success of the recipe in the coherence model.
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Remark. The interested reader will check that Formula (5) computes the same finiteness

space E∞ as Formula (9) because the finiteness space E�n coincides in fact with the

cartesian product of Ek for k � n.

The next three sections are devoted to a resolution of that question, achieved by

embedding the category of finiteness spaces in a larger category of configuration spaces,

and performing the free commutative comonoid construction in that larger universe.

7. Configuration spaces

As a preliminary training exercise before attacking (in Section 9), the question of finiteness

spaces, we come back to the coherence space model, and explain how the free exponential

modality may be constructed in a larger universe of configuration spaces where negation

is not involutive anymore. More specifically, we show that the limit formula described

in Section 2 computes the free commutative comonoid in the category of configuration

spaces. Then, we explain (in Section 8) how to recover the category of coherence spaces,

its tensor product, its cartesian product, and its exponential modality, by restricting the

category of configuration spaces to its double negation closed objects. This provides an

alternative construction of the exponential modality in the category of coherence spaces,

as well as a precious guide towards the construction of the exponential modality for

finiteness spaces, which will be performed along the same lines in Section 9.

The category of configuration spaces. A configuration space is defined as a pair

E = (|E|,Config(E))

consisting of a countable set |E| called the web of E and of a set Config(E) ⊆ P(|E|)
whose elements are called the configurations of E. Every configuration space is required

moreover to satisfy the following covering condition:

∀x ∈ |E|, ∃u ∈ Config(E) such that x ∈ u.

The category Config has configuration spaces as objects, and its morphisms

R : E1 −→ E2

are the binary relations R ⊆ |E1| × |E2| satisfying the two properties:

— R transports configurations forward :

∀u ∈ Config(E1), R(u) ∈ Config(E2),

— R is locally injective:

∀u ∈ Config(E1), ∀e1, e
′
1 ∈ u, ∀e2 ∈ |E2|, e1 R e2 and e′1 R e2 ⇒ e1 = e′1.

Here, R(u) is defined as

R(u) = { e2 ∈ |E2| | ∃e1 ∈ u, e1 R e2 }.
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The identity and composition laws are defined as in the category of sets and relations.

Note in particular that the identity relation satisfies the two properties, just stated, about

morphisms between configuration spaces, and that relational composition preserves them.

Finite product. The product E1 & E2 of two configuration spaces E1 and E2 is defined by

its web |E1 & E2| = |E1| � |E2| and by its configurations:

Config(E1 & E2) = { u1 � u2 |u1 ∈ Config(E1), u2 ∈ Config(E2) }.

Its unit is the terminal object of the category Config, the configuration space � with an

empty web, and the empty set as its unique configuration: Config(�) = {�}.

Finite coproduct. The coproduct E1⊕E2 of two configuration spaces E1 and E2 is defined

by its web |E1 ⊕ E2| = |E1| � |E2| and by its configurations:

Config(E1 ⊕ E2) = { u1 ∈ Config(E1) } ∪ { u2 ∈ Config(E2) }.

Its unit is the initial object of the category Config, the configuration space 0 with an

empty web, and with no configuration: Config(0) = �.

Tensor product. The tensor product E1 ⊗ E2 of two configuration spaces is defined by its

web |E1 ⊗ E2| = |E1| × |E2| and by its configurations:

Config(E1 ⊗ E2) = { (u1, u2) | u1 ∈ Config(E1), u2 ∈ Config(E2) }.

The monoidal unit 1 is the configuration space with a singleton web |1| = {∗} and two

configurations: Config(1) = {�, {∗}}. This equips the category Config with the structure

of a symmetric monoidal category.

First step: Compute the free affine object. Every configuration space E generates the free

pointed object defined as

E• = E & 1.

Its web contains all the elements of the web of E together with an additional point

denoted ∗. Its configurations are the same as the configurations of E, except that every

configuration u ∈ Config(E) is augmented with the point ∗:

Config(E & 1) = { u � {∗} | u ∈ Config(E) }.

