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ABSTRACT

This paper draws analogies between techniques used to reserve for, control and manage derivatives
and techniques used by actuaries in other fields. It concentrates on equity derivatives. It also includes a
review of the factors which significantly influence the appropriate size of reserves to hold for a deriva-
tives portfolio. These include the likelihood of market jumps, uncertainty in future market volatility and
the size of transaction costs, as well as on more obvious factors like position risk.
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1. INTRODUCTION

1.1 History of Derivatives Markets

1.1.1 The derivatives markets have seen a huge explosion in variety and use
over the last 20 years or so. Despite the occasional hiccup, derivatives have
become an accepted fact of modern investment life.

1.1.2 This is illustrated by the growth of business transacted on the major
derivatives exchanges. For example, the London International Financial Futures
and Options Exchange (LIFFE) has seen explosive growth in most of its con-
tracts over the last 10 years or so. Figure 1 shows the growth in its FT-SE 100
Index futures contract, which is not atypical.

1.1.3 Indeed, in most major locations the volumes of equity exposures
transacted through the derivatives markets now significantly exceed the volumes
transacted on the underlying stock markets (see Figure 2).

1.2 What Role is there for Actuaries in Derivatives Markets

1.2.1 Derivatives are tools for managing financial risks. They have acquired
a reputation for complicated mathematics.

1.2.2 Actuaries also have a reputation for applying mathematics to problems
involving financial risks. Indeed, the motto of the Institute of Actuaries is
Certum ex Incertis, i.e. ‘certainty from uncertainty’. There ought, therefore, to
be a natural fit, although the involvement to date of actuaries in the derivatives
field has been relatively limited.

1.3 The Aim of this Paper
It is the aim of this paper to develop this fit further, drawing analogies
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Figure 1. Growth of FT-SE 100 Index futures volume
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Figure 2. Relative amounts traded in futures, options and stocks on various
markets

between techniques relevant to (principally cquity) derivatives and those used
by actuaries in other fields.

1.4 The Structure of this Paper
1.4.1 In Sections 2 and 3 the main types of derivatives are summarised, as
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are the main uses to which they are put (by institutions of the sort most typi-
cally advised by actuaries).

1.4.2 Sections 4 to 10 discuss the factors influencing the pricing, reserving
requirements and hedging of derivatives. Derivatives are risk management tools,
which involve the transfer of risk from one party to another. There will, in
many instances, be a price (paid from one party to the other) for this transfer of
risk. The party assuming the risk may need to set aside capital (in actuarial ter-
minology set up reserves or provisions) to protect its balance sheet against the
risks it is acquiring. The size of the capital/reserves, implicit or explicit, will, in
general, depend on how the risks are being hedged.

1.43 A lot can be said about these topics without introducing a large
amount of complicated mathematics. However, in my opinion, a fuller under-
standing does require some more detailed knowledge of the mathematics of
option pricing and hedging, and study of this subject repays the effort involved.
Some of the key results needed to understand the results in the main text are
covered in Appendices A and B. Interest rate derivatives have some special
characteristics which are described briefly in Appendix C. Appendix D contains
details of the reserving requirements to which banks are now subject, since
these may not be familiar to many actuaries.

1.4.4 Losses involving derivatives often seem to have little to do with fail-
ures linked to the more complicated mathematics, and are often much more
influenced by basic failures in control systems. Sections 11 and 12 consider
how to control and manage portfolios that include derivatives. Many of the
issues essentially boil down to sound common sense and a good understanding
of the way in which derivatives (and derivatives businesses) operate.

1.4.5 Finally, Section 13 draws together the analogies touched on in the rest
of the paper and summarises the factors influencing the reserves required for a
derivatives book.

2. THE MAIN TYPES OF DERIVATIVES

2.1 The Basic Nature of Derivatives

2.1.1 Derivatives are investment instruments whose value or behaviour
‘derives’ from the value or behaviour of other more basic economic variables.

2.1.2 Typically, the underlying variables (often shortened merely to the
‘underlying’) would be traded securities or corresponding market indices, inter-
est rates, currencies or commodity prices. Derivatives can also ‘derive’ from the
behaviour of more esoteric economic variables, e.g. the credit standing of a spe-
cific organisation, a basket of insurance contracts, or the price of a specific
fund or unit trust.

2.2 The Main Sorts of Instruments Typically Categorised as Derivatives

2.2.1 Forwards and futures contracts
2.2.1.1 These are contracts in which two parties agree to carry out a trans-
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action at some future date (the masurity date) on terms agreed now. These sorts
of derivatives are symmetric, in the sense that both parties are obliged to carry
out the transaction (unless they mutually agree to cancel it before it matures).
Such contracts effectively involve the swapping of economic exposures at the
date the contract is effected, without the legal transfer of assets taking place
until the contract matures (although the tax treatment of such contracts may
assume that the transfer takes places as soon as the contract is entered into).

22.1.2 Usually the term forward is applied to all such contracts, with the
term futures limited to contracts traded on a recognised exchange.

2.2.2 Options

2.2.2.1 These are contracts, which again relate to a transaction at some
future date on terms agreed now, but in which one party (the purchaser of the
option) is free to decide whether or not the transaction will go ahead. They are
asymmetric, in that the purchaser of the option can decide to allow it to lapse,
but the seller (otherwise known as the writer of the option) is obliged to carry
out the transaction if required to do so. A call option gives the purchaser the
right to buy the underlying security at a given price. A put option gives the
holder the right to sell the underlying security at some predefined price. Simple
options like puts and calls are called vanilla options. Many more complicated
sorts of options exist, some of which are described later on in this paper.

2.2.2.2 The price involved in the option transaction is normally fixed in
monetary terms. However, it can, in principle, be based on any numeraire. For
example, pension funds (or life offices) wishing to protect their solvency posi-
tions may find it helpful to purchase relative performance put options, where
the price at which equities can be sold is based on the price of suitable sorts of
gilt-edged securities. The numeraire is then not cash, but some gilt index.

2223 Selling equities for gilts is the same as buying gilts for equities.
Thus, in this example, the option could be described as either a relative perfor-
mance put option on equities or a relative performance call option on gilts. For
many derivatives some clarification of numeraire is needed. For example, a cur-
rency option might be referred to as a United States dollar call/United Kingdom
sterling put (indicating that the option permits the purchasers to buy a predeter-
mined amount of U.S. dollars by selling a predetermined amount of sterling at a
set time in the future).

2.2.3  Swaps, swaptions, caps, floors and collars

223.1 A swap is, in effect, a series of forward contracts bundled together.
One party agrees to swap a whole series of payments for another series. For
example, an interest rate swap would typically involve one party swapping
floating rate interest payments in return for receiving a series of payments cal-
culated on a fixed rate of interest. Swaptions are options to take out swaps on
predetermined terms in the future. The most common sorts of interest rate
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options are caps, floors and collars. With a cap, the floating interest payments
are capped at some predefined maximum if the floating rate rises above this
maximum. A floor has a predefined minimum below which the floating pay-
ments do not fall. A collar involves both a cap and a floor.

2.2.3.2 Another sort of interest rate derivative is a forward rate agreement.
In such an agreement parties, in effect, lock in the future interest rate for loans
or deposits yet to be made.

2.3 Other Contracts with Derivative-Like Characteristics

2.3.1 The definition of a derivative in Section 2.1 is the textbook one. If it
were followed strictly, then a very large number of investment transactions
could be characterised as derivatives transactions.

2.3.2 For example, in England the vast majority of properties are bought
using an exchange of contract followed by completion of the contract some
time (e.g. two weeks) later. This technically satisfies the definition of a forward
contract, as set out above. The buyer and seller of the property commit to carry
out the transaction on the date of exchange of contract, but the asset does not
legally change hands until completion.

2.3.3 Also, the standard method of carrying out share transactions practi-
cally everywhere in the world involves two sides agreeing a deal, but then set-
tling the deal several days later (with legal ownership only passing once the
deal has settled). Again, this is strictly a forward transaction.

2.3.4 Option-like characteristics also appear in many guises, e.g. in convert-
ibles or warrants. Indeed, arguably, they even appear with ordinary shares,
because of the option-like feature introduced by limited liability. The economic
disciplines of pricing options and of pricing corporate contingent claims are
very closely allied.

2.3.5 One could even argue that the above definition of a derivative encom-
passes with-profits contracts. In these contracts, the life office pays sums which
depend on the behaviour of some underlying assets. They also have option-like
characteristics, since there is a minimum sum payable (the guaranteed sum
assured plus reversionary bonuses already accrued). One difference between
with-profits contracts and the sorts of contracts typically understood as deriva-
tives is that the behaviour of a derivative contract is normally specified pre-
cisely in advance, whereas the behaviour of a with-profits contract is less
clearly defined (since bonuses declared are based on actuarial judgement).

23.6 On this basis, it could be argued that U.K. life offices are by far the
largest writers of equity derivatives in the U.K. via their with-profits contracts.
It is, therefore, a little surprising that actuaries do not make more explicit use
of techniques borrowed from the derivatives industry within their work. In some
quarters of the profession the similarity between with-profits contracts and
options has been recognised for some time, see e.g. Wilkie (1987) and
Beenstock & Brasse (1986). There has also been some discussion recently
within the North American actuarial profession about whether they should
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specifically incorporate option valuation techniques in the methodologies they
use for liability valuations.

2.4 The Tendency of People to Choose a Definition that Suits Themselves

2.4.1 1t is, therefore, normal practice to narrow the definition of what is, or
is not, understood as a derivative. There is a tendency to tailor the definition so
that things that have been done ‘since time immemorial’ are not viewed as
derivatives.

2.4.2 For example, forward currency contracts may be excluded, since they
are very commonly employed when an overseas transaction is undertaken.
Having them classified as a derivative might open them to greater scrutiny by
one’s Superiors.

2.43 Stocklending is also rarely viewed as a derivative. This is despite it
legally consisting of an agreement to sell the underlying security now, and to
repurchase it at some later time. The second leg of the transaction is clearly
some form of forward contract!

2.4.4 Sometimes it is advantageous if an instrument is classified as some
specific form of derivative (perhaps because it can then receive a favourable tax
treatment). The definition of what constitutes a derivative may then be widened.

2.5 Margining and Credit Risk

2.5.1 When two participants enter into a forward contract, it is usually
entered into at nil market value (in the sense that neither party to the transac-
tion pays the other anything, and, in theory, both would at outset be willing to
close out the transaction without any payment either). However, in general, its
net present value will not remain zero as time progresses. Thus, both partici-
pants potentially acquire the credit risk of the other. The credit exposures
involved can become substantial if there is a sustained price movement in the
underlying.

2.5.2 Derivatives exchanges (which are often called futures exchanges, even
if they also trade options) generally try to limit these credit exposures by the
use of a central clearing house and a margining system. Both sides of the
transaction pay a returnable good faith deposit, called initial margin, to the
clearing house, which is normally set up with as high a credit-worthiness as
possible. The clearing house typically interposes itself between the two parties
by replacing (novating) the original contract with two separate equal and oppo-
site contracts, one between itself and the first party and one between itself and
the second party. Thus, each party is only exposed to the credit risk of the
clearing house and not, potentially, to that of other market participants. The
interposition of the clearing house has the further advantage that it enables
either party to close out the transaction separately at a future date prior to the
maturity of the contract (as long as it can find a third party willing to carry out
the necessary transaction).

2.5.3 To avoid additional credit exposures arising as the price of the under-
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lying changes, futures contracts are typically marked to market, usually at the
close of each day, with any capital gain or loss being paid from or to the clear-
ing house. These payments are called variation margin.

2.5.4 Whilst the theory behind margining and other credit risk reduction
techniques is fairly clear, the precise mechanics (and who it covers) may be
less obvious. For example, on LIFFE, the novation of contracts by the clearing
house relates only to clearing members of the exchange. External market partic-
ipants need to deal via a clearing member, known as the investor’s clearing
agent, and therefore remain exposed to the credit risk of their clearing agent.

2.5.5 Credit risk is a very important operational consideration with deriva-
tives (as with other sorts of investment transactions), and we return to it in
Section 12.

2.5.6 The control of credit risk with over-the-counter (OTC) contracts, i.e.
ones that are traded outside a recognised exchange, is usually less strong.
However, it may be possible to wrap up the derivative within some form of
madrgining or collateralisation, in which, say, purchasers of options have cred-
ited to a suitable escrow account or deposited back with them part or all of the
market value of the derivative contract. Any such system will typically add
complexity to dealing in the derivative, although not necessarily any greater
complexity than applies to other sorts of investment transactions.

3. THE MAIN USES OF DERIVATIVES

3.1 The Potential Uses of Derivatives

3.1.1 The huge growth in the derivatives business (according to accepted
industry definitions of what constitutes a derivative) reflects the large number of
potential uses to which derivatives can be put.

3.1.2 Textbooks typically introduce these uses by referring to corporates
using currency and interest rate derivatives to hedge income and expenditure
components of their profit and loss accounts. They may, for example, make
goods in one country, but sell them somewhere else. They can protect them-
selves against the risk of adverse currency movements by selling forward the
receipts they expect to get from the sales of their goods, locking in a known
exchange rate at outset. Interest rate swaps may help them fix more precisely
their likely borrowing costs.

3.1.3 Financial institutions more usually advised by actuaries, such as pen-
sion funds and insurance companies, typically use derivatives for slightly differ-
ent purposes, €.g.:

(a) to alter the effective asset allocation of the fund, typically using futures or for-
wards;

(b) to protect the fund against some adverse market movement, e.g. a substantial
decline in equity values, typically using options; or

(c) to hedge fairly precisely some specific liability, e.g. the liability incurred by a
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life office when writing a guaranteed equity bond, see e.g. Sheldon & Dodhia
(1994).

3.1.4 Pension funds and insurance companies may also use options on individ-
ual securities, principally to take a specific investment view relating to that securi-
ty. Swap contracts are used by insurance companies, but not very frequently.

3.1.5 Derivatives are also often used for tax planning purposes, e.g. to avoid
crystallising past capital gains. Tax uses are not just limited to traditional ‘net’
funds. For example, purchase of overseas market exposure by use of futures
leaves the stocks with the underlying investor, who may be a local, and thus
able to avoid withholding tax on dividends. Even for a typical ‘gross’ fund like
a pension fund, the return available by investing though a futures contract may,
therefore, be greater than is available by investing directly in the underlying
equities (and incurring withholding tax).

3.1.6 A large number of new types of derivatives have been developed over
the last few years. For example, there are now credit derivatives which pay out
if there is a defined credit ‘event’, like a default, for a specific counterparty.
Summarising all the possible types (or uses) of derivatives is practically impos-
sible (and even if undertaken would become rapidly out of date), so the remain-
der of this section concentrates on the main uses, as set out in 13.1.3.

3.2 Asset Allocation using Futures

3.2.1 The most important use of derivatives by pension funds and insurance
companies, at the present time, is for asset allocation.

3.2.2 Most funds have some sort of benchmark around which they are posi-
tioned. The benchmark is often the average asset mix of funds against which
the house is competing. However, increasingly it may be set specifically on the
basis of the fund’s liabilities. A fund management house will be overweight
(relative to the benchmark) in those markets it likes and underweight in markets
it dislikes.

323 Usually houses separate out decisions relating to individual stock
selection from decisions relating to markets as a whole. Indeed, in all but the
smallest houses, individual fund managers will be divided up into teams, or
desks, on a geographical basis, with asset allocation chosen by a committee of
the house’s more senior fund managers.

3.2.4 If a large house wishes to shift market exposure rapidly across many
funds, it faces some significant problems. Trading large volumes in the relevant
stock markets may move the markets against the house. It also takes time for
each desk to decide which stocks to buy or sell, but the asset allocation com-
mittee may wish to crystallise the change in market exposure much more
quickly.

3.2.5 The solution to both of these problems is to use futures. For example,
suppose that the asset allocation committee becomes bearish on U.S. equities,
and decides to reduce its exposure there and increase its U.K. equity exposure.
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We shall assume that foreign equity exposure is not hedged in the benchmark

(as is usual in the U.K.). The desired change in exposures can be implemented

very rapidly by buying appropriate amounts of FI-SE futures and selling

Standard & Poors (S&P) futures. Because the S&P future is denominated in

dollar terms, we would also need to sell dollars forward for sterling if we

wished to eliminate currency risk.

32,6 The U.S. fund manager can then identify suitable stocks to sell in a
more leisurely fashion. Whenever he sells some stock, some of the S&P futures
position and some of the currency forward would be unwound. The FT-SE
futures position would be unwound as the UK. fund manager found suitable
opportunities for investment, but this does not need to be at the same time as
the U.S. stocks are sold.

3.2.7 For a typical balanced fund, even a shift of 2% out of a market like
the U.S.A. could involve selling 25% or more of that part of the portfolio. This
would be a very stressful activity if the U.S. fund manager has to finish it in an
afternoon, to meet some demanding timetable set by the asset allocation com-
mittee.

3.2.8 The main advantages of futures, apart from a less stressful life for the
fund manager, are:

(a) Speed and liquidity. Futures are now usually more liquid than the markets
underlying them, so it is easier to deal in size without moving the market. The
very largest houses would find it nearly impossible to make substantial asset
allocation shifts quickly without using futures. The level of liquidity in major
futures markets versus the level of liquidity in the underlying stock markets
can, in part, be gauged by the volumes dealt on the each sort of market, as
shown in Figure 2. Volumes on derivatives markets now substantially exceed
those on the underlying stockmarkets in most major financial centres. In addi-
tion, futures contracts are much more standardised than the individual underly-
ing securities. This provides a further boost to the liquidity of futures contracts.

(b) Cost. The cost of buying or selling market exposure using futures can be one-
tenth, or even less, of the cost of equivalent trades in the underlying assets.
This is of particular benefit if there is a reasonable possibility of the asset allo-
cation decision being reversed in the near future. If this is not so, then it will
eventually be necessary to buy and sell the underlying stocks, but it may be
possible to do these deals on more advantageous terms if there is less need to
rush them.

3.2.9 There are many related ways in which futures can be used to gain or shed
market exposure. For example, an equity index fund will almost always contain a
little cash, both to meet cash flow needs and because it will receive a steady stream
of dividend income. To maintain a fully invested stance, it would normally convert
this cash element to equity exposure by buying index futures. Another example is
when a fund changes its fund managers. The incoming manager can avoid being
‘out of the market’ by judicious use of futures, even if the outgoing manager’s
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stocks take some time to arrive.

3.2.10 Swaps may be used for similar purposes. For example, the fund may
need to hold cash or other sorts of physical investments to meet regulatory
requirements. If the returns on these are swapped for something else, then the
actual underlying economic exposures within the fund may be quite different.

3.2.11 Stocklending (and repo) agreements can, perhaps, be thought of as
the reverse of asset allocation using derivatives. In them the underlying asset
allocation remains unaltered, but the credit risk is changed, with the stock tem-
porarily being able to be used by someone else (for a suitable fee!).

3.3 Basket Trades

3.3.1 The cost benefits of using futures are particularly pronounced when
the individual underlying securities are bought and sold piecemeal. An alterna-
tive way of buying or selling a portfolio of securities is to use programme, bas-
ket or block trades (the terms are synonymous in this context). In such a trade,
the fund manager buys and/or sells a whole list, or basket, of stocks simultane-
ously. Often it is carried out in conjunction with a corresponding futures deal,
in which case it is known as an exchange for physical (or EFP). Typically the
actual names in the list are not supplied to the market-maker on the other side
of the deal until the terms of the deal are agreed, but only some broad charac-
teristics of the portfolio. In return for receiving all of the deal, the market-
maker will generally agree much finer terms (e.g. to buy/sell all the stocks at
mid-market plus a ‘turn’ or commission that is much smaller than the usual
bid/offer spread on the individual securities).

3.3.2 The sums involved in such basket trades can be very large, and so
even small changes in the dealing terms can be worth pursuing. It is particu-
larly important to bear in mind the market impact that a large trade may have,
since this can make the actual terms achieved less favourable than might appear
at first sight.

3.3.3 However, it may be counter-productive to put such trades out to ten-
der amongst many market-makers. Those who lose the tender will know that
there is another market-maker with an unbalanced book. This is valuable market
information which the losers can use to their advantage and to the winner’s dis-
advantage. It is known in the trade as the winner’s curse. All participating mar-
ket-makers in the tender will thus need to worsen their terms, in case they are
‘unfortunate’ enough to win the tender!

3.3.4 In some markets it is possible to buy and sell such baskets for for-
ward settlement. Such trades can largely replicate the effect of using futures.
Indeed, this sort of trade, or merely buying the underlying and then selling it
later, is a key constraint on the price at which futures can trade.

3.4 Options Contracts for Asset Allocation Purposes

3.4.1 Options contracts, at least exchange-traded versions, are rather less
effective for asset allocation purposes. Suppose, for example, that the house is
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underweight in U.S. equities, but overweight in U.K. equities. However, it

wants to hedge against the possibility that the U.S. market rises against the

U.K. market. Ideally the house wants a relative performance option which will

pay out if the U.S. market rises (in sterling terms) against the U.K. market.

These sorts of options are available OTC, but not from exchanges.

3.4.2 If the house is only prepared to use exchange traded options and stan-
dard currency options to gain the same sort of protection, it will need to buy
three separate options, because there are three ways in which U.S. equities can
outperform U.K. equities:

(a) The U.S. equity market can rise in dollar terms. The house can protect against
this by buying S&P call options.

(b) The U.S. equity market can stay level in dollar terms whilst the dollar appreci-
ates against sterling. Buying an S&P call option is useless for hedging this.
Instead, the house needs to buy a suitable currency option.

(c) The U.S. equity market and the U.S. dollar can both remain unchanged, whilst
the U.K. market falls in sterling terms. Neither the S&P call option nor the cur-
rency option is any good at hedging this risk; the house needs to buy a FT-SE
put option. e

3.4.3 The combined price of all three is, perhaps, double the price of the corre-
sponding relative performance option. The reason is that the three option strategy
provides too much protection in some circumstances. In some scenarios two or
even three of the options may pay out, when only one would be sufficient.

3.5 Options for Strategic Risk Management

3.5.1 Index options are much more useful for strategic risk control or for
hedging some specific liability feature of a fund.

3.5.2 For example, many retail investment providers have sold products
which give the retail investor equity upside subject to some kind of capital
floor. The providers will often hedge the risks involved by investing in some
fixed deposit, to guarantee the floor, and buying call options on the equity mar-
ket, to gain equity upside. Alternatively, the fund may invest directly in equi-
ties, gaining downside protection by buying put options. There are many varia-
tions on this basic theme. Some involve quite complicated options to mimic all
the specific characteristics of the product in question.

3.5.3 Some institutional investors need the same sort of protection. For
example, pension funds will shortly have to meet a minimum funding standard.
As a consequence they may be exposed to falls in equity values relative to
fixed-interest values. A relative performance option, paying out if equities fall
too much relative to gilts, may help. Life insurance companies need to establish
mismatch reserves, the size of which can be reduced by purchasing suitable
sorts of options. Usually the best sort of option for these needs would be a spe-
cially tailored OTC option. A package of exchange traded options providing
enough cover in all scenarios may, again, provide too much cover in some cir-
cumstances.
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3.6 Option Strategies Relating to Specific Securities

3.6.1 The other main uses of derivatives by fund managers are ones involv-
ing options on individual securities. Nearly all mainstream funds advised by
actuaries prohibit gearing and require that all sold or written options are ‘cov-
ered’ by holding, at the same time, appropriate underlying assets. For example,
insurance companies are specifically required to meet certain cover requirements
under the Insurance Companies Regulations for unit-linked funds, and, although
they may hold uncovered derivatives in non-linked funds, such derivatives are
then inadmissible and may experience a valuation penalty. Insurance companies
are also required to have assets which the derivative is ‘in connection with’.

These introduce constraints somewhat similar to those introduced by cover

requirements for unit trusts.

3.6.2 There are four main strategies satisfying cover requirements which
involve options on individual shares:

(a) Hold shares and buy put options. This protects the fund against a sharp fall
in the price of the share.

(b) Hold shares and sell call options. This is called covered call writing. The
investor gives up some possible (and uncertain) future upside in return for
receipt now of income from the sale of the options.

(c) Hold cash and buy call options. This is essentially the same as buying war-
rants issued by companies on their own shares, but can be more flexible.

(d) Hold cash and sell put options. This is essentially the same as underwriting,
but again may be more flexible, as the terms are not necessarily those imposed
by the issuer of the security.

The overall impact of (a) is similar to (c), and the overall impact of (b) is similar to
(d). Combinations of these basic strategies may also be useful in some circum-
stances.

3.6.3 Individual share options are relatively fiddly compared to index
options. Some fund managers are very keen on them, believing that they offer
good ways to tweak their portfolio to closer to a perceived ideal. However, oth-
ers view individual share options as more like clutter within the portfolio, dis-
tracting the fund manager from more weighty matters. The growth in the use of
options on individual stocks has been much less marked than the growth in the
use of derivatives based on market indices.

4. MARKET PRICES

4.1 Market Values

4.1.1 Whatever use a derivative is put to, its price will have a fundamental
impact on how it is used. The natural way to price a derivatives contract is the
same as for any other investment instrument. It is to obtain its market value
from some market place within which it is traded.

4.1.2 Market places have changed considerably over the last few centuries.
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Often we think of financial markets in terms of transactions on exchange floors.
Buyers and sellers are balanced at some suitable price, which we call the mar-
ket price. In practice, the price charged to external buyers (the offer price) may
include a premium and the price received by external sellers (the bid price) a
discount. The resulting bid-offer spread represents, in some sense, the cost (to
external participants) of trading in the market. Often market price is equated
with the mid-market price, which is half-way between the bid and offer prices.

4.1.3 In practice, no formal exchange floor is needed. Dealing can be car-
ried out over the telephone (as now happens for UK. equities). This market
still has a centralised means of disseminating prices (SEAQ). However, even
this is not needed, as with the much larger global foreign exchange market (a
substantial fraction of which is transacted in London). Transactions can happen
very rapidly (as with these two markets) or much more slowly, e.g. the property
market.

4.1.4 There is a whole spectrum of market places, in all of which we could
identify, with greater or lesser precision, some form of market price and some
type of bid-offer spread mechanism. The bid-offer spread may, however,
become very large for very illiquid assets, such as venture capital.

4.1.5 There is the same spectrum of markets in the derivatives arena. The
markets in some derivatives are highly liquid, e.g. successful exchange traded
contracts, such as the FT-SE 100 Index futures contract. Others are much less
liquid, with infrequent trades and high (and perhaps difficult to quantify) bid-
offer spreads, e.g. 15-year OTC equity options.

4.1.6 The size of the typical bid/offer spread within a market will depend
on a variety of factors, including commission levels, taxes and market structure.
Investors wishing to deal in significant size also need to bear in mind the con-
cept of market impact. A large buyer (seller) may inflate (depress) the price in
the market to his own detriment. The market impact will depend on the size of
the deal relative to total volumes traded (which will vary according to market
circumstances), on the structure of the market (e.g. how easy it is to deal
anonymously) and on the skills of the person actually carrying out the trade.

4.2 Pricing Derivatives

4.2.1 Pricing daily margined futures contracts, such as the FT-SE futures
contract, is trivial, at least if we have defined market value strictly as above. At
the end of each day, after the contract has been marked-to-market, the underly-
ing ‘value’ of a futures contract is zero (if the returnable initial margin is
treated separately). This sort of ‘market value’ is also called the close-out or
replacement value of the derivative.

4.2.2 A different terminology is therefore usually used within equity futures
markets. The ‘market price’ of a futures contract is usually taken to refer to the
amount of exposure to the underlying involved with the futures contract, or, to
be more precise, the price from which capital gains or losses are computed in
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the margining process. This ‘market value’ is thus derived after stripping out
the impact of any margining processes.

4.2.3 The difference between these two definitions of ‘market price’ reflects
an important characteristic of the margining system. The buyer of a futures con-
tract takes on two separate sorts of exposure. He acquires market exposure (to
the underlying) and also credit exposure (to the seller of the derivative).
Margining is designed to reduce credit exposure without altering market expo-
sure. Buyers of the underlying acquire the same two sorts of exposures, but
once the deal has settled the exposures are both to the same organisation/market
(i.e. the underlying company). If there is any doubt about how ‘market value’ is
defined, the user needs to ensure that he fully understands the characteristics of
the contract in question, the operation of any margining system and the conven-
tions used within the relevant market place.

4.2.4 Options contracts are also sometimes margined so that the net replace-
ment value (defined as per Section 4.1) can differ from the price of the (mar-
ket) risk transference involved. It is, therefore, again important for the user to
understand precisely what is meant by ‘market value¢’ when it arises in connec-
tion with such instruments.

4.3 Some Economic Theory — the Principle of No Arbitrage

4.3.1 If the whole economic world consisted of a series of completely dis-
crete commodities or ‘goods’, each of which was in some completely separate
sphere of human endeavour, then any discussion on how to price each might
easily end here. In practice, different sort of goods can often be partially or
wholly substituted for one another.

4.3.2 For example, in the gilt-edged (i.e. U.K. government fixed-interest)
market, there are gilts of varying terms, often quite similar. Usually buyers do
not have to buy a specific gilt, but, instead, might wish to buy one with a term
which is, say, approximately 10 years. There might be two or three that have
terms which are relatively similar. All other things being equal (including, in
this context, the coupons on the gilts), the prices of these gilts should trade at
similar prices, as otherwise buyers will tend to shun the most expensive gilt and
buy the cheapest one.

4.3.3 Exactly the same principle applies in the derivatives market. For
example, we would intuitively expect a six-month put option with a strike price
of 1000 to have a market price very similar to a six-month put option with a
strike of 1001 or a six-month and a day put option with the same strike.

43.4 We can extend this to the ultimate limit, where the two goods are
economically identical. The two ‘ought’ to have exactly the same price.

4.3.5 Essentially this is the principle of no arbitrage. Strictly speaking, the
absence of arbitrage means that it is impossible to carry out a series of transac-
tions which:

(a) involve in aggregate no capital outlay; and
(b) 1n all circumstances will lead to no loss, and in some circumstances will lead to
some profit.
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4.3.6 The principle of no arbitrage is most easily applied to idealised markets
which are frictionless, i.e. have no transaction costs or other distortions, such as
might arise from tax systems, and where there are no restrictions on short sales. In
such markets any deviation between the price of two identical goods will be arbi-
traged away by arbitrageurs, and derivatives would trade at their fair price relative
to the mid-market price of the underlying. In the presence of transaction costs, etc.,
we can still apply the concept of no arbitrage, but there will be a range of prices
within which the market price might lie. Only when the price reaches one or other
limit of this range will arbitrageurs start to be active. In most circumstances we
would expect the market to trade within this range. Market participants, by substi-
tuting one good for another in the determination of supply and demand, will drive a
process similar to arbitrage, even if explicit arbitrage strategies are impractical.

4.4 Are Markets Arbitrage-Free?

4.4.1 Identifying instances of ‘arbitrage’ opportunities, as defined above, is
difficult. Many of the ones presented as such confuse the concept of ‘arbitrage-
free’ with market inefficiencies, i.e. anomalies in market prices that provide
profitable investment opportunities, but which are not risk-free.

442 For example, central banks intervene to stabilise currency markets.
This ought to provide profitable investment opportunities, but they are not risk-
free, because the actions of the central bank are not completely predictable in
advance.

4.4.3 Another example is described by Lee et al. (1990) when analysing the
discrepancy between the prices of shares in closed-end mutual funds (such as
investment trusts) and the net asset values of their underlying shares. For exam-
ple, the median U.S. closed-end fund sold at a premium of 47% in the third
quarter of 1929, just before the Great Crash (and in real terms the level of
issuance far exceeded those seen today). During this wave of enthusiasm, theo-
ries explaining why closed-end funds should sell at discounts were not
advanced. Even today, closed-end funds sold to retail investors often sell at a
premium to net asset value, but then move rapidly to a discount for the sorts of
reasons described in Mehta et al. (1996). Lee et al. (1990) conclude that such
discrepancies reflect the existence of a pool of irrational investors, but impor-
tantly they also conclude that arbitrageurs cannot operate, because it is unclear
for how long the discrepancy might last.

