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Direct numerical simulations of forced
and unforced separation bubbles on an
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Direct numerical simulations (DNS) of laminar separation bubbles on a NACA-0012
airfoil at Rec = 5 × 104 and incidence 5◦ are presented. Initially volume forcing is
introduced in order to promote transition to turbulence. After obtaining sufficient
data from this forced case, the explicitly added disturbances are removed and the
simulation run further. With no forcing the turbulence is observed to self-sustain, with
increased turbulence intensity in the reattachment region. A comparison of the forced
and unforced cases shows that the forcing improves the aerodynamic performance
whilst requiring little energy input. Classical linear stability analysis is performed
upon the time-averaged flow field; however no absolute instability is observed that
could explain the presence of self-sustaining turbulence. Finally, a series of simplified
DNS are presented that illustrate a three-dimensional absolute instability of the two-
dimensional vortex shedding that occurs naturally. Three-dimensional perturbations
are amplified in the braid region of developing vortices, and subsequently convected
upstream by local regions of reverse flow, within which the upstream velocity
magnitude greatly exceeds that of the time-average. The perturbations are convected
into the braid region of the next developing vortex, where they are amplified further,
hence the cycle repeats with increasing amplitude. The fact that this transition process
is independent of upstream disturbances has implications for modelling separation
bubbles.

1. Introduction
Under an adverse pressure gradient a boundary layer may separate, leading to

reverse (upstream) fluid flow. Within the separated region disturbances are strongly
amplified, typically leading to transition to turbulence. The resultant turbulent flow
enhances mixing and momentum transfer in the wall-normal direction, and causes
the boundary layer to reattach. This system of laminar separation, transition and
turbulent reattachment is referred to as a laminar (or transitional) separation bubble
(LSB), and is typically associated with flows at low to moderate Reynolds numbers.
When present on an airfoil, laminar separation bubbles have a marked effect upon
aerodynamic performance. Drag forces are typically increased, and the presence of
a separation bubble may determine stall behaviour (Gault 1957). The phenomenon
of bubble bursting, where a small increase in incidence leads to a sudden increase in
bubble length, causes a dramatic loss in aerodynamic performance and hence is an
important consideration in low-Reynolds-number airfoil design.
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Using the results of Gaster (1967), Horton (1969) was the first to describe the
time-averaged structure of a laminar separation bubble, and proposed an empirical
model for predicting bubble behaviour. Despite refinements such as the use of the
en transition prediction method, modelling of low-Reynolds-number effects and the
dependence on background turbulence levels, present day models do not adequately
predict bubble bursting or unsteady behaviour.

More recently, advances in understanding of laminar separation bubbles have been
made via numerical methods. The first numerical simulations of separation bubbles
were limited either to two-dimensional analysis (Pauley, Moin & Reynolds 1990), or
only studied primary/linear instability and did not resolve transition (Pauley 1994;
Rist 1994). Being less computationally expensive, linear stability analysis could be
performed before fully resolved direct numerical simulations (DNS) were possible.
Hammond & Redekopp (1998) performed local analysis of separated boundary layer
profiles in order to determine whether absolute instability could be observed, as it
had been for separated shear layers (Huerre & Monkewitz 1985) and bluff-body
wakes (Hannemann & Oertel 1989). For certain profiles local absolute instability
was observed, depending on both the maximum reverse flow and the height of
the reverse flow region. Similar criteria were investigated and confirmed later by
Rist & Maucher (2002). Hammond & Redekopp (1998) found that for profiles at
Reδ∗ = 103, a minimum reverse flow velocity of 20 % was required to observe local
absolute instability. Theofilis (2000) performed global linear stability analysis of a
laminar separation bubble, specifying a spanwise wavenumber, β , and computing the
resultant two-dimensional disturbance eigenvectors. A temporally growing stationary
mode was observed, associated with unsteadiness at the reattachment point but not
affecting the separation point. Growth rates were found to be significantly lower than
those associated with amplification of convective instabilities within the shear layer;
however Theofilis (2003) suggests that the existence of this mode may potentially be
relevant to the phenomenon of vortex shedding from separation bubbles as observed
by Pauley et al. (1990).

The first numerical simulations to fully resolve transition to turbulence within a
laminar separation bubble were conducted by Alam & Sandham (2000) and Spalart
& Strelets (2000). Alam & Sandham (2000) performed DNS of a laminar separation
bubble on a flat surface, induced by upper boundary transpiration. Performing linear
stability analysis on analytic velocity profiles similar to those observed in the DNS,
Alam & Sandham found that reverse flow greater than 15 % would be required
in order to sustain absolute instability, compared to an observed reverse flow of
only 4–8 %. As a result, it was concluded that the transition process was driven
by convective instability. Spalart & Strelets (2000) conducted DNS of a laminar
separation bubble for the purpose of assessing turbulence models. No unsteadiness
was introduced and inflow disturbances were less than 0.1 % of the free-stream
velocity; however transition to turbulence was still observed. As a result the study
stated that entry-region disturbances (referring to Tollmien–Schlichting, or TS, type
waves) could be discarded as the mechanism behind transition; however the study
also stated that the magnitude of reverse flow present was unlikely to be sufficient
to sustain absolute instability. In the study of Spalart & Strelets three-dimensionality
was observed to occur rapidly, with no clear regions of primary or secondary
instability, whereas Alam & Sandham observed �-vortex-induced breakdown. Hence
the first two fully resolved DNS of laminar separation bubbles apparently observed
different instability mechanisms leading to transition, and different transitional
behaviour.
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Marxen et al. (2003) performed a combined DNS and experimental study of an LSB
on a flat plate. Periodic two-dimensional disturbances were introduced upstream of
separation, and three-dimensionality was introduced via a spanwise array of spacers.
The separated shear layer was observed to roll up to form vortices which subsequently
broke down to turbulence. The same configuration was studied further by Lang, Rist
& Wagner (2004) and again by Marxen, Rist & Wagner (2004) in order to quantify the
respective roles of two-dimensional and three-dimensional disturbances. Marxen et al.
concluded that transition was driven by convective amplification of a two-dimensional
TS wave, which also determined the length of the bubble, and that the dominant
mechanism behind transition is an absolute secondary instability in a manner first
proposed by Maucher, Rist & Wagner (1997), and investigated further by Maucher,
Rist & Wagner (1998).

It is clear that numerical simulations of separation bubbles can differ markedly in
behaviour. Unlike wake and shear layer flows, the presence of regions of absolute
instability within laminar separation bubbles has not yet been confirmed by linear
stability analysis of DNS or experimental velocity profiles, and stability characteristics
of separation bubbles not well defined in all cases. With continued advances in
computing power, it is now possible to perform DNS of laminar separation bubbles
on full airfoil configurations. This contrasts with previous numerical studies, which
have been limited to bubbles on flat plates or other simplified geometries in order to
reduce the computational cost. The advantage of studying full airfoil configurations
is that the bubble can interact more strongly with the potential flow, in particular via
the Kutta condition at the trailing edge. The bubble will be closer in nature to those
observed under flight conditions, and the influence of the bubble behaviour on the
aerodynamic performance of the airfoil can be observed directly.

The purpose of the current study is to investigate the dependence of bubble
behaviour on the presence of boundary layer disturbances, and to investigate the
role of instability mechanisms in separation bubble transition. First, data from both
forced and unforced three-dimensional simulations of a laminar separation bubble
on a NACA-0012 airfoil will be compared. Classical linear stability analysis will then
be performed upon the time-averaged flow fields obtained from the DNS, in order
to determine whether any local absolute instability is present. Finally, a series of
computationally inexpensive simulations will be presented, intended to explain the
self-sustained transition to turbulence observed in the first part of the study.

2. Direct numerical simulations
2.1. Simulation geometry

The chosen airfoil geometry is a NACA-0012, extended to include a sharp trailing
edge and rescaled to unit chord length. The coordinate system for the curvilinear
C-type grids used in all simulations is given in figure 1. Grids are equidistantly spaced
in the z-direction for three-dimensional simulations. The two parameters governing
domain size are the wake length W , and the domain radius R. The airfoil chord is
used as the reference length scale and the coordinate system is defined such that the
trailing edge is located at (x, y) = (1, 0).

2.2. Governing equations

All simulations were run at a Reynolds number based on airfoil chord of Rec = 5×104,
and Mach number M = 0.4 unless otherwise stated. A compressible-flow formulation
was chosen so that sound waves originating at the trailing edge could also be studied
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R

R

W

ξη

Figure 1. Topology of the computational domain.