Second step: Compute the symmetric tensor power. The equalizer E�n of the n! symmetries

on the configuration space (E & 1)⊗n is the configuration space

— whose support is the set of multisets of cardinality at most n:

|E�n| = { [e1, . . . , en] | ∃u ∈ Config(E) s.t. ∀i � n, ei ∈ u � {∗} },

— whose configurations u�n are deduced from the configurations u of E,

Config(E�n) = { u�n ⊆ |E�n| | u ∈ Config(E) },

https://doi.org/10.1017/S0960129516000426 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129516000426


P.-A. Melliès, N. Tabareau and C. Tasson 1276

where the configuration u�n is defined as

u�n = { [e1, . . . , en] | ∀i � n, ei ∈ u � {∗} }
= { [e1, . . . , ep, ∗, . . . , ∗︸ ︷︷ ︸

n−p

] | for some p ∈ N, ∀i � p, ei ∈ u }.

Note in particular that the configurations of E�n are in a one-to-one relationship with

the configurations of E.

Third step: Compute the sequential limit. For every configuration space E, let !E denote

the configuration space whose web is the set of multisets whose support are included in

the configurations:

|!E| = { μ ∈Mfin(|E|) | ∃v ∈ Config(E) such that ΠE(μ) ⊆ v }

and whose configurations u† are generated by the configurations of E:

Config(!E) = { u† | u ∈ Config(E) },

where

u† = { [e1, . . . , ep] | ∀i � p, ei ∈ u }.
We claim that the configuration space !E is the limit of the sequential diagram in the

category Config:

1 E•
ι0�� E�2ι1�� E�3ι2�� · · ·ι3�� , (16)

where

[e1, . . . , ep, ∗, . . . , ∗︸ ︷︷ ︸
n+1−p

] ιn [f1, . . . , fq, ∗, . . . , ∗︸ ︷︷ ︸
n−q

] ⇐⇒

⎧⎨
⎩

p = q

[e1, . . . , ep] = [f1, . . . , fq]

for e1, . . . , ep, f1, . . . , fq ∈ |E|.

For every n ∈ N, let πn : !E → E�n denote the following binary relation:

[e1, . . . , ep] πn [f1, . . . , fq, ∗, . . . , ∗︸ ︷︷ ︸
n−q

] ⇐⇒

⎧⎨
⎩

p = q

[e1, . . . , ep] = [f1, . . . , fq]

for e1, . . . , ep, f1, . . . , fq ∈ |E|.

The relation πn is locally injective and satisfies

∀u ∈ Config(E), πn(u
†) = u�n.

This shows that πn is a morphism of configuration spaces. Moreover, the diagram

E�n

!E

πn ��

πn+1 �� E�n+1

ιn

��
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commutes in the category Config, for every natural number n. Now, consider another

family of morphisms Rn : X → E�n making the diagram

E�n

X

Rn ��

Rn+1 �� E�n+1

ιn

��

(17)

commute for every natural number n. The binary relation S : |X| → |!E| is defined as

x S [e1, . . . , en] ⇐⇒ xRn [e1, . . . , en],

where e1, . . . , en are elements of the web of E. We establish that the binary relation S

defines in fact a morphism S : X → !E of configuration spaces. We start by the easiest

and less interesting part, and show that S is locally injective. Suppose that two elements

x1, x2 ∈ |X| of a configuration w ∈ Config(X) are related by the relation S to the same

element [e1, . . . , en] ∈ |!E|. We know that, by definition of S , the two elements x1 and

x2 are related to [e1, . . . , en] by the relation Rn. The equality x1 = x2 follows from the

local injectivity of Rn. This proves that the relation S is locally injective. The next step

is the most interesting part of the proof: It consists in establishing that the relation S

transports every configuration w of X to a configuration R(w) of !E. So, let w be such a

configuration of X. The relation R1 : X → E is a morphism of configuration space, and

thus transports the configuration w to a configuration R1(w) of E. By definition of E & 1,