444 Normally the only sorts of arbitrage strategies seen in practice are
ones where the arbitrageur can achieve identical economic exposure in two dif-
ferent ways. If, say, a futures contract deviates by more than a certain amount
from the price of the equities underlying it, then arbitrageurs can (and do!)
become active. The discrepancy concerned cannot last longer than the time to
maturity of the futures contract. Even these strategies may carry some risk {(e.g.
the arbitrageur’s estimate of dividend flows may be wrong) and may not always
be classifiable as true arbitrage. Even if they constitute arbitrage, the opportuni-
ties are normally fleeting and available only to those particularly well placed to
benefit from them (e.g. equity market-makers).
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44.5 1t is thus generally prudent for reserving and hedging purposes to
assume that markets are arbitrage-free, or at least that any arbitrage profits that
may exist are ephemeral and only available to someone else. It would be an
unusual actuary who was willing to increase the discount rate used to value lia-
bilities merely because the investment managers claimed that they could add
value relative to some suitable market index. Prudence dictates that such claims
are treated with scepticism, and only taken credit for after they have arisen. The
same applies in the field of derivatives.

44.6 An exception to this rule might be tax arbitrage, where different ways
of achieving the same economic effect may have different tax treatments. It is
usual to take into account the tax treatment likely to be received. Even here,
however, it is important to bear in mind that retrospective tax changes are not
unknown, and that there may be some uncertainty in the way that the transac-
tion will be viewed by the Inland Revenue (especially if the tax arbitrage
involved is likely to be viewed as excessive by the Revenue).

447 A sort of ‘arbitrage-like’ profit that actuaries will come across is the
profit a life office’s shareholders receive by the sale of a profitable life insur-
ance policy. The policyholder (or perhaps a group of them acting in concert)
could, in theory, replicate the underlying economic consequences of the policy
without paying away this profit margin to the shareholders. At least conceptu-
ally, the policyholder accepts the payment of the profit margin because the life
insurance product is more convenient, better packaged, viewed as more secure,
involves less hassle, etc., i.e. that some economic reward is appropriate to the
supplier of the product. Much economic endeavour and corporate finance is, of
course, about the search for synergy, i.e. how to produce something in which
the economic reward attributable to the whole is greater than the sums of the
economic costs of its component parts.

4.4.8 The same applies in the derivatives industry (and indeed to practically
all financial services). Investment banks selling derivatives apply considerable
ingenuity to coming up with some new twist to their stock of OTC derivatives
products which have some tax benefit, or meet some client need better than the
products of the investment bank next door.

4.5 Price, Value and Utility

4.5.1 It is sometimes claimed (e.g. by Daykin in the discussion of Dyson &
Exley (1995) in London) that actuaries focus on value, whereas financial
economists focus on price. In this context, value is generally taken to mean
some assessment of the underlying ‘worth’ of an investment (to a given
investor), whilst ‘price’ is used in the more immediate sense of the market price
at which the investment can be bought or sold. The implication is that the
methods used by financial economists to value financial instruments (including
derivatives) are too price orientated and place too little emphasis on the concept
of underlying worth to the investor.

4.5.2 1 think that this distinction is overstated. It is certainly true that when
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financial economists and derivatives practitioners use the term value, they often
use it synonymously with price. However, there is a whole branch of financial
economics called utility theory. This is based on the concept that different
goods and services (and by implication future cash flows) will have different
utilities to different people. The actuarial concept of value, as described in
74.5.1, seems to me to differ little from this concept.

4.5.3 Nevertheless, I think that there is much that actuaries could contribute
in this area. Financial economists often assume that investors have fairly arbi-
trary utility functions which are convenient from a mathematical perspective. A
common one is a log utility function, i.e. utility U of a certain level of wealth
W is a logarithmic function U(W) = log(W).

4.5.4 This sort of utility function is clearly inappropriate for many of the
sorts of investors advised by actuaries. For a liability-driven investor such as a
pension fund or an insurance company, it would be natural to assume that the
investor’s utility function depends in some way on the investor’s liabilities. For
example, an outcome that involves going insolvent (even by a modest amount)
might be given a very heavily negative utility, whilst an outcome where sur-
pluses accumulate rapidly might be given a significantly positive utility. An
investor with ‘real’ liabilities might assign a higher utility to RPI-linked cash
flows than to nominal cash flows, whereas an investor with nominal liabilities
might do the reverse.

4.5.5 A key point to note is that, in some circumstances, the value/price
may depend little on the nature of the utility function being assumed. Indeed, in
some circumstances, including those consistent with the assumptions underlying
the celebrated Black-Scholes option pricing formulae, option prices are com-
pletely independent of the utility function. The same price rules regardless.
Such valuations are called preference independent, since they do not depend on
investors’ preferences, i.e. utility functions.

4.5.6 However, in general, derivative prices are dependent on investors’
utility functions (see Section 8 and Appendix B), i.e. they are preference depen-
dent. As we shall see, this is particularly important when assessing the level of
reserves appropriate for a derivatives portfolio, since the features that introduce
these dependencies give rise to a whole slice of the reserves required.

5. PRICING SYMMETRIC DERIVATIVES SUCH AS FUTURES, FORWARDS
AND SWAPS

5.1 The Importance of the Principle of No Arbitrage

5.1.1 The principle of no arbitrage, simple though it looks, is of fundamen-
tal importance in derivatives pricing. We can, for example, use it directly to
identify fair market prices for symmetric derivatives (such as forward contracts
and swaps) in frictionless markets.

5.1.2 Suppose that the annualised risk-free rate of interest (i.e. redemption
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yield) at time ¢, with continuous compounding, for a zero coupon bond matur-
ing at time T is r. Suppose that the spot price of one unit of the underlying at
time ¢ is S(¢), and that the underlying generates an income/interest yield (again
annualised with continuous compounding) of g between t and T. Then, in the
absence of arbitrage, the value f(t), of a forward contract with a delivery price
of E is given by:

=8¢ — Eg~r(T-0),

5.1.3 The forward price F, is defined as the delivery price at which a for-
ward contract for that maturity would have zero value. Thus it is the value of E
for which f = 0. In this instance it would be:

F = Setr-o(T-1)

5.1.4 We can justify the formula in Y5.1.2 by considering two portfolios:

(a) Portfolio A: consisting of one long forward contract plus Ee"" of the risk-
free asset, or, to be more precise, E zero coupon bonds each maturing at time T
providing 1 at that time (the definition of r is the value which equates e”™ to
the value of the zero coupon bond).

(b) Portfolio B: consisting of ¢<#™ units of the underlying with all income being
reinvested in the underlying (or, to be more precise, an instrument consisting
of the underlying, but stripped of all income/interest payments prior to time 7,
but again the definition of 4 makes these equivalent).

5.1.5 Both portfolios provide exactly one unit of the underlying at time 7, and
hence, by the principle of no-arbitrage, must be of identical value.

5.1.6 Even if r and g are time dependent, the above formula is still correct
(if r and ¢ are defined as the averages of instantaneous forces of interest/divi-
dend income), as can be determined by considering carefully the more precise
definitions of Portfolios A and B.

5.1.7 In many instances it may be more appropriate to assume that the
income generated by a share is fixed in monetary terms rather than as a per-
centage yield. If the income is / (paid at the start of the life of the forward),
then the values of the forward contract and the forward price become:

f — S_I_Ee—r(T—!) and F= (S—I)e’(T_‘).

5.2 Hedge Portfolios for Forward Contracts

5.2.1 Another way of looking at the approach adopted in Section 5.1 is that
if we have sold a forward contract, we can hedge it by investing in a hedge
portfolio consisting (if the dividend yield is fixed) of:
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(a) going short (i.e. borrowing) Ee"™ of the risk-free asset; and
(b) going long (i.e. buying) e" units of the underlying (reinvesting all income
generated on the units in the underlying).

5.2.2 As the hedge portfolio mimics the effect of the forward contract, we can
introduce the concept of the associated economic exposure of the contract. This is
the equivalent amount of the underlying that an investor would need to hold to have
the same economic effect as holding the forward. It is the value of the underlying
within the hedge portfolio, i.e. Se#™. More generally, it may be found (for equity
derivatives) as:

v
S—.
ds

This is also known as the delta of the contract (although often delta refers to this
expression, but without the leading term in S). For interest rate derivatives, the delta
is usually calculated with respect to changes in the interest rate, rather than the
value of the investment equivalent to S, i.e. a zero coupon bond, and therefore has
somewhat different characteristics. In certain special cases delta hedging of interest
rate derivatives is equivalent to Redington’s duration matching, see e.g. Jarrow &
Turnbull (1994).

523 If income is fixed in monetary terms, then the hedge portfolio
changes. It would be short (/+E)e”™" of the risk-free asset and long one unit in
the underlying, so its associated economic exposure or delta would be S.

5.2.4 In either case, this sort of hedge could be described as a static hedge,
since we do not need to alter the hedge portfolio if the price of the underlying
moves, except to reinvest dividend income (and to disinvest borrowing costs) in
a suitable fashion. It may be contrasted with dynamic hedging, in which the
structure of hedge portfolio is altered in some fashion, depending on the move-
ment in the price of the underlying.

5.2.5 Static hedging ought to be widely understood in actuarial circles, since
it is equivalent to the concept of matching, e.g. as described by Wise (1987).
Dynamic hedging is less widely written about in actuarial circles. However, it
too is not far away from the actuarial mainstream; it is implicit in the actuarial
principle that the smaller the surplus the more a fund should adopt a position
that matches its liabilities.

5.2.6 Astute readers will have spotted that there may be an element of cir-
cularity in the hedge portfolio described above. For currency forwards, it is pos-
sible to buy suitable investments in the underlying stripped of income prior to
maturity of the forward. However, for equity markets such investments do not
exist. Indeed, the usual way of estimating the value of the stripped component
is to work backwards from the price at which suitable futures, forward contracts
or swaps trade! In practice, it may be possible to estimate future dividend
income and hence g (or [), but if maturity is a long time into the future, then
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this alternative becomes less accurate. There is also a problem deciding what
tax rate to apply to the estimated dividend income. Usually the implied market
rate is somewhere between a gross and a net rate (which, incidentally, can
introduce possibilities for tax arbitrage, since forwards and futures contracts can
be used to convert income into capital gains or vice versa).

5.3 Pricing Futures Contracts

5.3.1 The fair price of a futures contract (subject to daily margining) would
appear to correspond to the forward price of a contract with the same maturity
date. A complication is that futures contracts are generally marked to market
daily, and therefore the quantity corresponding to the exercise price keeps being
reset to the current futures price. However, if the risk-free rate of return r, is
constant and the same for all maturities, the fair market price of the future
would be the same as the forward price (see Hull, 1992), i.e.:

known dividend yield, g:  Se(" 9T

known dividend income, I: (S~ De™ 7.

5.3.2 The associated economic exposure of the future is also more compli-
cated, since any gains or losses are credited/debited immediately. If the price of
the underlying doubled instantaneously or fell to zero instantaneously (and
futures remained priced at their fair value), then a portfolio holding one futures
contract would rise or fall in value by Se™¥™ (or Se'™ if dividend income is
constant in monetary terms). These may therefore be used to identify the associ-
ated economic exposure of a futures contract.

5.3.3 In practice, of course, the risk-free rate is unlikely to be constant, and
the price of a futures contract may then vary from the forward price. The rea-
son is hinted at in Section 3.6 of Hull (1992). In essence, the hedge portfolio
described above is no longer perfect for a futures contract, since capital gains
or losses credited daily must be reinvested at a rate which is not known in
advance.

5.3.4 For contracts lasting just a few months, the theoretical differences
between equity forwards and futures are usually small enough to be ignored,
unless they differ in other ways (e.g. tax treatment, transaction costs or the ini-
tial margin deposited with the clearing house is not credited with as high a rate
of interest as other deposits).

5.3.5 Users of the LIFFE long gilt future (and some other gilt futures)
should also note that these futures are settled by delivery of stock from a range
of alternatives (with delivery being possible on a range of dates). This element
of optionality can influence its price.

5.4 Deviations from Fair Value
5.4.1 Neither forwards nor futures are actually guaranteed to trade at the

https://doi.org/10.1017/51357321700005316 Published online by Cambridge University Press


https://doi.org/10.1017/S1357321700005316

Actuaries and Derivatives 71

1.5 1

—
.

(=4
< W
.

Actual Value (% deviation from fair value)
&
w

wn

02/01/92 &
28/05/92
19/10/92
11/03/93
29/07/93
16/12/93
05/05/94
22/09/94
09/02/95
29/06/95
16/11/95
04/04/96

Source: Goldman Sachs Date

Figure 3. FT-SE Index futures: percentage deviations from fair values

no-arbitrage fair prices described above. If the difference between the actual
price and the fair price is less than the bid/offer spread in the underlying mar-
ket, or if short-selling is difficult or impossible, then arbitrageurs may not be
able to profit from the difference. Usually the deviation is modest (see Figure
3), although still potentially important in some instances.

5.4.2 Very occasionally the difference between the actual price and the fair
price derived from no arbitrage criteria can become much larger. This should
only happen if a major shock prohibits the process of arbitrage from drawing
the two prices closer together again. An example was the October 1987 Crash,
when the underlying stock markets moved so rapidly and so far, that for much
of the day the two markets appeared to be out of synchronisation (in the case
of the U.S.A., the futures market was closed altogether).

5.43 The impact of differences between the actual price and the fair price
of futures or forwards is known as basis risk (or, if it refers to the impact when
the contract is rolled forward, as roll-over risk).

5.5 Index Arbitrage
5.5.1 Arbitrageurs of equity derivatives are most likely to be players who
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are market-makers on both the underlying physical stock market and on the cor-
responding futures exchange (because their transaction costs are then generally
lower than for other market participants). Each such organisation will have a
book of positions, usually both long and short, in both individual stocks and in
instruments such as futures relating to index exposures. They will have pur-
chased their long positions directly in the market. To cover their short positions,
they will often have borrowed stock from a stock lender.

5.5.2 To minimise the likelihood of shortfalls in their overall book, they
will normally try to minimise the net exposures that they have to any one stock
or any one type of stock. Of course, the nature of market making means that
they will always be taking temporary positions (sometimes quite large), but they
will try to avoid permanent large long or short positions, as it ties up scarce
capital.

5.5.3 Assessing the level of capital required to back such a book (if it con-
tains no options) ought to be conceptually straightforward for most actuaries
already involved with investments. The market-maker’s book can be thought of
as a portfolio of many different individual equities (long and short). Index
exposures gained through futures can be included by decomposing them into the
various index constituents, weighted as per the index (plus a further basis risk
element as per 15.4.3). The riskiness of this portfolio can then be assessed by
calculating its fracking error, which is usually defined as the expected standard
deviation of the return on a portfolio (relative to some suitable benchmark, per-
haps here being cash). The concept of tracking error is explained in Rains &
Gardner (1995). The capital required may then be set by applying some suitable
multiplier to the tracking error to provide an acceptably low estimated risk of
ruin.

5.5.4 There are commercially available packages that can estimate such
tracking errors from an investment management perspective, €.g. ones supplied
by BARRA and Quantec. These generally start with a predefined series of fac-
tors that are assumed to influence the returns on individual stocks (e.g. market
capitalisation, industry type, book to price ratios), as well as assumptions on the
volatility of individual stocks not explained by these factors. The total tracking
error is then dependent on how diversified the portfolio is, as well as whether it
has any factor biases. In both of these packages the contribution to risk from
individual stocks (and their correlations) and the residual non-systematic risk
from individual stock holdings are estimated from past history, which may not
necessarily be a good guide to the future.

5.5.5 Market-makers often develop their own proprietary methods of calcu-
lating tracking error. For example, factors influencing the behaviour of stocks
can be found by multiple linear regression and principal component analysis
without regard to whether the factors thereby derived bear any obvious relation-
ships to how investors might view stocks. Trading volume and liquidity are
also, arguably, more important from a market-maker’s perspective than from an
investment manager’s point of view.
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5.6 Valuing Interest Rate Swaps and Bond Futures

5.6.1 Although this paper concentrates on equity derivatives, it is also worth
noting that exactly the same sorts of arguments can be used to value interest
rate swaps and futures or forwards on bonds. However these normally require,
not just point parameters, but information relating to the entire yield curve.

5.6.2 Take, for example, an interest rate swap involving a principal amount
P, maturing in n years’ time. For simplicity, we assume the swap involves
Party A paying floating-rate interest payments to Party B in return for fixed-
interest payments of aP, and that both the fixed and the floating-rate payments
are continuous (with the floating-rate payments reset continuously). We also
assume that the value of a zero-coupon bond paying 1 at time ¢ from now is
worth v(£)=1/(1+i(¢))’, where i(t) is the relevant (annualised) gross redemption
yield of such a zero-coupon bond. We also, in this simplified example, ignore
the impact of credit risk.

5.6.3 If we buy a £1 zero-coupon bond maturing at time x, sell a £1 zero-
coupon bond maturing at time y (>x), and put the £1 we receive from the first
bond on deposit (at floating rates), then we will receive floating-rate interest on
£1 between x and y. Thus the present value now of such floating-rate payments
is, by the principle of no arbitrage, v(x) — v(y). The value now of (continuous)
fixed rate payments of a between x and y is:

y
ajv(t)dt.

5.6.4 Thus the value of the swap now to Party B is:

P{a} v(t)dt + v(n) — 1).
0

5.6.5 In practice interest rate swaps have discrete reset dates, at which the
floating payments are recalculated and on which the fixed and floating-rate pay-
ments are made. The value of the fixed-rate payments would thus be discrete
rather than continuous annuities, and there would be an adjustment for the
period between the date of valuation and the date of the next reset date.

5.7 Predicting Future Price Movements from Forward Prices

5.7.1 The ‘fair’ forward price depends on the current spot price and differ-
entials in expected income streams. If a future/forward is trading cheap or dear
relative to its fair value, then it will move back to its fair value by maturity
(either by moving itself or by the underlying moving). It thus provides some
information on how the underlying market might move in the future, but the
amount is quite limited. In an arbitrage-free world there should be no deviation
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from fair value, and the forward price should provide no information at all on
whether the market was fundamentally cheap or dear.

5.7.2 This is merely a specific example of it being impossible, in an arbi-
trage-free world, to predict future price movements from past price movements
in the sorts of fashion often used by chartists. Most actuaries are deeply scepti-
cal about chartist analysis, perhaps because they have an in-built acceptance of
the prudence of assuming that markets are arbitrage-free.

5.7.3 One often hears of a movement in the futures markets driving a
movement in the underlying stock market. What this actually means is that
there is an imbalance between supply and demand at the current price, and it
influences the futures market more quickly than the underlying. Since futures
markets are now often more liquid than their underlying stock markets, it is not
too surprising that the imbalance is often spotted and acted upon first in the
futures market.

5.7.4 Again, a slight word of caution is required with interest rate deriva-
tives. The short sterling contract on LIFFE does provide information on market
expectations for sterling interest rates over the next few months or years.
However, if the market is arbitrage free, it still does not indicate if zero-coupon
bonds are fundamentally ‘cheap’ or ‘dear’.

5.7.5 Of course, investment managers often argue that specific markets are
not arbitrage-free or may have systematic inefficiencies (e.g. foreign currency
markets, because of the presence of players like the Central Banks who seek to
smooth exchange rate movements). In such circumstances, forward prices may
have some predictive capability. Forward prices (and forward interest rates) also
give an indication of what the market is expecting to happen, and thus can help
a fund manager to identify whether his views (and thus the position he will
want to take) differ from the prevailing market views.

6. THE GREATER COMPLEXITY OF PRICING ASYMMETRIC DERIVATIVES
SUCH AS OPTIONS

6.1 Why Options are more Complex than Forwards ,

6.1.1 Pricing asymmetric contracts, such as options, is much more compli-
cated than pricing symmetric contracts. The reason is that the principle of no
arbitrage, in isolation, no longer produces unique fair values for such contracts
that all market participants will agree on, although it does introduce certain
upper and lower limits.

6.1.2 For vanilla options, such as puts and calls, which never generate a lia-
bility for the purchaser, the lower limit must be at least equal to zero. However
we can do better than this. For American style options which are potentially
exercisable immediately, the option must be worth at least its intrinsic value,
which for a call option is max(S — E,0), and for a put option is max(E - §,0).
For a European option these limits become max (Se+™ - Ee""() and
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max(Ee" — Se<™ (), even though it is still usual to retain the American style
formulae as the definitions of ‘intrinsic value’.

6.1.3 The upper limits are also relatively easy to establish. In the absence of
transaction costs, a European call option giving the holder the right to buy a
share for the price of E cannot be worth more than Se~™, whilst a put option
giving the holder the right to sell the underlying for a price E cannot be worth
more than Ee™. For American put and call options, these limits become S and
E respectively, since the option might possibly be exercised immediately. To
achieve these limits, the underlying must rise in price infinitely much (for the
call option) or fall to zero (for the put option).

6.1.4 It is relatively easy to show that the price of a vanilla option can, in
principle, fall anywhere between these bounds. For example, suppose that the
price of the underlying S remains fixed until just before the maturity date of the
option and then jumps in the instant before maturity to equal x with probability
P(x). Given an arbitrary probability density function P(x), any option price
between the lower and upper bounds stated above could be consistent with no
arbitrage.

6.2 Decomposing Option Pay-Offs into their (Possibly Infinitesimal) Parts

6.2.1 So to price options we need something more than just the principle of
no arbitrage. One way of tackling the pricing of European options might be to
decompose the pay-off at maturity into lots of individual parts, depending on
the level the underlying reaches at maturity. Each of these parts pays out 1 if at
maturity the underlying lies between S(x) and S(x) + dx. Such contracts are
technically known as digital call spreads (in this instance with infinitesimal
spreads of width dx).

6.2.2 The no arbitrage criterion places constraints on the values of these
digital call spreads. Each must have a non-negative value. Also, if we purchase
Sdx digital call spreads (relating to the spread S(x) to S(x) + dx) for each possi-
ble x, then their combination is economically identical to a contract which pro-
vides one share at maturity, which we know how to value from Section 5.

6.2.3 Thus, in principle, we must determine the value of an infinite number
of digital call spreads if we want to be able to value European options, i.e. we
need to identify a function D(x) defined such that:

D(x) dx = value of a digital call spread between x and x + dx.

6.2.4 A common way of restating this is to identify a probability distribu-
tion p(x), called the risk-neutral probability distribution, which is defined so
that:

D(x) = Zp(x)

where Z is the present value of a payment of 1 at the maturity of the option, i.e. the
value of a corresponding zero-coupon bond.
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6.2.5 The price of a European option can then be defined as the expected
value of the pay-off of the option with respect to this risk-neutral probability
measure. We consider risk-neutral probabilities in more detail in Section 7 and
in the Appendices.

6.3 Calibration of Option Prices

6.3.1 In practice we will only have a relatively limited number of actually
observable option prices (which may be subject to significant bid-offer spreads).
Finding a suitable D(x), or equivalently p(x), which closely fits actually
observed option prices is a process which, in the actuarial world, would be
known as calibration. It has strong similarities to graduation, which actuaries
have long used to calculate smoothed mortality rates, etc. and which involves
fitting some suitable smooth mathematical function to observed mortality rates.

6.3.2 A derivatives market-maker with small net positions generally cares
little about what the price of an option ‘ought’ to be, provided he can find a
good way of calibrating the market, and hence valuing consistently the options
he is buying and selling. Of course, if he holds significant net derivatives posi-
tions on his book (e.g. if he also carries out proprietary trading, i.e. trading on
his own account), then he becomes more interested in the ‘right’ value of each
option in isolation. He is then, in effect, operating more like an own-account
position-taking fund manager than a market maker.

6.3.3 The calibration process becomes rather more complicated if options
with different numeraires are to be considered, and much more complicated still
when applied to path dependent options such as barrier options. These are
options whose pay-off structure depends in part on how the underlying gets to a
position as well as its final value at maturity. We then, in principle, need to
identify an infinite dimensional function F(x.\)) representing the value of an
option that pays out 1 if the path of the underlying S remains within the fol-
lowing band at all times:

x(1) < S(1) < x(1) + dx(1).

6.3.4 The value of a given path dependent option could then, in principle,
be calculated by summing across all possible paths that the price of the under-
lying might follow. Monte Carlo simulation techniques would often, in practice,
need to be used, given the large number of possible paths. The techniques
involved are conceptually similar to those used by actuaries in stochastic
asset/liability modelling.

6.4 Hedging Algorithms

A potentially more useful way of attempting to price options is to identify
some model describing how the price of the underlying securities might move,
and then to derive from it a pricing algorithm (often by identifying its associ-
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ated risk neutral probability distribution). The reason is that such a model can
help us identify ways of hedging or otherwise controlling the risks incurred
when writing such options. It can also help us to understand the circumstances
in which controlling these risks may be problematic. It, too, will normally need
calibrating to match closely prices actually observed in the market place.

6.5 Views on the Black-Scholes Formulae within the Actuarial Profession

6.5.1 A common assumption to make is that the price of the underlying fol-
lows a diffusion process. The usual sort of diffusion process adopted is that set
out in Appendix A, which, as shown there, results in the celebrated Black-
Scholes formula for European put and call options, and to its generalisation, the
Garman-Kohlhagen formula for interest/dividend bearing securities.

6.5.2 The Black-Scholes formulae seem to cause controversy amongst some
parts of the actuarial profession.

6.5.3 There are some (usually ones who do not work for banks) who flatly
refuse to believe that equity prices follow anything like a diffusion process, and
specifically that such an approach vastly understates the likelihood of extreme
outcomes, especially for long-term options. These people then infer that the
Black-Scholes formulae will understate dramatically the true value of, say, far
out-of-the-money put options, raising the spectre that writers of such options
(i.e. principally banks) are putting their capital at serious risk (and may be
unable to honour contracts they enter into with insurance companies).

6.5.4 There are others (usually from a banking background) who seem
much more comfortable with the Black-Scholes formulae (or some suitable
modification), arguing that to-date the application by banks of the formulae
seems to have been quite successful and very far from the doomsday scenario
painted by the other camp.

6.5.5 The issue seems to be rather more about philosophy (or perhaps a
reluctance to accept that a non-actuarial profession can have useful insights in
an area where actuaries feel that they ought to be the experts) than about cost
or size of reserves. Even within the actuarial literature, see e.g. Beenstock &
Brasse (1986), it has been noted that the Black-Scholes formulae produce
uncomfortably expensive values for the sorts of maturity guarantees that life
offices might want to include within their products. Perhaps, also, this contro-
versy mirrors the sorts of options different members of the profession may
come across. Those principally concerned with, say, valuing maturity guarantees
will often be focusing on the costs of very long-term far out-of-the-money
options. These are, perhaps, less well catered for by the Black-Scholes formulae
than the less ‘extreme’ sorts of options more typically traded by banks.

6.5.6 To some extent the Report of the Institute of Actuaries and Faculty of
Actuaries Maturity Guarantees Working Party (1980) set the scene for actuarial
opinion on this topic, just as the huge boom in derivatives since the early 1980s
started. Section 6 of the Report considered briefly the possibility of following

https://doi.org/10.1017/51357321700005316 Published online by Cambridge University Press


https://doi.org/10.1017/S1357321700005316

78 Actuaries and Derivatives

an immunisation strategy to hedge maturity guarantees effectively along the
lines of dynamic hedging of option prices using the Black-Scholes formulae.
Section 6 of the Report concludes:

“Although the Working Party did not pursue immunization theory, it concluded that it is a
subject which merits further investigation. Also it is likely that a paper will be presented to
the Institute on the subject in the near future. In the meantime, the Working Party considers
that there is no basis for reducing maturity guarantee reserves because a company follows
some form of immunization strategy and, in fact, a company that follows such a strategy
without fully appreciating the difficulties could well require greater maturity guarantee
reserves than would otherwise be the case.”

The paper referred to in the second sentence of this quotation appears never to
have been published.

6.5.7 Some argue that this view is bolstered by the experience of the
October 1987 Crash, in which share prices on some markets moved by 20% to
25% in a single day. The argument goes that writers of put options (or ‘portfo-
lio insurers’ trying to replicate the effects of such options) found it impossible
to trade in the manner necessary to hedge the risks involved (i.e. to sell enough
stock rapidly enough).

6.5.8 In fact, some of the fund managers with the fastest and best hedging
programs claim to have been able to largely, or wholly, insulate their funds
against the effect of the Crash. Thus, although dynamic hedging does not work
perfectly when markets ‘gap’, it does seem to offer some protection, despite the
suggestion of the Maturity Guarantees Working Party to the contrary.

6.5.9 There is, at this point in such discussions, a tendency to digress into
issues such as whether portfolio insurance, derivatives markets and indeed all
computer driven share trading systems are intrinsically a ‘bad thing’, guaranteed
at times to disrupt the orderly functioning of the underlying stock market. It is
not the intention of this paper to digress in this fashion (although I suspect that
the widespread use in the U.S.A. of portfolio insurance immediately prior to the
October 1987 Crash did contribute to market volatility over that period). Instead
I have concentrated on two related questions:

(a) what are the different sorts of risks arising from price movements in the under-
lying; and
(b) how much of these risks can be mitigated if we have sold an option contract?

6.5.10 I have set out, in Section 9, an analysis of how effective daily dynamic
hedging might have been if applied to the U.K. equity market since 1984 (a period
including the October 1987 Crash). Although it is always appropriate to treat such
simulations with some caution, it seems that pure dynamic hedging can reduce
risks, but it is not the panacea that some, perhaps, suggest. There are still significant
risks which need to be controlled in other ways.
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7. BINOMIAL LATTICES AND DIFFUSION PROCESSES

7.1 A One-Period Binomial Lattice

7.1.1 However, before we can carry out this analysis, we need to delve
more deeply into the mathematics of dynamic hedging.

7.1.2 Suppose we knew for certain that between time t—A and ¢ the price of
the underlying could move from S to either Su or to Sd (as in Figure 4), that
cash (or more precisely the appropriate risk-free asset) invested over that period
would earn a force of interest of r and that the underlying generates a force of
dividend income of q.

7.1.3 Suppose we also have a derivative (or indeed any other sort of secu-
rity) which (at time #) is worth A=V(Su,r) if the share price has moved to Su,
and worth B=V(Sd,t) if it has moved to Sd.

/Su
\

Sd

S

—

Figure 4. Binomial price movement

7.1.4 Starting at S at time t—h, we can (in the absence of transaction costs
and in an arbitrage-free world) construct a hedge portfolio at time t—h which is
guaranteed to have the same value as the derivative at time ¢ whichever out-
come materialises. We do this by investing (at time #~#k) £S in f units of the
underlying and investing gS in the risk-free security, where f and g satisfy the
following two simultaneous equations:

fSue” + gSe” = A=V(Su,t)
fSde* +gSe” = B=V(8d,1).

7.1.5 Thus fS and g$ are given by:

_ e (V(Su,t)~ V(Sd,1))

- u—d

_ e (=dV(Su,t)+uV(Sd,1))
- u—d '

IS

0
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7.1.6 The value of the hedge portfolio and hence, by the principle of no
arbitrage, the value of the derivative at time t—h are thus given by the back-
ward equation:

r-oh _ 4 (r-Q)k

V(S,t—h)=fS+gS= f—-d—— e V(Su, 1)+ 2=£
u—

e ™V(Sd,1).

u—

7.2 Risk-Neutral Probabilities
7.2.1 We can also write this equation in the form:

V(S,t=h) = p,e”™"V(Su,t) + pe " V(Sd, 1)
where : Sk _ g | 4 T
= ——— aIM =
pu u— d pd - d

and thus: Pyt py=1.

7.2.2 p, and p, behave like probabilities of jumping up or down, especially
if they are both non-negative, i.e. if u>e"™>d (assuming u>d). This is a fairly
reasonable assumption to make, since e"* is the forward price of the security,
and it would be an odd sort of binomial tree that did not straddle the expected
movement in the underlying. Failure to satisfy these inequalities also introduces
arbitrage opportunities.