(Sandberg, Sandham & Joseph 2007). The DNS code directly solves the unsteady,
compressible Navier–Stokes equations, written in curvilinear form as

∂ Q
∂t

+
∂ E
∂ξ

+
∂ F
∂η

+
∂G
∂z

=
∂ R
∂ξ

+
∂ S
∂η

+
∂T
∂z

. (2.1)

The conservative vector Q, inviscid flux vectors E, F and G, and the viscous vector
terms R, S and T are defined as

Q =

⎛
⎜⎜⎜⎜⎝

ρ

ρu

ρv

ρw

Et

⎞
⎟⎟⎟⎟⎠ , E =

⎛
⎜⎜⎜⎜⎜⎝

ρU

ρuU + pξx

ρvU + pξy

ρwU

(Et + p)U

⎞
⎟⎟⎟⎟⎟⎠ , (2.2)

F =

⎛
⎜⎜⎜⎜⎝

ρV

ρuV + pηx

ρvV + pηy

ρwV

(Et + p)V

⎞
⎟⎟⎟⎟⎠ , G =

⎛
⎜⎜⎜⎜⎝

ρw

ρuw

ρvw

ρww + p

(Et + p)w

⎞
⎟⎟⎟⎟⎠ , (2.3)

R =

⎛
⎜⎜⎜⎜⎜⎝

0

τxxξx + τxyξy

τyxξx + τyyξy

τzxξx + τzyξy

Qxξx + Qyξy

⎞
⎟⎟⎟⎟⎟⎠ , S =

⎛
⎜⎜⎜⎜⎜⎝

0

τxxηx + τxyηy

τyxηx + τyyηy

τzxηx + τzyηy

Qxηx + Qyηy

⎞
⎟⎟⎟⎟⎟⎠ , T =

⎛
⎜⎜⎜⎜⎜⎝

0

τxz

τyz

τzz

Qz

⎞
⎟⎟⎟⎟⎟⎠ , (2.4)

where ρ is the fluid density, u, v and w are velocity components in the Cartesian x, y

and z directions, p is the pressure, and Et is the total energy per unit volume, defined
as

Et = ρe + 1
2
ρ(uu + vv + ww), (2.5)

where

e =
T

γ (γ − 1)M2
. (2.6)
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Metric terms are defined as

ξx =
yη

J
, ηx = −yξ

J
, ξy = −xη

J
, ηy =

xξ

J
, (2.7)

noting that terms ξz and ηz are both equal to zero for computational grids with no
spanwise variation, as used in the current study, and the Jacobian J is defined as

J = xξyη − xηyξ . (2.8)

The contravariant velocities U and V are defined as

U = ξxu + ξyv, V = ηyv + ηxu, (2.9)

and the stress terms τij as

τij =
µ

Re

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3

µ

Re

∂uk

∂xk

δij . (2.10)

The terms Qi comprise the conduction and work terms of the energy equation,

Qi = −qi + ujτij , (2.11)

where

qi =
−µ

(γ − 1)M2RePr

∂T

∂xi

. (2.12)

Viscosity is calculated using Sutherland’s law,

µ = T 3/2 1 + C

T + C
, C = 0.3686̇, (2.13)

and finally, the perfect gas law relates p, ρ and T

p =
ρT

γM2
. (2.14)

The primitive variables ρ, u, v and T have been non-dimensionalized by the free-
stream conditions and dimensionless parameters Re, Pr and M are defined using
free-stream (reference) flow properties. The ratio of specific heats is specified as
γ = 1.4 and the Prandtl number as Pr =0.72.

2.3. Numerical method

Fourth-order-accurate central differences utilizing a five-point stencil are used for
spatial discretization. Fourth-order accuracy is extended to the domain boundaries by
use of a Carpenter boundary scheme (Carpenter, Nordström & Gottlieb 1999). No
artificial viscosity or filtering is used. Instead, stability is enhanced by entropy splitting
of the inviscid flux terms in combination with a Laplacian formulation of the viscous
terms (Sandham, Li & Yee 2002). The explicit fourth-order-accurate Runge–Kutta
scheme is used for time-stepping, and all cases were run with a constant time step of

t = 1 × 10−4. Appropriate boundary conditions must be applied to avoid unphysical
reflections. At the free-stream (η+) boundary, where the only disturbances likely to
reach the boundary will be in the form of linear waves, an integral characteristic
boundary condition is applied (Sandhu & Sandham 1994). At the downstream exit
boundary (ξ±), which will be subject to the passage of nonlinear fluid structures,
a zonal characteristic boundary condition (Sandberg & Sandham 2006) is applied
for increased effectiveness. At the airfoil surface an adiabatic, no-slip condition is
applied.
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TE +1 +2 +3
–1

–2

+4 +5

+1TE
–1

–2

+2 +3 +4 +5

TE point + 1
ξ-derivative stencil (upper)

TE point + 1
ξ-derivativestencil (lower)

Figure 2. ξ -derivative stencils on the upper and lower side of the wake cut for the first point
downstream of the trailing edge.

Along the wake cut, grid points are effectively duplicated, i.e. points on the line
η = 0 for the region above the wake cut are coincident with points on the line η = 0
for the region below the wake cut. This necessitates special treatment for the first two
points downstream of the trailing edge, since derivatives computed using the fourth-
order central difference scheme will use different stencils depending on whether the
derivative is evaluated on the upper or lower airfoil surface. This is illustrated in
figure 2 for the first point downstream of the trailing edge. The points on the upper
and lower branch cut occupy the same physical space, and to allow the two points
to differ in value would be incorrect. In order to solve this problem, when metric
terms are computed at the start of the simulation, for the first two points downstream
of the trailing edge all terms involving ξ -derivatives are averaged across the wake
cut. This means that the points on either side of the branch cut will use the same
metric terms, thus solving the same equations, and possessing the same values for
conservative variables. The trailing-edge point itself is represented by two grid points,
one on the upper airfoil surface and one on the lower, which are allowed to differ in
value.

The code is based upon an existing code that has been previously validated for
compressible turbulent plane channel flow (Sandham et al. 2002), and more recently
has been demonstrated to accurately represent the development of hydrodynamic
instabilities (Sandberg et al. 2007). The code used in the current study is different
in that it is applied to a curvilinear C-type grid with wake connection; however the
same metric terms were used in previous versions of the code.

Volume forcing is applied to the x- and y-momentum equations in the three-
dimensional simulation, the goal being to introduce three-dimensional disturbances
that are amplified in the free-shear layer and subsequently break down to turbulence.
Forcing is applied about the location (x, y) = (0.1, 0.129), corresponding to a point
within the boundary layer of the time-averaged solution, and is periodic in both
time and span. A cosine function is used to smoothly ramp the forcing terms from
a maximum at the centre of the forcing location to zero at radius 5 × 10−3 from
the forcing location. Frequencies were chosen based on linear stability analysis of
velocity profiles extracted from the time-averaged two-dimensional flow field, and
forcing was applied at several spanwise wavenumbers. The amplitude of velocity
disturbances introduced by the forcing is 0.1 % of the free-stream velocity. Details of
forcing parameters are given in table 1, where ω = 2πf , with f the frequency, and β

the spanwise wavenumber.
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ω β

48.76 2π/Lz

53.60 6π/Lz

53.60 8π/Lz

Table 1. Forcing parameters.

Grid G1 G2 G3

R 5.3 5.3 7.3
W 5 5 5
Nξ 2001 2570 2570
Nη 440 440 692
Nf oil 541 1066 1066
Nwake 1462 1506 1506

Table 2. Domain and grid dimensions for grid resolution investigation
at Rec = 5 × 104, α = 5◦.

2.4. Grid resolution of the two-dimensional case

Resolution requirements for direct simulation of the flow around an airfoil at incidence
are complex, since a variety of fluid phenomena are present and must be resolved.
Grid generation for high-order non-dissipative codes is non-trivial, and is achieved
by an iterative approach. The presence of under-resolved flow phenomena results
in numerical oscillations, particularly in sensitive quantities such as density gradient
or other derivative quantities. By analysing simulation results, locations of poor
resolution may be identified by such oscillations. A new grid is then generated,
with the purpose of improving the resolution at the necessary locations, and the
flow-field data interpolated onto the new grid. The simulation is then run on the
new grid and the results analysed in order to assess whether resolution issues have
been eliminated. The process is repeated as often as necessary, and avoids the need
for starting simulations from scratch. The iterative method of grid production is
particularly useful for the case of an airfoil with laminar separation bubble, since a
priori grid requirements are not known for all regions.

The iterative grid production process has been performed for the current case in
two dimensions. Simulations were run on three grids in total, and sufficient data
have been recorded to compare the performance of each grid. The first grid, G1,
was generated by estimating resolution requirements based on previous studies at
lower Reynolds numbers. Two further grids, denoted G2 and G3, were subsequently
produced in order to improve the resolution of the simulation. Details of all grids are
given in table 2.

When run in two dimensions, the upper airfoil boundary layer is observed to
separate near the leading edge of the airfoil. The separated shear layer subsequently
rolls up to form vortices, and periodic vortex shedding is observed (figure 3, grid G3).
The system of laminar separation, shear-layer roll-up and periodic vortex shedding
gives rise to a characteristic time-averaged skin friction coefficient, cf , distribution
and causes the lift coefficient, CL, to oscillate. These quantities are compared for grids
G1–G3 in figure 4.