the configuration R1(w) is of the form u � {∗} for a configuration u of space E. Now, we

establish by induction on n that Rn(w) = u�n for all n. This is true for n = 0 because

the singleton configuration is the unique configuration of the unit 1. This is also true

for n = 1. Now, suppose that Rn(w) = u�n for a given natural number n. We establish

that Rn+1(w) = u�n+1 by observing that the relation Rn+1 : X → !E is a morphism of

configuration spaces, and thus transports the configuration w to a configuration Rn+1(w)

of the space E�n+1. By definition of E�n+1, the configuration Rn+1(w) is necessarily of the

form v�n+1 for a configuration v of E. Now, we apply our induction hypothesis together

with the fact that the diagram (17) commutes, and deduce that ιn(v
�n+1) = u�n. From this

follows immediately that u�n = v�n, since v�n = ιn(v
�n+1). Hence, u = v since u and v may

be recovered as the set of singleton multisets in u�n and v�n. This concludes our proof by

induction that Rn(w) = u�n. From this follows that

S(w) =
⋃
n∈N

Rn(w) =
⋃
n∈N

u�n = u†.

Once this property established, we can easily deduce that every morphism Rn factors

as πn ◦ S , and that every other relation T such that Rn = πn ◦ T is equal to S . This

concludes the proof that !E is the limit of the sequential diagram (16). In order to

complete the third step of the recipe, we also need to show that the sequential limit

commutes with the tensor product. Consider a family of morphisms Rn : Y → X ⊗ E�n
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making the diagram

X ⊗ E�n

Y

Rn
��

Rn+1 �� X ⊗ E�n+1

X⊗ιn

��

commute for every natural number n, and define the relation S : |Y | → |X⊗ !E| as

follows:

y S (x⊗ [e1, . . . , en]) ⇐⇒ y Rn (x⊗ [e1, . . . , en]),

where e1, . . . , en are elements of the web of E. It is easy to check that S defines the unique

morphism S : Y −→ X⊗!E of configuration spaces such that every morphism Rn factors

as

Rn : Y
S �� X⊗!E

X⊗πn �� E�n .

This elementary argument concludes the proof that all the assumptions of Proposition 2.1

are satisfied, and thus, that the configuration space !E defines the free commutative

comonoid generated by E in the category Config of configuration spaces.

Remark. The careful reader will notice that the family of morphisms ιn plays a fundamental

role in the construction of the space !E. They ensure in particular that a configuration

of !E is entirely determined by its projection on each level E�n, and thus, that the

configurations of the form u† are the only configurations of the sequential limit !E.

This is the reason why the computation of !E does not work with the more primitive

definition (5) of the exponential modality as an infinite product of symmetric powers. This

observation (together with its later application to finiteness spaces) is the main additional

contribution of the paper with respect to the extended abstract published in the ICALP

conference Melliès et al. (2009).

8. Configuration spaces and coherence spaces

Now that the symmetric monoidal category Config is equipped with a free exponential

modality, we would like to provide it with a suitable notion of negation. The simplest

way to achieve this is to deduce negation from a relevant choice of ‘false object’ provided

by a carefully selected configuration space ⊥. As we will see, the resulting notion of

negation (A �→ ¬A) enables one to identify the category Coh as the full subcategory of

double negation closed objects in the category Config. The two categories are related by

an adjunction

Config

L
��

⊥ Coh

R

�� , (18)

where the embedding functor R is fully faithful and injective on objects, and the left

adjoint functor L transports every configuration space E to its double negation ¬¬E.

This clarifies the categorical content of an old observation by Jean-Yves Girard, see for
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instance, Girard (2006), which has become folklore in the linear logic circles: It says that a

coherence space can be alternatively described (a) as a web |E| equipped with a coherence

relation ¨E as in Section 4, or (b) as a web |E| equipped with a set C of configurations

u ⊆ |E| closed under biorthogonality

C = C⊥⊥

for the following notion of orthogonality:

∀u, v ⊆ |E|, u ⊥ v ⇐⇒ #(u ∩ v) � 1, (19)

where #(u∩ v) denotes the cardinality of the set u∩ v. Here, the orthogonal X ⊥ of a set X

of subsets of |E| is defined as

X ⊥ = { u | ∀v ∈ X, u ⊥ v }.