7.2.3 However, it is important to realise that p, and p, do not need to corre-
spond to the probabilities that any given investor believes are the actual proba-
bilities of up or down movements. In order to avoid arbitrage, we do not need
to know what people actually believe will be the case. Instead, we only need to
know the probabilities that would be assigned to up and down movements by a
notional risk-neutral investor, who is an investor who assumes that the expected
return on the underlying is the same as the risk-free rate. p, and p, are therefore
called risk-neutral probabilities. It is relatively easy to show that, if the price
movement is as implied by such a binomial arrangement, then this definition of
risk-neutral probability is compatible with the more general definition given in
Section 6.

7.3 Multi-Period Binomial Tree

7.3.1 One way of extending the one time period model, described in Section
7.1, is to build up a binomial tree, or binomial lattice, as in Figure 5. The price
of the underlying is assumed to be able to move in the first period either up or
down by a factor u or d, and in second and subsequent periods up or down by
u or d from where it had reached at the end of the preceding period.

7.3.2 More generally, u or d could vary depending on the time period, but
it would be usual to require u,/d, to be fixed, to make the lattice recombining.
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/ Suu
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/ \
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h h

Figure 5. Binomial lattice/tree

In such a lattice an up movement in one time period followed by a down
movement in the next leaves the price of the underlying at the same value as a
down followed by an up. Non-recombining lattices are possible, but are much
more complicated to handle. It would also be common, but not essential, to
have each time period of the same length A.

7.3.3 By repeated application of the backward equation in Section 7.1, we
can derive the price n periods back, i.e. at t = T — nh, of a derivative with an
arbitrary payoff at time 7. If u, d, p, and p,, r and y are the same for each

period then:
n(n n !
V(S,T-nhy=e™3 plps "V(Su™d" ™, T) where m——
mop\ M m m!(n—m)!

7.3.4 We can also express this in probabilistic terms, placing a value on the
derivative by calculating the expected value of the pay-off by reference to the
risk-neutral probability measure, rather than the actual likelihood of up or
down movements occurring (as perceived by any specific investor). Thus we can
also express V as:

V(S,1) = E(e”"PV(S,T)1S,) where t=T ~nh.

E(X | I) means the expected value of X given some probability measure conditional
on being in state I when the expectation is carried out.
735 As we saw in Section 6, calculating derivative prices using
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expectations referring to risk neutral probability measures is a quite general
method that can be applied to all European style options, provided that the
appropriate risk-neutral probability measure can be identified. In the derivatives
literature, the use of a risk-neutral approach is also sometimes referred to as
using an equivalent martingale measure, since the discounted price process
(under the risk-neutral probability measure) is a mathematical artefact called a
martingale.

7.3.6 Using expected values ought also to be instantly recognisable to actu-
aries. The ‘standard’ actuarial approach, if one might be said to exist, to valu-
ing a cash flow dependent on some factor S is:

(a) to estimate the probability p(S)dS of that factor falling in the range S to S + dS;

(b) to determine the size of the cash flow arising in these circumstances; and

(c) to discount the cash flow at some suitable discount rate, say r (which can be
expressed as a ‘force’ of interest).

7.3.7 For a European call option with exercise price E, the ‘standard’ actuarial
approach thus results in the use of the following formula:

Vs, t)j PS)(S = E)e"T-94s.
E

7.3.8 At first sight there appears to be an inconsistency between the two
approaches, since the derivative pricing formula in 17.3.4 requires the use of
risk-neutral probabilities, whereas actuaries would tend to use their own per-
ceived estimates of the actual likelihoods of different outcomes occurring. The
difference is reconciled through the discount rate. It is accepted actuarial prac-
tice, at least for life office appraisal valuations, to use some sort of risk dis-
count rate for r, reflecting the risk characteristics of the investment concerned.
The natural discount rates to use are ones that ensure that the value of a call
option with zero exercise price is equal to the value of a share deliverable at
time T (which can be valued as per Section 5). This is because the two have
identical economic effects. Smith (1996) shows that use of actual (investor esti-
mated) likelihoods and risk discount rates set in this fashion is mathematically
identical to using risk-neutral probability measures and a risk-free discount rate.

7.3.9 In practice, it is often nearly impossible to estimate the appropriate
risk discount rate applicable to a given ‘real world’ probability distribution
except by backing it out from the results of a calculation using the risk-neutral
probability distribution. Risk-neutral valuation approaches are therefore almost
universally preferred within the derivatives industry.

7.4 Preference Independent Pricing Formulae

7.4.1 Astute readers will have noticed that nowhere in Sections 7.1 to 7.3 is
there any mention of the utility functions of individual investors (or even
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investors in aggregate). A pricing formula like this, which does not depend on
investors’ views regarding the likelihood of price movements, is called prefer-
ence independent. Such a lack of dependence on investors’ views regarding risk
and return is actually very rare. As Neuberger (1992) notes, essentially the only
examples are ones where the price movements in the underlying follow a bino-
mial tree known in advance or the limit of such a tree in which the time inter-
val becomes arbitrarily small (which include the sorts of processes underlying
the Black-Scholes formula).

7.4.2 The reason is that, if there are just two possible outcomes at any one
time (known precisely in advance), then we have just enough flexibility to
replicate the option behaviour exactly using dynamic hedging, by altering the
mix of the hedge portfolio. If there are more than two possible outcomes, or if
the two are not known with certainty, then we do not have sufficient flexibility,
and dynamic hedging becomes intrinsically ‘risky’. The presence of transaction
costs also introduces preference dependence (see Appendix B.8.3). As we shall
see, this has important consequences when we are trying to hedge the risks
involved and in assessing the level of reserves needed for positions which are
dynamically hedged.

7.4.3 Risk-neutral probability measures are much more widely applicable (as
can be seen from 16.2.3), since they depend only on the absence of arbitrage.
Practically all option pricing formulae seem to have equivalent risk-neutral
probability measures, provided we define the concept widely enough. They also,
in principle, have wide application in other actuarial areas, see e.g. Smith
(1996). If the price movement model is preference independent, then the risk-
neutral probability measure can be found without reference to the attitude of
investors to risk and return, i.e. to their utility functions, as described in Section
4.5. However, if the price movement model is preference dependent then, in
general, the risk-neutral probability measure will depend on investors’ utilities
(or some average of them).

7.5 Valuing Put and Call Options
75.1 Applying the formula in Y743 to a put option, with strike E

(assumed to be at a node of the lattice) maturing at time 7, we get the price of
the put option as:

P(S,T)=max(E - §,0) where E=Su™d"™™ say.
Thus:

—rnh Q(n m_n-—-m m jn—m
P(S,T—nh) =¢™ Y | PP E = Su™d" )
m:O

= e "™ E.B(my,n, p)— e“’"hSOB(mO, n, —&——-)
wp,+dp,
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where:

X n
B(x,n, p) = binomial probability distribution= Y (m) p"(1-p)" "

m=0
7.5.2 Suppose we define the volatility of the lattice as o where:

o= log(u/d)
Wh

Then, if we allow & to tend to zero, keeping o and ¢ fixed, with u/d tending to 1 by,
say, setting log(u)=0'\/71 and log(d)=—oVh , we find that the above formula, and
hence the price of the put option, tend to:

P(S,1) = Ee”"""ON(~d,) - Se *""IN(~d,)

where:

—_ 2 —-
d1=1°g(S’E)+(’JT?+;’ DT=D and dy=d, -oNT—1
G —_—

x 2
and N(x) = cumulative normal probability function = J;_ je‘z 24z
T .

7.5.3 The equivalent price (in the limit) of a European call option is:
C(S,1) = Se™ T N(d,) — Ee”"""N(d,) where d, and d, are as above.
This formula can be justified along the same sorts of lines as used above for a put
option. Alternatively, it can be justified on the grounds that the values of a
European put option and a European call option satisfy put-call parity (as noted in
13.6.2),i.e.
stock + put = cash + call  (allowing for dividends and interest).
Mathematically, this means that C and P satisfy:
P=C+Ee """ —§e4770,

7.5.4 These formulae for European put and call options are the Garman-

Kohlhagen formulae for dividend bearing securities. If g is set to zero, then

they become the celebrated Black-Scholes option pricing formulae. For simplic-
ity, in the remainder of this paper I refer to both generically as the BS
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formulae, and call a world satisfying the assumptions underlying these formulae
as a ‘Black-Scholes’” world.

7.5.5 In this limiting situation, the volatility o corresponds with the natural
meaning of the word ‘volatility’ as applied to the share price.

7.5.6 Similar formulae can also be derived if we assume that dividends
rather than dividend yields are fixed, see e.g. Hull (1992).

7.6 Derivation of the Black-Scholes Formulae using Stochastic Calculus and
Partial Differential Equations

7.6.1 It is probably more usual to develop the BS formulae using stochastic
calculus and partial differential equations.

7.6.2 This approach involves deriving a partial differential equation satisfied
by any derivative on the security (including one that paid the total return on the
underlying security!). The one caveat is that the derivative must depend only on
the underlying security and the risk-free asset. The relevant partial differential
equation for the Black-Scholes world is described in Appendix A.

7.6.3 Different derivatives then differ only in that they satisfy different
boundary conditions. For example, a European-style call option with exercise
price E maturing at time T will satisfy the partial differential equation devel-
oped in Appendix A, subject to the boundary condition that at time T the price
must equal max(S — E,0) for all possible prices of the underlying security S.

7.6.4 1t is relatively easy to demonstrate that the formulae set out in 17.5.2
and 17.5.3 satisfy this partial differential equation and the relevant boundary
conditions. However, a better understanding of the formulae can be gained by
deriving them from first principles using mathematical techniques appropriate to
solving partial differential equations, as is also done in Appendix A.

7.7 Factors Influencing the Price of an Option

7.7.1 The price of a call option for a given strike price will vary as the
price of the underlying varies. Figure 6 shows the form of this dependency for
various times to maturity for a European call option, assuming a constant
volatility 0=15%, and constant risk-free interest rate r=0% and dividend rate
q=0%.

7.7.2 The delta of an option, or indeed of any type of (equity) derivative
(see 14.2.2) is the slope of such a curve, i.e. the rate of change of the price of
the option with respect to the price of the underlying (multiplied by S if the
aim is to express the answer in units of market value rather than units of
stock). Deltas equivalent to the prices in Figure 6 are shown in Figure 7.
Equivalent graphs for European put options (making the same assumptions as in
17.7.1) are shown in Figures 8 and 9.

7.7.3 Another important characteristic of the option is its gamma, which is
the slope of the curve in Figures 7 or 9, i.e. the rate of change of delta with
respect to the price of the underlying. Gamma is important because:

(a) It is directly related to the level of turnover within the sort of portfolio that
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might be used to hedge dynamically the characteristics of the option.

(b) The smaller the absolute size of the gamma, the less, in effect, are the option-
like characteristics of the derivative. If gamma (defined as above) is zero in all
circumstances, then the derivative will have no asymmetric characteristics, and
may be priced using merely the sorts of techniques described in Section 5.

7.7.4 As mentioned in 15.2.2, somewhat different definitions of delta and
gamma are normally used for interest rate derivatives.

7.7.5 The price of a call option also depends on o, r, ¢ and the time to
maturity (and, for pricing formulae which are more complicated than the BS
formulae, on other relevant parameters). For example, the price of vanilla puts
and calls will, in general, rise if o rises. These sensitivities, together with the
delta and gamma of the option, are generically known as the option greeks, and
are described further in Appendix A.

7.8 Implied Volatility

7.8.1 It is relatively easy to demonstrate that there exists some ¢ which
equates the observed price of any European put or call option to the price
derived from the appropriate BS formula (provided the price of the option is
within the constraints imposed by no arbitrage, see Section 5.1).

7.8.2 This o is known as the implied volatility of the option, and is widely
used within the derivatives markets.

7.8.3 In this artificial sense, the BS equation will be satisfied by all
European style options. However, the implied volatility may differ for options
with different maturities or for options with the same maturities, but with differ-
ent exercise prices.

7.8.4 In Section 5.4 we introduced the concept of calibrating option prices,
concentrating directly on the price of appropriate digital call spreads. We could
equally well restate the calibration problem into one of finding the appropriate
implied volatilities for each exercise price. Indeed, this is the usual way in which
the problem is framed within derivatives houses.

7.8.5 If the assumptions underlying the BS formulae were correct, then the
implied volatility would be constant across all exercise prices. In practice it is not.
Market prices exhibit smile and skew effects. The smile effect is so named because
the implied volatility is generally higher for far in-the-money or far out-of-the-
money options than for options with exercise prices closer to current levels. An in-
the-money option is one whose intrinsic value is greater than zero (e.g. for a call,
S$>FE) whilst an out-of-the-money option is one whose intrinsic value is zero (and
which is not at the money, i.e. on the boundary between the two, with S=E). Only
one side of the smile may be noticeable, in which case the structure is called a
skew.

7.8.6 Figure 10 shows how implied volatilities (for FT-SE options as at 7
March 1996) varied according to the exercise price of the option. It also shows how
the smile/skew varied by duration at that date.
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Figure 10. FT-SE smile /skew by strike and duration on 7 March 1996

7.8.7 It is important to note that the implied volatility of the option can
change during the lifetime of the option, even if the actual volatility does not.
If the option is marked-to-market, this can generate a gain or loss, even if the
dynamic hedger believes his position is perfectly dynamically hedged. Thus,
there is an element of preference dependence in the way that the BS formulae
are applied in practice.

8. FURTHER COMMENTS ON THE BLACK-SCHOLES FORMULAE

8.1 Common Misconceptions regarding the Black-Scholes Formulae

8.1.1 There are many common misconceptions regarding the BS formulae,
which can be demonstrated as erroneous by considering carefully the binomial
tree derivation set out in Section 7.5.

8.1.2 For example, it is sometimes claimed that the BS formulae require
interest rates to be constant. This is not so. If the price at time ¢ of a zero
coupon bond delivering £ and maturing at time T is Vi(f), and the price at time
t of a contract delivering 1 share at time 7 without dividend income in the
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meantime is V(f), then we can rework the derivation and show that the price
of, say, a put option will be given by:

P(S,t) = Vg (t)N(-d,) — Vs (1)N(-d,)
where: )
d = log(Vs () Vg (e) +(0° 12T - 1) and d, = d, _oVT<I.
oNT -t

Strictly speaking, in this formula o needs to be defined as the volatility of log(V(#)/
VD).

8.1.3 Thus, we may still use the BS formulae even if interest rates and divi-
dend yields vary stochastically, provided we use the appropriate rates applicable
at the time of valuation for securities maturing at the same time as the option.

8.1.4 Indeed, it is not even necessary for the variability of the share price to
be constant. If it is continuous and a function of time only (i.e. deterministic,
not stochastic), then the formulae remain correct, provided o is taken as a suit-
able average volatility for the period between now and maturity. This result is
usually attributed to Merton (1973).

8.1.5 If o is continuous and a function of both time and the price of the
underlying, then the BS formulae will, in general, give the wrong answers, but
the option can still be found as the limit of an appropriate binomial tree or the
solution to a partial differential equation which is preference independent (see
Appendix A). We might call this the generalised Black-Scholes framework, or
perhaps better would be the generalised Brownian framework, for the sorts of
reasons outlined below.

8.1.6 It is also claimed that the BS formula requires the share price to fol-
low a Brownian motion, and thus for the price of the underlying to be log-nor-
mally distributed in the future (and, in particular, at maturity). In fact, the
derivation in Section 7.5 only requires the stochastic process followed by the
price of the underlying to be the limit of a process involving just up and down
jumps (with w/d tending to one). It would therefore appear that more general
processes ‘are possible. Rather remarkably, however, it is possible to prove that
any continuous stochastic process {or to be more precise every continuous mar-
tingale) is a sort of time-shifted Brownian motion, see Rogers & Williams
(1994).

8.2 Experience Rated Options

8.2.1 Neuberger (1990a) provides further insight into this. He uses a con-
cept that he calls the cumulative quadratic variation of a process (and what
Rogers & Williams call merely quadratic variation). This is the cumulative
total of the squared changes in the log price (less the mean risk-neutral drift of
the price process). If it is continuous, finite and reaches a fixed level at the
time the option matures, then he shows that the BS formulae are still correct.
He defines what he calls mileage options, which are options which mature
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when the cumulative quadratic variation first reaches a certain level. These
options do not actually trade in practice. Given some underlying share price
movement, the option will eventually mature, but it is not possible at outset to
say when. He shows that in a no arbitrage world a mileage option will be
priced according to the BS formula as long as it matures at a fixed point in
time, i.e. that the cumulative quadratic variation is fixed at the maturity of the
option, and as long as the cumulative quadratic variation is continuous.

8.2.2 Such mileage options have parallels with the actuarial principle of
experience rating, in which part of any profit or loss arising from an insurance
contract may be rebated to, or recovered from, the policyholder. If we could
alter the characteristics of the option as time progresses, to reflect actual volatil-
ity experienced, then we can dramatically improve the ability of dynamic hedg-
ing to replicate the pay-off of the option, as shown in Section 9. As we might
expect, the quality of replication is best if we optimise the hedging to be con-
sistent with these mileage options.

8.2.3 In effect, Neuberger shows that the price of such an option at time #,
in the absence of transaction costs, if the cumulative quadratic variation of the
option C(¢) is continuous and C(T)—C(?) is fixed whatever the path taken by
the underlying stochastic process, is given by the following formula:

P(S,t) = Vg (t)N(—d, ) — Vs(t)N(~d,)
where:

¢, = 228050/ ZE(EZ)T);’_(EEZ;)“ COV2 104 dy = d, - JCD-CO.

8.2.4 The cumulative quadratic variation is defined (in discrete time), if
V) is constant and g can be ignored, as the sum of the squares of the log
price movements, i.e.:

T T S 2
Cy-CcO)=Yx, =3 log(’—”} .

t=0 1=0 St
8.2.5 In practice V() will not normally be constant, and, even with a
vanilla equity index option, we can conceptually think of the option as having
two sorts of underlying, one being a forward contract on the index, and one
being a zero coupon bond maturing at time 7. This is, in turn, a special case of
a more general sort of option, a relative performance option, where the exercise
price is based on two arbitrary assets. If the two ‘underlyings’ that now exist in
this more generalised formulation of an option are § and E, the cumulative

quadratic variation becomes:

2

T T Ve +1) Vot +1)
C(T)-C0) =Y x, = 3| log| - ~log| 2£ _
@)= C0=2x zo[ °g( V5@ J °g( Vs D
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8.2.6 We can thus price such relative performance options in a Black-
Scholes world using a standard deviation of:

6% =02 -2¢,,0,0; +0%

where the terms o, and o, refer to the volatility of S and E in isolation, and the term
c; ¢ represents the correlation between movements in S and E,

8.3 When will the Black-Scholes Formulae be Wrong?
8.3.1 Neuberger’s approach can also be used to identify when the BS for-
mulae will break down. These are:
(a) if markets are not arbitrage-free;
(b) if markets jump (since the cumulative quadratic variation is then
discontinuous);
(c) if the future volatility of the market is uncertain; or
(d) if markets are subject to ‘friction’, e.g. in the form of transaction costs.

8.3.2 In some fundamental sense we do not worry about (a). If we follow a
hedging algorithm based on the assumption that markets are arbitrage-free, then we
will forego possible arbitrage profits, but these probably cannot be relied upon in
any case. We also eliminate the possibility of arbitrage losses, so adopting a no
arbitrage assumption can be thought of as a worst case or prudent approach.

8.3.3 The other three possible sources of deviation from the BS formulae
are considered further in Appendix B. All three of them introduce preference
dependence (although the uncertainty in volatility of markets only does so if the
volatility is itself stochastic rather than depending merely on time and the price
of the underlying), and, as we shall see later, thus influence the size of reserves
we may need for a derivatives portfolio.

8.3.4 In addition to these, there are some other practical reasons why the
BS formulae may not provide a complete picture, including:

(a) basis risk (and roll-over risk), as described in 915.4.3, and other uncertainties in
the forward prices V; and V,; and

(b) miscellaneous practical matters such as whether to strip out weekends when
measuring the time between two dates.

8.4  Pricing Path Dependent Options

8.4.1 The BS formulae relate solely to European put and call options. These
are path independent, in the sense that their pay-offs depend only on the price
of the underlying at maturity and not on how the price reaches its final level.

8.4.2 Options may also be path dependen:, with the pay-off also depending
on how the price behaved prior to maturity.

8.43 For example, a barrier option has a pay-off which depends on
whether the underlying has crossed some prespecified barrier level prior to
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maturity. Barrier options may knock-in or knock-out, depending on whether the
holder becomes entitled to a pay-off or loses that entitlement if the price of the
underlying crosses the barrier.

8.4.4 Provided the barrier has certain characteristics, a closed form analytic
solution (i.e. a relatively straightforward mathematical formula) can be found
for the price of such options in the basic Black-Scholes world. The approach
uses the reflection principle, and involves showing that the boundary conditions
satisfied by the option are exactly those generated by another option with a
suitable shadow pay-off at maturity. The price of the barrier option prior to
maturity (as long as the barrier has not been reached) is therefore the same as
the price of a non-barrier option with this shadow pay-off. Such an approach
works (in the basic BS framework of constant r, ¢ and ) as long as the barrier
B(t) can be described by a formula along the lines of (where 77 is constant):

B(t) = Bye "7,

8.4.5 If the barrier does not have this form, then it may still be possible to
decompose it piecewise into parts that do. We can then apply the same
approach repeatedly to each part of the barrier (working backwards from final
maturity). However, the two cumulative normal functions within the BS formu-
lae become multiple nested cumulative normal functions and the overall formu-
lae become horrendously complicated.

8.4.6 Another sort of path dependent option that actuaries may come across
in practice (because it is the basis of some retail products) is a cliquet option.
In this sort of option, the period to maturity is split into several sub-periods.
Typically, the pay-off is like an at-the-money call option, but instead of looking
at the rise in underlying over the whole period, the cumulative pay-off at matu-
rity is equal to the sum of the gains over each of these sub-periods. Like barrier
options, this sort of option can be valued analytically in the basic Black-Scholes
world, although the resulting formula is quite complicated.

8.5 American Style Options

85.1 A more common, and certainly simpler to describe, sort of path
dependent option is an American style option. It is the same as a European
style option, except that it is exercisable at any time prior to maturity rather
than just at maturity. Both European and American style options are traded on
both sides of the Atlantic, and so the words no longer have any geographical
relevance when used to describe derivatives. Exchange traded options are often,
but not always, American style.

8.5.2 The value of an American option is, in a no arbitrage world, at least
as much as the value of an equivalent European option. The American option
provides the holder with the right (but not the obligation) to exercise the option
before maturity if he so wishes. This extra optionality must have a non-negative
value. Its value is often called the early exercise premium.
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8.5.3 The ‘path dependence’ of American options arises because the optimal
early exercise strategy on the part of the option purchaser depends on the price
of the underlying during the lifetime of the option. However, the way in which
such options are path dependent is different to that for barrier options, and dif-
ferent valuation techniques are generally needed.

8.5.4 Unfortunately, producing mathematically tractable valuation formulae
akin to the BS formulae for American options (or equivalently valuing the early
exercise premium) has proved impossible except in special cases. One special
case where such a formula does exist is if the dividend yield is zero (for a call
option) or the risk-free interest rate is zero (for a put option). In these circum-
stances it should never be optimal to exercise early, so the early exercise pre-
mium should be zero. Another special case is if the term of the option is infi-
nite and r, ¢ and o are constant, when the option can be priced by:

(a) identifying the time independent solutions to the underlying partial differential
equation; and

(b) identifying the level of the boundary B (as a function of E) by noting that on
the boundary what is known as the smooth pasting condition applies, i.e.:

where V(S,) is the value of the option and I(S,?) is its intrinsic value, i.e. S—E
for an in-the-money call option.

8.6 Valuing American Options using Binomial Lattices

8.6.1 The most common way of valuing American options is to use a bino-
mial lattice. We merely place a minimum on the value of the option at each lat-
tice point equal to what the holder would get if he exercised the option imme-
diately, i.e. its intrinsic value. It is possible to show that the value calculated in
this fashion will converge to the ‘true’ value as the spacing between different
lattice points tends to zero.

8.6.2 This would appear to solve, at least from a practical perspective, the
problem of how to value American options. Unfortunately, the binomial lattice
converges only relatively slowly to the true value as the lattice spacing is
reduced, although for straightforward options the speed of convergence is usu-
ally adequate.

8.7 Trinomial Lattices

8.7.1 If binomial lattices converge too slowly, a potentially much quicker
way of valuing options is to use a trinomial lattice, as in Figure 11.

8.7.2 In such a lattice greater flexibility is introduced by a third possible
price movement. This means that we can get much faster convergence as the
lattice spacing becomes smaller, as noted in Kemp (1995).

8.7.3 Careful choice of lattice structure is necessary to get the best conver-
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Figure 11. Trinomial lattice/tree

gence characteristics. The mathematics is discussed in more detail in Appendix
AS.

8.8 Using Binomial Lattices to Replicate Arbitrary European Style Risk-Neutral
Probabilities

8.8.1 There is one further point worth noting on binomial lattices. Although
it is usual to adopt constant spacing between lattice points, we do not need to
do so. As soon as we permit arbitrary spacing, it becomes possible to fit a
much wider range of price processes.

8.8.2 Indeed, the flexibility is so wide that we can replicate exactly the
price of any finite number of European option prices satisfying no arbitrage
using a suitably chosen binomial tree, see e.g. Rubinstein (1996), aithough
replicating options with different maturities is a non-trivial exercise. In a contin-
uous time framework, and as long as the European option prices satisfy
suitable regularity conditions (e.g. they are continuous functions of the price of
the underlying and of time), then it seems to be possible to price an entire term
and strike structure of European option prices using a suitable ¢(S,) which is a
deterministic function of § and ¢, i.e. within the generalised Brownian frame-
work introduced in 18.1.5.

8.8.3 And yet we know that not all price processes can be modelled using a
binomial tree or limiting versions of it. Thus, the price of European options in
the future will not necessarily be modelled correctly by this binomial tree. The
price will fail to be correct in precisely those circumstances where binomial lat-
tices and their limits break down.

8.8.4 This has potentially important consequences for the ‘standard’
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actuarial approach to valuation, described in Section 7.4, and to how we should

calculate actuarial reserves for future liabilities:

(a) The fair price of an option/guarantee can depend, not just on the likelihood of
the outcomes at maturity, but also on how the price of the underlying moves
before maturity.

(b) If price movements follow a known binomial tree (or diffusion process) per-
fectly, then we can always hedge any contingent claims perfectly using dynam-
ic hedging techniques. As long as we actually invest in line with the relevant
dynamic hedging algorithm, there would, in principle, be no need to hold any
reserves in excess of the value of the option. Thus the part of the reserves aris-
ing because the position is dynamically hedged ought to be directly linked to
how far the actual price process followed by the underlying differs from prede-
terminable binomial trees/diffusion processes. We return to the issue of how to
reserve for derivatives in Sections 9 and 10.

8.9 ‘Risk Neutral’ and ‘Real World’ Probability Distributions and Autoregressive
Market Behaviour

8.9.1 In a world characterised by binomial trees or diffusion processes, the
only information that an investor needs to derive the price of options is the cur-
rent price of the underlying and the risk-neutral probabilities. It is not that the
‘real world’ probability distribution that the investor actually expects to arise is
unimportant. It is just that the impact on derivative prices due to differences
between it and the risk-neutral probability distribution all fortuitously collapse
into the price of the underlying.

8.9.2 The risk-neutral probability distribution is often loosely described as
the ‘real world’ distribution of an investor who believes that all assets will sup-
ply the same expected return.

8.9.3 It turns out that this shorthand is misleading if the ‘real world’ distri-
butions involve autoregressive characteristics, like the Wilkie model as
described in Wilkie (1995), which is probably the most written about stochastic
model in the U.K. actuarial literature. In such circumstances, the risk-neutral
probability distribution may be materially more spread out than the ‘real world’
distribution.

8.9.4 A random walk model has the characteristic that the volatility v(n) of
log price movements over an n-year period satisfies the following formula:

v(n) = n-year volatility = v(IW/n.

8.9.5 Autoregressive models, by contrast, are characterised by the volatility
of outcomes in n years time being less than the square root of n times the
volatility in each given year.

8.9.6 However, Neuberger’s mileage options show that the price of an
option depends on the cumulative quadratic variation, which, in this context,
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can be thought of as the accumulation of one-year volatilities, ignoring any
dampening effect from the autoregressive characteristics of the model. For the
Wilkie model (which has log-normal error terms and is therefore modellable
using diffusion processes, albeit ones with autoregressive characteristics), the
risk-neutral probability distribution is more widely spread out than the ‘real
world’ distribution even for an investor who assumes all asset categories will
have the same expected return.

8.9.7 Thus, it seems necessary to strip out the autoregressive characteristics
of the Wilkie model when pricing guarantees and other option-like characteris-
tics, particularly long-term ones, such as maturity guarantees. Looking merely at
the spread of outcomes arising from the Wilkie model will materially understate
the actual value of the guarantee. Approximate valuation formulae for options in
a Wilkie world are given in Kemp (1996).

8.9.8 Another way of understanding this apparently counterintuitive result is
to note that the Wilkie model implies that it is possible to make abnormally
high profits by switching away from assets which have recently done well into
assets which have recently done poorly. If I buy a put or a call option and then
hedge away its option characteristics by dynamic hedging, this involves selling
equities as they rise and buying them as they fall, i.e. precisely the approach
that leads to anomalously high profits under the model. This places a premium
on purchased options, which should bid up their price, fortuitously to precisely
the price that arises if the autoregressive characteristics of the model are
stripped out.

8.9.9 An interesting corollary for actuaries is in the area of asset/liability
studies and dynamic solvency testing. The idea behind such tests is to identify
how robust an insurance company is to different ways in which the future
might evolve. Typically the tests involve projections of assets and liabilities
under many scenarios, often chosen at random from a suitably chosen proba-
bilistic model of how markets might evolve. These projections are then used to
give an indication of the range of likely outcomes the insurer might face and
the probability of the insurer running into trouble. However, if an autoregressive
model, such as the Wilkie model, is being used, the spread of outcomes
revealed by the projections is not necessarily a helpful guide to the (open mar-
ket) cost of protecting against such risks. The cost should, it seems, be based
on a wider potential spread of outcomes than revealed by the projections, with
the potential error larger the further into the future the projections go. An
extreme view some might take is that all that really matters for shareholders
and investors in an insurance company is an estimate of the value of the contin-
gent claim they have on the company, rather than some internally estimated
likelihood of the claim being of a given size. Proponents of such a view would
presumably wish to ignore projections based on the Wilkie model altogether,
concentrating exclusively on projections using models without any autoregres-
sive characteristics.
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9. TESTING THE EFFECTIVENESS OF DYNAMIC HEDGING

9.1 What Precisely do we Mean by Dynamic Hedging?

9.1.1 We are now in a position to test the effectiveness of dynamic hedg-
ing; but first it is helpful to restate what we mean by the term.

9.1.2 If an organisation has sold a derivative, then it is usual for it to set
aside assets (reserves/provisions) to meet the potential liability represented by
the option. Dynamic hedging is, strictly speaking, the process of:

(a) investing this portfolio in a mixture of the assets underlying the derivative or
futures/forwards on these assets (for a vanilla equity put option the portfolio
would consist of cash and equities, or more probably equity futures contracts);
and

(b) altering the mix of this portfolio in a manner that mimics the behaviour of the
option.

9.1.3 Another term that is often used for the same sort of process is portfolio
insurance.

9.14 The way in which the price of a put option (of the sort described in
19.2.3) varies as the index level moves up or down is shown in Figure 8, as
long as the price of the option is exactly replicated by the Black-Scholes for-
mula (in that example volatility is 15% p.a. and the exercise price is 3,500). To
replicate this behaviour (given the assumptions underlying the Black-Scholes
formula), the hedge portfolio needs to have exposure to the equity market that
varies in line with the slope of the curve in Figure 8. The required amount
invested in equities is the option delta:

%
A =5—.
S$,nHD=S >

For a put option delta is negative, and so the hedge portfolio needs to short-sell
equities (which would be most easily achieved by selling futures contracts). Figure
9 shows the delta (excluding the multiplier of §) corresponding to the prices in
Figure 8.