When run using grid G1, CL oscillates in an almost perfectly periodic fashion.
The time-averaged cf distribution exhibits separation, secondary separation (the
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0.2

0.1

0

0 0.2 0.4
x

y

0.6 0.8 1.0
–0.1

Figure 3. Iso-contours of vorticity using 10 levels over the range ±150 for grid G3.

0 1 2 3
t

0.44

0.48

0.52

(a) (b)

CL

0 0.2 0.4 0.6 0.8 1.0
x

–0.01

0

0.01

0.02

cf

Figure 4. (a) Time-dependent CL and (b) time-averaged cf for grids G1 (· · ·), G2 (−−) and
G3 (—).

small region of positive cf within the larger separated region) and reattachment.
Downstream of reattachment a wave-like cf distribution is observed. Similar
behaviour is observed in two-dimensional simulations performed by Alam & Sandham
(2000), which also exhibited vortex shedding. It appears that this behaviour is caused
by the periodic passage of vortices and is unrelated to the presence of a trailing edge.
Some evidence of numerical oscillation was observed when iso-contours of vorticity
were plotted at sensitive levels, hence grid G2 was generated with an increased
streamwise grid resolution over the airfoil surface. When the simulation was continued
on grid G2, the mean CL increased, and the time-dependent behaviour became slightly
less regular. Numerical oscillations could no longer be observed in hydrodynamic
properties. The fundamental frequency of the vortex shedding remained unchanged;
however the reattachment point, and hence by inference the vortex shedding location,
moved upstream slightly. This alters the wave-like cf distribution downstream of
reattachment. Grid G3 was generated with increased wall-normal resolution and a
larger domain radius compared to grid G2. Minimal difference is observed in CL

and cf between grids G2 and G3. The behaviour of cf in the region of secondary
separation changes very slightly; however elsewhere the cf distributions are nearly
identical. It appears that grid G2 adequately captures the vortex shedding behaviour
observed in two dimensions, with no evidence of under-resolution. Grid G3 is more
suited to three-dimensional simulations however, since the increased wall-normal
resolution is more appropriate for resolving turbulence.
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90º
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(a) (b)

1.005
0.995
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–30º
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120º

1.0051
0.995

Figure 5. Azimuthal variation of p/p∞ over the range 0.99 to 1.005, at two chords (a) and
three chords (b) radius from the airfoil trailing edge, for grids G2 (−−) and G3 (—).

2.5. Domain size

When choosing the computational domain size, a compromise must be made between
capturing the potential flow about the airfoil as fully as possible and minimizing
computational expense. The effect of altering domain size may be investigated by
considering simulations run using grids G2 and G3 (defined in § 2.4); grid G2 is
of radius R = 5.3, whereas grid G3 is of radius R = 7.3. The azimuthal variation of
p/p∞, where p∞ is the free-stream pressure, is plotted in figure 5 for both grids, at a
radius of two chords (figure 5a) and three chords (figure 5b) from the airfoil trailing
edge.

At around 0◦ there is a difference of approximately p/p∞ = 1.5 × 10−3 between the
two grids, presumably caused by differences in resolution in the η-direction in the
wake region; however this is the only significant difference observed. The azimuthal
pressure distribution in the potential flow region appears remarkably similar for
both cases, and at three chords radius the difference between grids in this region is
significantly less than p/p∞ = 1 × 10−3. If the radius of the domain were increased
beyond seven chords, further changes would be even smaller in amplitude. It appears
then that a domain radius of 5.3 airfoil chords adequately captures the potential
flow about the airfoil, hence the chosen domain radius of 7.3 chords is more than
adequate. The characteristics-based boundary conditions appear sufficiently effective
that a comparatively modest domain size is able to capture the potential flow.

2.6. Extension to three dimensions

Whilst possible for generating grids for two-dimensional simulations, an iterative grid
production method is not suitable for extension to three-dimensional simulations as
it would be unfeasibly expensive. Using cf predictions from XFoil (Drela & Giles
1987), the grid resolution over the aft section of the airfoil for grid G3 was compared
to turbulent plane channel flow data (Sandham et al. 2002), which suggested that grid
G3 would be adequate for the three-dimensional simulation. The spanwise domain
width was selected based upon criteria determined from simulations of the flow over
a backward-facing step (von Terzi 2004). A domain width of at least 4 times the
step height (corresponding approximately to the reattachment length) is necessary to
resolve the largest spanwise structures in the case of flow over a backward-facing
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Simulation 
x+ 
z+ 
y+ Nη : y+ < 10

Case 3DF 3.36 6.49 1.0 9
Sandham et al. (2002) 15 7.5 – 10

Table 3. Grid resolution in wall units at the maximum cf location for case 3DF.

0 500 1000 1500
β

100

(a) (b)

10–1

10–2

10–3

10–4

0 500 1000 1500
β

100

10–1

10–2

10–3

10–4

SK

Figure 6. Spanwise power spectra of K , integrated over the range 1<y+ < 50, taken for
case 3DF (a) and case 3DU (b) at x = 0.8 (−), x = 0.9 (−−), and x =1.0 (− ·).

step. Making an analogy with the maximum bubble height based on displacement
thickness, δ∗, a domain width Lz = 0.2 was chosen, being 9.6 times the maximum
bubble height of δ∗ = 2.09 × 10−2 and 7.2 times δ∗ at the trailing edge. The number of
spanwise grid points was chosen to be 96, again based on the resolution requirements
of turbulent plane channel flow and cf predictions via XFoil.

During initial stages of three-dimensional simulations, flow-field properties were
checked in order to confirm that all fluid structures appeared resolved. A final
confirmation of adequate spatial and temporal resolution is provided by a posteriori
statistical analysis of the DNS data. Grid resolution in wall units, taken at the
maximum turbulent cf location observed over all simulations, was found to differ
slightly from XFoil predictions, but was still found to be well-resolved based on
turbulent plane channel flow criteria. Resolution in wall units for case 3DF (defined
in § 3), taken at x = 0.612 where the maximum cf of 7.60 × 10−3 is observed, is given
in table 3.

In order to confirm that turbulent behaviour is resolved over all time and length
scales, power spectra of turbulence kinetic energy, defined as K = 1

2
(u′u′ +v′v′ +w′w′),

are computed. In order to incorporate a reasonable number of samples, spanwise
spectra are integrated over the finite wall-normal distance 1< y+ < 50 as well as time-
averaged, using nine data sets taken at intervals of t = 0.7. Figure 6 displays spanwise
power spectra of K taken at three x-locations for case 3DF (a) and case 3DU
(b, defined in § 3). A roll-off of order 103 is observed with increasing wavenumber,
comparable with the well-resolved turbulent boundary layer DNS performed by
Spalart (1988) using a fully spectral method. Temporal power spectra of K at specific
locations are computed by dividing the temporal signal into three segments of equal
length, each overlapping by 50 %, before computing the spectra of each segment
individually and then averaging the spectra over all segments. This improves the
quality of spectra, although their frequency range is reduced at the low end (Hu,
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Figure 7. Temporal power spectra of K , taken at x = 0.9 at the airfoil mid-span for case
3DF (a), at y+ = 12.3, 51 and 313 moving from top to bottom, and for case 3DU (b) taken at
y+ = 54, 13.2 and 335 moving from top to bottom.

Morfey & Sandham 2006). Temporal spectra (figure 7) display a minimum roll-off of
106 with increasing frequency f .

3. The effect of boundary layer disturbances on separation bubble behaviour
The first part of the study aims to quantify the effect of boundary layer disturbances

on separation bubble behaviour. Results from three DNS will be presented, defined
as follows:

Case 2D: A precursory two-dimensional simulation that was run in order to provide
a suitable initial condition for the subsequent three-dimensional simulation, and upon
which the grid resolution study was performed in section 2.4.

Case 3DF: The flow field from case 2D was extruded in the z-direction and three-
dimensionality was introduced by explicitly adding disturbances via volume forcing.
The goal is to excite unstable oblique modes which would subsequently be amplified
within the separated shear layer, leading to transition to turbulence.

Case 3DU: After an appropriate amount of statistical data was captured from
case 3DF, the simulation was progressed further in time with the forcing removed.
The dependence of bubble behaviour on the addition of disturbances could then be
investigated.

3.1. Time-dependent behaviour

In two dimensions the time-dependent lift coefficient (CL) exhibits periodic oscillatory
behaviour with frequency f =3.37 and (CL)RMS = 0.0172. As outlined in § 2.4, the
cause of this behaviour can be attributed to periodic vortex shedding from the
separated shear layer present on the upper airfoil surface (figure 3). This behaviour
appears qualitatively similar to that observed by Marxen et al. (2003) and Pauley
et al. (1990) in flat-plate simulations, and results in the observed periodic oscillation
in lift and drag coefficients, CL and CD .