The categorical construction may be also seen as a particular instance of the glueing

construction described by Hyland and Schalk (2002).

The dialogue category of configuration spaces. The configuration space ⊥ is defined as the

space with a singleton web |⊥| = {∗} and the two sets � and {∗} as configurations, that is,

Config(⊥) = {�, {∗}}. The configuration space ⊥ is exponentiable in the category Config,

in the sense that for every configuration space E the presheaf

F �→ Config(E ⊗ F,⊥)

on the category Config is representable by an object noted ¬E together with a family of

bijections

ϕE,F : Config(E ⊗ F,⊥) ∼= Config(F,¬E)

natural in F . Here, ¬E is defined as the configuration space with the same web as the

configuration space E, and with set of configurations defined as

Config(¬E) = { u | ∀v ∈ Config(E), u ⊥ v } = Config(E)⊥,

where orthogonality is defined as in Equation (19). This induces a dialogue category where

negation defines a functor

¬ : Config −→ Configop (20)

in a canonical way, thanks to the Yoneda lemma. See Melliès (2009) for a discussion on

the alternative definitions of a dialogue category.

The functor R from coherence spaces to configuration spaces. It is easy to see that

every coherence space E = (|E|,¨E) induces a configuration space R(E) with the same

web |R(E)| = |E| and with Config(R(E)) defined as the set of cliques of E. In particular,

the configuration space R(E) satisfies the covering condition because every element of its

web |R(E)| is an element of the configuration {e} ∈ Config(R(E)). This defines a functor

R : Coh −→ Config

which transports every morphism S : E → F of coherence spaces to the morphism R(S) :

R(E) → R(F) of configuration space with the same underlying relation S : |E| → |F |.

https://doi.org/10.1017/S0960129516000426 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129516000426


P.-A. Melliès, N. Tabareau and C. Tasson 1280

Note in particular that the relation S : |E| → |F | defines a morphism R(E) → R(F) of

configuration spaces because the relation S transports every clique u of E into a clique S(u)

of F , and because S satisfies the following local injectivity property:

∀e1, e2 ∈ |E|, ∀f ∈ |F |, e1 ¨E e2 and e1 S f and e2 S f ⇒ e1 = e2.

The functor R is obviously faithful. Although this is less obvious, the functor R is also full,

because every morphism S : R(E) → R(F) of configuration spaces is defined as a binary

relation R : |E| → |F | which defines at the same time a morphism R : E → F of coherence

spaces. Hence, R(R) = S . Let us explain why. Suppose that e1 � f1 and e2 � f2 are two

elements of a binary relation R : |E| → |F | underlying a morphism S : R(E) → R(F) of

configuration spaces. We establish that e1 � f1 and e2 � f2 are coherent in the coherence

space E � F . First of all, the statement

e1 ��E e2 ⇒ f1 ��F f2

comes from the fact that the morphism S transports the configuration u = {e1, e2} of R(E)

into a configuration S(u) of R(F) which contains the elements f1 and f2, which are thus

coherent in F , since S(u) is a clique of the coherence space F . The second statement

f1 ˚E f2 ⇒ e1 ˚E e2

follows from the fact that the morphism S : R(E) → R(F) of configuration spaces is

locally injective. This establishes that the elements e1 � f1 and e2 � f2 of the relation R

are pairwise coherent, and thus, that R is a clique in the coherence space E � F .

This concludes the proof that the functor R is fully faithful. The functor R being also

injective on objects, this enables one to see the category Coh as a full subcategory of the

category Config of configuration spaces.