9.1.5 Portfolio insurance acquired a poor reputation at around the time of
the October 1987 Crash. The market movements that then occurred were so
extreme as to cause some portfolios run using dynamic hedging techniques to
differ significantly in behaviour from the options they were trying to mimic. As
there are risks that cannot be hedged using merely pure dynamic hedging (of
which jump risk is one), portfolio insurance techniques are nowadays normally
deemed to encompass hedging using a variety of instruments, including other
options. The meaning of the term ‘dynamic hedging’ can also be extended in
this fashion, but for the purposes of this paper I have treated it as synonymous
with ‘pure’ dynamic hedging, involving merely investment in the securities
underlying the derivative.
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9.1.6 In the limit, of course, it would be possible to buy an option which
was identical to the liability being hedged. This is much like reinsurance, and
involves no ‘dynamic’ characteristics at all, since it is a pure buy-and-hold form
of hedging. The term ‘portfolio insurance’ would normally be limited to the use
of relatively liquid (e.g. exchange-traded) instruments. There is a spectrum of
portfolio insurance techniques with a greater or lesser degree of reliance on
pure dynamic hedging.

9.2 Testing the Effectiveness of Dynamic Hedging

9.2.1 The most important market from the perspective of U.K. actuaries is
probably the U.K. equity market. This section, therefore, concentrates on the
effectiveness or otherwise of dynamic hedging of the UK. equity derivatives,
concentrating on daily movements in the FT-SE 100 Index over the period 1
January 1984 to 26 March 1996 (excluding weekends and bank holidays), as
supplied by Datastream. This period includes the largest daily falls on record
for FT-SE, which, according to Datastream, were 11% and 12% on 19 and 20
October 1987 respectively.

9.2.2 The spread of daily log price movements over this period is shown in
Figure 12. It appears to be remarkably like a normal distribution. However,
Figure 12 hides the fact that the spread of movements (i.e. market volatility) is
greater over some sub-periods than over others. It also masks a small number
of very extreme events, which, although rare, happen far more often than they
should do if movements were actually normally distributed. This can be seen by
referring to Figures 13 to 17, which show the spread of (overlapping) weekly,
two-weekly, monthly, quarterly and yearly log price movements. For compara-
tive purposes these are expressed as deviations from the mean, in units of
0.0094Vn (where n is the number of working days in the relevant period),
since, if the daily log price movements were independent normally distributed,
then the graphs would then all have the same shape. In Figure 16 (quarterly log
price movements) there are sufficient extreme outcomes (many including the 19
and 20 of October 1987) for the spread to have a more noticeable tail. Figure
17 (annual log price movements) shows a noticeable skew.

9.2.3 For simplicity, 1 have concentrated on a special sort of European put
option. This option gives the holder the right to sell the index (with gross
income reinvested) for a given price defined by a certain exercise price at out-
set, rolled up in line with the risk-free rate. Suppose that §, is the index level at
time ¢, Y, is the equivalent total return index with gross dividends reinvested
and C, is a total return cash index with gross income reinvested. Suppose also
that the exercise price of the option is E. Then the option provides a pay-off in
relation to Y, (=S,) of opening market exposure of:

pay - off = max(E.ﬁjl =Y, 0].
Co
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9.2.4 There are two reasons for considering this apparently rather compli-
cated type of option, despite the potential practical problems a bank would face
issuing such a contract (e.g. possible difficulties in defining how to construct
the relevant indices and in deciding on what appropriate reinvestment and tax
assumptions to make):

(a) This pay-off is appropriate if we are considering a liability that pays the
better of ‘equities” or ‘cash’, since what we are then really interested in is
the total return achieved on these investment classes. The use of options
linked only to the capital value of an index is common within the life
insurance industry, but this is partly so that the income component can be
spent to provide the capital guarantee (which helps with marketing).

(b) The pay-off also makes the Black-Scholes option pricing formula simpler,
since it means that we can set both the assumed interest rate and any allowance
for dividends equal to zero. Thus, the value of this option according to the
Black-Scholes formula simplifies to:

P(S,1)= EN(-d,) - SN(-d,)

where:
_log(S/E)+(c? 12)(T-1)

oNT -1t

and
N(x) = cumulative normal probability function = «/;— fe"xz/ 2dz.

9.2.5 The ‘delta’ of the put option (in a Black-Scholes world) is also sim-
plified by adopting this pay-off. It is:

A(S,1) = —S.N(-d,).

9.2.6 We can assess how successful dynamic hedging (in the absence of
transaction costs) of this option might be by determining the cumulative surplus
Z, a dynamic hedging programme would generate, where Z is defined as:

T-1
Z=73 7z wherez, =[Sé+' A(S,,t)+(P(S,t)—A(St,t)))—P(St+1,t+1).

t=0 t

The first bracket in the formula defining z, is the sum available from the dynamic
hedging programme after the index has moved from S, to S,,;, whilst the last term is
the value of the option at time ¢+ 1, i.e. the liability being hedged. The difference is
thus the surplus arising between ¢ and ¢+ 1 (or rather, given the way that the option
is defined, the present value of this surplus at #=0, discounted at the risk-free rate).
In this formula 7= 0 defines the start of the option.

9.2.7 Suppose we consider put options which are 5% out of the money (i.c.
E=0.95Y,), and which are 240 working days (i.c. nearly one year) in length.
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9.2.8 Over the period 1 January 1984 to 26 March 1996 (excluding week-
ends and bank holidays), the standard deviation of daily log price movements in
the index between the close of business on consecutive working days was
0.009407 and the mean of the daily log movements was 0.000419. Thus, one
way of hedging the put option would be to assume that o = 0.009407 per day.
The price of the option at outset (and hence the initial value of the hedge port-
folio) would then be 3.51% of the opening index level.

9.29 To assess how effective this strategy might be, we could calculate the
cumulative surplus (always as a percentage of the index level ruling at the start
of the contract) for each 240 working day period encompassed by 1 January
1984 to 26 March 1996, order the results and calculate percentiles and mini-
mum and maximum values.

9.2.10 Table 1 shows the results of this exercise. In a material number of
cases the cumulative deficit is more than the total value of the option at outset.
This is true even if we apply a loading of 10% or even 20% to the volatility
(i.e. ¢ =0.0103 or 0.0113 per day).

9.2.11 However the approach is better than merely adopting a completely
static approach, which is also shown for comparative purposes in Table 1. Over
the period under analysis, equities performed better than cash, so, on average, a
strategy of taking the option premium and holding it in cash would have out-
performed the dynamically hedged portfolios described above (since they have
option deltas somewhere between —S and 0). This, in effect, reflects a strategic
asset allocation stance which we should strip out to compare like with like. We
can do this by considering a static investment mix involving going short
-21.45% of the starting index level in equities and investing
21.45+43.51=24.96% of the starting index level in cash, since the average
cumulative surplus is then zero.

Table 1. Curnulative surplus, daily rebalancing, fixed volatility, no special
treatment of jump costs

No loading 10% loading 20% loading c.f. static

approach
Minimum value -8.51 -7.80 -7.05 -12.38
99th percentile -7.37 -6.80 -6.21 -8.98
95th percentile -4.29 -3.98 -3.64 -5.78
90th percentile -1.18 -0.59 -0.10 -3.19
70th percentile -0.02 0.33 0.66 -0.82
50th percentile 0.30 0.67 1.03 0.20
30th percentile 0.62 1.08 1.57 146
10th percentile 1.03 1.51 2.01 3.14
Sth percentile 1.18 1.69 223 3.81
Ist percentile 142 2.07 2.81 4.38
Maximum value 2.06 291 3.7 4.58
c.f. average -0.12 0.31 0.75 0.00
Standard deviation 1.67 1.67 1.67 275
Option premium 3.51 4.04 4.58 3.51
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9.3 Possible Control Mechanisms

9.3.1 Table 1 might seem to vindicate some of the traditional ‘actuarial’
mistrust of pure dynamic hedging. It is better than ‘doing nothing’, but not
hugely so. We can, of course, improve the quality of replication by rebalancing
more frequently than daily (although, of course, ever more frequent rebalancing
becomes more onerous on systems, etc., and transaction costs can become
increasingly problematic, see Section 9.7). However, in the sorts of extreme
market movements causing the problem, there is no guarantee that the markets
will be trading actively during the day. The usual means of gaining and shed-
ding market exposure is via futures (because they are so much cheaper to deal
in than the underlying stock). During the October 1987 Crash, the U.S. futures
exchange trading in S&P was unable to keep up with the volume traded in the
underlying market, and did, indeed, close (although the U.K. equivalent
remained open throughout the day).

9.3.2 However, there are several other ways in which we could seek to
improve the characteristics of the hedging.

9.4  Jump Costs

9.4.1 We could, for example, postulate that we could buy (or charge sepa-
rately for) some sort of protection which made good any deficit caused by a
downward or upward jump of more than, say, four times the standard deviation
of daily movements. If the probabilitics of movements were normally dis-
tributed, then the likelihood of any such movements occurring throughout the
entire period under analysis is less than 25%, so these events could justifiably
be thought of as ‘catastrophes’. They are, in practice, only insurable in a man-
ner akin to other ‘catastrophe insurance’ such as earthquake risks, e.g. by
spreading the risk over many different sorts of exposures and/or by stripping
out such costs from a day-to-day revenue account and charging for them
through some pooling through time. This approach might be thought of as
equivalent to purchasing catastrophe excess of loss insurance, or running a sepa-
rate catastrophe risks fund.

9.4.2 The worst outcomes in the analysis (excluding the cost of jumps) are
very considerably reduced if jump risk is paid for separately, as shown in Table
2. Jump costs can arise both with large downwards market movements and with
large upwards market movements, since either can lead to a deficit in the hedge
portfolio. I have categorised them separately, since this highlights the relative
magnitude of the risks involved.

9.4.3 Interestingly, the jump costs (as calculated above) are much less sensi-
tive to the strike price than the overall option premium. If we test equivalent
options, but with different strikes, then the down and up jump costs and the
average initial option premium are as per Table 3.

9.4.4 This analogy with catastrophe risk also highlights the advantages that
come from diversification. If the jumps to which a derivatives house is exposed
arise from different sorts of economic exposures, then they are unlikely all to
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Table 2. Cumulative surplus, daily rebalancing, fixed volatility, jump costs
itemised separately

No loading
Non-jump cost Down jump cost Up jump cost

Minimum value -2.91 -543 -1.98
99th percentile ~1.32 ~5.12 -1.80
95th percentile -0.39 -3.55 —0.90
90th percentile -0.23 -0.31 -0.66
70th percentile 0.08 — —
50th percentile 0.34 — —
30th percentile 0.68 — —
10th percentile 1.06 — —
5th percentile 1.19 — —
1st percentile 1.42 — —
Maximum value 2.06 — —
c.f. average 0.37 -0.33 -0.16
Standard deviation 0.56 1.07 0.37
Option premium 3.51 n/a n/a

10% loading
Minimum value -2.26 -5.19 -1.92
99th percentile -0.90 —4.90 -1.73
95th percentile -0.02 -3.41 -0.88
90th percentile 0.14 -0.29 -0.63
70th percentile 0.42 — —
50th percentile 0.71 — —
30th percentile 1.14 — —
10th percentile 1.57 — —
5th percentile 1.73 —_ —
1st percentile 2.10 — —
Maximum value 291 - —
c.f. average 0.77 -0.31 -0.15
Standard deviation 0.61 1.03 0.35
Option premium 4.04 n/a n/a

20% loading
Minimum value -1.70 -4.97 -1.85
99th percentile -0.46 —4.66 ~-1.65
95th percentile 0.23 -3.27 -0.85
90th percentile 0.42 -0.26 -0.58
70th percentile 0.77 — —
50th percentile 1.09 — —
30th percentile 1.62 — —
10th percentile 2.09 — —
Sth percentile 2.35 — —
1st percentile 2.84 — —
Maximum value 3.71 — —
c.f. average 1.19 -0.30 -0.15
Standard deviation 0.69 0.99 0.33
Option premium 4.58 n/a n/a
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Table 3. Jump costs for various strikes

15% out of the 5% out of the 5% in the
money money money
Down Up Down Up Down Up
jump jump jump jump jump jump
cost cost cost cost cost cost
Minimum value —4.38 -1.60 -5.43 -1.98 -6.57 -2.56
99th percentile —4.21 -1.47 -5.12 ~-1.80 -5.94 -2.06
95th percentile -2.56 -0.81 -3.55 -0.90 -2.78 -0.69
90th percentile -0.16 -0.30 -0.31 -0.66 -0.38 -0.41
70th percentile — — — — — —
cf. average -0.23 -0.11 -0.33 -0.16 -0.35 -0.12
Standard deviation 0.87 0.29 1.07 0.37 1.13 033
Average initial
option premium 0.89 3.51 8.78

happen simultaneously, and the costs when they do will be mitigated by the
non-occurrence of jumps in other parts of their business. It would be a fairly
unwise catastrophe insurer to, say, have all his exposure linked to Tokyo earth-
quake risk. Instead, he would try to spread the risk across different geographical
regions and different types of exposures. Interestingly, UK. life offices are
peculiarly exposed to the risk of large falls in the U.K. equity market, and thus
should be particularly interested in diversifying away from such a preponder-
ance of exposure to this single risk.

9.5 Experience Rating

9.5.1 Another way of improving the characteristics of hedging would be to
assume that we knew in advance the level of volatility actually occurring during
the lifetime of the option or we could alter the pay-off depending on actual
experienced volatility. The latter corresponds to the concept of ‘experience rat-
ing’ or ‘profit sharing’. This is a common principle within the insurance indus-
try. The most obvious examples within the life insurance industry are with-prof-
its contracts.

9.5.2 Suppose we started the hedging exercise with the price of the option
based on the actual out-turn volatility over the following 240-day period, run-
ning the hedging exercise as if that were then the correct (constant) volatility to
use. The range of cumulative surpluses would then be as set out in Table 4.
Table 4 also shows the range of cumulative surpluses that would arise if we
deliberately overstated the out-turn volatility by 10% or 20%. Jump costs are no
longer itemised separately.

9.5.3 Whilst the hedging characteristics do improve very substantially using
this sort of experience rating, the improvement is not quite as dramatic as we
might have expected. A major reason for this is that index volatility may vary
during the life of the option, but the form of the experience rating described
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above does not take this possibility into account. A better approach is to opti-

mise the experience rating to reflect the concept of ‘mileage’ options, discussed

in Section 8.2 and to operate as follows:

(a) We assume that we have been able to identify (or experience rate on the
basis of) the out-turn cumulative quadratic variation.

(b) As time progresses, we reduce the cumulative quadratic variation remaining by
the actual quadratic variation experienced in each time interval. We determine
the option delta, and identify any surpluses or deficits using a remaining life of
the option T—¢ and a volatility o so that 6%(T—t) equals the remaining cumula-
tive quadratic variation.

Table 4. Cumulative surplus, daily rebalancing, ‘crude’ experience rating

No loading 10% loading 20% loading

Minimum value -1.86 -0.95 -0.37
99th percentile -1.20 -0.51 -0.26
95th percentile -0.79 -0.14 0.13
90th percentile -0.67 -0.03 0.20
70th percentile -0.20 0.09 0.43
50th percentile -0.09 0.29 0.63
30th percentile 0.05 0.43 0.90
10th percentile 0.24 0.65 1.37
Sth percentile 0.28 0.79 1.71
1st percentile 0.58 1.73 2.60
Maximum value 1.77 3.20 4.80
c.f. average -0.13 0.30 0.73
Standard deviation 0.37 0.35 0.54
Average option

premium 333 3.84 4.36

Table 5. Cumulative surplus, daily rebalancing, ‘mileage optimised’ experience

rating
No loading 10% loading 20% loading

Minimum value -0.59 0.01 0.12
99th percentile -0.38 0.06 0.17
95th percentile -0.14 0.09 0.21
90th percentile -0.06 o1 0.26
70th percentile -0.02 0.19 043
50th percentile -0.0t 0.32 0.68
30th percentile 0.00 0.52 1.07
10th percentile 0.05 0.75 1.49
5th percentile 0.14 1.05 1.90
1st percentile 0.71 2.15 3.66
Maximum value 1.42 2.77 4.19
c.f. average 0.00 0.42 0.86
Standard deviation 0.15 0.38 0.65
Average option

premium 333 3.84 4.36
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9.5.4 The range of cumulative surpluses that would arise using this more
accurate form of experience rating (together with the corresponding surpluses
that would arise if we deliberately overstated the out-turn volatility at outset by
10% and 20%) are shown in Table 5.

9.5.5 Replication error is much smaller than with the cruder experience rating
described previously. Although the small possibility of very substantial jumps does
influence the minimum and maximum values significantly, in nearly all circum-
stances the cumulative surplus (if out-turn volatility is not deliberately overstated at
outset) is very close to zero. If out-turn volatility were overstated by 10% at outset,
then such a hedging programme would have always ended up in surplus (ignoring
transaction costs)!

9.5.6 One reason that the experience rating, described in 119.5.3 to 9.5.6, is
so resilient is that, to some extent, it captures jump risks directly, since the
larger the jump, the greater is the quadratic variation during the period encom-
passing the jump. If the option is at-the-money, and the loading applied to the
cumulative quadratic variation is at least 25%, then the surplus arising in the
period z, appears to be greater than or equal to zero, whatever the size of the
jump (within a range -50% to +50%). If the option is not at-the-money, then
there is no loading that seems to guarantee a non-negative surplus in each
period, but the maximum possible loss can be kept very low with a sufficiently
large loading (and can be more than compensated for by surpluses in other peri-
ods as demonstrated in 19.5.4).

9.5.7 Of course, fund managers seeking to run funds in this fashion could
find daily rebalancing onerous. Table 6 shows the impact of rebalancing at less
frequent intervals. Although the spread of results is significantly wider, such
hedging is still surprisingly resilient, as long as it is possible to ‘experience
rate’ the contract in a suitable fashion and to include an adequate loading at
outset.

9.6 ‘Experience Rating’ in the Form of Market Derived Implied Volatilities

9.6.1 Although I described experience rating as relatively rare within the
derivatives industry, there is a sort of way in which something similar happens
in practice. Option providers will sell options at the market rates prevailing at
the time of sale, i.e. using the implied volatilities at that time. If implied
volatility is a good predictor of actual out-turn volatility, then a large part of
the uncertainty in future volatility would be discounted for in the actual price at
which the derivatives traded.

9.6.2 This does, indeed, seem to be the case, at least over the recent past.
Figure 18 shows the three-month implied volatility over the period January
1992 to June 1996 and the corresponding actual out-turn volatility over the fol-
lowing 66 days, based on data supplied by Goldman Sachs. Figure 19 shows a
scatter plot of these implied volatilities (minus their average for the period as a
whole) against the actual out-turn volatilities (minus their average for the period
as a whole). There is a clear correlation (the correlation coefficient is around
0.8).
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Table 6.

Frequency of
rebalancing
Volatility loading
minimum
99th percentile
95th percentile
90th percentile
70th percentile
50th percentile
30th percentile
10th percentile
5th percentile
Ist percentile
Maximum

c.f.average
Standard
deviation

Cumulative surplus, different rebalancing periods, ‘mileage optimised’ experience rating

0%

-0.59
-0.38
-0.14
-0.06
-0.02
-0.01

0.05
0.14
07
1.42
0.00

0.15

Daily
10%

20%

0.12
0.17
0.21
0.26

0.68
1.07
1.49
1.90
3.66
4.19
0.86

0.65

Every three days

0% 10% 20%
-0.83 -0.18 0.10
-0.63 -0.01 0.16
-0.33 006 021
-0.18 0.08 0.25
-006 0.16 043
-004 029 069
-0.01 0.51 1.07
0.08 0.79 1.58
0.26 122 214
1.87 317 451
336 499 6.63
-0.01 044 090
0.34 0.55 0.81
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Weekly
10%

-0.44
-0.13
0.01
0.04
0.11
0.25
048
0.87
147
3.92
5.48

0.45

0.69

20%

0.05
0.11

0.22
0.38
0.63
1.07

248
5.32
6.90
0.92

0.97

2-weekly

10%

-0.53
-0.29
-0.13
-0.07
0.03
0.16
0.41
0.97
1.68
5.66
8.01

045

0.99

20%

-0.08
0.01
0.09
0.14
0.30
0.53
0.98
1.82
267
7.44
9.79

0.94

1.29

011
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Figure 18. Historic and implied (at-the-money) FT-SE volatilities

9.7 Transaction Costs

9.7.1 It might be thought that we can extrapolate the results in 99.5.6 (i.e.
Table 6) to rebalancing periods shorter than one day. Unfortunately, increasing
the frequency of rebalancing increases transaction costs (potentially without
limit, see Appendix B.8). Indeed, transaction costs even potentially have an
influence on the efficacy of daily rebalancing. Table 7 shows the spread of
results arising from following daily rebalancing along the lines above, if trans-
action costs were 0.2% per trade (perhaps a little cautious if market exposure
were being gained through futures) and jump costs were costed separately (but
not the rebalancing costs required once a jump had occurred). Daily rebalancing
can be costly!

9.7.2 The transaction costs are heavily loaded towards the time that the
option matures and towards those options that mature at close to at-the-money.
This is when the level of transactions (and the option gamma) is typically
greatest.
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Figure 19. Predictability of future FT-SE volatility from current implied (ATM)
volatility

Table 7. Daily rebalancing with transaction costs; cumulative surplus, different
rebalancing periods, ‘mileage optimised’ experience rating

No transaction costs 0.2% transaction costs (buy or sell)

Non- Down Up Non- Down Up

jump jump Jjump jump jump jump

costs costs costs costs costs costs
Minimum =291 -5.43 -1.98 —4.51 -5.43 -1.98
99th percentile -1.32 -5.12 -1.80 -2.58 -5.12 ~-1.80
95th percentile -0.39 -3.55 -0.90 -1.58 -3.55 -0.90
90th percentile -0.23 -0.31 -0.66 -1.22 -0.31 -0.66
70th percentile 0.08 — — -0.55 — —
50th percentile 0.34 — — -0.19 — —
30th percentile 0.68 — — 0.04 — —
10th percentile 1.06 — — 0.39 — —
5th percentile 1.19 — — 0.51 — —
1st percentile 142 — — 0.78 — —
Maximum 2.06 — — 0.95 — —
c.f. average 0.37 -0.33 -0.16 -0.34 —0.33 -0.16
Standard deviation 0.56 1.07 0.37 0.69 1.07 0.37
Initial option premium 3.51 n/a n/a 3.51 n/a n/a
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Table 8. Cumulative surplus, non jump costs when rebalancing optimised using
Whalley & Wilmott approach, transaction costs assumed to be 0.2% (buy or sell)

Notransaction  A=0.5 A=5 A=50 A=500
costs
Minimum -2.91 -3.90 -4.20 —4.32 -4.40
99th percentile -1.32 -2.62 -2.41 -2.43 -2.50
95th percentile -0.39 ~-1.54 -1.41 ~1.44 -1.50
90th percentile -0.23 -1.23 ~-1.01 -1.10 -1.16
70th percentile 0.08 -041 -0.38 -0.44 -0.48
50th percentile 0.34 ~-0.16 -0.08 -0.10 -0.13
30th percentile 0.68 0.21 0.18 0.15 0.09
10th percentile 1.06 0.60 0.55 0.49 045
5th percentile 1.19 0.83 0.72 0.65 0.59
1st percentile 1.42 1.02 0.95 0.88 0.82
Maximum 2.06 1.39 1.06 1.01 1.00
c.f. average 0.37 -0.21 -0.18 -0.23 -0.28
Standard deviation 0.56 0.72 0.68 0.68 0.68
Initial option premium 3.51 3.51 3.51 3.51 3.51

9.73 It is therefore necessary to be selective in the frequency of rebalanc-
ing. The optimal strategy for rebalancing appears to be that given in Appendix
B.8. This strategy is preference dependent, since it depends explicitly on the
utility function of the investor seeking to dynamically hedge the option. For
various values of the risk aversion factor A, described there, the range of cumu-
lative surpluses become as shown in Table 8.

9.7.4 These seem to be fairly independent of the size of A. This is principally
because there are other sources of variation which mask any increase in variability
of outcomes by changing the rebalancing approach (within the limits shown).

9.7.5 The impact of rebalancing costs generates substantial economies of
scale if the organisation involved is buying options from one party and selling
similar ones to another. Rebalancing trades for the different options may then
largely cancel out. It is also a further reason for hedging written options with
appropriate bought options, since again the required gross rebalancing is
reduced (to zero if the options exactly match each other).

9.8  Other Factors Potentially able to Disrupt Dynamic Hedging
9.8.1 The above analysis has concentrated on:

(a) jump costs;

(b) uncertainty in future volatility; and

(c) transaction costs.

There are several other factors that can potentially disrupt the operation of dynamic

hedging. These are:

(d) Basis risk and roll-over risk (as mentioned in 15.4.3). This is also significantly
influenced by the frequency of rebalancing, since this increases the level of
transactions that can be subject to basis risk. Like the transaction costs in
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Section 9.7, it is significantly reduced if opposite option positions are held
within the book. The potential difference between fair value and actual market
price of futures contracts is material (the standard deviation of the difference is
around 0.6% for FT-SE). It therefore seems that the impact of basis/roll-over
risk could be significantly greater for the option under analysis than the under-
lying transaction costs (as long as these are controlled appropriately as in
Section 9.7). Indeed, basis risk may also be larger than the risk arising from
uncertainty in future volatility, although it does not seem to be as large as jump
risk (for the option analysed above).

(e) Position risk, i.e. taking deliberate positions away from those required for pure
dynamic hedging.

(f) Credit risk, which could mean that the assets the dynamic hedger hoped would
meet his liabilities do not actually do so, because of default (see Section 12).

(g) Legal risk and taxation risk, which might cause the proceeds of the hedging
instruments to be less than (or the payments on the written option to be more
than) expected (see Section 12).

(h) Other operational risks, e.g. inadvertent position-taking and fraud (see Section
11).

9.8.2 Ignoring the final three, which we have yet to consider, and (e), which we
assume does not take place within a pure dynamic hedging book, the analysis in
this section suggests (at least for the option considered above in isolation) that the
most important risks a dynamic hedger faces are (a) and (d), i.e. jump risk and
basis/roll-over risk.

9.9 Setting Reserving Levels

9.9.1 The above sort of analysis can theoretically be used to identify suit-
able reserving levels for derivative books. We could estimate, using simulations,
the potential level of loss that might arise from each sort of risk factor men-
tioned above, taking into account correlations between the factors, and set the
reserves at a level which produces an acceptably low probability of ruin.

9.9.2 Indeed, this is conceptually the sort of approach used by some of the
largest players within the derivatives industry to monitor their own capital
requirements. In the next section we see how it compares with approaches actu-
aries will be familiar with in other fields.

10. RESERVING FOR DERIVATIVES

10.1 The Underlying Framework

10.1.1 If a financial organisation is run solely on the basis of meeting
future commitments from income received when these commitments become
payable, it would differ little from the ‘pyramid’ schemes that appear sporadi-
cally in developed economies and more frequently in less developed ones. Such

https://doi.org/10.1017/51357321700005316 Published online by Cambridge University Press


https://doi.org/10.1017/S1357321700005316

Actuaries and Derivatives 115

a scheme can offer fantastically attractive rewards as long as there is a continu-
ing stream of people gullible enough to join, but the people left in the scheme
once the stream of new entrants dries up can expect to lose most or all of their
investment.

10.1.2 The need to set aside suitable reserves or provisions to cover future
commitments has been widely recognised amongst responsible financial profes-
sionals for many years. It has been central to actuarial thought since the profes-
sion came into existence several centuries ago.

10.1.3 Accountants often distinguish between provisions for commitments
the size of which can be quantified reasonably accurately, and reserves for
commitments which are less easily quantifiable. The two may be treated differ-
ently for tax purposes. Actuaries tend to lump both together, since the underly-
ing rationale for both is the same, i.e. to provide on a prudent basis in advance
for future financial commitments. Indeed, for insurance companies the term
mathematical reserves is explicitly enshrined in European Community (E.C.)
legislation, encompassing both.

10.1.4 Nowadays, most financial organisations are regulated by a regulator
appointed by the government of the country in which they are domiciled or
operate. For example, U.K. banks are regulated by the Bank of England and
U.K. insurance companies are regulated by the Department of Trade and
Industry (DTI). It is generally accepted that governments have a legitimate
interest in the orderly functioning of financial markets, and will wish to make it
unlikely that financial organisations operating within their borders will default.
This is especially so if there are statutory safety nets triggered by such defaults
(as exists for both banks and insurance companies in the U.K. and most other
developed countries).

10.1.5 Part of the regulatory process will involve setting statutory minimum
capital requirements and defining what happens if a financial organisation does
not meet them. These requirements are normally applied in a fairly uniform
fashion across all the organisations that a given regulator regulates. The calcula-
tions involved may, therefore, be relatively broad-brush and will usually be sup-
plemented by liaison between the regulator and the organisation concerned. The
larger organisations may also spend considerable effort devising their own mea-
sures of capital requirements, which they believe more accurately reflect the
risks inherent in the businesses that they are carrying out. They may use these
internal measures to allocate capital between different lines of business or to
determine how much capital they actually think that they need (and to plan the
best way to raise it).

10.1.6 There is a strong trend towards harmonisation of reserving standards
across countries, especially if organisations can compete extensively internation-
ally. For example, banks domiciled or operating in most of the major financial
markets are all subject to similar capital requirements, roughly in line with the
requirements of the Capital Adequacy Directive (see Appendix D), which will,
in due course, be superseded by other standards being developed by the Basle
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Committee. E.C. direct-writing insurance companies are subject to a common

(but different) regulatory framework. U.S. insurance companies are regulated at

a state level, but similar standards are applied country-wide. Without relatively

standard regulatory frameworks, there is a risk that organisations will redomicile

to the country/state with the lowest regulatory standards.

10.1.7 There is also a trend, but at a much slower rate, towards harmonisa-
tion across different types of financial institutions. This reflects the observation
that distinctions between different financial market places are often blurred.

10.1.8 There are two main ways in which the reserving calculation can be
presented:

(a) The first is to use a risk-based capital framework. Assets and liabilities would
typically be valued on a suitable market related basis, and then a separate capi-
tal requirement is calculated, reflecting in some way the riskiness of the busi-
nesses in which the organisation is involved, including the way in which the
assets and liabilities might move relative to each other. Banks in most devel-
oped countries use such an approach (at least for their trading book).

(b) Alternatively, the assets and liabilities may be valued on a prudent basis,
including margins, perhaps with a further solvency margin (i.e. required excess
of assets over liabilities) superimposed, calculated on a simplified basis. E.C.
insurers currently use this sort of approach. Their statutory minimum solvency
margin is based on a relatively simple calculation which depends mainly on
premium income and claims incurred for non-life insurers and aggregate sums
at risk and mathematical reserves for life insurers. U.K. insurers are also
required to establish a mismatch or resilience reserve based on a small number
of possible movements in aggregate market levels.

10.1.9 At least conceptually, both of these alternatives ought to be similar,
since they can both be re-expressed as:
(a) assets minus liabilities on a market value basis; plus
(b) a balancing item, which can be thought of as some additional capital require-
ment dependent on the risks being run by the organisation.

10.1.10 In either case, the basic aim of holding additional capital (implicit or
explicit) is to provide reasonable certainty that future commitments will be met.
Logically, prudence dictates that the balancing item should be positive (i.e. should
increase the capital resources of the business), but this may not always be the case
in practice.

10.2 The ‘Idealised’ Reserving Framework — Two Different Models

10.2.1 The ‘idealised’ actuarial framework, at least in the actuarial research
literature, can probably be taken as the one prevalent in the general insurance
(i.e. non-life) area. We might call this the Model A framework. It involves
determining some estimate of the risk of ruin for the organisation (i.e. the like-
lihood of default). The capital requirement is then set so that the risk of ruin is
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acceptably low. It is thus similar conceptually to the analysis in Section 9,
although that was based on historic data, whilst an idealised framework might
rely on other estimates of prospective risk if the past was considered unlikely to
be a good guide to the future.