Figure 8 shows a time-history of CL and CD starting at time t =0, the start of case
3DF. The time-dependent CL initially displays oscillatory behaviour associated with
two-dimensional vortex shedding. This oscillatory behaviour ceases by time t = 2,
whereupon CL increases significantly. At this stage in the flow development, time
series of pressure taken within the separated shear layer (figure 9, x = 0.4) clearly
exhibit periodic oscillation, associated with the strongly amplified instability waves
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Figure 8. (a) Time-dependent lift coefficient, the dotted line indicates the time at which
forcing was removed (t = 14) and hatched areas indicate periods over which statistical data
capture was undertaken. (b) Time-dependent skin-friction drag coefficient (−−), pressure drag
coefficient (·−), and total drag coefficient (—).
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Figure 9. Time-dependent pressure within the boundary layer at x = 0.4 (lower curve) and
x =0.8 (upper curve). The dotted line indicates the time at which forcing was removed.
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Figure 10. Iso-contours of vorticity using 10 levels over the range ±150 for case 3DF t = 14,
taken at mid-span.

induced by the forcing. Downstream of the vortex shedding location, at x = 0.8,
the pressure signal appears to be random, characteristic of turbulent fluctuations
passing the measurement location. Instantaneous iso-contours of vorticity taken at
the mid-span (figure 10) illustrate that the separated shear layer undergoes transition

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

08
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008000864


Forced and unforced separation bubbles on an airfoil at incidence 187

0.14

(a) (b)

0.12
0.10

y

x

z0.40
0.45

0.50
0.55 0.20

0.15

0.10

0.05
0

0.100

0.125

0.075

x

z0.45
0.50

0.55
0.60 0.20

0.15

0.10

0.05
0

Figure 11. Iso-surfaces of the second invariant of the velocity gradient tensor at Q = 500,
for case 3DF at t = 14 (a) and case 3DU at t =23.1 (b).

Case CL CD CDF CDP

2D 0.499 0.0307 0.0087 0.0220
3DF 0.615 0.0294 0.0095 0.0199
3DU 0.621 0.0358 0.0081 0.0278

Table 4. Time-averaged lift and drag coefficients for all cases.

to turbulence, and that a developing turbulent boundary layer is now present over the
aft section of the airfoil. Iso-surfaces of the second invariant of the velocity gradient
tensor, Q, illustrate structures present in the transition region (figure 11a). Structures
within the boundary layer are observed to break down to smaller scales; however no
large-scale �-vortices are observed here. After a transient lasting until approximately
t = 6.3, case 3DF settles to a stationary flow and statistics were taken for 6.3 < t < 14.
Figure 8 illustrates the data capture period for both three-dimensional simulations.

Case 3DF was then run further in time but with the forcing removed, and
the resultant simulation denoted 3DU. Upon removing the forcing, the turbulent
behaviour can be monitored by observing pressure fluctuations within the boundary
layer (figure 9). It can be seen that downstream of the separation bubble, at x =0.8,
the pressure fluctuations do not decrease. In fact, the maximum amplitude of pressure
fluctuations increases slightly. Oscillations are still observed within the separated shear
layer at x = 0.4; however the signal is lower in amplitude, more intermittent, and no
longer dominated by the forcing frequencies as observed in case 3DF. Statistics for
case 3DU were taken for 18.9 < t < 26.6. At the end of this period of time turbulent
fluctuations have still not decreased in amplitude, and the transition to turbulence
appears to ‘self-sustain’. Iso-surfaces of Q illustrate structures present in the transition
region (figure 11b). In contrast to the forced case, much larger structures may be
observed, with clear spanwise orientation. These structures persist downstream of the
transition region of case 3DF, until they break down into turbulence that still has
a strong spanwise coherence. Animations of flow-field properties suggest that the
transition process is highly erratic.

3.2. Statistical analysis

Time-dependent lift and drag coefficients are given in figure 8, with the associated
time-averaged values in table 4. It can be seen that whilst removal of forcing leads
to a slight increase in CL and a very slight decrease in friction drag (CDF ), pressure
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Figure 12. Time-averaged distributions of Cp (a) and cf (b) for case 2D (· · ·), case 3DF
(−−) and case 3DU (—).

Case xsep xreatt

2D 0.151 0.582
3DF 0.128 0.500
3DU 0.099 0.607

Table 5. Time-averaged separation and reattachment points.

drag (CDP ) is subject to a significant increase. The net effect is to decrease L/D

from 21.1 to 17.2, hence it appears that the presence of forcing significantly improves
the aerodynamic performance of the airfoil while requiring little energy input. It
is conceivable that the introduction of steady disturbances could result in similar
performance improvement, whilst requiring zero energy input. For example, Kerho
et al. (1993) achieved significant drag reduction for the case of an airfoil with
separation bubble by employing vortex generators. An advantage of using time-
periodic forcing however, would be that it could be disabled when not required.

Time-averaged pressure coefficient (Cp) distributions are plotted in figure 12(a).
In all cases a pronounced pressure plateau is visible on the upper airfoil surface,
illustrating the presence of a separation bubble. Comparing cases 3DF and 3DU, it
can be seen that the length of the pressure plateau has increased significantly in the
unforced case, whereas downstream of the bubble the Cp distributions are similar. The
slight CL increase observed in case 3DU is due to the increased length of the pressure
plateau. The increase in CDP for case 3DU can also be attributed to the increase in
length of the pressure plateau, since pressure recovery is delayed downstream of the
point of maximum airfoil thickness, in conjunction with the reduced suction peak
observed near the leading edge.

Time-averaged skin friction coefficient (cf ) distributions (figure 12b) give a
quantitative measure of bubble length (table 5). Comparing the two-dimensional
simulation to case 3DF it can be seen that the bubble length has decreased in the
forced three-dimensional case. Owing to transition to turbulence and hence increased
wall-normal mixing, the reattachment point has moved upstream from x = 0.582
to x = 0.500. The separation point has also moved upstream slightly in the forced
three-dimensional case. Comparing the three-dimensional cases, it can be seen that
removing the forcing has increased the bubble length significantly. The reattachment
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Figure 13. Iso-contours of the normalized cf PDF, n/(S(x)nt ), for case 2D (a), case 3DF (b)
and case 3DU (c), using 12 levels exponentially distributed over the range 2 to 1000.

point has moved from x = 0.500 in case 3DF to x =0.607 in case 3DU. The cf peak
downstream of transition decreases upon removal of forcing, resulting in the slight
decrease in CDF observed in case 3DU.

The time-dependent nature of separation can be investigated by computing
probability density functions (PDFs) of cf . Ordinarily PDFs are constructed using a
fixed number of ‘bins’ over a constant cf range. In the present study, time-dependent
cf behaviour was observed to vary dramatically with x-location, making this approach
unsatisfactory. Instead, for each x-location the PDF was constructed using 30 bins
equally spaced over three standard deviations about the mean cf . PDF bounds are
thus given by the equation

c̃f (x, i) = cf (x) − 3S(x) +
i − 1

29
6S(x), for i = 1, 30, (3.1)

where S(x) is the standard deviation of cf at location x. Using different upper and
lower bounds for each x-location means that the area under the PDF varies with x.
To avoid this, the normalized PDF (i.e. N/Ntotal , where N is the number of samples
in a given bin and Ntotal is the total number of samples across all bins) is divided by
the standard deviation, S(x). This ensures the area under the PDF is constant.

Iso-contours of cf PDFs for a finite x-region on the upper airfoil surface are plotted
for each case. Figure 13 shows iso-contours of cf PDFs for case 2D (figure 13a), case
3DF (figure 13b) and case 3DU (figure 13c). The upper and lower PDF boundaries
represent cf at three standard deviations from the mean; hence where the PDF is
very narrow cf varies only little with time, whereas where the PDF is wide cf varies
strongly. Upstream of transition cf displays little temporal variation in either case
3DF or case 3DU, confirming that in this region the flow is approximately steady.
Similarly, the two-dimensional simulation exhibits little temporal variation upstream
of the onset of vortex shedding. Downstream of transition there is considerable
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Figure 14. Probability density functions of cf taken at reattachment (a), and at x = 0.85 (b)
for case 2D (· · ·), case 3DF (−−) and case 3DU (—).

variation in cf for all cases, as illustrated in figure 13 by the comparatively large
width of the PDF distributions compared to cf .

Although all cases exhibit large temporal variation of cf over the aft section of
the airfoil, the two-dimensional and three-dimensional PDF distributions appear
fundamentally different in this region. The three-dimensional PDF distributions
appear smooth and symmetric about the mean cf , whereas the two-dimensional
PDF exhibits greater temporal variation overall, and in certain locations has more
than one maximum. For all cases, downstream of transition (or onset of vortex
shedding in the two-dimensional case) there is no location where cf is positive for
100 % of the time, or negative for 100 % of the time. That is to say, even where the
time-averaged cf suggests the boundary layer is attached, there will be some degree
of reverse flow observed in the instantaneous flow field, and vice versa for separated
boundary layer regions. Plotting PDFs at the mean reattachment point (figure 14a),
i.e. where cf = 0, illustrates the different distributions of the cf fluctuations. For both
three-dimensional cases the time-dependent cf varies strongly over the range ±0.02
at this location, and for case 2D the variation is even greater. To put this into context,
the maximum time-averaged cf observed in the attached turbulent boundary layer
across all cases was 7.6 × 10−3 (figure 12). Hence at the reattachment point, where
the time-averaged cf is zero, the instantaneous cf reaches more than double the
maximum cf observed after reattachment.