The functor L from configuration spaces to coherence spaces. There remains to characterize

the coherence spaces amongst the configuration spaces. Interestingly, the solution will

come from the notion of linear negation on configuration spaces defined above. Observe

indeed that every configuration space ¬E is of the form R(F) for the coherence space F

with same web as E, and with coherence relation defined as

f1 ¨F f2 ⇐⇒ ∀v ∈ Config(E), {f1, f2} ⊥ v. (21)

This ensures in particular that the configurations of ¬E which are defined as the sets

orthogonal to Config(E), are the same as the cliques of F . This establishes that the image

of the negation functor (20) lies in the full subcategory Coh. Applying the negation functor

twice, one thus gets a functor

L : Config −→ Coh

which transports every configuration space E to the coherence space ¬¬E. It appears

moreover that this functor L is left adjoint to the functor R. The reason is that double

negation defines a monad in every dialogue category, with unit

ηE : E −→ ¬¬E.
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In the particular case of the dialogue category Config, this double negation monad T is

idempotent, which means that the multiplication μ : T ◦ T → T is an isomorphism. In

the case of a dialogue category, this reduces to the fact that the morphism

¬E
η¬E �� ¬¬¬E

¬ ηE �� ¬E

is equal to the identity for every object E. The category Coh coincides with the category

of algebras of the double negation monad, which is equivalent to the kleisli category

because the monad is idempotent.

A reconstruction of the coherence space model. It is possible to transfer along the right

adjoint functor R the symmetric monoidal structure as well as the cocartesian structure

of the category Config in order to recover the structure of symmetric monoidal category

with finite sums described earlier (in Section 4) on the category Coh of coherence spaces.

In this reconstruction, the tensor product of two coherence spaces E and F is recovered

as

E ⊗Coh F = L(R(E)⊗R(F)) (22)

with associated unit 1Coh = L(1), whilst the coproduct of two coherence spaces E and F

is recovered as

E ⊕Coh F = L(R(E)⊕R(F))

with associated unit 0Coh = L(0). This enables one to see the structure of ∗-autonomous

category with finite coproducts of the category Coh as inherited from the category Config.

In particular, in that reconstruction, the fact that the category Coh has finite products

follows from the existence of finite coproducts, and self-duality. One distinctive point of

the reconstruction is that the exponential modality of coherence spaces may be recovered

in the same way as

!Coh E = L ! R (E). (23)

There is a nice conceptual explanation behind that formula, which is that the free

exponential modality ! on the category Config factors as ! = U ◦ F where F is right

adjoint to the forgetful functor U from the category Comon of commutative comonoids

to the category of configuration spaces:

Comon

U
��

⊥ Config.

F

�� (24)

This adjunction may be composed with the adjunction (18) in the following way:

Comon

U
��

⊥ Config

F

��

L
��

⊥ Coh.

R

�� (25)

This defines a third adjunction, and establishes that the functor L ◦ U is left adjoint to

the functor F ◦R. The exponential modality !Coh coincides then with the comonad L ◦
U ◦ F ◦ R on the category of coherence spaces induced by the adjunction. Moreover,
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the category Comon is cartesian, with structure provided by the tensor product on

configuration spaces, this ensuring that the adjunction U ! F is symmetric monoidal.

Hence, in order to establish that the adjunction (25) defines an exponential modality

on the category of coherence spaces, it is sufficient to check that the adjunction (18) is

symmetric monoidal. This follows from the definition (or the reconstruction) of the tensor

product on coherence spaces as performed in Equation (22). Alternatively, the reader may

also observe that the adjunction (18) is symmetric monoidal because the double negation

monad is idempotent in the category of configuration spaces.

This reconstruction of the coherence space model should be understood as a categorical

counterpart of the double negation translation underlying the phase space model of linear

logic (Girard 1987, 2006) or the double orthogonal construction (Hyland and Schalk

2002). In particular, the transfer of structure may be reformulated in purely logical terms,

as follows:

E ⊗Coh F = ¬¬ (E ⊗ F), 1Coh = ¬¬ 1
E ⊕Coh F = ¬¬ (E ⊕ F) 0Coh = ¬¬ 0

together with

!Coh E = ¬¬ !E.