10.2.2 Arguably, the current solvency capital requirements for U.K. general
insurers is a long way from this ‘ideal’, but this is principally because the cur-
rent rules were imposed by the E.C. Possible amendments are under discussion
which would move closer to the ‘ideal’, see e.g. Hooker et al. (1996). In the
U.S.A., property/casualty insurers (their name for general insurers) are subject
to risk-based capital requirements much closer to this ‘ideal’.

10.2.3 The Model A framework would seem most naturally fitted to an
organisation acting as a principal. The framework needs modification where the
shareholders carry only a small fraction of the risks involved in the business
because they are acting as agents for some other party. A different sort of
framework, which we might call Model B, then becomes more appropriate.

10.2.4 Activities falling into this category are conceptually little different to
fund management. The Model B framework should thus relate principally to the
way in which the underlying assets are managed, discouraging activities deemed
to be likely to be incompatible with the sorts of risks the underlying investors
would be comfortable with. However, some minimum level of capital would
still be needed, to ensure that the business has sufficient resources to meet min-
imum systems requirements, compliance requirements, etc.

10.2.5 Model B is a better fit than Model A to many sorts of life insurance
business. Pure unit-linked business (if it is ‘property-linked’ as opposed to
‘index-linked’) is, in effect, fund management of the underlying unit-linked
assets and very definitely in the Model B category. With-profits business typi-
cally fits somewhere in between, since the shareholders carry some of the risks
relating to with-profits assets and liabilities. However, most of the risk is nor-
mally carried by policyholders via changes to reversionary and terminal
bonuses. Non-profit business, if it is owned by the with-profits fund, would also
come into this ‘in-between’ category, although, if it were owned directly by the
shareholders, then it would be more akin to Model A.

10.3 The Banking Approach

10.3.1 Exactly the same sort of subdivision exists for businesses in which
banks (and securities firms) are involved. Their proprietary and market making
businesses are now subject to a risk-based capital framework which is, in many
places, remarkably similar in concept to the actuarial ‘ideal’ reflected in Model
A. In banking terminology, Model A could be described as market values with
stress testing, since the term ‘stress test’ is usually applied to a scenario analy-
sis concentrating on extreme circumstances. Banks’ advisory and fund manage-
ment businesses have much lower capital requirements, more akin to the those
reflected in Model B.

10.3.2 Further details of the risk-based capital requirements to which banks
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are subject are set out in Appendix D. Arguably banks come closer to the actu-
arial ‘ideal’ Model A framework for their proprietary businesses than most
organisations more typically advised by actuaries.

10.4 Current Life Office Reserving for Derivatives

10.4.1 The division between the two model frameworks can, perhaps, be
best seen in the different statutory reserving requirements arising from deriva-
tives currently applicable to insurance companies and banks.

10.4.2 The impact derivatives have on the balance sheet of a U.K. insurance
company is described in the DTI Prudential Guidance Note 1995/3. It may be
summarised as follows:

(a) If the derivative is an asset, is covered with appropriate holdings in the under-
lying assets, and meets certain other requirements, such as being readily realis-
able, being ‘in connection with’ admissible assets, etc., then the derivative is
included in the balance sheet at market value, with no risk-based capital
requirement being incurred by the insurance company. Potentially, the deriva-
tive can also reduce the resilience reserve a life office might need to maintain.

(b) If the derivative is an asset and is covered by, but does not meet, these addi-
tional requirements, then it is normally inadmissible, which means that zero
value is ascribed to it in solvency calculations. In effect, there is an admissibili-
ty penalty for investing in undesirable derivatives. Unit-linked funds are pro-
hibited from holding such derivatives.

(c) If the derivative is a liability and is ‘covered’ (and certain other requirements
are met), then the value of the underlying assets is reduced by the value of the
derivative, i.e. again the derivative is included in the balance sheet at market
value, without generating a further risk-based capital requirement.

(d) If the derivative is not covered or fails one of the other tests for being accept-
able, then the derivative is included at market value, but there is a further pro-
vision for adverse deviations, taking into account the possibility of, inter alia,
changes in the volatility of the underlying assets. The provision for adverse
deviations is thus, in effect, a risk-based capital charge. Unit-linked funds are
prohibited from holding such derivatives.

10.4.3 Thus, insurance companies using derivatives face no capital penalties as
long as the derivatives satisfy suitable tests of acceptability. However, additional
capital requirements are imposed when the derivative fails these tests. The tests are
similar to those that unit trusts need to meet to be permitted to invest in a similar
fashion. The regulatory framework follows the Model B approach except if the
derivative fails the tests for acceptability, when it reverts to a Model A.

10.4.4 There is much less of a history of risk sharing by banks, and banks
generally try to take either all the risks or none of them. Therefore, most busi-
nesses that banks are involved with fit very definitely into one or other of the
Model A or the Model B categories. If the business involves derivatives, then
these are reserved for accordingly. Derivatives held by investment management
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components or other purely advisory relationships carry no particular capital
requirement for the bank business (unless the bank has transgressed its authority
limits), but might generate capital requirements for the underlying investor.
However, if the derivatives arise because of proprietary trading or the bank’s
market making activities, then they fall into the bank’s trading book and are
subject to the Model A type framework set out in the CAD.

10.5 Efficient Portfolio Management

10.5.1 One of the interesting, and possibly contentious, requirements a
derivative must satisfy to be acceptable in 110.4.2(a) is that it must be used for
efficient portfolio management (or EPM for short) or for the ‘reduction of
investment risks’. This wording is included with the relevant E.C. Directives,
but is not defined there. Indeed, it does not seem to be defined anywhere in
legislation. Instead, the DTI has given guidance as to what it thinks the words
mean, drawn heavily from the corresponding meaning given to EPM by the

Securities and Investments Board (SIB) within the unit trust industry. Although

the interpretation can be broad, DTI guidance states that:

(a) If the assets are ‘earmarked’ to match specific policyholder benefits where the
policyholder bears an investment risk (notably unit-linked liabilities), then the
use of derivatives must involve a reduction in the risks to either the company
or the policyholder, whilst still having a broadly neutral or beneficial impact on
the investment risks to the other.

(b) If the assets are not so earmarked, then the derivatives must reduce the risk to
the company.

(c) In either case, ‘risk’ from the company’s perspective is to be understood as the
risk of mismatching between its assets and liabilities.

10.5.2 The rationale behind this approach can best be understood by remem-
bering the Model B framework that is driving the approach to reserving for deriva-
tives within insurance companies. The Regulations and DTI guidance are essential-
ly starting from the premise that an investor cannot reasonably complain if his
assets are invested in sensible sorts of underlying assets, and that the sorts of
derivatives activities that would be inappropriate for an insurance company are
ones that increase ‘risk’ from this vantage point.

10.5.3 Identifying precisely what increases or decreases investor ‘risk’ can
be difficult in this context. For example, there has recently been a spate of con-
tracts issued which, over five years, promise income higher than the risk-free
rate together with a full return of capital, provided the equity market has not
fallen. However, if the equity market has fallen by, say, more than 10%, only
50% of the initial capital is returned to the policyholder when the policy
matures. The capital component of the investor’s return is thus highly geared to
the overall movement in the equity market over 5 years, at least if the move-
ment is in a small band close to 0%. It is not obvious to me that this is easily
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classifiable as ‘efficient portfolio management’, at least when the policy is close

to maturity. However, the DTI appears to take the view that for such policies:

(a) it is reasonable to consider the position only at outset (since policyholders will,
in nearly all cases, remain invested in the policy throughout its five-year life);
and

(b) if at cutset the delta of the option backing the liability is between 0 and 1, then
it does not involve ‘gearing’ and is compatible with EPM.

10.5.4 The DTI does, however, object to derivatives within linked funds which
introduce gearing more directly. For example, portfolios involving cash plus a
down-and-in call option can be constructed which fall in value as the price of the
underlying asset rises. They would thus appear to provide the opportunity to create
‘bear’ funds, which give policyholder inverse market exposure. The options
involved can also be made to satisfy the ‘in connection with’ and ‘cover’ require-
ments, but the DTI takes the view that they do not satisfy EPM, and therefore can-
not normally be used within an insurance company context.

10.5.5 This position contrasts with the relevant unit trust regulatory frame-
work imposed by SIB which does, in some circumstances, permit such combi-
nations of investments to be included within authorised unit trusts (but not the
standard type of unit trust which is a ‘securities fund’, rather special sorts
called ‘futures and options funds’ or ‘geared futures and options funds’). ‘Bear’
unit trusts are therefore permissible in some circumstances.

10.5.6 Regulators in other European countries seem to find it no easier to
interpret the concept of EPM in a consistent fashion. For example, in France
there are funds which return either 0% or 100% depending on some specific
investment event, and there are also ‘reverse floaters’, giving the investor
inverse exposure to interest rate movements.

10.6 Weaknesses in the Current Approach to Life Office Reserving

10.6.1 The Model A/Model B framework helps to explain how the current
life office reserving requirements for derivatives have arisen. It also highlights a
weakness in the current approach. The Model B (fund management) approach is
applied to all life office assets, even when the business to which the derivatives
relate can, in some instances, be closer to Model A.

10.6.2 This could be used to finesse the regulations. For example, a life
office with a large diversified fund which sells sufficiently modest amounts of
covered options, but then dynamically hedges away the effects of such options,
would suffer essentially no change to its capital requirements, even though it
would have acquired exposure to jump risk and to the risk of unforeseen
changes to market volatility.

10.6.3 However, of course, as we noted in 12.3.5, life offices sell a lot of
‘options’ in the form of contracts with guarantees and other option-like charac-
teristics, e.g. with-profits contracts. If we wanted a completely justifiable reserv-
ing methodology for derivatives, we would also need to revise the reserving
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framework for insurance liabilities. The experience of Scott et al. (1996) sug-
gests that it is easier to point out possible flaws in a reserving framework than
it is to come up with one that everyone agrees is better! At least the current
methodology for reserving for derivatives is generally consistent with the
methodology used for reserving for insurance liabilities.

10.7 Value at Risk

10.7.1 How might we determine the reserves an organisation needs if the
appropriate framework is Model A, i.e. the organisation is acting as principal?
We have already discussed in Section 9 scenario/stress testing to estimate risks
of ruin. An alternative method used within the banking community, which is
less onerous to calculate, is the concept of value at risk (VAR). This is the
amount by which the net value of a bank’s trading book (see Appendix D for a
definition) might change over a set period of time (e.g. 1 day, 2 weeks, 1
month, 1 year, etc.), with a set probability (5%, 1%, etc.), based on the sensi-
tivity of the portfolio to small movements in the parameters underlying the pric-
ing model. For a large complex derivatives book, there are many factors that
will influence the value of the trading book, and banks can spend considerable
sums designing suitable systems to prepare estimated values at risk. A few
banks, like JP.Morgan, make available services (in their case called
RiskMetrics®) which provide estimates of the parameters needed for these cal-
culations.

10.7.2 The approach is perhaps most easily recognised by actuaries when it
focuses only on market risk, since many portfolio managers use similar sorts of
risk measures, in the form of tracking errors, see e.g. Rains & Gardner (1995).

10.7.3 In practice, a fairly arbitrary multiplier is applied by the Bank of
England to convert VAR model outputs into levels of capital required, and it is
also checked periodically against capital requirements derived from simpler cal-
culations.

10.7.4 One question that arises when constructing VAR models is whether
they should be based on likely levels of market variabilities and jump probabili-
ties ‘implied” from the market or whether these should be based on history.
Perhaps both should be analysed, with the one giving the higher reserve
adopted for prudence. If parameters based on history are used, then it is neces-
sary to identify some way of extrapolating from the past to the present (and to
the future). Research has been carried out into the use of GARCH forecasting
techniques, but the results seem mixed. J.P.Morgan’s RiskMetrics uses exponen-
tially weighted averages to extrapolate the past into the future.

10.7.5 The main disadvantage of VAR is that it fails to take account of the
non-linearities arising from options contracts, and the Bank of England prefers
scenario/stress testing in such circumstances.

10.8 Provisions for Adverse Deviations for Insurance Companies
10.8.1 The only formal guidance on how insurance companies should set
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such provisions is contained in the DTI Prudential Guidance Note 1995/3. This

indicates that the DTI expects companies to set provisions on bases which, in

the case of a derivative based on a broadly-based equity index, are at least as

prudent as:

(a) assuming that a 25% adverse movement in the index occurs in the near future;
and

(b) the possibility of a greater adverse movement should be allowed for, to the
extent that this is consistent with the historical record or otherwise where it
would be imprudent to ignore the possibility.

10.8.2 This level of provision seems to have been set by reference to the
guidance provided by the Government Actuary’s Department on how to deter-
mine a suitable mismatch or ‘resilience’ reserve for insurance liabilities, which
also talks about a 25% fall in equity values. Such a mismatch reserve is similar
conceptually to the stress testing approach used within the banking community,
although much cruder.

10.8.3 In normal circumstances this would seem prudent, at least for vanilla
put and call options, indeed overly prudent for the sort of option analysed in
Section 9 (as long it is considered practical to take account of some mitigation
of market movements using dynamic hedging). However, if the term of the
option is very long (e.g. 15 years plus) and the option is far out-of-the-money,
then upwards shifts in levels of implied volatility of, say, 5% have about the
same order of magnitude impact on option values as a 25% adverse market
movements. Most derivatives held by insurers will be for much shorter terms,
but interestingly, these sorts of characteristics can correspond with the guaran-
tees within with-profits contracts.

10.8.4 For some exotic options, provisions set merely on the basis of
110.8.1 will not be prudent. For example, take an insurer that has sold a double
barrier option which knocks out if the price of the underlying falls below one
barrier or rises above another. Large market movements and increased volatility
make the barrier more likely to knock out, and therefore reduce the liability to
the insurer. The insurer is most exposed to volatility falling, when the option is
more likely to run through to maturity. Again, it is probably more likely that
the insurer has such liabilities because of unusual contract features within insur-
ance policies it has written than because it has sold a specific derivative con-
tract.

10.9 Pension Schemes

10.9.1 The methods used to establish reserves for U.K. final salary pension
schemes do not, it seems to me, fit neatly into either a Model A or a Model B
framework.

10.9.2 In principle, there are four different sorts of actuarial valuations
applied to pension schemes:
(a) Perhaps the most important is the ongoing valuation designed to determine an
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appropriate contribution rate for the sponsoring company to pay into the
scheme. In such a valuation, liabilities are typically valued using assumptions
regarding future rates of return, rates of inflation, etc. which change only slow-
ly as market conditions alter. Assets would be valued by assuming that their
current market value is reinvested into a notional portfolio deemed appropriate
in relation to the liabilities, and then valuing the notional portfolio using
assumptions consistent with those used to value the liabilities.

(b) Schemes also value their assets and liabilities on a wind-up or discontinuance
basis. Until recently this was unlikely to be a constraint for most schemes,
since a significant proportion of the future benefits were on a discretionary
basis, and therefore could be ignored in such calculations. There was also, in
many cases, no specific sanction if the liabilities exceeded the assets in such a
calculation, on the assumption that over time such deficits could be eradicated
by future contributions.

(c) The lack of such a sanction has led to the introduction of the Minimum
Funding Requirement (MFR). This imposes sanctions on schemes with MFR
funding levels that fall below certain trigger points. The MFR funding level (or
ratio of assets to liabilities) is calculated in a manner that has some of the char-
acteristics of both (a) and (b). In the calculation, assets are effectively valued at
market value, with the liabilities valued in a manner that is independent of the
investment strategy being followed.

(d) Schemes approved for tax purposes are also required to carry out a valuation
for the Inland Revenue designed to discourage them from being excessively
well funded (and thus benefitting too much from the advantageous tax treat-
ment afforded to assets in such schemes). The calculation used is similar to
that in (a).

10.9.3 The key point to note is that, with the possible exception of (b), there is
no equivalent to the mismatch test or risk-based capital approach applicable to
insurance companies and banks. As far as assets are concerned, actual holdings of
different sorts of assets with the same market value (at the date of the valuation) are
treated equally in the valuations (except possibly if the asset is illiquid). It is the
overall market value that is important, not how the assets are distributed.

10.9.4 In practice, of course, the distribution of assets has an important
impact on the overall financial health of the fund, but this only appears through
time. Actuaries within the pensions arena have developed techniques, principally
in the form of asset/liability studies, which help to identify how features such
as future MFR funding levels might be influenced if different investment strate-
gies are followed.

10.9.5 As far as derivatives are concerned, the initial impact of any such
transaction will be minimal (except perhaps in the discontinuance valuation),
even if the derivatives being purchased limit down-side risk. Although purchase
of an option may involve payment of a premium, the option itself would then
become an asset of the scheme (worth the premium paid less some bid/offer
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adjustment), leaving the overall market value of the scheme’s assets largely
unchanged. It is only over time that the derivative holding will have a material
impact on funding levels, and this effect will normally only be captured via the
asset/liability modelling process (if the scheme undertakes such exercises).

10.9.6 When carrying out ongoing actuarial valuations, pension scheme
actuaries are under a professional duty to advise the scheme’s trustees if they
believe that the investment strategy being adopted is inappropriate for the
scheme’s liabilities. In principle, therefore, the actuary may need to comment on
the use of derivatives, if any, by the scheme. If the scheme is using merely
futures for asset allocation purposes, then the effect is similar to a realignment
in the underlying asset distribution, to take account of the change in economic
exposure created by the futures. In normal circumstances, this is unlikely to jus-
tify a comment. Only large scale usage of derivatives, particularly ones that
involve the scheme acquiring exposure to jump risks or volatility risk, are likely
to require comments in this context. Usually the scheme’s liabilities contain
option-like characteristics, and one could argue that, if these are matched by
corresponding option characteristics in the assets, then the use of derivatives
may be more appropriate for a scheme than no use at all.

11. CONTROL PROCEDURES

11.1 The Need for Control Procedures

11.1.1 I have concentrated up to this point on the mathematics and eco-
nomic theory underlying derivatives. As important, probably, is the need for
adequate systems and controls. These often require much less mathematical
knowledge, and instead often rely much more on practical common sense.

11.1.2 Suitable control procedures are a fundamental part of all business
processes, not just for derivatives. However, there are some specific reasons
why it is particularly important to have good systems and control procedures
when using derivatives. These include:

(a) The association many people have between derivatives and risk, where ‘risk’
here probably means something going seriously wrong enough to lose your
job, to get adverse press comment, etc. Individuals want to avoid the sorts of
disasters that have afflicted Barings (see Section 11.5) and others. Of course,
there is a converse risk that undue attention may be paid to derivatives at the
expense of forgetting about other potentially risky aspects of the business.
Losses from irregularities in government bond trading in the U.S. branch of
Daiwa Bank were similar in size to the losses sustained by Barings through
derivatives trading. One solution may be to set up a specific risk management
function (e.g. an asset-liability committee) reviewing all risks (including
derivatives risk). However, such a committee will only function properly if it is
operating within an appropriate business culture/ethos (and if the information
supplied to it is accurate).

(b) Efficiency and the need to delegate effectively. Derivatives tend to be more
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complicated than some other areas of investment, or at least are viewed as such
by sentor management. To avoid employing too many highly paid ‘rocket sci-
entists’ with the necessary derivatives expertise, it helps to make the processes
involved as simple and as well specified as possible.

11.2  Formulating Suitable Systems and Control Procedures

11.2.1 It therefore seems to me that the key to designing suitable control
procedures is to apply a healthy dose of common sense, whilst, at the same
time, having a good general understanding of derivatives and their mechanics

(which I hope that this paper will help to provide!).

11.2.2 Specific guidance on how to frame control procedures is available
from many sources. These include:

(a) recommendations produced by the Group of Thirty in 1993 entitled Deriva-
tives: Practices and Principles;

(b) the DTI Prudential Guidance Note 1994/6 entitled Guidance on systems of con-
trol over the investments (and counterparty exposure) of insurance companies
with particular reference to the use of derivatives and DTI Prudential
Guidance Note 1995/3 entitled Use of Derivatives Contracts in Insurance
Funds;

(c) for actuaries, Guidance Note 25 entitled Investments — Derivative Instru-
ments; and

(d) material produced by trade bodies, such as the Futures and Options Associ-
ation’s (FOA) Managing Derivatives Risk: guidelines for end-users of deriva-
tives, produced in December 1995.

11.2.3 The FOA document is particularly helpful as a source of checklists
which can benchmark control procedures appropriate to organisations transacting
relatively low volumes of derivatives.

11.2.4 Most of the above documents borrow from preceding ones, e.g.
GN25 was written taking into account the contents of the DTI Prudential
Guidance Note 1994/6, which itself borrowed extensively from the concepts
introduced in the Group of 30 Report.

11.2.5 Regulated entities, such as insurers and banks, are often required to
follow such guidelines (e.g. insurance companies are required to follow the DTI
guidance to prove that they satisfy the principles of sound and prudent manage-
ment).

11.2.6 All these documents and guidance agree that suitable control proce-
dures need to:

(a) involve principles agreed at the highest level within the organisation (e.g. the
board) which are laid down in the form of written guidelines approved by the
board;

(b) be implemented by people who understand the derivatives business and the
issues involved;

(c) involve proper assessment of all risks;
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(d) be regularly reviewed in the light of changing market conditions and experi-
ence;

(e) be consistent with the company’s overall investment strategy; and

(f) involve suitable reports back to the board.

11.2.7 There is also wide acceptance that implementing such controls requires
adequate resources, both of staff and of systems. The greater the usage of deriva-
tives, the greater the resources that are likely to need to be allocated to derivatives
systems. For example, an organisation which carries out one or two small deriva-
tives deals a year may be able to keep track of all its positions with a simple spread-
sheet, but this would be quite inappropriate for an organisation that carried out
thousands of derivatives transactions in lots of different markets.

11.2.8 Another key requirement is for there to be adequate independence
between the people responsible for settlements and producing monitoring reports
(the ‘back office’) and those responsible for initiating deals (the ‘front office’).
Otherwise there is a danger that reports fail to highlight risks that the front
office do not wish to be put under a spotlight.

11.3  Guidelines
11.3.1 The sorts of material that should be included in the written guide-

lines agreed by the board are:

(a) the purposes for which derivatives would be used;

(b) the sorts of derivatives the organisation will use, including, probably, which
ones will be used for which purposes;

(c) the constraints within which derivatives will be used;

(d) procedures for seeking approval for the usage of new types of derivatives;

(e) the restrictions on the counterparties and brokers through whom derivative
deals can occur (e.g. the minimum acceptable credit rating);

(f) details of who is authorised to enter into derivative transactions (and the limits
placed on their authorisation); and

(g) procedures for how management will monitor derivative activity (and individu-
al position limits), and who will be responsible for the monitoring process.

11.3.2 It would also be good practice to identify how derivatives will be valued
and how credit exposures arising from derivatives are to be calculated (and by
whom). These questions are non-trivial for OTC derivatives. It may be helpful for
the procedure for seeking approval for the usage of new types of derivatives to
cover how these calculations are to be carried out.

11.4 Management Reporting
11.4.1 Whatever the level of usage, organisations are likely to want the fol-
lowing information to be able to monitor their derivatives positions:
(a) asummary of derivative transactions that have occurred since the last reporting
date, partly for audit purposes, but also so that senior management can spot

https://doi.org/10.1017/51357321700005316 Published online by Cambridge University Press


https://doi.org/10.1017/S1357321700005316

Actuaries and Derivatives 127

unusual transactions or use of new types of derivatives;

(b) a summary of positions likely to expire in the near future (since these may
require particular actions to take place); this summary could include estimates
of the likely amounts of cash or stocks that might need to be delivered at that
time, and estimates of other funding requirements;

(c) a summary of open derivative positions, sorted by the fund to which they
relate; for a derivatives house, many of the deals may be proprietary and thus
relate to the same fund (i.e. the firm’s own capital), although the summary
might be split by the trader/product area involved, and for life offices, the deals
may be scattered across different sub-funds (e.g. separate unit-linked funds),
which may be managed by separate individuals, or be legally separate entities;
and

(d) asummary of the counterparty exposures generated by the derivative positions,
sorted by counterparty and the fund/entity to which the derivative relates.

11.4.2 The contents of (a) and (b) are relatively straightforward. Report (a)
should contain all purchases and sales separately. It should show some measure of
deal size (in a format understood by senior management), as well as the book/mar-
ket value information needed for accounting reconciliations. Report (b) is principal-
ly to flag up positions that need actions regarding renewal/roll-over.

11.4.3 Conceptually the contents of (d) are also relatively straightforward.
However, in practice, estimating the actual size of counterparty exposures may
be quite complex, see Section 12. The report should be produced in conjunction
with estimates of counterparty exposures generated by other aspects of invest-
ment activity, e.g. holdings in equity and bond issues, cash deposits, settlement
of outstanding equity and bond transactions and stock lending to the relevant
counterparty. Connected counterparties, e.g. organisations within the same
group, would typically be aggregated, but, in some circumstances, there may be
offsetting factors, depending on the nature of the derivatives involved.

11.4.4 The report which is likely to vary the most by type of institution is
the open position summary, i.e. (c). For life offices or unit trust management
firms carrying out few trades and not actively hedging their derivatives book, a
summary showing the current market value and/or associated economic of each
open derivative position would be helpful, probably together with the deal slip
number, type of contract, contract details (e.g. for options, the strike price,
maturity date, whether a put or call, a long or a short position, American or
European, etc.), number of contracts, multiplier per contract, currency, current
exchange rate and current price.

11.4.5 However, reports that show open derivatives positions in isolation
will fail to show the total picture, since derivatives are nearly always used by
life offices to modify exposures arising from investments in physical securities.
They should, therefore, be supplemented by consolidated summaries of portfolio
structure for each fund, including allowance for derivatives, say along the lines
recommended by LIFFE (1992a) and as summarised in LIFFE (1992b). Such a
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summary should also show whether derivatives are meeting relevant ‘cover’ and
‘in connection with’ regulatory requirements.

1146 For firms actively managing a derivatives trading book, especially
with a significant option component, reports merely along the lines of the above
will supply insufficient information to meet traders’ and risk managers’ needs.
They should be extended to show the ‘greeks’ or sensitivities to various factors
of each derivative (and for the book as a whole), as well as consolidated stress
tests giving the likelihood of specific severities of outcomes occurring.

11.5 The Importance of Basics

11.5.1 The importance of following even basic common sense should not be
underestimated. They are highlighted by the collapse of Barings during February
1995. Barings’ Singapore exchange traded derivatives operation exceeded its
authority and lost large sums of money, having built up a very large exposure
to the Japanese equity market by buying exposure on two different exchanges
when senior management thought that the positions offset each other.

11.5.2 The collapse was the subject of an inquiry by the Board of Banking
Supervision of the Bank of England and by authorities in Singapore. Five key
lessons are highlighted by the Bank of England’s Board of Banking Supervision
Report. All, in retrospect, are obvious. The lessons are:

(a) Management teams have a duty to understand fully the businesses they man-
age.

(b) Responsibility for each business activity has to be clearly established and com-
municated.

(c) Clear segregation of duties is fundamental to any effective control system.

(d) Relevant internal controls, including independent risk management, have to be
established for all business activities.

(e) Top management, especially the board’s audit committee, must ensure that sig-
nificant weaknesses, identified to them by internal audit or otherwise, are
resolved quickly.

11.5.3 A key control highlighted in the report was the need for proper monitor-
ing of margin payments. Another lesson highlighted in the report, again in retro-
spect obvious common sense, is that anomalously high profits ought to be investi-
gated vigilantly to ensure that something is not going wrong. The very high appar-
ent profitability of Barings Singapore futures operations should have sounded
warning bells when it was supposed to be carrying out only low risk activities. As
the proverb says: ‘there are no free lunches’.

12. CREDIT RISK AND OTHER OPERATIONAL ISSUES

12.1  Counterparty Risk
12.1.1 The most important area that we have not yet covered is that of
credit, i.e. counterparty risk. Credit risk arises with all investment transactions,
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but usually the risk is directly associated with the underlying economic expo-
sure. With a derivative transaction, however, the two are usually distinct.

12.1.2 Thus, with an equity investment the investor would suffer a loss
(once the deal has settled) if the underlying company defaults; the counterparty
and economic exposure are identical. However, with an OTC forward, loss can
arise because either:

(a) the underlying investment fails; or
(b) the firm from whom the derivative has been purchased defaults.

12.2  The Importance of Market Values

12.2.1 If a counterparty fails, the loss that an investor suffers is the replace-
ment cost of the derivative, i.e. an amount related to market value. Book costs
are of very little help in assessing counterparty risk.

12.2.2 This is why margining systems are so important for exchange traded
derivatives. They reduce the replacement cost to zero each time the position is
marked-to-mdrket and variation margin is paid (although there may still be
some credit risk arising from the initial margin). Even if derivatives are not
margined, it is still important to mark them to market in valuation terms, to
measure the exposure were a counterparty to default immediately.

12.3  Potential Future Losses

12.3.1 However, the current replacement cost is not normally a good mea-
sure of total potential counterparty exposure. If the underlying moves in such a
way as to increase the replacement cost and the counterparty then defaults, a
larger loss will occur.

12.3.2 In theory, credit risk can itself be thought of as akin to a derivative
(indeed explicit credit derivatives are now traded). Counterparties can be
expected to default from time to time. We could estimate the potential loss
along the same sorts of lines as general insurers use to calculate premiums for
credit guarantee insurance. For complex derivatives, some form of scenario test-
ing might be carried out to assess the likely ‘exposure to risk’, and the likely
rate of default might be estimated using the counterparty’s credit rating and
tables of default rates for similarly rated entities, as produced by the rating
agency. Default rates are also influenced by the general state of the economy,
which might also be correlated with movements in the value of the derivative.
Appropriate adjustments for this might be incorporated into the calculations.

12.3.3 A suitably conservative estimate of the average potential loss across
the entire book could be used as a credit reserve, in a manner similar to that
used by actuaries to reserve for mortality or other similar risks.

12.3.4 In practice, accurately estimating potential credit exposure is quite
difficult, and more broad brush approaches would normally be used (especially
if the size of the derivatives book is quite small). For example, we might set
the credit risk attaching to a futures contract as, say, 5% of its market value, on
the grounds that some loss might potentially occur with the initial margin (even
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though these are normally supposed to be in segregated accounts), perhaps
because of intra-day exposure, and a conservative estimate of how much a mar-
ket might move in most circumstances on the day the organisation defaulted
might be nearly 5%, and hence this amount of variation margin might be lost.

12.4  Controlling Counterparty Exposure

12.4.1 Identifying the sizes of counterparty exposures (and potentially the
reserves to hold against these risks) is only one part of the process. Suitable
controls should be placed on the total exposure to a single counterparty, based
partly on its credit rating. Aggregate limits might also be placed on the combined
exposure to counterparties of the same type, e.g. banks domiciled in the same
country, since there may be some systemic risks affecting all such organisations
simultaneously.

1242 New transactions should be approved only after taking into account
the incremental impact they have on counterparty exposure. Some thought
should be given as to how positions might be unwound, or credit risks miti-
gated, if circumstances made this necessary (e.g. a credit downgrade, or if an
extreme market movement took the credit exposure above the credit limit
assigned to that organisation).

12.4.3 If an organisation’s credit rating is unacceptable or its credit limit is
exhausted, credit enhancement techniques might be used. For example, a third
party could guarantee the contract, or the contract could be collateralised, reduc-
ing the replacement cost and hence credit exposure (but of course creating new
exposures with wherever the collateral is placed). A credit derivative could be
purchased, in which a third party agrees to pay a set sum if the first counter-
party defaults in a defined manner.

12.5 Documentation and other Operational Issues

12.5.1 Although legal documentation may seem a dry subject, a significant
fraction of default losses that have actually occurred over the last decade or so
in the derivatives markets have been a result of a lack of legal enforceability. In
the decade to 1993, one-half of all losses from worldwide derivative defaults

were the result of the Hammersmith and Fulham swaps case in which the U.K.

House of Lords ruled that English local authorities did not have the capacity to

enter into swap or other derivative transactions.