Downstream of transition (e.g. figure 14b) the shape of the PDF distribution
appears similar for both case 3DF and case 3DU: a symmetric distribution about
the mean cf . The PDF distribution for case 2D is markedly different at this location
however, consisting of a skewed distribution exhibiting two peaks at positive cf , and
a plateau extending to another peak at cf = −0.02. For the three-dimensional cases
the cf PDF downstream of transition can be approximated by two parameters, cf (x)
and S(x), with minimal loss of information. The two-dimensional simulation appears
to exhibit fundamentally different behaviour however, and cannot be modelled in this
fashion.

Spanwise coherence can be determined by computing two-point spanwise
correlations of surface pressure, defined as

Cz1z2
=

Sz1z2

σz1
σz2

, (3.2)
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Figure 15. Two-point spanwise correlations for case 3DF (a) and case 3DU (b), at
x-locations 0.1 (�), 0.2 (�), 0.3 (�), 0.4 (◦), 0.5 (�), 0.6 (− · ·), 0.7 (· · ·), 0.8 (−−), and 0.9 (—).

where Sz1z2
is the covariance of surface pressure for z1 and z2, and σzn

is the standard
deviation of surface pressure at zn. Two-point spanwise correlations of surface
pressure taken at several x-locations for case 3DF are displayed in figure 15(a). For
x � 0.2, Cz1z2

is close to 1 across the entire span, suggesting that the small-amplitude
boundary layer fluctuations in this region are primarily two-dimensional. By x = 0.4
there is strong negative correlation, with Cz1z2

≈ −0.75. For case 3DF the spanwise
wavenumber β =2π/Lz was forced at double the amplitude of higher wavenumber
modes. The strong negative correlation observed at x = 0.4 can be attributed to
the strong amplification within the separated shear layer of perturbations with
wavenumber β = 2π/Lz introduced by the volume forcing. Downstream of x =0.4,
Cz1z2

decreases in amplitude until by x = 0.7 there is minimal correlation. This would
appear to confirm that the spanwise domain width of z = 0.2 is sufficiently large.

Case 3DU (figure 15b) exhibits very different behaviour. For x < 0.3 the surface
pressure appears perfectly correlated. In the region 0.3 � x � 0.5 surface pressure
becomes slightly less correlated; however unlike case 3DF no negative correlation
is observed. This appears to confirm that the negative correlation observed in case
3DF is caused by forcing the boundary layer. Downstream of transition surface
pressure becomes less correlated, but Cz1z2

only decreases to around 0.3. Thus case
3DF exhibits significant spanwise correlation in surface pressure downstream of
transition. However, referring to instantaneous plots of Q (figure 11), in case 3DU
large structures are observed with strong spanwise coherence that are not observed
in case 3DF. The non-zero correlation observed downstream of transition for case
3DU serves to confirm quantitatively that the turbulence downstream of reattachment
retains significant spanwise coherence all the way to the trailing edge.

Iso-contours of turbulent kinetic energy, K , (figure 16) show a significant increase
in peak K upon removal of forcing (increasing from 0.074 to 0.124), thus it appears
that the transition process in the unforced case is more energetic than in the forced
case. In case 3DU the peak K occurs upstream of the time-averaged reattachment
point, whereas in case 3DF the peak K occurs in the direct vicinity of reattachment,
which may explain why the peak cf is lower in case 3DU (figure 12).

It is important to note that upon removal of forcing, although the bubble properties
change significantly, the bubble does not revert to two-dimensional behaviour. If the
bubble were purely convectively unstable, one would expect turbulent fluctuations to
convect downstream and ultimately leave the flow over the airfoil in an unperturbed
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Figure 16. Iso-contours of K for case 3DF (a) and 3DU (b), using 20 levels over the range
0 to 0.11.

state. This is clearly not the case, and some other local or global instability mechanism
must be present in order for the turbulence to self-sustain.

4. Linear stability analysis
The presence of self-sustaining turbulence in simulation 3DU raises the question of

whether any form of absolute instability is present. In order to determine whether or
not this is the case, linear stability analysis of velocity profiles extracted from the time-
and span-averaged flow fields of case 3DF, 3DU and the two-dimensional simulation
are presented. An incompressible Orr–Sommerfeld solver is used in conjunction with
the cusp-map method in order to determine the presence of absolute instability.

4.1. Governing equations

Assuming incompressible flow, boundary layer disturbances are assumed to take the
form of two-dimensional travelling waves such that

u′
i = ûi(y)ei(αx−ωt). (4.1)

The variable α is the complex wavenumber (defined as α = 2π/λ, where λ is the
disturbance wavelength) and ω is the complex frequency of the travelling wave
(defined as ω = 2πf , where f is the disturbance frequency). Wall-normal variation is
accounted for in the function ûi(y), and the phase velocity is given by cph =ω/α. The
amplitude of instability waves varies as

eωit−αix, (4.2)

found by expanding (4.1), hence the imaginary part of the wavenumber (−αi)
corresponds to the spatial growth rate and the imaginary part of the frequency
(ωi) corresponds to the temporal growth rate.

Assuming a parallel base flow, for which u= f (y), v = 0, du/dx = 0, the response
of the boundary layer to small-amplitude perturbations of the form given by
equation (4.1) may then be predicted by solving the Orr–Sommerfeld equation,

(u − cph)

(
d2v̂

dy2
− α2v̂

)
− d2u

dy2
v̂ = − iν

α

(
α4v̂ − 2α2 d2v̂

dy2
+

d4v̂

dy4

)
, (4.3)

for which a full derivation is given in Drazin & Reed (1981). To solve the Orr–
Sommerfeld equation, a velocity profile u = f (y) is specified (extracted from time-
averaged DNS data), hence u(y) and d2u/dy2 are known. The Orr–Sommerfeld
equation then represents an eigenvalue problem in matrix form [A]v̂ = [B]v̂, with
v̂ as the eigenvector, which yields non-trivial solutions for only certain values of α

and cph. The eigenvalue problem may be solved in two ways: either by specifying α

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

08
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008000864


Forced and unforced separation bubbles on an airfoil at incidence 193

and solving for ω, denoted temporal analysis, or by specifying ω and solving for α,
denoted spatial analysis.

4.2. Numerical method

The code used for the current study solves the temporal eigenvalue problem, returning
ω for the most unstable eigenmode present. Derivatives are computed using sixth order
compact difference stencils (Lele 1992). Sufficient resolution for the derivative scheme
is indicated by smooth derivatives of velocity profiles, up to and including the fourth
derivative.

In the present study velocity profiles, u(y), are extracted from time-averaged DNS
data. Grid requirements for DNS are typically different to those of LST analysis;
therefore in order to avoid unnecessary computational cost, data from the DNS are
interpolated onto a new grid using cubic splines. Grids used for LST analysis are
described by the equation

yj = yj−1 + a(1 + s)j−2, (4.4)

for 2 <j <N , where N is the total number of grid points, and

y1 = 0. (4.5)

The constant s is the fractional increase in adjacent cell size, and a determines the
cell size at y =0. In all cases the number of grid points was specified as N = 200, in
conjunction with values s = 0.055 and a = 1.30 × 10−4. Grids used for the stability
analysis extend further into the free stream than the grid used for DNS, hence at the
domain boundary the velocity profile was smoothly ramped to free-stream conditions.
The most unstable eigenmode for a Blasius boundary layer profile at Reδ∗ = 1500,
α = 0.2 was determined, and the resultant value for α was found to agree with the
results of Gaster (1978) to the 5th digit for the real part and the 6th digit for the
imaginary part.