This last equality reformulates Equation (23) which we find useful to clarify before the end

of the section. The equation relies on the definition of L as double negation, together with

the explicit description of the coherence space ¬E associated to a configuration space E

provided in Equation (21). This leads to the following description of the coherence

space L(E) associated to a configuration space E:

e1 ¨L(E) e2 ⇐⇒ ∃v ∈ Config(E), {e1, e2} ⊆ v. (26)

Let E be a coherence space. By definition, the configurations of R(E) are the cliques of E.

The web of the configuration space ! R(E) is thus defined as the set of multisets μ whose

support is included in a clique of E. This establishes already that the two coherence

spaces !CohE and L ! R(E) have the same web. There remains to check that their

coherence relations coincide. By Equation (26), two elements of L ! R(E) are coherent

precisely when there exists a configuration u† of ! R(E) which contains them both, where

u is a clique of E. This happens precisely when their support is contained in u, and thus

precisely when they are coherent in the sense of !CohE. This establishes Equation (23).

9. Configuration spaces and finiteness spaces

In the two previous sections, we have shown how to reconstruct the coherence space model

of linear logic, from the configuration space model of tensorial logic where negation is

not involutive. This reconstruction includes in particular the exponential modality. In this

section, we explain how to apply the same recipe to the finiteness space model. This enables

us to recover the exponential modality of finiteness spaces defined by Ehrhard (2005) from

the free exponential modality computed in a relevant category of configuration spaces.

The whole point of the approach is that it enables us to compute the free exponential

modality on configuration spaces as the sequential limit described in Section 2, in contrast
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to what happens in the original category of finiteness spaces, as we observed in Section 6.

We start the section by defining the category Confin of configuration spaces adapted to

finiteness spaces.

The category of configuration spaces and locally finite relations. The category Confin has

the configuration spaces as objects, and its morphisms R : E1 → E2 are the relations

R ⊆ |E1| × |E2| such that

— R transports configurations forward :

∀u ∈ Config(E1), R(u) ∈ Config(E2),

— R is locally finite:

∀u ∈ Config(E1), ∀e2 ∈ |E2|, { e1 ∈ u | e1 R e2 } is finite.

The definition of the tensor product, of the cartesian product, of the cartesian sum and of

the exponential modality are the same in the category Confin as in the category Config
described in Section 7. This provides the category Confin with the structure of a symmetric

monoidal category with finite products and coproducts. The proof of that last point works

as in the case of the category Config, except that locally injective relations are replaced

by locally finite relations.

Now, we would like to relate the categories Fin and Confin in the same way as we

related the categories Coh and Config in the previous Section 8. To that purpose, we

define the functor

R : Fin −→ Confin

which transports every finitary space E = (|E|,F (E)) to the configuration space R(E)

with the same web, and whose configurations are the finitary subsets of E. It appears that

the functor R is full and faithful, just as it is the case with coherence spaces. This enables

us to see the category Fin as a full subcategory of Confin. Moreover, the functor R has a

left adjoint, obtained by applying twice the negation functor defined below.

Negation. Negation is defined in the same way as in the category Config, but this time

with respect to the orthogonality relation ⊥fin described in Equation (15). Namely, the

negation ¬E of a configuration space E is the configuration space with the same web

as E, and whose configurations are orthogonal to the configurations of E:

Config(¬E) = { u ⊆ E | ∀v ∈ Config(E), u ⊥fin v }.

This defines a dialogue category, with a negation functor from Confin to its opposite

category. By definition of finiteness spaces as double negated objects, every configuration

space ¬E is of the form RF for the finiteness space F = ¬E. The left adjoint functor

L : Confin −→ Fin
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is then defined as the double negation functor L : E �→ ¬¬E. One obtains a symmetric

monoidal adjunction

Confin

L
��

⊥ Fin

R

��

between the categories Fin and Confin, just as in the case of coherence spaces. In particular,

one has the natural isomorphisms

L(E) ⊗Fin L(F) ∼= L(E ⊗Confin F), 1Fin
∼= L(1Confin).