12.5.2 The Group of Thirty report identified five main areas of legal risk:

(a) contract formation, i.e. whether transactions are actually properly documented
within appropriate time scales;

(b) capacity, i.e. whether the counterparty is legally able to enter into the transac-
tion;

(c) early termination, where the problem is that a counterparty that becomes insol-
vent may be able to suspend its payments whilst at the same time demanding
performance by its counterparty; the normal way to try to minimise this risk is
by close-out netting agreements, including ones that allow netting both of
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derivative and non-derivative transactions; however, not all jurisdictions recog-
nise such agreements;

(d) multi-branch netting arrangements, where a further complication arises if
banks have ‘booked’ individual transactions in various locations through a
multi-branch master agreement; close-out netting may not be possible in such
circumstances, since there may be conflicts between regulators in different
countries in the event of default (e.g. as happened with BCCI); and

(e) enforceability; where in some jurisdictions a counterparty may be able to enter
into a derivative transaction, but it may not be enforceable, e.g. it may be
viewed as a gambling contract.

12.5.3 Exchange traded contracts are normally dealt over the telephone.
Investors need to have a contract in place with their clearing agents. There also
needs to be a ‘give up’ agreement in place with the broker executing the trans-
action (if the broker is different to the clearing agent, then the broker is said to
‘give up’ the deal to the clearing agent).

12.5.4 Over-the-counter contracts will typically each have their own agree-
ment (although they may be encompassed within a master netting arrangement).
The industry standard is the International Swap Dealers Association (ISDA)
agreement.

12.5.5 There are several other ways in which contracts can fail to deliver
what is expected of them, e.g. retrospective tax changes or changes in the rules
governing the construction of the underlying indices (for index derivatives). The
key requirement is to be aware of as many as possible of the factors potentially
influencing the business in which the firm is operating and to ensure that the
firm has adequate capital (or some other means of fall-back) if these factors
actually materialise. Derivatives, of course, are by no means unique in this
regard.

12.5.6 The North American actuarial profession specifically includes under
its ‘C-4’ risk category the concept of operational risk (including those relating
to failures in control systems and unexpected changes in the regulatory frame-
work). The risk-based capital framework used for U.S. property/casualty insur-
ers specifically incorporates an allowance for C-4 risk (although admittedly on a
fairly arbitrary basis).
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13. CONCLUDING REMARKS
13.1 Analogies between Derivatives Techniques and Techniques in Other Fields

The main purpose of this paper is to draw analogies between techniques rele-
vant to derivatives and those used by actuaries in other fields. Quite a few were
identified as the paper progressed, including:

Derivative concept
‘Static’ delta-hedging of forwards

Actuarial concept
Matching

Section paragraph
5.2

‘Dynamic’ delta hedging of equity posi- No clear equivalent, although implicit ~ Throughout paper
tions in some concepts.
‘Dynamic’ delta hedging of bond positions In some instances equivalent to 5.2
Redington duration matching
Calibration of option prices from sparse Graduation and other curve fitting 6.3
observed market data techniques
Risk neutrat probability distributions Formally equivalent to using risk ad- 7.3
justed discount rate, but existing actu-
arial norm is usually unhelpful as an
analogue
Hedging by reference to cumulative quad- Experience rating, but the analogy is 82,9
ratic variation, and implied volatility by no means perfect
Monte Carlo simulation Asset/liability studies, but the analogy 6.3.4,8.9
is not always helpful if it excludes an
adjustment to risk-neutrality
Utility theory The actuarial concept of ‘value’, but 4.5
often this focuses too little on market
value.
No arbitrage Actuarial prudence and dislike of char- 4
tism
Jump risk Catastrophe insurance 9
Basis risk/roll-over risk, and value at risk  Tracking error 55
10.7.2
Stress testing Reserving using risk of ruin 9,10
Hedging options by buying other options  Reinsurance 9.4
Operational risks, such as fraud C-4 risk, in the terminology of the 11,12.5.6
North American actuarial profession
Muiltiple jump size pricing models General insurance pricing approaches  Appendix B.4
Credit reserves Exposure to risk calculations and stan- 12.4

dard actuarial reserving techniques

13.2  Factors influencing Reserving Requirements
13.2.1 The other main aim of this paper is to identify the factors influenc-

ing the appropriate level of reserves to hold for a derivatives portfolio. We saw,
in Section 10, that this depended on the nature of the business being run, i.e.
whether the organisation was acting as an agent or as a principal. If the organi-
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sation is merely managing a portfolio containing derivatives for someone else,
then the role is that of fund management, and reserves materially in excess of
those required by the underlying investor are probably not needed.

13.2.2 If the derivatives are part of the organisation’s own book, then the
idealised actuarial framework (which is quite similar to approaches actually
adopted by some of the large banks extensively involved in derivatives markets)
includes components for each of the following:

(a) basis/roll-over risk;

(b) position risk;

(c) the impact of jumps;

(d) uncertainty in future volatility;

(e) transaction costs, if the position is being dynamically hedged;
(f) credit risk; and

(g) other operational risks, including fraud.

13.3 The Role of Actuaries

13.3.1 As this paper tries to demonstrate, the mix of skills needed within
the derivatives industry is one that involves both the practical and the mathe-
matical. This mix is one that the actuarial profession has been offering in other
spheres for many generations.

13.3.2 The derivatives industry is a young industry and one that actuaries
have not been very successful at penetrating. I hope that this paper will help
more actuaries to be involved extensively in it.
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APPENDIX A
OPTION PRICING FORMULAE

A.1  The Merits of being Familiar with Option Pricing Formulae

A.1.1 Although the market price of a derivative can usually be obtained
merely by approaching a suitable broker, there are many instances in which it is
advantageous to be able to calculate approximate prices oneself. Such expertise
can, for example, help in the process of negotiating on the price of OTC
derivatives, and will give the prospective purchaser a better understanding of
the factors to which the price is most sensitive. It is a useful management disci-
pline, and also helps in the assessment of credit risk.

A.1.2 There are a significant number of suppliers of commercial pricing
software, but, in my opinion, it is nearly always helpful to understand the
underlying methodologies of the software.

A.1.3 For some sorts of derivatives or with some models, no closed form
analytic solution is available, but for simpler sorts of derivatives it is often pos-
sible to find such solutions. This appendix concentrates on such solutions, since
if they exist they are much easier to code up and understand than more com-
plex numerical methods, and are therefore more suitable for carrying out rea-
sonableness checks. The solutions developed in this appendix are principally for
call options; the development of formulae for put options is generally very sim-
ilar (because of put-call parity). The development of the formulae also provides
some insights into the comments in the main body of the text. However, readers
should note that this appendix provides no more than a very limited introduc-
tion to what is a very complicated subject.

A.2  Deriving the Black-Scholes Formulae using Stochastic Calculus

A.2.1 Stochastic calculus is the most important mathematical technique used
to price options. I have here developed it from a partial differential equation
perspective. Within the derivatives industry an alternative that is often used is
based on martingales, but the two are formally equivalent in a mathematical
sense.

A.2.2 An example of its use is in the derivation of the Black-Scholes for-
mulae, which can be done as follows. We assume that:
(a) the markets on which the underlying securities and derivatives trade have no

transactions costs;

(b) participants can take out long and short positions without constraint;
(c) tax can be ignored; and
(d) markets are arbitrage-free.

A.23 We also assume that the movement in the stock price follows a
Gauss-Weiner or Brownian stochastic process. This means that:
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?zydmadz

where S, = stock price at time ¢, 0 = volatility of stock price, ¢ = mean drift of stock
prices and dz are normal random variables with zero mean and variance dt. Thus in
each consecutive infinitesimal time period length dt the share price movement is an
independent identically distributed normal random variable with mean udr and
standard deviation o Vd!.

A.2.4 We also assume that a cash holding of H provides a risk-free income
of rHdt in time dt (i.e. r is the interest rate on a risk-free asset) and a stock
holding of S provides a dividend of ¢Sd:r in time dt (i.e. ¢ is the dividend
yield).

A.2.5 Suppose that the price of the derivative is u(S,f). Suppose we also
construct a hedge portfolio which will, at any instant in time, rise or fall by the
same amount as the value of the option. We therefore need the hedge portfolio
to consist of:

A = number of units of stock = -3—”5

B = balance = amount of cash=u— S ﬂ

ds

A.2.6 For simplicity, we will use subscripts to refer to partial derivatives,
i.e. u, refers to the partial derivative of u with respect to r. Where two sub-
scripts are used we refer to second partial derivatives, i.e.:

2u
Ugs = W etc.

A277 The key to stochastic calculus is Ito’s formula, which is effectively a
Taylor Series expansion, but allowing for the stochastic nature of S. It implies
that:

202
du=usdS+u,dt+

uggdt. (1

A28 It also follows, from the hedge portfolio that we have constructed, if
du = movement in option price and dS = movement in stock price, that:

du = A(dS + qSdt) + Br.dt = ugdS + qSugdt + r(u — Sug)dt. 2)
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A29 Subtracting (1) from (2) we derive the partial differential equation
satisfied by any derivative, given the assumptions set out above:

252

—ru+u, +(r—q)Sug +

A3 Deriving The Black-Scholes Formulae for European Puts and Calls using
Stochastic Calculus

A3.1 The partial differential equation set out in TA.2.9 is a second-order,
linear partial differential equation of the parabolic type. This sort of equation is
the same sort as is used by physicists to describe diffusion of heat. For this rea-
son, a Gauss-Weiner process is also known as a diffusion process.

A3.2 To solve the equation, we first transform it into a standard form,
namely (with ¢ constant):

1 3w_82w . 2
—ij-—a? l.C.Wy-—C Wixe

A3.3 Suppose we replace u by w, where w = ue™ (assuming r is con-
stant). This transformation removes one of the terms in the partial differential
equation:

w, = (~ru+u,)e'T " wg = uge' T wes = ugge” T

2a2

= w, +(r—q)Swg + wee = 0.

A.3.4 Suppose we also make the following double transformation (assuming
r, q and o are constant):

2 2
y=T—t and x log(S) r-q-o /2(T_t):log(S)+r q-0 /2y

c o o o
The partial differential equation then simplifies to w, =c?w,,, with c= 1M2.

A35 If r or g are time dependent (or even stochastnc in their own right),
then more complicated substitutions are needed, but it is still possible to convert
the equation in TA.2.9 into a standard parabolic form (as is necessary for the
logic set out in Section 8.1 to be correct). If o is dependent only on ¢, it is also
still possible to do this, but not if o also depends on S. If o depends on S and ¢
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only, then equation (3) is still valid, but must be solved in a different way. This
corresponds to the ‘generalised Brownian framework’ mentioned in 98.1.5.

A.3.6 The prices of different derivatives will then satisfy the above equa-
tion, but subject to different boundary conditions. A common method of identi-
fying solutions to partial differential equations subject to such boundary condi-
tions is by the use of Green’s functions. This expresses the solution to a partial
differential equation, given a general boundary condition applicable at some
boundary B(z) formed by the curves x=3%(z) and y=3(z), as an expression of
the form:

v(x,) = [ Vo(DG(x,y, X(2), ¥(2))dz.
B

A.3.7 G is then known as the Green’s function for the partial differential
equation. In the case of the equation in 1A.3.2, the Green’s function is:

oD 14 (=)
G(x,y,x,y) = =
2em \fy-5

A.3.8 For European style options, the boundary problem simplifies to what
is sometimes called an initial value problem or a Cauchy problem, and the
Green’s function approach becomes the Poisson equation, see e.g. Bronshtein &
Semendyayev (1978). If the boundary condition is w(x,0)=w,(x) at y=0, where
wy(x) is continuous and bounded for all x, then:

1 TWO(Z) —(z—x)? 4c%y)
w(x,y)= —e dz.
(x,y) 2l N

A.3.9 For a European call option, after making the substitutions described
above:

u(S,T) = max(S — E,0) = wy(x) = max(e™ — E,0) andc = 1

—=C
ND) 2

2
max(e™ _E’O)e—(z—x) /(ZY)dZ

= u(x,y)= e"’yT \/ZIE

—oco

- 1 —(z=x)? - [~ E  _-xp
—u=e" J’ & @D N2 gy gy J' ® o0 12 g,
log™= /271y log™ = /27ty

= u=1(1,1og(E),S,y)~ E1(0,log(E),S,y) say
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where:

I T T S ot
Ik, H,S,y)=e” [ ==/ @Wgy,
H/a\/27ty

A.3.10 We can simplify this formula as follows:

let:
-p-k d
B ol Lo NP
W b
and
2 2 2.2
koz-————(z ) _ 4§ xko +
2y 2
S Uk H,S.y) =eerowonr [ L iy,
_m V27
_ e—rye(log(S)+(r—q—o'2/2)y)k+k20'2y/2N(H] )
- Ske—que—r(l—k)yeazy(kz—k)/ZN(Hl)
where:

_—H+po+ko®y log(S)—H+(r—qg—c’/2+ko?)y

H =
| oy oy

_ 2
= u(x,y) = Se“’yN[IOg(S/ E)+(r—y+o /2)y)
b

10g(S/E)+(r~y—0'2/2)y]

~Ee™™N
. [ -

If we substitute y=T—¢, then we recover the BS formula set out in Section 7.
A.3.11 Most closed form option pricing formulae consist of terms that look

vaguely like the expression derived for I(k,H,S,y) above.
A3.12 There is a strong element of symmetry between the terms in S and

the terms in E, since:

if my=FEe" T m =Se” ™" and @ =0T-1 then:
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In(m, / my) +g)_ m N(ln(ml /my) _g)
2 o

value of call option = m;. N(
o o 2

In(my / m In(my /m
value of put option = m,. N g——‘)+£x— ~m_.N (L—‘—)—g .
a 2 ! a 2

A3.13 The reason for this is that a ‘call’ option giving the right to buy
equities at a certain predetermined rate for cash can also be expressed as a ‘put’
option giving the holder the right to ‘sell’ cash for equities at a predetermined
rate. This symmetry is often called spot-strike symmetry.

A3.14 For hedging purposes, it is also necessary to know the greeks or
partial differentials of V. The most important are probably the option delta and
gamma. These are usually defined as follows:

v ’v
A=—=V, and '=—=V,.
as ° asz %

A.3.15 Formulae for these (for a call option), given the BS model, are:

A=e"7T"Y N(d,) where d, is as in 17.5.2;

_ e‘q(T‘t)f(d‘ ) .

T ; and
SoNvT —t

f(x) is the normal probability density function.

A3.16 Other ‘greeks’ include:

K =vega= % = Se 1T f(d)NT —1
p=rtho= ‘;—V = (T -1)Ee " T""N(d,)
r

A = lambda = ;ﬂ =—(T-1Se " N(d,)
q

O =theta= % =~Se™ T 9f(d,) + gSe ¥ T IN(d,) - rEe”""IN(d,).

A3.17 Given the nature of the hedging equation, theta can be determined
from the other greeks.
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A.3.18 For hedging purposes, it is often helpful to restate the formulae for
the delta and gamma to relate to the equivalent market exposure involved. This
involves multiplying the delta and gamma in 1A.3.15 by S and $* respectively.
The formulae then become:

A =Se"7"T-9N(d,)

e 7 If(d))
oNT-t

r=s§

A.4  Options involving Multiple Underlying Assets

A.4.1 For more complicated options depending on several variables, there is
an equivalent equation to that given in Y1A.2.9. It can be developed using mar-
tingale theory, in which case the equation is known as the Feynman-Kac equa-
tion, see e.g. Duffie (1992). Equivalently, the equation can be developed in a
partial differential equation framework, using no arbitrage arguments, along the
lines summarised in Vetzal (1994). In this sort of formulation we assume that
the state of the economy (or at least that part we are interested in) may be sum-
marised by a k-dimensional vector of state variables Xe R*, where the move-
ments of X over time are described by a system of stochastic differential equa-
tions:

dX = u(X,t)dt + o(X, 1)dZ(t)

(where Z(1) is a k-dimensional Brownian motion).

A.4.2 We might call this a multi-dimensional generalised Brownian frame-
work. In an interest rate context and if X relates to zero coupon bonds, but we
model the development of forward rates, then this approach would generally be
known as the Heath, Jarrow and Morton framework, see Heath ef al. (1992).

A4.3 1t is then possible to show, subject to suitable regularity conditions,
and assuming markets are ‘complete’, that if the value of any security or
derivative on the security is given by V(X.r), the instantaneous pay-out of the
security is C(X,f) and the risk-free interest rate is r(X,f), then standard no-arbi-
trage arguments imply that V satisfies the following partial differential equation:

Ttlo(X, ) Viyo(X, )1+ (X, D)+ V, + C(X,1) - r(X,nhV(X,1) =0

v v IV
V,=— Vy =|=—,... Vix =
" X {ax, 3x,,] X {axax]kxk

where:

v(X,t) = u(X,t) - o(X,0H)p(X, 1)

and ¢(X,?) is a column vector called the ‘market price of risk’ vector, the existence
of which is a necessary condition for the absence of arbitrage.
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A.4.4 The price of any specific derivative in such a world is then given by
the solution to this equation, subject to an appropriate boundary condition.

A.4.5 It is usually easiest to express the results of this process in the man-
ner equivalent to that described in 17.3.4, i.e. as:

T
—I r(X,s)ds
1

V(X,r)=E|e V(X,T)X,

where E(Y) is the expected value of Y under some suitable risk-neutral probability
distribution.

A.4.6 It is possible to use this approach to confirm the formula for relative
performance options given in 18.2.6.

A.47 This formulation is also normally essential when trying to value inter-
est rate derivatives, since the state variables for such derivatives are not nor-
mally one dimensional, but will depend on the yield curve, which, in general,
needs several factors to describe it fully.

A.4.8 For the purposes of this paper, it is helpful to realise that the regular-
ity conditions required to justify the equation in TA.4.3 include:

(a) no transaction costs;
(b) o to be continuous (which precludes jumps); and
(c) o tobe a function of X and ¢, i.e. ¢ is not stochastic in its own right.

Otherwise the markets are ‘incomplete’ and can only be completed by including
‘additional’ underlyings relating to volatility, jump costs and transaction costs
which cannot be priced merely by reference to the price of the ‘main’ underlyings
in X. In this sense the model becomes preference dependent, since derivatives can
only, in general, be priced after making assumptions about the utilities of different
investors. These are the same circumstances highlighted in Section 8.3 which cause
the BS formulae and the use of binomial trees/Brownian motions to break-down.

A5 Trinomial Lattices

A.5.1 A necessary requirement of being able to derive a backwards equation of
the sort described in 17.1.6 solely from no-arbitrage arguments is that at each node
in the lattice there can only be two possible movements (since there are only two
assets that exist, in such a framework, to construct the hedge portfolio). More com-
plex lattices can be constructed, e.g. trinomial lattices, at which the share price can
go ‘up’, ‘down’ or ‘sideways’ at each node. The backwards equations that these lat-
tices satisfy can no longer be deduced directly from arbitrage principles, but instead
have greater degrees of freedom (and are consequently more complicated). This
greater flexibility means that it is possible to optimise the numerical properties of
the lattice.

A.5.2 In most circumstances a trinomial lattice along the lines of the following
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is likely to be close to optimal. S(n,m) should be allowed to move to S(n+1,m—1),
S(n+1,m) or S(n+1,m+1), where the nodes of the lattice are given by
S(n,m)=Sb"k* (so in the notation in Figure 11, g,=bk, g,=k and g,=b'k). The
backwards equation is defined as follows:

Vinm)=g,Vin+1l,m+D+g,Vin+lm)+g,Vin+1,m—1)

where :

k,b,g,. 80,8, are defined so that k = "
u>50°6d
[ = TR 4 2N 0TI _y
4
b=(1+012+LC+4)/4)
erh(gu +8 +8:)=1
~6%hi8 _ —30%h/32
erh(gu+gd)=§+l+e (& +2)e
¢
and 2 2
(g, - gg)= EXDTTN T TG4
VS +4)

A.5.3 This complicated lattice structure is designed so that if one were to
price a derivative paying S” for p=0, 0.25, 0.5, 0.75 or 1, then the lattice gives
exactly the right answer. For standard types of European and American options,
this calibrated trinomial lattice can converge much more rapidly than a binomial
lattice.

A.5.4 One might expect to be able to improve convergence still further by
using quadrinomial or even more complicated lattices, but the effort involved in
programming them becomes progressively more complicated, and it becomes less
easy to ensure that the optimal lattice structure is recombining, so, for fast numeri-
cal computation of options using lattices, trinomial lattices are likely to be preferred
in most circumstances.

A.5.5 It is worth noting that there are two main sorts of errors arising with lat-
tice pricing methods. The first relates to propagation errors from the backwards
equation, which can be much reduced by using trinomial lattices rather than bino-
mial ones. The second sort of error involves the approximation of a continuous pay-
off at maturity with one involving discrete amounts at each maturity node. It can be
minimised by setting the pay-off at each maturity node equal to the average of
maturity pay-off for prices of the underlying closest to the node. This second sort of
error is not improved merely by use of a trinomial lattice.
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APPENDIX B

JUMP PROCESSES, STOCHASTIC VOLATILITY AND TRANSACTION
COSTS

B.1 Circumstances in which the Black-Scholes Formulae break down

As noted in Section 8 and Appendix A, there are essentially three possible
sources of deviation from the BS framework (other than inappropriate manage-
ment of the hedging process), namely:
(a) market jumping;
(b) market volatility differing from that originally expected; and
(c) the existence of transaction costs.

B.2 Jump Processes

B.2.1 If markets jump, it is impossible to move the hedge portfolio fast
enough in the fashion required to replicate the behaviour of the option by
dynamic hedging. Section 9 suggests that jump risk is the most important of the
three possible departures mentioned above for the sort of option considered
there.

B.2.2 Perhaps the simplest way of incorporating jumps into option pricing
formulae is the cost of capital model developed by M.H.D. Kemp and A.D.
Smith (see, e.g., Smith, 1995).

B.2.3 This model assumes that in any small instant the underlying may
jump in price either infinitely upwards or down to zero. An option writer is
putting his capital at risk from such jumps, as they are not hedgeable by invest-
ing merely in the underlying and risk-free assets. It is reasonable to assume that
the option writer will demand an excess return on the ‘risk capital’ he thus
needs, to reflect this risk. Of course, such risks can be hedged by buying suit-
able options, but this has merely transferred the jump risk to someone else.
Ultimately, someone must carry this risk.

B.2.4 The model assumes that writers of derivatives require some additional
return on the cash/shares that they need as risk capital to compensate them for
putting their capital at risk. It therefore includes two extra parameters:

r, =the rate of interest required on the cash the writer would need to hold to make
good the loss L, that he would incur if there were an extreme downward jump
in the price of the underlying shares; and

g, = the enhanced income yield required on the shares the writer would need to
hold to make good the loss L, that he would incur if there were an extreme
upward movement in the price of the underlying shares.

B.2.5 The values under this model of European put options P(S,?) and call
options C(S.r) with exercise price E are:
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C(S,1) = Se(qa‘q)(T—t) + Se—qa(T—f)N(dl)__ Ee—'},(T—')N(dz)

P(S,1) = B0 4 e~ T"ON(—d,) - Se™%"""N(d,)
where:

—_ 2 -
4= log(S/ E)+(r, \/ia +16 12T -1 andd, =d; —o~t-1.
oT—

B.2.6 The derivation of these formulae is as follows. Suppose we have writ-
ten a derivative with value V(S,r) and we hedge it using a portfolio containing a
suitable mix of risk-free assets and the underlying. We will have:

Assets: A in the risk-free asset + B shares, where:
% \%

A=V-§S— and B=—

a8 a8

Liabilities:  V(S,?), i.e. the value of the option.

B.2.7 Our exposure (i.e. the loss incurred), were the underlying to crash
instantaneously to zero, is:

. oV
Lo= 611_1)1(1) V(e n) - (V(S,t) - S;’EJ

B.2.8 Our exposure, were the underlying to rise instantaneously to infinity,
is:
lim V(M,t)-A—-B. lim M.
Mo M—y00

This quantity may grow arbitrarily large for large M, and so we cannot cover all
possible losses merely by holding cash. However, we can (at least for usual sorts of
derivatives) cover all losses by holding a suitable amount of shares. For very large
M, the number of shares required is:

. VIM,H—-A-BM . V(M) oV
Lg = lim = lim -—.
M—e M M- M Ay

Exceptions include power options (which have pay-offs expressed in terms of S,
where n > 1, so that they grow asyptotically faster than § as S becomes large) and
quanto options (in which, say, the pay-off is, say, $1 for every one point rise in FT-
SE, even though FT-SE is denominated in £ sterling). In the presence of very large
jumps, their values become unstable, and this could lead to systemic instability in
derivatives markets.
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B.2.9 We assume that shareholders of the ultimate carriers of such jump
risks require some additional return on the cash/shares they need as risk capital
to compensate them for putting their capital at risk, i.e.:

r, = rate of interest required on cash backing downward jump risk (i.e. L.); and

g,= enhanced income yield required on shares backing the upward jump risk

(ie. Ly).

B.2.10 The writer of the option, therefore, needs to include allowance for
the extra costs of capital, i.e. (r, — r)L. and (g, ~ g)L,, when pricing the option.
Thus, the price of the option will no longer be described by the BS partial dif-
ferential equation, but instead by the following partial differential equation.:

202

ugg +(r, — r)(SuS —u+lim u(&l‘))
€50

. M,
g~ q)S( lim f‘%;—’ - us) =0,

—ru+u, +(r—q)Sug +

B.2.11 This partial differential equation simplifies to:

c’s?
—ru+u, +(r, — q,)Sug + —2_“ss +(r,=nNPt)+(q,— Q@) =0

where:

P(t)=limu(e,t) and Q@)=S lim M(M,t)‘
-0 Moyoo M“—

B.2.12 The above partial differential equation collapses to the Black-Scholes
partial differential equation when r,=r and g,=q. Even when r, differs from r
and g, from ¢, the formula is very similar to the BS partial differential equation
apart from the two terms involving P(¢) and Q(2).

B.3 The Cost of Capital Adjustments in Practice

B.3.1 The cost of capital model can easily be criticised for assuming unreal-
istic market behaviour, since markets do not, in practice, leap by the sorts of
amounts assumed in the model. However, it is relatively easy to demonstrate
that, as long as the option is not far in or out of the money (or of very long
duration), the losses incurred by more modest sized jumps rapidly approach L.
and L; as the size of the jumps become significant. The model can thus be
thought of as a good approximation to a more accurate one that merely assumes
that jumps that need to be protected against are ‘significant’.

B.3.2 There are two ways that we can test whether the cost of capital
model provides greater explanatory power than the Black-Scholes model:
(a) we can analyse whether it seems to have captured aspects of actual market

behaviour in the past; and
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(b) we can analyse whether it seems to explain current market prices.

B.3.3 The cost of capital model seems to do quite well in relation to past
market behaviour. The formula in YB.2.5 for, say, a put option involves two
terms representing contributions from:

(a) jump components : Eela=rT=

(b) diffusion components : Ee_"’(T")N(—dz) - Se""’(T")N(—dl ).

The first term is independent of the strike price. Thus, one way of testing
whether the cost of capital model is a helpful model is to see whether the jump
related costs of hedging an options position are relatively independent of the
option strike price. Paragraph 9.4.4 demonstrated that this is indeed a reasonable
approximation. We could also conclude from this that, based on the period anal-
ysed there, an appropriate value for r,—r might be around 0.4% p.a. to 0.5%
p-a. (this being roughly the sum of the up and down jump costs shown there).

B.3.4 In some respects, the cost of capital model is also helpful when trying
to explain current market prices. If the model underlying the BS formulae is
correct, then the implied volatility of options will be independent of strike
price. The effect of introducing the cost of capital adjustments is to alter the
shape of the curve we would get by plotting implied volatility versus strike.
The cost of capital model has two extra parameters, and will, therefore, in gen-
eral permit a curve with three degrees of freedom (i.e. something like a
quadratic curve), rather than just a curve with just one degree of freedom (a
horizontal line).

B.3.5 These extra parameters mean that the cost of capital model will
always be a better fit to the implied volatility curve. The implied volatilities of
FT-SE options for different strikes and different terms were shown in Figure
10. Table B.1 contains corresponding cost of capital parameters which closely
fit these implied volatility curves. The fit is much better than using a single
implied volatility for all strikes.

Table B.1. ‘Cost of capital’ parameters fitting FI-SE smile/skew at 7 March 1996

Duration Sigma, ¢ r-r q-9
(years) (% p.a.) (% p.a.) (% p.a.)
033 15.0 0.6 -3.4
0.58 14.8 0.2 -2.0
0.83 155 0.4 2.1
1.00 16.3 0.2 2.1
2.00 16.8 0.2 -1.4
3.00 17.1 0.1 -0.6
4.00 17.1 0.1 -0.5
5.00 17.6 0.1 ~0.5
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B.4 Finite Jumps

B.4.1 Unfortunately Table B.l also shows a flaw in the cost of capital
model. Logically both r,—r and g,—q should be non-negative, since both
upward and downward jumps potentially involve losses to the option writer.
Although r,—r is positive, g,—q is not (at least not based on these exercise
prices, which are not far from being at-the-money).

B.4.2 One reason is that markets will not, in practice, jump infinitely up or
down (or at least market practitioners expect this to be rare). A more realistic
model would involve finite jumps as well, in order to explain any skewness and
‘fat-tailedness’ (usually referred to as kurtosis) away from a log normal distri-
bution.

B.43 One possible model with these characteristics would be the jump
model described in Smith (1996). Another is the generalised beta distribution of
the second kind, as described in Bookstaber & McDonald (1987). This distribu-
tion contains as special cases a large number of well-known distributions, such
as the log-normal, log-¢ and log-Cauchy distributions.

B.4.4 Both of these models are also characterised by four parameters, and
thus, like the cost of capital model, can fit any arbitrary mean, variance, skew-
ness and kurtosis (or equivalent measures of dispersion, etc. if the various
moments of the relevant distribution are infinite). The mean of the distribution
is, in some sense, redundant in this sort of analysis, since it is necessary to set
it equal to the risk-free rate in a risk-neutral world.

B.4.5 Interestingly, Bookstaber & McDonald conclude in their paper that
the longer the time period, the less justification there is for adopting a model
different to the log-normal one underlying the BS formulation. This seems to be
consistent with the fall in the absolute values of r,—r and ¢,—¢q in Table B.1 as
the period to maturity rises.

B.4.6 Another set of distributions that some practitioners have considered
involves Levy stable distributions (otherwise known as Stable Paretian distribu-
tions). These play the same sort of role as the normal distribution does in the
central limit theory when we accumulate random returns with infinite variances.
Indeed, the normal distribution is a special case of the more generalised Levy
stable distribution. They, too, have four parameters which relate to the position
of the ‘middle’ of the distribution, its dispersion, its skewness and how fat
tailed it is. However, they have the practical disadvantage that they have infinite
variances and are not particularly easy to manipulate mathematically. Longuin
(1993), when analysing the distribution of U.S. equity returns, concludes that it
is not sufficiently fat-tailed to be adequately modelled by Levy stable distribu-
tions, even if it is fatter tailed than implied by the normal distribution.

B.47 A final way that is sometimes used by derivatives practitioners to
handle possible market jumps is similar to that used to price general insurance
contracts. Jumps are assumed to be of a specific size (or to come from a spe-
cific size distribution, such as an exponential distribution) and to occur at a rate
which is a Poisson process, with parameter A. Thus the probability that n jumps
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occur within a short time interval t is (49" (although it is not necessary to
assume that A is constant over time). It is then possible to develop a partial dif-
ferential equation similar to that in TA.2.9, but with extra terms incorporating a
risk adjusted version of A, as well as parameters describing the size distribution
and the loss incurred were a jump of the given size to occur. Whilst this is
arguably closer to reality than the approaches described above, it is also a lot
more complicated mathematically. The cost of capital model is a limiting case
of this approach with two jump sizes (+ec and —co, with the results normally
closely approximating to a model concentrating merely on ‘significant’ positive
or negative jump sizes) and with the risk adjusted A equal to r,~r or ¢g,—¢q
(depending on the direction of the jump).

B.4.8 The link with risk adjusted parameters also reminds us that the pric-
ing of jump risk is preference dependent, and will, therefore, be influenced by
the utility functions of the various market participants. It is reasonable to postu-
late that market participants dislike large downward market jumps more than
they dislike large upward jumps. This may drag down the observed ¢g,—¢ and
increase the observed r,—r.