4.3. Cusp-map method for determining the presence of absolute instability

A simple criterion for the presence of absolute instability is the existence of an
instability wave possessing zero group velocity, cg = 0, and a positive temporal growth
rate, ωi > 0. The cusp-map technique is a method of looking for the presence of
absolute instability based on this criterion, and is the temporal equivalent of Briggs
method. A full description of both Briggs method and the cusp-map method is found
in Schmid & Henningson (2001); a brief description necessary to interpret the results
follows. Given that a dispersion relation D, in this case the Orr–Sommerfeld equation,
relates α and ω,

D(α, ω) = 0, (4.6)

points in the complex-ω-plane will map to points in the complex-α-plane and vice
versa. The presence of a saddle point in the complex-α-plane represents a point where
cg = 0, since for a saddle point

D(α, ω) = 0,
∂D(α, ω)

∂α
= 0 (4.7)

and

cg =
∂ω

∂α
=

∂D

∂α

/
∂D

∂ω
= 0. (4.8)

Where a saddle point occurs in the complex-α-plane, a branch point will occur in
the complex-ω-plane. Essentially, the cusp-map method is a systematic procedure
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Figure 17. Equidistant grid in the complex-α-plane (a) and its corresponding map into the
complex-ω-plane (b), revealing a cusp associated with cg = 0 and ωi > 0, as determined for the
shear layer profile given by equation (4.9) with R = 1.35.

for locating saddle and branch point pairs, and hence instability waves with cg =0.
Lines of constant αr are plotted in the complex-α-plane, and then mapped via the
dispersion relation to the complex-ω-plane. A branch point in the complex-ω-plane
may be readily observed as a ‘cusp’ where contours in the complex-ω-plane first
cross (figure 17). The presence of a branch point represents an instability wave with
cg =0. If the branch point is in the lower half of the complex-ω-plane (i.e. ωi < 0), the
stationary wave is absolutely stable. If the branch point is in the upper half of the
complex-ω-plane (i.e. ωi > 0), the stationary wave is absolutely unstable.

The method is employed in the current study as follows. First, for the profile of
interest, the Orr–Sommerfeld equation is solved for a range of real α, in order to
determine the envelope of αr yielding unstable values of ω. The upper and lower
limits of this envelope are denoted αr1 and αr2. A second sweep is then performed
over a range of both αr and αi, forming an equidistant grid in the complex-α-plane
(figure 17a). The upper and lower αr values are chosen as αr1 and αr2. The upper and
lower limits of αi are chosen intuitively, for the first attempt, and then refined. The
associated map in the complex-ω-plane will either contain a cusp (figure 17b), or else
the process can be repeated making adjustments to α in order to locate a cusp. Once
a cusp is found, it may be tracked as the boundary layer profile slowly varies, and
the corresponding α and ω noted.

Use of the Orr–Sommerfeld solver in conjunction with the cusp-map method to
determine the presence of absolute instability has been validated for analytic wake
profiles given in Huerre & Monkewitz (1985), described by the equation

u(y) = 1 + R tanh
(y

2

)
. (4.9)

The variation of ωi with R, determined using the Orr–Sommerfeld solver in
conjunction with the cusp-map method and setting the Reynolds number to Reθ =106,
is plotted in figure 18 in the vicinity of ωi = 0. Transition from convective to absolute
instability was found to occur at R = 1.3156, compared to R =1.315 as reported by
Huerre & Monkewitz using an inviscid approach. For the profile R = 1.315, values
ωi = −1.266 × 10−4 and ωr = 1.921 × 10−1 were determined, compared to ωi = 0 and
ωr = 1.92 × 10−1 as reported by Huerre & Monkewitz.
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Figure 18. Variation with R of complex ω associated with cg = 0, for profiles given in
Huerre & Monkewitz (1985).
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Figure 19. Variation with x of ωi associated with cg = 0, for case 2D (�—�), case 3DF
(� − −�) and case 3DU (� · · · �).

4.4. Results

The time- and span-averaged flow fields of cases 3DF and 3DU, as well as the
time-average of the two-dimensional simulation, have been analysed using the Orr–
Sommerfeld solver in conjunction with the cusp-map method. The complex-α-plane
was swept with a resolution of 
αr =
αi = 1. The corresponding resolution in the
complex-ω-plane is much higher in the vicinity of a branch point, since ∂ω/∂α ≈ 0.
Branch-point singularities associated with zero-group-velocity instability waves have
been tracked, traversing the upper airfoil surface from x = 0.1 until it is no longer
possible to locate any branch point within the complex-ω-plane. Imaginary parts of
the complex frequency associated with cg = 0 are plotted in figure 19. In all cases,
as the cg = 0 instability wave is tracked downstream, ωi increases with x, until a
maximum value is reached toward the rear of the separation bubble. After reaching
this maximum value, ωi decays with further increase in x. For all cases, at all locations
analysed, ωi associated with the singularity is negative, hence there is no evidence
that absolute instability is present.

For each simulation, a branch point could not be located downstream of a certain
x-location, unique to that case. Downstream of this location, the Orr–Sommerfeld
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Figure 20. Iso-contours of u′ for case 2D, taken at an arbitrary time within the vortex
shedding cycle (a), and for case 3DU taken at time t =26.6 (b), using 10 levels over the range
0–1.

solver returned trivial solutions for regions of the complex-α sweep. Contours of
u′, defined as u′ = u − u, illustrate that for all cases the flow field is already highly
unsteady at the x-position at which the solver fails (figure 20). Depending on the
case, u′ and v′ lie in the range 0.3–0.7 at the point where the solver fails. Clearly
the assumption of small-amplitude linear perturbations on a steady base flow would
anyway be violated under these conditions. The location of maximum reverse flow
could therefore not be analysed for any of the simulations. The magnitude of reverse
flow observed in each simulation does however allow qualitative discussion.

When normalized by the local boundary layer edge velocity, case 3DF exhibits
a maximum reverse flow magnitude of 12.3 %. This is less than the critical value
of 17 % determined necessary to sustain absolute instability by Alam & Sandham
(2000), for the associated Reδ∗ of 1050. Case 3DU exhibits an increased maximum
reverse flow of 15.2 %. This is only slightly less than the critical value of 16.5 %
for Reδ∗ = 1350, determined by Alam & Sandham. However, Hammond & Redekopp
(1998) determined a higher critical value of 20 % for Falkner–Skan-type boundary
layers and Rist & Maucher (2002) determined that, even in the case of 20 % reverse
flow, the wall-normal distance and intensity of the shear layer had to exceed a certain
threshold before absolute instability could be observed. The fact that dωi/dx < 0 at
the point where the cusp-map method fails suggests that absolute instability would be
unlikely to be observed by linear stability analysis if the cusp-map could be continued
further downstream. The two-dimensional simulation exhibited the largest magnitude
reverse flow of all cases, 22.2 %. This is certainly above threshold values observed
by Alam & Sandham (2000) and Hammond & Redekopp (1998); however, as for
case 3DU, the results of Rist & Maucher (2002) suggest that caution should be
exercised before labelling the flow as absolutely unstable. On the one hand, it could
be conjectured that the vortex shedding observed is the result of absolute instability;
however it may be more useful to consider the shedding to be caused by a global
instability mode (Theofilis 2003), resulting in highly unsteady flow for which linear
stability analysis is not valid. It is interesting to note, however, that in all cases the
maximum ωi observed occurs upstream of the location of maximum reverse flow, and
appears to decrease with further increase in x.

5. A mechanism for self-sustaining turbulence
No evidence of absolute instability was observed from the linear stability analysis

performed in § 4.4. However, the persistence of turbulence upon removal of forcing
suggests that some mechanism other than convective disturbance growth is present. A
series of computationally inexpensive simulations was therefore conducted, in order
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Figure 21. Iso-contours of |w| velocity in the vicinity of the airfoil, using 20 contours
exponentially distributed over the range 10−10 to 10−2, showing development with time after
initialization. (a) t = 0.49, (b) t = 0.98, (c) t = 1.47, (d) t = 1.96.

to determine whether any instability mechanism is present in the current case that is
not predicted by classical linear stability theory.

5.1. Numerical method

A three-dimensional simulation is initialized in the same manner as case 3DF. Grid
G3 is used, specifying a small number of spanwise points (16) over the same spanwise
domain width (Lz = 0.2). No time-periodic forcing is added, but w-perturbations are
superposed onto the initial condition in the form of white noise. The w-perturbations
are 1 × 10−8 in amplitude, and only the boundary layer over the upper surface of the
airfoil is seeded in this fashion. The simulation is progressed from this initial condition
and no further disturbances are added. The stability characteristics of the unsteady
two-dimensional separation bubble with vortex shedding may then be determined.
The perturbations will either convect downstream whilst decaying or amplifying,
ultimately leaving the flow over the airfoil unperturbed, or the perturbations will
grow temporally without convecting downstream as in absolute instability. Effectively
the method may be considered equivalent to a Floquet analysis; however the current
method differs in that the base flow is not perfectly periodic in time.

5.2. Time-dependent behaviour

The resultant behaviour is illustrated by plotting absolute values of w-velocity in the
vicinity of the airfoil at intervals of t = 0.49 (figure 21). It can be seen that the initial
disturbances do not convect downstream leaving the source unperturbed, but grow in
amplitude temporally until nonlinear magnitudes are reached. The w-perturbations
grow in amplitude within individual vortices as they convect downstream; however,
within the vicinity of the vortex shedding location the perturbations also exhibit
growth in amplitude without convecting downstream. Temporal growth occurs
immediately upon initialization, and hence the onset is far too rapid to be explained by
an acoustic feedback mechanism involving the trailing edge. The N-factor across the
separated region has been computed via linear stability analysis to be N = 9.5. This
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Figure 22. Time series of absolute w-velocity taken in the vicinity of vortex shedding
at 5◦ (− ·), 7◦ (−−) and 8.5◦ (—) incidence.