This implies in particular that the tensor product ⊗Fin on finiteness spaces E and F may

be recovered from the tensor product ⊗Confin in the same way as in the case of coherence

spaces:

E ⊗Fin F = L( R(E)⊗Confin R(F) ),

thanks to the equation E = L ◦R (E). The finite coproducts on finiteness spaces E and

F may be similarly recovered with the equations:

E ⊕Fin F = L( R(E)⊕Confin R(F) ), 0Fin = L ( 0Confin ).

Exponential modality. The free commutative comonoid !Confin E generated by a config-

uration space E is computed in the category Confin by applying the general recipe of

Section 2. In particular, the configuration space !Confin E is the limit of the same sequential

diagram

1 E•
ι0�� E�2ι1�� E�3ι2�� · · ·ι3��

as in the category Config, see Section 7 for details. The key point is that this limit

commutes with the tensor product in Confin for the same reasons that it commutes with

the tensor product in Config. This induces a pair of symmetric monoidal adjunctions

Comon

U
��

⊥ Confin

F

��

L
��

⊥ Fin,

R

��

where Comon denotes the category of commutative comonoids and homomorphisms

associated to the category Confin. The symmetric monoidal adjunction

Comon

L◦U
��

⊥ Fin

F◦R

��

obtained by composing the two adjunctions defines an exponential modality on the

category of finiteness spaces. Moreover, the induced comonad

!Fin E = L !Confin R (E)

coincides with the exponential modality !Fin described in Ehrhard (2005).
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10. Conclusion and future works

This investigation on the algebraic nature of the exponential modality leads us to a

number of interesting remarks of a purely logical nature. First of all, the computation of

the free commutative comonoid !A as a sequential limit

1 A�1�� A�2�� · · ·�� A�n�� A�n+1�� · · ·�� ,

where the space A�n of k � n copies of the space A is ‘glued’ inside the space A�n+1

of k � n + 1 copies reflects the fact that an intuitionistic proof (or a recursive program)

opens new copies of its argument A on the fly, in the course of interaction. In particular,

the number of copies of A is chosen dynamically, and not statically at the beginning of

the interaction, as it would be the case with the definition of !A as the infinite cartesian

product:

!A =
¯
n∈N

An / ∼n .

It is also quite puzzling that the sequential limit is not expressible (at least apparently)

as the construction of a recursive type. However, there should be a way to extend type

theory in order to incorporate such constructions, possibly starting from the model-

theoretic approach described in Section 3. This is an interesting topic for future work.

Another interesting issue enlightened in this work is the status of duality in logic. The

following slogan appears at the end of the survey (Melliès 2009):

logic = data structure + duality.

Here, the exponential modality is obviously on the side of data structure. As such, its

construction has no reason to interfere with negation and duality. This drastic philosophy

of logic provided a surprisingly fruitful guideline in this work. On the one hand, it offered

a conceptual explanation for the failure of the sequential limit construction in the self-dual

category of finiteness spaces. On the other hand, it led to the resolution of this issue in

the larger category of configuration spaces, where the exponential construction and the

negation are carefully separated. Much remains to be clarified on negation and duality at

this point, and it is certainly a bit too soon to judge. For instance, it is nearly immediate

to adapt the construction of Section 9 to the vectorial version of finiteness spaces defined

by Ehrhard (2002). Adapting the approach to Köthe spaces requires much more care,

and is left for future work. More generally, one would like to understand the status of

negation on topological vector spaces, and more specifically the relationship to topological

completion, without necessarily starting from a basis on the vector space, as in the current

presentation of finiteness spaces and Köthe spaces.

The authors would like to thank Thomas Ehrhard and Martin Hyland for the lively

discussions and inspiring comments.
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