B.5 Options with a Moving Average Strike Price

B.5.1 The original purpose behind developing the cost of capital model was
to permit a rather unusual sort of option to be priced. This was a ‘catastrophe
put’ option, with an exercise price based on a moving average of the price of
the underlying. The idea was that insurers would be particularly worried about
rapid falls in equity markets, but less concerned about slow declines that could,
perhaps, be managed by changing business strategy.

B.5.2 In the limit, as the period over which the moving average is calcu-
lated falls to zero, such an option would only have a pay-off if the market had
jumped downwards by at least a specified amount. In a Black-Scholes world,
the appropriate price to charge for such jump risk is zero.

B.5.3 Thus one (theoretical) way of assessing how far markets deviate from
the Black-Scholes world in terms of their jump characteristics is to determine
the price differential between such a catastrophe put option and the price of the
corresponding vanilla option, and to identify its limiting behaviour as the aver-
aging period tended to zero. From this we could identify the market price
attaching to jump risk arising from jumps of any specific size. Unfortunately,
such options do not trade in practice.

B.6 Convexity

B.6.1 The jump characteristics of price movements of the underlying are
irrelevant to the pricing of symmetric derivatives such as futures and forwards;
the formulae developed in Section 4 remain valid. The key difference with
options is their non-linearity. This is more normally referred to within the
equity derivatives industry by the term convexity. However, readers should note
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that the way interest rate derivatives are usually described means that convexity
has a different meaning for them.

B.6.2 For example, the price u of a call option will depend on the price of
the underlying in the manner similar to that shown in Figure 7. It is convex
upwards, so a purchaser of the option is said to have positive convexity, whilst
the seller/writer of the option is said to have negative convexity.

B.6.3 If we attempt to replicate the effect of the option using dynamic
hedging, and the price of the underlying was S, then we would be investing in
a portfolio consisting of Sug in the underlying and u—Su; in cash. This would
change in value as per the tangent line to the graph. The behaviour of this port-
folio deviates from the behaviour of the option precisely because of the convex-
ity of the option.

B.6.4 We would expect there to be some price attaching to convexity. We
could thus price derivatives in the following manner (since the left hand side is
the rate of change in the value of the option with respect to time and the first
two terms on the right hand side are the interest/dividends we are receiving
from the hedge portfolio):

u, = H = r(u—Sug)+ qSug

ot

+ price of a unit of convexity per unit time X amount of convexity.

B.6.5 A common measure of convexity used by mathematicians is how
rapidly the tangent angle changes, which we can measure by ug, the second
partial derivative with respect to S. To convert this to monetary quantity we
need to multiply by $%. If we then define the price of a unit of convexity per
unit time as %2, we recover the BS partial differential equation and the BS
formulae. If our measure of convexity includes the asymptotic behaviour of the
option as S tends to oo, then we recover the cost of capital model. If our mea-
sure includes other aspects of convexity (e.g. finite jumps), then more compli-
cated pricing equations result.

B.7 Stochastic Volatility

B.7.1 The second source of discrepancy from the Black-Scholes world is
the possibility that the volatility of the price movement of the underlying might
change as time progresses, in a way that is not predictable in advance.

B.7.2 Figure 17 shows how the implied volatility of options can vary, and
how it also can differ from the historic volatility of the underlying price move-
ments. Volatilities (both market and implied) often seem to rise when there is a
downwards market shock, returning only over time to their previous levels.

B.73 Such characteristics may be modelled using GARCH models, ie.
models exhibiting Generalised Autoregressive Conditional Heteroscedasticity.
These models are often conceptually similar in structure to the Wilkie model,
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often used by actuaries for stochastic asset/liability modelling, except that the
Wilkie model concentrates its autoregressive characteristics on the mean of the
relevant distribution, whereas GARCH models concentrate their autoregressive
characteristics on its volatility.

B.7.4 Just as the limiting ‘catastrophe put’ option, described in Appendix
B.4, can be thought of as highlighting the jump characteristics of a price move-
ment distribution, we can, in theory, construct a type of option which would
characterise the degree to which volatility is stochastic. The basic conceptual
building block is the ‘Log Contract’ described in Neuberger (1990b), whose
value is directly related to out-turn volatility, i.e. the future volatility actually
experienced in practice. If a market maker was prepared to trade options exten-
sively on such contracts (they trade only rarely in practice), then it would prob-
ably be possible to mimic any arbitrary volatility structure.

B.8 Non-Zero Dealing Costs

B.8.1 The final potential source of discrepancy from the BS formulation is
the existence of transaction costs. Suppose we rebalanced our portfolio in accor-
dance with a ‘perfect’ dynamic hedging programme at intervals separated by a
short period A. Then as h tends to zero, it is possible to show that the total vol-
ume of transactions between now and maturity would tend to infinity. This is
because Brownian motion has the characteristic that, as the time interval
becomes shorter and shorter, the observed variability of the price process
reduces only by the square root of the time interval. In the presence of non-zero
transaction costs, sufficiently frequent rebalancing will always completely extin-
guish the hedge portfolio.

B.8.2 One possibility would be to ‘over-hedge’, i.e. always hold more than
enough to meet any level of transaction costs. Unfortunately, the characteristics
of Brownian motion mean that, to avoid completely the possibility of extin-
guishing the hedge portfolio, we would need to hold the upper limit on the pos-
sible value of the option set out in 96.1.3, and then carry out no dynamic hedg-
ing whatsoever. This is arguably overkill!

B.8.3 Thus, we will need to accept some possibility of being unable to
hedge fully an option pay-off if there are transaction costs. There is a trade-off
between the degree to which we rebalance (especially in terms of the frequency
of rebalancing), thus incurring transaction costs, and the degree to which we
replicate accurately the final option pay-off. There is inherent uncertainty in the
quality of replication, as is explained in the seminal work on this subject,
Davis, Panas & Zariphopoulou (1993):

“There is a paradoxical element to the Black-Scholes approach, which has been called the
‘Catch-22 of option pricing theory’; the claims that can be priced are just those that are
redundant in that the investor could, in principle, simply take a position in the replicating
portfolio rather than actually buy the option. Thus, apparently such options have no reason
to exist. The fallacy is that we do not live in a Black-Scholes world. In particular, the repli-
cating portfolio cannot be implemented exactly, since it involves incessant rebalancing,
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which is impractical in the face of any form of market friction such as transaction costs. In
this paper, we develop a theory of option pricing in which transaction costs are explicitly
taken into account. Perfect hedging is no longer possible, and therefore buying or writing
options involves an unavoidable element of risk. For this reason, a preference-independent
valuation is no longer possible, and the investor’s or writer’s attitude towards risk must be
considered.”

B.8.4 Davis, Panas & Zariphopoulou (1993) borrow ideas from Hodges &
Neuberger (1989). They use a utility maximisation approach and show that the
mathematics involved reduce to two stochastic optimal control problems, i.e.
partial differential equations involving inequalities. Unfortunately, the mathemat-
ics are rather difficult even by the standards of derivative pricing literature.
However, a simple asymptotic approximation to the solution to these equations
has been found by Whalley & Wilmott (1993). It is also described, in passing,
in Smith (1996) and in more detail below. The optimal dynamic hedging strat-
egy involves three sorts of actions characterised by ‘buy’, ‘hold’ or ‘sell’
regions. The ‘hold’ region, not surprisingly, becomes larger as the transaction
costs become larger.

B.8.5 For market makers, especially those who make markets in the under-
lying physical markets and in corresponding futures contracts, transaction costs
may be significantly lower than for external participants. This will generally
give market makers an edge in pricing derivatives, since it will reduce their
hedging costs and improve the potential accuracy of their hedging programmes.
Usually futures contracts would be the main route to obtaining market exposure
in dynamic hedging programmes, given the lower transaction costs associated
with them. However, if futures are being used, it is important to bear in mind
factors such as market impact (see %4.1.6) and basis and roll-over risk (see
Section 5.4). These factors may increase the effective level of transaction costs
that need to be allowed for.

B.8.6 Another practical problem associated with attempting to follow ‘per-
fect’ dynamic hedging, as per 1B.8.1, is that rebalancing of the hedge portfolio
becomes very frequent. This could require excessively large staff or systems
commitments. A derivatives house could take this into account by a suitable
increase in the transaction costs involved. In the extreme hypothetical case
where transaction costs are unlimited, the optimal dynamic hedging strategy
becomes that set out in 1B.8.2, i.e. no rebalancing takes place at all. Practical
cases will fall somewhere between these two extremes. The frequency of rebal-
ancing can thus, to a substantial degree, be controlled by altering the transaction
costs allowed for in the hedging algorithm.

B.8.7 Mohamed (1994) reviewed various ways proposed in the academic lit-
erature to minimise transaction costs whilst still hedging derivatives dynami-
cally. He carried out simulations of four approaches and concluded that the
most effective was one involving the analytic approximation to a utility max-
imisation approach as set out in Whalley & Wilmott (1993).

B.8.8 This strategy involves rebalancing the portfolio if it moves outside a
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certain band (back to the nearest edge of that band). The band is defined in
terms of a factor A defining how much is invested in the underlying. It is like
an option delta, but given by:

v _(3kSe"(T"’) ]”3[82V|2/3

T ) [

The terms on the right hand side relate to the actual delta and gamma of the
option, ignoring transaction costs. The assumed utility function is an exponential
one, with an index of risk aversion A. k is the size of the (proportional) transac-
tion cost. In the limit of zero transaction costs, the band collapses to rebalanc-
ing in line with the standard BS case, i.e. using:

A4
A=—.
as

B.8.9 The explicit link with the option gamma (convexity), i.e. the second
order partial differential with respect to S, has intuitive appeal. The band tight-
ens when the option becomes deep in-the-money, or deep out-of-the-money
(when the rate of change of delta in the zero transaction cost becomes small),
but increases when the delta is liable to fluctuate more.

B.9 Applications to Modern Portfolio.Theory

B.9.1 The earlier parts of this appendix also provide insight into Modem
Portfolio Theory, especially the single factor Capital Asset Pricing Model
(CAPM) and its multi-factor analogue, the Arbitrage Pricing Theory (APT). The
APT assumes that the log returns on any given investment can be decomposed
into various factor components plus a residual (stock-specific) risk. The stock-
specific risk is typically assumed to be a normal error term. The CAPM effec-
tively produces the same answers, but assuming that there is just one factor, the
‘market’ (with the exposure component to the market being the stock’s ‘beta’).

B.9.2 Thus, the APT and CAPM assume that returns can be decomposed in
the following fashion:

L=0;+p0; x; .

B.9.3 The rest of this appendix shows that a more complete decomposition is
along the lines of the following:

r(®) = o () + B; ;(x;(t) + B(t) + j V.y(do, + j J; [dA,

+ plus further cross correlation terms and transaction cost terms
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where B(f) are Brownian motions, V() represents the contribution from unpre-
dictable changes to volatility and J(4,f) the contribution from market jumps.

B.9.4 In particular, we can think of economic quantities called ‘volatility’
and jump/‘gap’ risk, which one can buy or sell via the derivatives markets.
Indeed, derivatives practitioners often talk about trading volatility when they
mean taking a position that will benefit or suffer if volatility changes. Just as
there is a term structure to interest rates, there can also be a term structure to
volatility.

B.9.5 Modern portfolio theory teaches us that we can diversify non-system-
atic risk (i.e. the €) by holding a diversified portfolio. Exactly the same princi-
ple means that we can diversify volatility and jump risk by holding a diversi-
fied derivatives book, as long as the types of volatility risk and jump risk are
not 100% correlated.
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APPENDIX C
INTEREST RATE DERIVATIVES

C.1 The Importance of Interest Rate Derivatives

C.1.1 Interest rate derivatives, including swaps, form by far the world’s
largest market involving long-term derivatives. The majority of these swaps
involve exchanging fixed-interest rates for floating rates. Such swaps can be for
very long terms, e.g. 25 years or more. Some effectively include guaranteed
reinvestment rates for new money.

C.1.2 Although U.K. life insurance companies are often thought of as prin-
cipally interested in equity derivatives, many of the larger companies may have
executed some swaps to match guaranteed income bonds or for traditional cor-
porate treasury purposes. They may also be attracted by relative performance
options linked to both equity and fixed-interest returns, as may pension funds.
Interest rate derivatives are much more important for life insurance companies
in some other markets, e.g. the US.A., where such companies often hold a
large proportion of their assets in bonds. Many of these bonds have complicated
option-like characteristics (e.g. mortgage backed securities).

C.1.3 General insurance companies, both in the UK. and elsewhere, tend to
invest less in equities and more in bonds than life insurance companies, and
again may make more use of interest rate derivatives.

C.1.4 Banks, of course, make very extensive use of swaps. Indeed, they
probably place more attention on the interbank swaps market when attempting
to analyse future interest rate movements and their required costs of capital than
on the government debt markets that insurance companies and investment man-
agers would usually focus on.

C.2 The Applicability of the Rest of this Paper

C.2.1 Although the material in the rest of the paper principally focuses on
equity derivatives, much remains valid for interest rate derivatives. For example,
standard forms of swaps can be decomposed into a series of forward transac-
tions, and priced according to the principles set out in Section 5. The calibra-
tion concepts described in Section 6 are also applicable. Indeed they are
arguably more important, since it is usually necessary to fit an entire yield
curve at outset.

C.2.2 However, there are four key differences between interest rate deriva-
tives and those on other securities:

(a) In terms of control procedures, nearly all options on any underlying have some
exposure to interest rates (e.g. a one-year vanilla European equity option is,
strictly speaking, dependent on the prices of zero coupon bonds maturing at the
same time as the option). However, interest rate derivatives are often self con-
tained. Organisations need to be careful to arrange some bridge between
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reserving and risk management procedures in different derivatives specialities
if they wish to capture all their interest rate exposures.

(b) We need to take explicit account of the stochastic nature of the rate of interest
r, since this is, of course, the key determinant of the value of interest rate
options. We also need to allow for the correlation between different points
along the yield curve, since the curve usually moves in a similar direction
along its length.

(c) As time progresses, the volatility of the underlying will generally fall, if the
derivatives relate to bond instruments, rather than interest rates themselves.
This is because the derivative is then linked to the duration of the underlying
bond. For example, suppose we have a European option on a zero coupon bond
which will be redeemed at par shortly after the option matures. The price of the
bond at the maturity of the option is then almost certain to be close to par,
unless it is subject to significant credit risk. In the derivatives industry this is
called the pull to parity.

(d) Indeed, as time progresses, the duration/time to payment of every single fixed
cash flow involved in the derivative will steadily fall. Thus, what we really
need to tackle interest rate derivatives are models of how the whole yield curve
might develop over time, rather than just how some single underlying price
might vary.

C.3 Interest Rate Models

C.3.1 Interest rate models currently in use are usually based on special
cases of the Heath, Jarrow and Morton framework as set out in Section A.4.
The main academic focus in this area has been to devise probabilistic models
describing how interest rates might evolve which:
(a) produce analytically tractable solutions to this equation, at least for simpler

sorts of derivatives; and

(b) bear some resemblance to reality.

C.3.2 Vetzal (1994) provides a useful summary of the main models. The first
series of models to reach prominence were single factor models, e.g. the Vasicek
model and the original version of the Cox, Ingersoll and Ross model. These invari-
ably assumed that the single factor was the instantaneous risk-free interest rate r.
The problem with such models is that they imply the behaviour of the entire yield
curve can be perfectly modelled by just one parameter. Experience teaches that this
is not the case. For example, investment managers will often split the yield curve
into two, three or more areas in order to understand its dynamics more completely.
More complex multiple factor models have thus been devised, e.g. the two factor
Brennan and Schwartz, Longstaff and Schwartz and Vetzal models.

C.3.3 Early models also had the disadvantage that they were unable to fit
the term structure of interest rates perfectly at outset. The argument in favour of
models which perfectly replicate the opening term structure is that, if a model
cannot even price a straightforward bond correctly at outset, then little confi-
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dence may be placed on its ability to value other more complicated financial
instruments. More importantly, calibration of a model becomes much easier if it
fits the opening term structure exactly. Models with this characteristic include
the Black, Derman and Toy and the Hull and White models, which are single
factor models.
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APPENDIX D
THE CAPITAL ADEQUACY DIRECTIVE

D.1 The Capital Adequacy Directive (CAD)

D.1.1 The full title of the CAD is Council Directive 93/6/EEE.C. of 15
March 1993. It prescribes minimum capital requirements for the trading books
of banks and other investment firms domiciled in the E.C.

D.1.2 Details of the implementation of the CAD in the UK. are set out (for
organisations like banks which are regulated by the Bank of England) in the
Bank of England Supervision and Surveillance Notice Numbered S&S/1995/2.
Securities houses are regulated by the Securities and Futures Authority (SFA),
and their CAD definition rules are in SFA Board Notice 249, dated 15 May
1995, but these are very similar in approach to the Bank of England’s rules.

D.1.3 The CAD subdivides a bank’s asset and liabilities into two compo-
nents — its trading book and its banking book. The former consists of its hold-
ings of financial instruments which it trades in (and other instruments held to
hedge tradable financial instruments), whilst the latter refers to deposits, long-
term loans and the like. The division between the two is not always clear cut
(especially given the trend towards securitisation of loan portfolios!). However,
market-making activities, including derivatives activities, will almost always fall
within the trading book, and thus within the CAD rules.

D.1.4 Banks are permitted to calculate their capital requirements under CAD
in three ways. Two are specified in some detail in the CAD. These are the
‘simplified’ approach and the ‘standard’ approach. The former is simpler to cal-
culate, but would normally lead to higher capital requirements. Its main purpose
is to avoid smaller banks incurring excessive systems costs in implementing the
CAD.

D.1.5 The third approach involves the banks using their own risk manage-
ment models, as long as these have been approved by the Bank of England.
The structure of these models is not laid down in S&S/1995/2, although the
requirements they need to satisfy are (see Section D.4),

D.1.6 Exposures above a certain size in relation to the bank’s ‘own funds’
(i.e. after netting off assets and liabilities) receive special treatment. For exam-
ple, any exposure above 25% of own funds must be reported and incurs extra
capital requirements (if permitted at all). There are limits on the total that all
exposures above 10% can add up to.

D.1.7 Over time, banks’ capital reserving requirements are likely to change.
The principal forum in which international harmonisation of reserving require-
ments is discussed is known as the Basle Committee.

D.2 Use of Market Values
D.2.1 Banks are required to be able to produce valuations of their trading
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book on a daily basis. Thus, their trading book positions need to be marked to
market daily. Changes in the values of banking book positions are usually
amortised over much longer periods.

D.2.2 Close-out valuations rather than mid-market values are used, ie. a
long position is valued at its current bid price and a short position at its current
offer price. If a bank only has access to indicative prices, then the CAD
requires that these are adjusted, if necessary, to achieve a prudent valuation.
The same applies if the bank is the only market-maker in the instrument being
valued.

D.3 The ‘Standard’ Approach
D.3.1 The ‘standard’ approach operates roughly as follows:

(a) Positions in identical securities with identical counterparties are calculated
(netted, if suitable netting arrangements are in place). Positions in derivatives
can be netted off against positions in the underlying securities. Interest rate
positions are grouped together in pre-specified maturity bands.

(b) These positions are converted into the bank’s own reporting currency, although
positions in different countries and currencies and with different economic
exposures must still be reported separately.

(¢) Futures, forwards, etc. are treated as suitable combinations of long and short
positions, in line with their fundamental economic effect.

(d) Options, warrants and covered options are converted to equivalent positions in
the underlying, based on relatively simple ‘carve-out’ calculations based on the
‘money-ness’ of the option and whether the option is naked (i.e. not covered by
suitable holdings in the underlying).

(e) Swaps are decomposed into (c¢) and (d), depending on their nature.

(f) The position risk, i.e. the risk inherent in the above exposures, is split into two
components, namely:

— specific risk (i.e. risks affecting the issuer of the security or derivative); and
— general risk (i.e. risks arising from changes in general market levels unre-
lated to any specific attribute of the individual security).

D.3.2 The capital required to back specific risk is:

0% x net positions in qualifying central government items
+ 0.25 to 1.6% x net positions in other qualifying items, depending on maturity
+ 8% X net position in other items.

Essentially, qualifying items are instruments issued either by appropriate invest-
ment firms (including banks) or liquid instruments listed on a suitable exchange not
subject to undue solvency risk.
D.3.3 The capital required to back general risk is calculated as:
(a) Interest rate risk. All positions are weighted according to the maturity band
(and coupon band) in which the instrument falls. Adjustments are made to
allow partial netting off of positions within the same maturity band and in
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nearby maturity bands. Floating rate instruments have a maturity which is
defined by reference to the time to the next interest rate reset. Alternatively, a
duration based approach can be applied, provided it is done so consistently.

(b) Egquities. The bank calculates its gross position in each individual equity (net-
ting the same counterparty only if suitable netting arrangements are in place).
The capital for specific risks is 4% X the gross position (but this can be reduced
to 2% if the equity is highly liquid, the counterparty is approved, as in 1D.4.2,
and the position does not account for too large a percentage of the overall trad-
ing book).

(c) FX contracts. these are generally calculated using a back-test approach relat-
ing to how far different currencies might move relative to each other. The
approach is similar to the ‘own model’ approach described below.

D.3.4 Various rules are laid down for other trading book risks, e.g. underwrit-
ing, settlement/delivery risk, securities lending and repo activities.

D.4 Own Models

D.4.1 Perhaps the most interesting feature of the CAD is that it permits
banks to determine their level of risk capital for certain parts of their business
on the basis of their own internal risk management models, provided these
models have been agreed by the regulator. However, the Bank of England still
lays down rules on how the output of such models is converted into the amount
of risk capital that the bank needs.

D.4.2 This is very close to the concept of the Appointed Actuary of a life
office, who is normally an employee of company, but who is ultimately respon-
sible for setting reserves for insurance liabilities, and for distributing bonuses
equitably between different policyholders. The main difference is that there is
no equivalent level of professional responsibility imposed on the relevant bank-
ing personnel akin to that required of Appointed Actuaries.

D.4.3 These models can be of two main types:

(a) Pricing models. These produce hedging parameters, as per 11A.3.15 to
A.3.19, along the lines of the BS or the cost of capital model, which can then
be used to identify appropriate levels of reserves.

(b) Risk aggregation models; including value at risk (VAR) models.

D.4.4 Banks can also use scenario testing approaches. Indeed, they are expect-
ed to when carrying out stress tests, i.e. simulations (or scenario tests) of what
might happen in extreme circumstances. For large and complicated option books, it
may be impractical to use any other technique, if the model is to be approved by the
Bank of England. The Bank of England generally prefer this sort of analysis to the
use of ‘greeks’ (sensitivities), due to the non-linear nature of the risks involved with
a portfolio containing options.
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D.5 The Model Review Process
D.5.1 Whatever the model, before it can be used for regulatory capital pur-
poses it must be agreed with the Bank of England. This will include discussions
between the firm and the Bank of England on:
(a) the mathematics of the model (and its underlying assumptions);
(b) what systems and controls are in place;
(c) the internal risk management and reporting procedures, including position lim-
its;
(d) staffing issues;
(e) reconciliation and valuation procedures; and
(f) the capital requirements arising from the model.

D.5.2 The discussion of the mathematics of the model and its underlying
assumptions is likely to form a relatively small part of the overall review process.
The model needs to be fully specified and to be appropriate for the derivative in
question. The firm must have sufficient expertise to understand the technical
aspects of the model and its weaknesses/limitations. Option models that generate
delta values will only be accepted if they “also address the full range of market
risks posed by the use of options, including gamma and sensitivity to implied
volatility, time decay and interest rates”.

D.5.3 The model must also form part of the day-to-day risk management
mechanisms used by the firm. The firm must “have the ability to control and
monitor its positions, through a timely risk management system and access to a
liquid market in hedging instruments.” If liquid hedging instruments are not
available, then the risk management techniques being used (and the calculated
capital requirements) need to reflect this.

D.5.4 Systems and controls are deemed by the Bank of England to be at
least as important as the model itself. This reflects the observation by the Bank
of England that the rules on capital requirements do not attempt to cover all the
market shocks or extraordinary situations the firm might face, yet these are just
the times when the firm is most at risk.

D.5.5 Controls are expected in areas such as strategy, staff, risk limits, pro-
cedures for dealing with excesses to limits, systems, settlements, revaluation
procedures, dealing manuals, disaster recovery and internal audit checks.
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ABSTRACT OF THE DISCUSSION
HELD BY THE INSTITUTE OF ACTUARIES

Mr M. H. D. Kemp, F.LA. (introducing the paper): The basic aim of the paper is to illustrate some
similarities between derivative concepts and actuarial concepts. 1 have concentrated on equity
derivatives and on the sorts of uses that would be made by pension funds and insurance companies.

Section 9 covers a particular part of the mathematics underlying derivative pricing, namely
‘dynamic hedging’. The concept has become widely accepted within the banking world whilst
actuaries have generally been sceptical. Whatever the correctness of this approach, it does mean that
there are a ot of good mathematicians with a great deal of financial acumen in the banking world
who are not actuaries. It is a shame that actuaries have not been able to make more use of their
expertise in this area to the same extent. There are, of course, some problems with dynamic hedging,
and perhaps actuaries have been wise to exercise some caution. I have highlighted some of the
problems in the paper, in particular the issue of jump risk, that is the risk that markets do not behave
in a steady, smooth fashion.

There are lessons to be learned from the collapse of Barings Bank and other so-called derivatives
disasters. The control issues are the same for derivatives as for any sort of investment. They include:
proper segregation of duties; proper expertise; proper management reporting; and proper organisation
of the business.

Section 13.2 summarises reserving for derivatives. Based on the analyses in Section 9, the most
important risk that a derivatives house runs, particularly if it is using pure dynamic hedging, is usually
that of jump risk. I suspect that the magnitude of the risk is not always fully appreciated within the
derivatives community.

Finally, I would note that the largest single writers of equity derivatives within the United
Kingdom are the life insurance companies via their with-profits books. It is, therefore, a shame that
there is not the same level of expertise and enthusiasm to get to grips with the intricacies of
derivatives within the life insurance industry as there is in banking. I hope that this paper will redress
some of this imbalance.

Mr M. J. W. Barge, F.I.A (opening the discussion): I first came across derivatives, and the fact that
they could be used by actuaries to assist in their work, about six years ago. At that time it was
virtually impossible to obtain equity derivatives for durations in excess of three years at prices which
could be considered even remotely practical. Since then the market for equity derivatives in the UK.
has seen rapid expansion, and it is encouraging that this expansion has been due, to a large extent, to
the activities of actuaries. Actuaries’ involvement with derivatives has mushroomed to the extent that
derivatives now form an integral part of virtually all investment product development, and no
insurance managed fund or pension fund can ignore them, if only for the purpose of tactical asset
allocation. The implementation of the Insurance Third Life Directive, and the consequential
amendment and upgrading of U.K. legislation, perhaps removes the final obstacle to the practical
involvement of life office actuaries with derivatives. Therefore, in adding to the sparse supply of
papers dealing specifically with this subject, this paper is not only welcome, but overdue.

The author sets out to cover the now very wide spectrum of actuarial techniques and their
analogies with techniques used in the field of derivatives. It should not surprise any reader, therefore,
if their favourite topic — be it experience rating, reserving, formula derivation or dynamic hedging
— is not given the prominence they would like. The paper, nevertheless, includes something for
everyone, and provides further evidence (if any were needed) of the need, at this time, for actuaries
to embrace new risk management techniques borne of the technical advances made in the derivatives
market. Derivatives are, after all, instruments of risk or risk control involving the management of
uncertain outcomes — the actuary’s speciality.

In the opening sections of the paper the author sets out a comprehensive description of the various
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forms of derivatives contracts available from both the exchange traded markets and the over-the-
counter (OTC) markets. At first glance it appears that derivatives should provide the perfect tool to
hedge many of our investment risks. The traditional with-profits contract, when described in terms of
derivatives, actually means that insurance companies are the largest writers of equity derivatives in
the U.K. Yet derivatives markets are not generally used as a principal tool in the management of
such insurance funds. Possible reasons why this might be so are covered in the paper. First among
them are what T would call technical reasons. In a perfect world these would not be a problem, but
in the real world they introduce high levels of risk. Insurance liabilities are more complex than
conventional derivatives. They contain options on the part of both policyholder and insurance
company which are impossible to hedge precisely. Added to this are counterparty risks and dealing
costs, and if the office decides to deita hedge, then it must take jump risk into consideration. One
might thus be tempted to conclude that derivatives are fine in theory, but in practice are not suited
for with-profits funds.

The second set of reasons which may explain why derivatives are not widely used to manage
with-profits funds is to do with performance. Any attempt to match with-profits liabilities using OTC
derivatives is likely to result over the long term in a fund with inferior performance by comparison
to a conventionally managed with-profits fund. Given the strong tendency of with-profits funds to
invest heavily in equities, any move into ‘less risky’ put options would have the unwelcome effect
of reducing both risk and return. Even if the effect of this were mitigated using geared options, the
pattern of performance of such a fund would be likely to be out of line with the rest of the market.
Although it is beneficial not to have to reduce bonus rates when everyone else is forced to, this is
typically not worth the cost of being the only company unable to raise bonus rates when everyone
else can.

However, derivatives are now widely used in other areas of new product design — for example
lump sum investment contracts. The subject of complex product development raises the issue of
scenario testing and pricing guarantees, including pseudo-guarantees. Option prices or, if you like,
values, equate to their discounted value using risk-neutral probabilities and risk-free discount rates.
Option prices can also be shown to be equal to the discounted expected payouts using a risk discount
rate and real world expectations. It is for the individual actuary to decide which approach to use. The
natural actuarial reaction, especially when so many factors are uncertain, is to use real world
projections and risk discount rates. Unfortunately there may be some problems with this traditional
approach. The first is that autoregressive models, such as those generally used by actuaries, will not
produce answers consistent with the market unless the elements of mean reversion are removed. The
second problem is that, without knowing how risky the instruments are in terms of volatility, there is
no easy way to determine the correct risk discount rate. The only way to do this is to examine the
price of the equivalent derivative instrument, as calculated using risk-neutral probabilities, and then to
solve for the discount rate by discounting real world projections.

Calculating the value of a guarantee or investment derivative is only half the battle. Determining
the underlying price is only useful if you intend to buy the instrument from a supplier (such as a
bank) or to delta hedge the risks within your own company. In the case of non-linked insurance funds,
most companies do not delta hedge their guarantees nor do they purchase options. This being the case,
risk-neutral calculations are of little benefit, and such companies need to consider the use of real
world projections to help manage and control their liabilities. Those companies who do wish to use
delta hedging to match their investment guarantees must first examine the regulatory framework to
determine whether or not such activities are allowed, and what effect they will have on reserves. In
the case of index-linked funds, delta hedging is usually not an option, owing to the rules on ‘close
matching’. Whereas it is possible for banks and securities houses to go to their regulators and seek
approval of mathematical models to be used in connection with hedging derivatives, such models are
not recognised by the DTI for use by insurance companies. It appears, therefore, that for index-linked
funds, insurance companies are technically forced to use the banks and securities houses to match
their liabilities. The regulations which have emerged preclude insurance companies from ‘hedging’
their own index-linked risks with anything other than an exactly matching OTC option from a bank.
This situation probably arises from concern for the customer. Nevertheless, those risks are passed on
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to banks who are doing exactly the thing that the insurance companies are prohibited from doing —
that is, creating mathematical models and then delta hedging the risks.

Fortunately, perhaps, for insurance companies, there are instances where the tables are turned, and
it is advantageous to the insurer to sell an investment guarantee to a bank and delta hedge the risk.
These primarily exist in non-linked insurance funds.