0 0.5 1.0 1.5 2.0
t

0.2

0.4

0.6

0.8

1.0

x

Figure 23. Time series of w scaled by multiplying with e−4t , taken at several locations within
the boundary layer; the dashed lines indicate the wave-packet envelope.

precludes amplification of round-off error as a route to transition, since a much larger
N-factor is required to amplify round-off error (∼10−16) to nonlinear amplitudes.

Having observed rapid temporal perturbation growth for the case with two-
dimensional vortex shedding at 5◦ incidence, the simulation was repeated at other
angles of attack. The simulations all exhibited two-dimensional vortex shedding.
Absolute values of w-velocity taken in the vicinity of the onset of vortex shedding
are plotted in figure 22. Although erratic due to variations during the shedding cycle,
the amplitude of w-velocity perturbations appears to grow exponentially with time,
and the temporal growth rate increases with incidence.

5.3. Spatial onset

In order to isolate the spatial onset of the instability, a simulation was run using
a different initial disturbance input, and increased numbers of w-probes. Instead of
seeding the entire upper airfoil boundary with white noise, a narrow ‘strip’ of white
noise is used, located at (x, y) = (0.25, 0.136), and spanning the width of the domain.
The evolution of the initial disturbance may then be tracked both spatially and
temporally. Figure 23 shows an x/t plot of disturbance growth for this case. Owing
to the large growth rates present the probe readings were multiplied by e−σ t , where
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σ = 4 is the temporal growth rate observed in the vicinity of vortex shedding, in
order to better visualize the data. Therefore, where a probe signal appears constant
in amplitude in figure 23, it is in fact growing at the rate of e4t . The response to the
perturbation varies with the x-location, as follows:

(i) For x � 0.2 no perturbations are observed using this scaling.
(ii) For 0.3 � x � 0.45 the initial pulse generates a wavepacket in the boundary

layer, which convects downstream. After t = 0.3 no further disturbances are visible
for x � 0.4 using this scaling.

(iii) For 0.5 � x � 0.55 the initial wavepacket is observed to trigger disturbances that
are lower in frequency than the initial disturbance, and are subsequently observed to
grow exponentially in time.

(iv) For x � 0.6 it is difficult to detect whether the initial wavepacket is present or
not. Periodic disturbances are observed to occur, with a frequency the same as that of
the vortex shedding (f = 3.37). The amplitude of disturbances at any fixed x-location
appears to grow at the approximate rate e4t , and the amplitude of disturbances also
appears to increase with increasing x-location.

Rapid, sustained temporal disturbance growth first occurs in the region
0.5 � x � 0.55, suggesting that some form of absolute instability is sustained in the
vicinity of the vortex shedding region. The temporal growth rate of perturbations
appears approximately constant at all locations (σ ≈ 4); however the increase in
amplitude of perturbations with x-location for x � 0.6 suggests that the flow is also
convectively unstable.

5.4. Instability mechanism

The preceding section has identified a region of absolute instability in the vicinity of
the vortex shedding location. Because the instability is subject to exponential growth,
plots of perturbation quantities such as streamwise vorticity, ωx , or w-velocity, for
example, will vary markedly in amplitude depending on the time at which they are
taken. To surmount this problem, the quantity ω∗

x is plotted instead, defined as

ω∗
x = ωxA0e

−σ t , (5.1)

where A0 is a constant chosen as 1 × 10−8 and σ =4 is the exponential disturbance
growth rate at x = 0.5. Plotting iso-surfaces of ω∗

x in the vicinity of vortex shedding at
five phases, φ, of the shedding cycle (figure 24) reveals spanwise-periodic structures
that are associated with the absolute instability. Depending on the phase of the
vortex cycle, the structures appear both within and also wrapped around the
spanwise vortices. Although only one shedding cycle is illustrated, the behaviour
of the instability appears qualitatively similar from one cycle to the next.

The production and behaviour of ωx is illustrated more clearly in figure 25,
again for five phases within the shedding cycle. Images on the left of figure 25
illustrate the two-dimensional vortex shedding upon which the three-dimensional
perturbations are growing, as well as regions of upstream fluid flow. Images on
the right of figure 25 illustrate the spanwise root-mean-square (RMS) of ω∗

x , and
hence indicate the magnitude of three-dimensional perturbations. Over the course
of the shedding cycle a vortex is generated at the rear of the separation bubble
before being released downstream. As the vortex begins to convect downstream, the
magnitude of ωx increases within the vortex core at a rate faster than the overall
instability growth rate, as indicated by the increase in ω∗

x from figures 25(a) to
25(e). A second region of ω∗

x growth is also observed during the shedding cycle, just
upstream of the developing vortex in the so-called ‘braid’ region. At φ = 4

5
π the region
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Figure 24. Iso-surfaces of ω∗
x taken at five phases of the vortex shedding cycle: (a) φ = 0,

(b) φ = 2π/5, (c) φ = 4π/5, (d) φ =6π/5, (e) φ = 8π/5. The far (x, y)-plane displays iso-contours
of ωz, using ten levels over the range ±150.

exhibiting the largest magnitude of ωx is orientated approximately parallel to the x-
axis at (x, y) = (0.485, 0.125). As the developing vortex is shed and begins to convect
downstream, this structure increases in length and vorticity magnitude and is wrapped
around the upstream and downstream vortices, forming an S-shape visible at φ = 8

5
π

just upstream of the downstream-travelling vortex. Again, ωx increases at a rate faster
than the overall instability growth rate. These regions of pronounced perturbation
growth appear to closely match regions of instability growth identified in mixing
layers and bluff-body wakes, namely the vortex cores and the braid region between
vortices (Williamson 1996). The current case appears to have a stronger analogy
to shear-layer flow; however the mechanisms responsible for instability growth in
braid regions and vortex cores are more extensively discussed in the literature for
bluff-body wakes. In the context of bluff body-wakes, short-wavelength perturbations
within vortex cores are commonly attributed to elliptic instability, whereas two forms
of instability growth have been observed within the braid region, denoted mode-A and
mode-B. A brief summary of each mode follows, necessary to categorize observations
of the current case.
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Figure 25. Left-hand images show iso-contours of ωz, using 20 contours over the range
±150, with lines of constant u-velocity superposed using 4 levels over the range −0.7 <u < 0.
Right-hand images show iso-contours of ω∗

x using 20 levels over the range 5–100 with lines
of constant ωz superposed using 10 levels over the range ±150. Five phases within the vortex
shedding cycle are shown: (a) φ = 0, (b) φ = 2π/5, (c) φ =4π/5, (d) φ = 6π/5, (e) φ = 8π/5.

Elliptic instability is the name given to the instability of elliptical two-dimensional
streamlines to three-dimensional perturbations, for which a review is given in Kerswell
(2002). The physical mechanism of instability is vortex stretching, and the instability
manifests itself as a spanwise-periodic deformation of the vortex core. Leweke &
Williamson (1998b) suggest that the spanwise wavelength of the most amplified
instability mode is of the order λ= 3D, where D is the diameter of the region of
elliptical flow, comparing well with the results of Leweke & Williamson (1998a).
Floquet analysis by Barkley & Henderson (1996) suggests a spanwise wavelength of
λ= 4D at onset. The presence of elliptic streamlines in the current case (figure 26)
suggest that elliptic instability is likely to occur.
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Figure 26. Iso-contours of ωz taken at φ = 4π/5, using 20 levels over the range ±150, with
streamlines superposed illustrating both the presence of both hyperbolic streamlines upstream
of a developing vortex and elliptic streamlines within the vortex itself.

Instability growth within the braid region between vortices has been observed
experimentally, both for bluff-body wakes Williamson (1992) and free shear layers
(Bernal & Roshko 1986), as well as being studied numerically by Corcos & Lin (1984).
In bluff-body wakes, two distinct instabilities have been observed in the braid region,
denoted mode-A and mode-B (Williamson 1996). Both forms of instability occur
as spanwise-periodic streamwise ‘tubes’ of vorticity, formed in the braid region and
extending between neighbouring two-dimensional vortices, that appear qualitatively
similar to structures observed in figure 24. Mode-A instability is associated with
spanwise wavelength approximately the same as that of elliptic instability, i.e. 3D to
4D, and occurs in conjunction with deformation of the vortex core, whereas mode-B
is associated with spanwise wavelength approximately λ= D and occurs with no
deformation of the vortex core (Williamson 1996). In the light of these differences it
has been suggested that mode-A is caused by elliptic instability (Thompson, Leweke
& Williamson 2001), and that mode-B is in fact a manifestation of the instability
of two-dimensional hyperbolic streamlines, analogous to that of elliptic instability
(Leweke & Williamson 1998b), denoted hyperbolic instability. For bluff-body wakes
mode-A is first observed at Red > 190, where Red is the Reynolds number based on
cylinder diameter, and mode-B is first observed at Red > 240.

Having identified similar regions of instability growth to those observed in bluff-
body vortex shedding, the spanwise wavelength of three-dimensional perturbations
can be compared. The diameter, D, of vortices in the current case is approximately
0.05. The corresponding spanwise wavelengths for elliptic and mode-A instability are
therefore expected to be in the range 0.15 < λ< 0.2, and the corresponding wavelength
for mode-B instability is expected to be of the order λ= 0.05. In figure 24 the most
prominent structures present in braid regions are streaks of ωx , which possess a
spanwise wavelength of on average λ= 0.05. This wavelength appears to correspond
to that expected for mode-B instability, and is too small to be associated with either
elliptic or mode-A instability. The spatial distribution of Floquet modes associated
with mode-B instability in the study of Barkley & Henderson (1996) appears to
closely match regions outside vortex cores where growth is observed in the current
case; hence the streamwise vortices produced in braid regions appear similar in nature
to mode-B instability observed in bluff-body wakes. Streamlines plotted at φ = 4

5
π

(figure 26) illustrate the presence of hyperbolic flow in the braid region upstream
of each developing vortex, associated with a stagnation point, illustrating that the
instability occurs in a region of hyperbolic flow, as suggested by Leweke & Williamson
(1998b) for mode-B instability.

In order to detect any elliptic instability, perturbations within the vortex cores
must be analysed. It is difficult to observe the vortex cores in three-dimensional
plots, since they are masked by the ωx structures wrapped around the vortices.
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Figure 27. Iso-contours of ωx taken across the centre of the vortex at φ =8π/5, using
10 levels over the range ±100.
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Figure 28. Iso-contours of perturbation z-vorticity at t = 1.96 after initialization,
corresponding to φ = 8π/5, using 10 levels over the range ±5 × 10−3.

Instead, iso-contours of ω∗
x are plotted for an (x, z)-plane through the vortex core

at φ = 8
5
π in figure 27. The vortex core exhibits pronounced perturbations with the

same spanwise wavelength as observed outside the vortex core, i.e. 0.05. However, in
contrast to perturbations outside the core which are of uniform amplitude across the
span, ω∗

x is much larger in magnitude over the range 0.16 <z < 0.2 (ω∗
x ≈ 100) than at

0.05 <z < 0.1 (ω∗
x ≈ 50). Contours of perturbation z-vorticity taken at mid-span for

φ = 8
5
π, formed by subtracting the span-averaged z-vorticity from the instantaneous

z-vorticity, are illustrated in figure 28. The structure within the vortex core appears
similar to the localized perturbation solutions presented by Waleffe (1990) for
unbounded elliptical flow, and is orientated along the axis of strain associated
with the vortex deformation. The vortex core therefore appears perturbed at two
distinct spanwise wavelengths with similar amplitude, λ1 ≈ 0.05 and λ2 ≈ 0.2. The first
wavelength corresponds to that exhibited by ωx structures outside the vortex core,
i.e. mode-B instability; however the second wavelength is significantly larger and is
comparable to wavelengths associated with elliptic instability. The structure of the
perturbation within the vortex core appears similar to that associated with elliptic
instability.

Evidence suggests then, that the production of ωx occurs due to a combination of
instabilities within the vortex cores and braid regions, appearing similar to elliptic and
mode-B instabilities respectively, as observed in bluff-body wakes (Williamson 1996).
It seems that the combination of elliptic and mode-A/B instabilities has not been
considered in terms of its absolute or convective nature for bluff-body wakes. In the
current case, although the instability mechanism differs from the classical definition
of absolute instability for disturbances on parallel base flows, at a given x-location
exponential temporal growth occurs. Hence the term absolute instability is still useful
to describe the behaviour present. Effectively the mechanism acts as an ‘oscillator’ as
opposed to an ‘amplifier’.

The absolute nature of this instability can be explained by referring back to
figure 25. At φ = 8

5
π, in the region of hyperbolic flow upstream of the vortex a
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Figure 29. Schematic of the manner in which fluid exiting the braid region developed behind
one vortex, subject to mode-B instability growth, enters the braid region associated with the
subsequent vortex. Hyperbolic regions of fluid flow, where mode-B instability is observed to
occur, are shaded.

comparatively long S-shaped perturbation with large ωx magnitude is observed,
attributed to the presence of mode-B instability. This perturbation extends into
a region of strong upstream fluid flow (u ≈ −0.7) as illustrated in figure 25(e),
left. Hence ωx perturbations present in the braid region, amplified in the vicinity
of hyperbolic flow, are convected upstream with comparatively large velocity and,
critically, into the braid region associated with the next developing vortex. This can
be clearly seen in figures 25(a) to 25(c). The long thin ωx perturbation near the
airfoil surface in the region 0.45 <x < 0.55 in figure 25(a), which is a remnant of
the previous shedding cycle, convects into a region of hyperbolic flow and generates
the streamwise-orientated structure clearly visible in figure 25(c). This behaviour is
also illustrated in three dimensions in figure 24. Clearly the absolute mechanism is
driven by instability growth within the braid region of vortices. Instability growth
within vortex cores, whilst exhibiting similar temporal growth rate, appears to exhibit
little direct upstream influence.

A schematic for the absolute instability mechanism is given in figure 29.
Perturbations are amplified in braid regions, forming streamwise vortices, and extend
into regions of high-magnitude reverse flow. These streamwise vortices are convected
upstream and into the braid region of the next developing spanwise vortex. The process
then repeats with increasing amplitude. Temporal growth is sustained owing to the
existence of local regions of reverse flow for which the velocity magnitude greatly
exceeds that of the time-average, in addition to large instability growth rates observed
in hyperbolic regions of fluid flow. This transition mechanism is clearly not predictable
via linear stability analysis of the time-averaged flow field, since it is a secondary
instability of an unsteady behaviour. Case 3DF may thus be described as exhibiting
transition driven by convective instability and case 3DU by absolute instability of
two-dimensional vortex shedding, by a combination of instabilities similar to elliptic
and mode-B instability observed in bluff-body wakes. There is clear evidence that the
secondary absolute instability of a forced separation bubble observed by Maucher
et al. (1998) is driven by the same mechanism; the behaviour observed by Maucher
et al. appears similar in many respects, including similar transitional structures. The
instability mechanism may also be responsible for the rapid breakdown to turbulence
observed by Spalart & Strelets (2000) in the absence of added disturbances. Laminar
reattachment is not possible for the current case, owing to the presence of this absolute
instability.
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6. Conclusions
DNS were conducted of a laminar separation bubble on a NACA-0012 airfoil

at 5◦ incidence. Both the three-dimensional separation bubble behaviour and the
aerodynamic performance of the airfoil were found to be dependent on the presence
of forcing. Compared to the unforced case, the inclusion of forcing increases the
lift-to-drag ratio by approximately 23 % and the intensity of turbulent/unsteady
fluctuations over the airfoil is significantly reduced. Fluid structures downstream
of transition are found to exhibit increased spanwise coherence in the unforced
case. Forcing in a similar fashion could therefore potentially be used as a control
mechanism for improving low-Reynolds-number airfoil performance. Both of the
three-dimensional separation bubbles exhibited large temporal variation of skin
friction. At no point downstream of transition was the flow either fully attached
or fully separated, suggesting that the concept of a reattachment ‘point’ is misleading.
Comparison of skin-friction PDFs illustrates that time-dependent behaviour of the
two-dimensional separation bubble is fundamentally different to that of the three-
dimensional bubbles.

Classical linear stability analysis of the time-averaged flow fields suggests that the
separation bubble is convectively unstable in all cases, since no evidence of absolute
instability is observed. Upon the removal of forcing, however, the turbulence over
the aft section of the airfoil is observed to self-sustain. A series of three-dimensional
simulations, resolving the linear response to three-dimensional perturbations, suggest
that the two-dimensional vortex shedding behaviour is absolutely unstable to three-
dimensional perturbations. The instability is associated with the production of
streamwise vortices located in the braid region between successive spanwise vortices,
with spanwise wavenumber comparable to that of mode-B instability as observed in
bluff-body wakes. A mechanism by which the instability can self-sustain is proposed,
dependent on strong local reverse flow and large instability growth rates in braid
regions. The temporal growth rate of the instability increases with airfoil incidence,
presumably owing to the larger magnitude of reverse flow present in the two-
dimensional separation bubble.

It appears therefore, that in the absence of convectively driven transition within the
shear layer, transition will take place by absolute instability of the two-dimensional
vortex shedding in a manner not predicted by linear stability analysis of the time-
averaged flowfield. This has important implications for the modelling of laminar
separation bubbles, suggesting that if free-stream turbulence levels drop below a
certain value, the time-averaged transition and reattachment locations will be fixed
and not vary with further decreases in free-stream turbulence levels.

Computer time was provided by the EPSRC grant GR/S27474/01.
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