The final two sections of the paper deal with control and credit risk issues. It is tempting to
suggest that, given the problems investment banks have had in this area, insurance companies would
be wiser to ignore financial developments and stick to traditional investment methods. Only five years
ago there were six or seven banks world-wide with an AAA credit rating. There are now only two
left, and one of them is on credit watch. The overwhelming cause seems to be the increased level of
volatility arising from investment banking activities. Perhaps the best strategy for insurance companies
is to pass their index-linked and volatile investment risks on to the banks (ignoring the lure of higher
profits and self-sufficiency), and to continue to manage their less volatile positions with traditional
techniques, rather than using derivatives or delta hedging.

Even as a practitioner in this field I find the mathematics difficult to follow. However, it is the
practice that I am most interested in, and I was very pleased to read a paper which covered such a
broad spectrum of actuarial techniques and their analogies within the derivatives markets. I hope that
this paper, and papers like it, will not only act as a signal to actuaries that they can make a significant
contribution to this field, but will also serve to remind the current investment practitioners of the
added value that actuaries can bring to this topic.

Mr S. J. Green, F.I.A.: The author recognises that, in the real world, such things as transaction costs,
counterparty risk, roll-over risk and taxation do exist. He has shown that, if properly used, derivatives
are powerful tools which can help to minimise risk, or improve return, in many of the fields in which
members of our profession operate. I hope that this paper becomes required reading for all aspiring
members of the profession — not just those who are entering the investment field.

The author describes derivatives as ‘risk management tools’. He must be aware that they are also
widely used as gambling tokens. He refers to the losses incurred on derivatives trading at Barings
Bank, but implies that derivatives were not involved in the losses incurred at Daiwa. My
understanding was that derivatives were also involved there, as they were at Sumitomo, Credit Suisse,
Lloyds Bank-Lugano and Rowntrees, to name just a few others, so they can be extremely dangerous
instruments.

It is not only rogue traders who gamble with derivatives. A few years ago a major fund
management house was known to be frequently more than 100% invested for its pension fund clients,
and another was reputed to have an exposure of over 140% of market value. Where one can gain ten
times, or more, exposure through buying derivatives than through investing the same amount in the
underlying instruments, the temptation for fund managers to improve performance by gearing up will
always exist.

The author goes into some detail on control and regulation. Although I agree that, in both of these
areas, there is no substitute tor common sense, he has not stressed sufficiently some of the elementary
in-house controls which can be imposed. For example, as with the old jobbing system, trading limits
can be imposed on individual traders, with their ‘trading books’ examined automatically once or twice
a day. All open positions — both gross and net, and both individually and in total — should always
be examined, daily, against previously set control limits. Insufficient distinction is often made between
covered and uncovered trades, between the writers and the takers of options and between options and
futures. Every control report, at each level, should contain a ‘what if?’, or calamity, scenario.

Most of what the author has written would apply even if the Black-Scholes formula did not exist.
Since he has devoted a number of pages to it, I should like to explain why many actuaries, such as
myself, have doubts about its applicability in the real world. As an investment manager, I was actively
trading in derivatives for at least ten years before Black & Scholes (1973) was published. Because the
discount models then in use for valuing derivatives were rather primitive, I was excited when I first
read about their formulae; but as I went into it more thoroughly, I was put off by the assumptions
which were an essential platform for their calculations:
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(1) Transaction costs. Except, possibly, for market-makers, transaction costs for users of derivatives
are not insignificant, and the idea that trading is frictionless is ludicrous.

(2) Brownian stochastic process. Practitioners have always known that prices did not follow a
Brownian stochastic process. By the time that Black-Scholes was published, Granger had shown
that, in the U.K. equity market, there exists a small, but positive, correlation between any two
successive price movements of an individual share. The author believes that this assumption is not
a necessary condition for Black-Scholes, but, hitherto, it has been held to be a necessary condition.

(3) Markets are arbitrage free. They are not. It is true that most arbitrage positions are traded away
fairly rapidly, but as an investment manager, who has, actively and profitably, arbitraged over a
number of years in U.K. and overseas equity and derivatives markets and in gilts, this
assumption is untenable. Indeed, some arbitrage positions, which are due to different tax
regimes, can exist for quite a long time, and are only inhibited by the liquidity of the particular
market. This is because the internal revenue authorities become a third player in what the
academics always assume is a two-player game.

(4) Taxation, too, exists, even if it frequently changes — occasionally with retrospective effect. In
all markets it is far too significant to be ignored.

(5) Continuous rebalancing. The author has dealt with the problems that continuous rebalancing
would throw up, even if it were possibie.

I have not mentioned the problem of dividends on the underlying, as apparently Black-Scholes can
be modified to make adequate allowance for these.

‘When I read their paper, I found that the assumptions which had been made by Black-and Scholes
were so unrealistic that I went back to the beginning and looked for the words ‘Once upon a time...".
Frankly, I would be surprised if any experienced investment professionals of that era had wasted their
time studying the arcane mathematics by which the formula was derived. At the time, we were rather
more aware of the old computer saying, ‘Rubbish in; rubbish out’, and were too preoccupied in
making money for our clients out of the very inefficiencies which Black-Scholes ignored.

The author observes that Black-Scholes is more acceptable to those in banking than those in long-
term investment. If we go back to our school days, there is a parallel with elementary Euclidian
geometry. If the curve of a circle is short in relation to its diameter, the tangents at any point on the
curve all have very similar gradients and each makes a good first proxy for the curve itself. It is only
when the curve is longer in relation to the diameter that approximation fails; thus with Black-Scholes.
In the short term the unrealistic assumptions do not matter too greatly — except when the historic
volatility of the market is tested — and this itself is less likely to happen the shorter the period. In
the longer term its inadequacies are shown up.

At the first AFIR colloquium, Nisbet showed that there were sufficient inefficiencies in the London
Traded Options Market to question both the efficient market hypothesis and the general equilibrium
assumptions which are the basis of the Black-Scholes option pricing model. At the same colloquium,
Walter showed that price movements in the MATIF were chaotic. For the fifth AFIR colloguium,
Walter produced a paper containing even more convincing evidence that financial markets are chaotic
in nature rather than following random Brownian motion, as assumed in the Black-Scholes model.
Also, at the first AFIR colloquium, Berg, who, for two years, while he was Professor of Mathematics
at Toronto University, worked three days a week as a derivatives trader in Chicago, and thus was (and
probably still is) the only academic with any real-life experience of derivative trading as opposed to
derivatives, demonstrated a system for making money by exploiting the inefficiencies in Black-
Scholes.

Since then there have been numerous studies demonstrating that Black-Scholes does not provide a
sufficiently accurate picture of the real world. The French atomic physicists, Bouchaud and Sorneitte,
have revealed that, in a study over a number of years, Black-Scholes consistently undervalued real
option prices on the MATIF. They also demonstrated that, in the long run, any bank basing its book
on Black-Scholes faced ruin, since Black-Scholes did not, as claimed by others, diversify away ‘risk’.
The physicists and economists at the Santa Fe Institute — several of them Nobel Prize winners —
have proved that price fluctuations in financial markets are not random, but pseudo-random, as in
deterministic chaos, and therefore that the mathematics of Black-Scholes is inadequate.
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Despite all the evidence, the author finds it necessary to devote inordinate space to a model which
is based upon some of the totally discredited theories of MPT.

Very little, if any, of the author’s ideas and recommendations are dependent on the pricing
formulae used. From studying some of his tables and his comments, it seems that he has his own
reservations about the use of Black-Scholes in some circumstances. Has the time not come for those
actuaries who aspire to be academics to discard Black-Scholes and search for a better model based on
proven actuarial techniques?

Mr S. P. Deighton, F.LA.: I shall speak on the issues of counterparty risk, efficient portfolio
management (EPM) and reduction in risk (RIR), and the interaction between them.

As the author points out, EPM and RIR are not defined in legislation. This results in a distinctly
‘grey’ area in the regulatory framework, where DTI guidance effectively establishes what can and
cannot be done. The DTI has worked exiensively with the industry practitioners in arriving at
workable interpretations, but still has the final say in drafting its own guidance notes!

The interpretation chosen has an impact on the retail products which can be designed. To some
extent, therefore, we have moved away from the traditional ‘freedom with disclosure’ approach to
regulation. The DTI regards the EPM/RIR tests as independent tests which a derivative must pass to
be admissible, or to be a permitted link. Whether or not the test is passed is not dependent on whether
the policyholder understands the features of the product he or she is buying. We cannot allow the
policyholder to decide on his or her own preferred risk/reward profile, at least not if we want to back
the product with a derivative.

The EPM and RIR tests, although separate in the legislation and separately defined by the
guidance, are often difficult to separate in practice, and the DTT recognises this. It is therefore just as
well that the asset only has to pass one of them, not both.

The essence of the tests is that an insurer wishing to use a derivative must ensure that such use
benefits either itself or the policyholder under certain circumstances. If it is using the derivative to
match liabilities under a guaranteed equity product, it is fairly easy to argue this part for the company.
Second, any adverse consequences of using the derivative must be ‘unforeseeable’ or ‘insignificant’.
Deciding on whether either of these is the case is entirely a matter of judgement.

The DTI is prepared to accept that derivative-based contracts often provide significant guarantees
to the policyholder, and that there is a cost associated with that. The significance of an adverse
consequence can be judged, making allowance for the cost of such guarantees.

In the High Income Bond example given by the author, the insurer must carry out a statistical
analysis of the product to determine when it would underperform against a similar non-derivative
investment. The DTI will then accept significant underperformance, which can be demonstrated to be
due to the guarantee, and only occurs in scenarios where returns are exceptionally high.

I believe that we will see increasing demands on the actuarial profession to carry out this type of
analysis. It is essential that we watch for any inconsistencies between the tools we use and those used
by the banks to price the assets, to prevent any systematic bias creeping into the results.

Quite rightly, the DTT includes counterparty risk as part of investment risk when applying these tests.
There has been an increasing tendency over the last couple of years to write guaranteed products as
property-linked contracts. This passes any counterparty risk to the policyholder in addition to the
investment risk, and thereby reduces the solvency margin requirement. As the author points out, both
types of risk occur in the usual investments of an internal linked fund. However, the use of derivatives
concentrates the risk, and it is the duty of the profession to ensure that the sales approach and marketing
literature are designed to ensure that policyholders understand the risk that they are accepting.

In some cases the derivative assets were not margined, so the policyholder was subject to
significant risk. The DTI now conclude that this is unlikely to be consistent with EPM/RIR. Any
additional counterparty risk, which can be identified as being due to the use of derivatives, must now
be mitigated in some way, for example by margining. The company must also be careful to avoid the
re~introduction of counterparty risk in the way it invests the margin. Again we see some ‘unfairness’
here in the regulatory treatment of derivatives, since unlimited counterparty risk is acceptable in, for
example, a deposit-based internal linked fund. However, this unfaimess arises from the drafting of the
legislation rather than the DTI’s interpretation of it.
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A major attraction of guaranteed equity products is the relative simplicity of the marketing
message. The remarkable increase in sales volumes confirms that the consumer does understand them.
More complicated offerings have not had the same success, confirming that the consumer will let us
know when he or she does not understand.

Currently the regulations make design of the product more complex from the insurer’s perspective
than for traditional alternatives, although we have progressed a long way from the position before
1994. It is hoped, as all parties become more familiar and more comfortable with the use of
derivatives to provide innovative retail products, that we may see further changes in legislation to
support this.

Mr A. D. Smith: I have a few things to say about short-term derivative pricing models and long-term
actuarial models, because I believe that a greater integration between the two would be of
considerable benefit to those offering and receiving long-term guarantees.

In one sense this paper is not actuarial at all, because of its focus on what are essentially short-
term products. For short-term horizons, up to perhaps a year or two, transaction costs are relatively
modest and the randomness in the underlying asset price swamps the uncertainty in the quadratic
variation, so the Black-Scholes approach is highly illuminating; but over long actuarial time scales, as
Mr Green has pointed out, the situation could well be reversed, in which case a new approach is
called for. The relative illiquidity of longer-dated structures in the OTC market is circumstantial
evidence that banks are rather less confident of their hedging ability over the longer term.

In contrast, actuaries have been in the business of pricing and reserving for long-term guarantees
for many years. In his inaugural address, the President referred to “the long-term view that only
actuaries can provide”. Starting with the Maturity Guarantees Working Party, actuaries have largely
rejected arbitrage arguments when assessing such guarantees. Instead, actuaries rely on their
understanding of the long term. This often includes an implicit assumption that, whatever the short-
term volatility of market prices, the long run growth in asset values is determined by income streams,
and is therefore essentially predictable. There is a tension between short-term models, which suggest
that performance guarantees should be very expensive, and long-term models, which generally seem
to produce rather lower guarantee costs. Perhaps this is why banks, who measure cost on a short-
term basis, have difficulty selling options and guarantees to pension funds, who use longer-term
methodologies. The latter techniques have the apparent advantage of avoiding any mathematics
beyond compound interest. I suggest that this advantage is largely illusory — a very modest change
in long-term growth assumptions can have a huge effect on NPV. The accuracy of long-term
actvarial forecasts is far from proven, and I strongly favour alternative models which do not rely on
them.

If, on the other hand, we really believe that market volatility is essentially a short-term effect, then
there are a number of striking consequences. Perhaps the most significant is that, by comparing
market prices to a suitable long-term assessed value, profitable trading rules ought to be easily
formulated. For the Wilkie model, this adds to the order of 4% p.a. compound; however, if short or
geared positions can be achieved by way of derivatives, this margin increases dramatically to around
40% p.a. compound. Similar results arise from other time-series-based asset models. There is a
dangerous potential fallacy here — we might be tempted to suggest that an actively managed portfolio
is ‘worth’ more than its market value because of our privately held view that the assets will go up.
Users of such models have learnt to apply caution, and Professor Wilkie himself has advised, very
sensibly, that “it would be unsafe to rely on the potential profits” from dynamic trading, in the written
remarks to his 1995 paper (B.A.J. 1, 777-964). In order to heed this advice, we need a clear method
of determining when a particular result does rely on such profits. A corollary of the author’s
arguments in Section 8.9 is that this may happen, innocently rather than by design, far more often
than was previously appreciated.

The author has injected some badly needed clear thinking to this debate. There are two ways of
looking at value — either by discounting expected cash flows (DCF), or by arbitrage arguments
relative to market values. If markets are not efficient, these two concepts will give different numbers
— even more so for derivatives because of the gearing effect. He points out, in 18.9.4, that, even if
we accept the long-term validity of actuarial forecasts, arbitrage considerations would lead to option

https://doi.org/10.1017/51357321700005316 Published online by Cambridge University Press


https://doi.org/10.1017/S1357321700005316

Actuaries and Derivatives 169

prices based effectively on an extrapolation and compounding of short-term volatility. In other words,
long and short-term models do not disagree on the arbitrage costs of hedging a guarantee — this says
no more than that hedging works — but they do differ dramatically on the likely outcomes of an
unhedged position.

There is a huge danger of setting up guarantee reserves with reference to what the author calls “an
internally estimated likelihood of a claim being a given size”, although that is how actuaries have
done things for the past 15 years. The problem is that, for many long-term guarantees, the DCF cost
under the Wilkie model is much lower than the arbitrage cost. The use of DCF to value the guarantee
is tantamount to capitalising future speculative gains, because the net effect of an unhedged short
option position fortuitously stumbles upon the profitable trading strategies, as described in 18.9.8. This
is precisely the kind of apparently profitable speculative trading for which we should not be taking
advance credit. In a world of inherently dynamic liabilities, it is dangerous to suggest that a restriction
merely to static asset strategies is an appropriate work-around for the shortcomings of our long-term
economic framework as a whole. There are also liability structures whose evaluation requires far
greater care than is common practice — ironically precisely those structures for which stochastic
modelling was developed in the first place.

It is one thing to give dire apocalyptic warnings about the dangers of using a particular class of
model or valuation procedure; it is quite another to demonstrate real examples of damage having been
done. However, in this case current practice is sufficiently sloppy to provide several instances. I have
recently assisted a client in assessing the cost of guarantees implicit in with-profits business. My first
reference was a paper presented to this Institute last year on the subject of ‘Asset Shares and their
Use in the Financial Management of a With-Profits Fund’ (B.A.J. 1, 603-670). Current standard
practice is described in Section 5 of that paper, in which the capital required to back guarantees is
assessed by reference to adverse scenarios according to the Wilkie model. However, I found that the
results were curiously hard to reproduce using more plausible economic models, which typically gave
capital requirements about three times higher. The author has provided a comprehensive explanation:
that is, there is a danger of being unwittingly duped into capitalising future speculative gains on the
part of maturing business, at the expense of new business. At a time when many with-profits funds
are contracting, it is not clear to me that such expropriation of wealth is sustainable.

It seems to me that actuarial claims to have tamed the long term are founded largely on wishful
thinking. We have been lucky that, largely due to the immense technicalities involved, the long term
has not been colonised by other professionals, and, in the U.K. favourable equity performance has
spared us some potential scandals. However, I cannot accede to the conventional wisdom that
sophisticated economics becomes redundant for sufficiently large r. The author has outlined some of
the technical background we need to absorb in making a fresh start. Black-Scholes is a neat
introduction, and the mathematics will get worse before it gets better. It is time now to take a firm
grasp of this nettle.

Mr T. W. Hewitson, F.F.A.: This paper provides some interesting insights into the similarities
between the methodology applied by securities traders and regulators and the application of actuarial
judgement to the management and control of insurance portfolios.

The paper may understate the importance of the role of the actuary in describing the so-called
Method B in Section 10. For example, the solution to the conundrums posed in 1910.6 and 10.8 lies
in part with the application of actuarial reserving methods, including the resilience test that is
customarily now applied by life office actuaries. This requires the application of professional actuarial
judgement and not simply a mechanical formula, as is largely recognised in our professional guidance
notes. Indeed, an actuary seeing a portfolio of assets and liabilities with significant option-like features
would, by tradition, take these into account when determining the appropriate reserving basis for an
insurer. This is equally true of financial condition reports which utilise scenario or stress tests.

Looking a little more broadly at the paper, it is interesting to consider that the value at risk (VAR)
approach, described in 110.7, could be applied to many non-life insurance companies to test their
financial health. It would then be possible to see whether a company has sufficient capital to cover
the adverse experience that could develop over the following year, and still have sufficient assets left
to cover the cost of a run-off or portfolio transfer at the end of the year. This depends, of course, on
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the existence of a suitably liquid market for such a portfolio of insurance liabilities, and it will be
interesting to see whether this can be developed.

The VAR concept would, admittedly, be more difficult to apply to a life insurer where there is no
ready market at present in portfolios of contracts, and there is the additional complication of defining
the interests of with-profits and other policyholders in the ongoing company. The insurance regulators
would not be comfortable with the prospect of insurers undertaking dynamic hedging until at least
these two issues could be satisfactorily resolved.

Turning to Section 9, I must admit to being puzzled by the apparent suggestion that past or implied
volatilities are a good guide to the actual out-turn, even over fairly short future periods. Indeed, the
regulatory response from banking and securities regulators, of applying some suitable multiple to any
capital requirement derived from such a model, seems much more attuned to our traditional actuarial
caution over placing undue reliance on historical data.

I was also interested in the comments, in Section 9.4, about catastrophe risks, which are now often
included within insurance derivative contracts. Diversification and limitation of exposure to such risks
is crucial, since otherwise, if the catastrophe should occur, then substantial amounts of capital might
be needed to maintain solvency. However, full diversification is only feasible if the risks are
genuinely uncorrelated, and I have doubts about the implications, in ¥9.4.4, that the U.K. equity
market is largely independent of other financial markets.

It is also relevant to remember that there is significant correlation between the assets and liabilities
of most U.K. life insurers. Nevertheless, I would hope that there is not an implicit assumption that
regulators would have to alter the rules to allow every company to survive in the event of a major
fall in the value of assets across world financial markets. The traditional actuarial anecdote of not
being at the front of the queue to visit the regulator still seems very apt.

Dr M. W. Baxter (a visitor): I should like to confess that, as a mathematician and academic, I am
rather like Daniel in the lion’s den here. I am possibly many people’s embodiment of all that it
standing between them and understanding what derivatives are and how they are priced. It is just 1
and Itd’s formula which are causing all the problems. Nevertheless I shall try to lay to rest a couple
of popular misconceptions about derivatives pricing.

Hedging is the key to derivatives. A derivative is a collection of risks all bundled up to give the
particular risk profile that the customer desires. The bank’s aim is not to be on the other side of those
risks, but to break those risks down into risks which are already traded on the market and hedge them
away. The bank does not want anything to do with the punter’s views on the yen or on the U.K. stock
market or on anything else at all. So far as the banks are concerned, hedging is the key thing, despite
the limitations which have been expressed by other speakers.

The only way a mathematician, an actvary or an academic can justify a price is by saying that it
is a hedging price. Any other price is a guess, and could cause trouble. The theory uses the concept
of the martingale measure. This is a set of likelihoods for the possible outcomes which is different
from the real world probabilities. Using the martingale measure and taking expectations will give the
right number. This works, not because of the expectation, but it works because you can hedge with
that number. One misconception is to think of the martingale measure as a risk-neutral measure.
Thinking about risk-neutrality can often be more hurtful than it is helpful.

It is hard to state the risk-neutral paradigm accurately, but, roughly, it states that we are trying to
calculate prices which, because they are hedging prices, are not investor preference dependent — that
is that they do not depend on your ideas about risk utility. Therefore, you could have any risk
preference at all, so it might as well be that you are risk indifferent completely.

This is also tied up with the whole concept of market price of risk, which has crept into the
literature from the economics side and is a nice interpretation. If, for some derivatives models, you
have a riskless bond and a risky asset, the excess return of the risky asset over the riskless asset,
normalised out by, say, the volatility of the risky asset, seems to be constant. It is then said that this
means that the market has a collective view of the market price of risk.

This is really a rather dangerous idea. The only reason that this number comes out to be the same
is because you can hedge things and there is no arbitrage. The market does not have a market price
of risk at all. All the market has is an aversion to arbitrage.
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One other misconception is how this relates to the risk that actuaries deal with in life offices or
general insurance companies. For the securities industry the key concept is the hedge, which, in
theory, works with probability one. The theory makes you do the right thing so that your position will
be safe.

The actuary’s world is slightly different. The contracts at the basic level are annuities and life term
assurance contracts. There you cannot hedge. Re-insuring completely takes away the reward — I can
sell the risk on, but I cannot hedge it away. Life and pensions tends to work much more by the strong
law approach. If you have a whole lot of risks which you hope to have assessed properly, and a large
number of them are broadly similar, but independent, then, if you average them out, you should get
the average. The mean is close to the experience you actually see. So, if you charge the mean plus a
margin for profit and cost, you will be all right.

The derivatives trader is using a completely different idea, hedging the risk away. That is, on risk
management the banks and the actuaries are doing different tasks.

Risk management has previously been what has driven most literature in this area. Much of the
literature concerns risk management with pricing and hedging, but the banks themselves, the senior
managers and the regulators, are becoming increasingly concerned about what could happen, even if
you are running your derivatives book as well as you could be. Their attention has broadened from
risk management to risk control, where you start thinking about the whole thing as one. How bad can
it be? How good can it be? What things can go wrong, even when everyone is meant to be managing
their risk as well as they can? There is no short-term profit in this, but there are large losses to be
had if you get it wrong.

Risk control was more a subsidiary operation that was left to catch up. Actuaries come to the
industry with a reputation for good risk control. The banks are not much better at this than you, and
certainly used to be worse. There is an obvious opportunity for the actuarial profession to capitalise
on its reputation for prudence and its mathematically skilled membership to play an important part in
building and staffing these sophisticated risk-control structures.

Mr D. J. Parsons, F.I.A.: Paragraph 4.4.3 is an important building block for subsequent theories
about whether to allow for arbitrage. It refers to a large group of ‘irrational investors’; presumably
classified as irrational because their approach defies our logic. I am not brave enough to tell anyone
that their personal and possibly well thought out investment strategy is irrational. The more I thought
about it, the more it scemed to me that everyone must be an irrational investor in the eyes of someone
else, otherwise the market system would not work, as no-one would buy what I wanted to sell. Even
in 196.5.3 and 6.5.4 there is a reference to two strongly different views of the utility of Black-Scholes
as held by actuaries and bankers. Presumably each thinks the other is irrational.

From my perspective of the public interest, I wondered how we could put derivatives to good use.
As a consumer, I would like a fully equity-linked pension policy; I would want to know on day one
exactly what pension (in real terms) I am going to get when I retire. A small logical extension of the
theories and practices set out in this paper can surely provide this. Given a steady flow of business,
it is feasible and very profitable without derivatives — surely it must be feasible with less risk
(without the need for a steady flow of business) if derivatives are used. All that is needed is a
continuous derivative arrangement, designed to roll over for up to 80 years, which smooths total
returns on ordinary shares so that they equate to the long-term average, i.e. an equity-based instrument
which, after the cost of the derivatives, guarantees a real rate of return of 4% to 5% over inflation.
Just think how this would revolutionise the pensions industry, both occupational and personal, let
alone with-profits funds.

Mr J. M. Pemberton, F.I.A.: In Section 13 the author attempts to tie up what he calls derivative
concepts with actuarial concepts. Although he has suggested some correspondence of the words, he
has not materially managed to tie up their meanings.

The rest of the paper, aside from the factual sections, is mostly concerned with the application of
mathematical economics as an approach to the valuation of options. It does not provide any method
for the valuation of real options. Several valuation formulae are proposed, but there is no means of
determining which formula we should choose, given a real option. Paragraph 4.1.6 of GN25 suggests
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that any model used must be reasonable in the context of historic experience. This paper makes no
mention of how to achieve that and how historic experience can be used to inform our valuations. The
mathematical approach which is proposed has, at its heart, a disregard for the facts.

Paragraph 4.1.11 of GN25 suggests that, in assessing the risks, an actuary should have regard to
resilience tests of the values. There is a tension between the banking regulation on one hand and the
DTI and GN25 on the other. The DTI’s provision for adverse changes can, in many senses, be closely
related to GN25’s proposals for resilience tests. The banking regulations, on the other hand, adopt a
probability weighted approach to solvency. This discrepancy is now an urgent matter for this Institute
to address, and it is a shame that we have not heard more of it in this paper.

The paper perpetuates a myth that option valuation is difficult and that it requires involved
mathematics. From an actuarial standpoint, the mechanics of option valuation are very straightforward.
All we need is the machinery of discounted cash flow. The unnecessary mathematical formulations
can be replaced with step functions. Step functions are trivial to manage mathematically, and
importantly, too, they can ensure the functions chosen have respect for the historic facts of experience.
The move to step functions is a lesson with which actuaries will be familiar from a history of
mortality tables. The attempts by Gompertz and his contemporaries to develop mathematical laws of
mortality were misguided, and have now rightly given way universally to the use of step functions.

Mathematical models, although often good approximations, sometimes lose touch with reality.
They may have elegant internal characteristics, such as conforming to no arbitrage constraints in
idealised markets, but the mathematical formulation distracts attention from the correct exercise of
professional judgement concerning the valuation assumptions. The mathematical formulation gives
rise to values which are not immediately compatible with values achieved through the discounted cash
flow of other assets and liabilities within the portfolio. It creates a barrier to entry for those who
would value options, and particularly those in this Institute who value options as a side product of the
valuation of the other assets and liabilities quite naturally.

It is important that the Institute now moves to discourage unnecessary mathematics in this area. As
an urgent first step, it is essential that we stop teaching mathematical proofs to our students: the
teaching of proofs which purport to show the truth of certain models is incompatible with the tuition
of professional judgement concerning the selection of models in the light of experience.

There is a broader issue underlying this point which is to do with the contrast between
mathematical economic methods and actuarial methods. Looking at the wider fields, we are at a point
in history where the notion that we can prove simple mathematical truths about society is falling into
disrepute. An understanding of actuarial methods has become an essential basis for discussions such
as this concerning the application of methods in new fields, and it is important that the Institute now
takes steps to develop a basis of methodological understanding. I agree wholeheartedly with the author
that the field of option valuation is an important example of the areas within which the actuarial
profession has an important role to play, but the proposals within the paper are taking us in precisely
the wrong direction, away from actuarial science.

Dr S. E. Satchell (a visitor): I am a financial economist from the University of Cambridge, and
should like to comment on some of the ill-informed remarks that some speakers have made about
empirical evidence and the validity of Black-Scholes.

If we look at option prices and compare them with the theoretical prices, we may get evidence that
the theory is wrong, although this is not a trivial matter, because there are various extensions of
Black-Scholes that hold under all sorts of circumstances. Considering issues like transactions costs,
taxation and arbitrage may also provide evidence that the theory is wrong, or at least needs to be
adapted. That is clear. What is also clear, and is not at all understood, is that looking at the behaviour
of returns will not provide evidence that Black-Scholes is wrong. This is counter-intuitive, and is
something to do with the equivalent Martingale measure. Many different stochastic processes generate
returns that are mutually compatible with Black-Scholes. As an example, I believe that it is possible
to show that the Wilkie model is compatible with Black-Scholes. Time varying volatility is not
incompatible with Black-Scholes.

Remarks have been made about chaos and fuzziness. I am always suspicious when I hear these
theories. I have worked in this area and I know that it is very difficult to show that the world is
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deterministic in a convincing way. One paper that I read said that you require 10 observations before
you could be sure. This means that actuaries who go in for long-term forecasts and quarterly or annual
data would have to go back much earlier than the sixteenth century, as used by Professor Wilkie, to
be confident about using chaotic models. Looking at intra-day data provides, perhaps, 20,000 prices a
day. With 10 years’ data, say, it is possible to find evidence of rather strange behaviour. That is quite
good evidence, but there are several problems. One is that that is not the sort of data that actuaries
are customarily concerned with, because they are more usually interested in the long term. Secondly,
these things are not, typically, prices of transactions, but quotes. Quotes are often made with no
compulsion to trade at any level of volume, so interpreting them as evidence of how the price process
works is again problematic.

None of the studies quoted challenge Black-Scholes in any way. Black-Scholes is a remarkably
robust model, which should be the centre of some unit of training for any quantitative financial
professionals. Actuaries would be very foolish not to make it so in their professional training.

Professor A. D. Wilkie, F.F.A., F.LA.: Actuaries should be involved very much in derivatives and
related work. The Institute and the Faculty have introduced the Advanced Certificate in Derivatives
as a post-qualification course, similar to the Fellowship examinations. It is a voluntary course, but I
hope that many people will find out about it and sit the examination. The writers of derivatives are
taking on risks in the same sort of way as insurance companies; hedging is like reassurance, though
hedging is easier. I should like to see the concept of a derivatives actuary developing. Many people
in the City and in investment banks who are trading in derivatives need a professional body like ours.
It might not stop the crooks, but it would make life a little bit harder for them.

As Dr Satchell has said, the Black-Scholes formula is a first approximation to the option price. It
cannot go very far away from it. Mr Pemberton said that Gompertz and Makeham produced formulae
of mortality that had been discredited. All smail samples of mortality data from age 50 upwards can
be fitted with a Gompertz formula, and all small samples that go down to age 20 or so can be fitted
with the modification of Makeham’s formula that involves reducing mortality rates in the early 20s of
age because of accidents. These are the automatic first approximations used in mortality graduations.
They have been used for the last 25 or 30 years by the CMI Committee. Mortality tables are fitted,
not by step functions, but by continuous functions.

As far as statistical distributions are concerned, while there are certainly occasions when you can
use discrete step functions because you cannot find a suitable tractable formula, there are many
statistical distributions other than the normal distribution that are smooth and continuous and have
nice features. General insurance actuaries have strings of different loss distributions that could be
used. An advantage of a mathematically tractable formula is that you can do much analytical work
with it. You can also do arithmetic work with a step function, but it is much harder to get nice,
analytical results from it.

Considering Mr Green’s remarks, the Black-Scholes formula has to be approximately correct. That
is evident from plotting the graph of option price against exercise price. It has to go approximately
along the sort of curve that is represented by the figures in the paper, and the Black-Scholes formula
produces the necessary first approximation for it. Of course there are problems, but you have to start
from there. Mr Green produced many arguments as to why it was not exactly accurate. It is rather
like saying that Newtonian mechanics is not very accurate because it does not take sufficient account
of friction. He was wrong in saying that Walters’ papers discuss deterministic chaos. They do not.
They discuss o-stable (or Lévy-stable) distributions, which are a different type of statistical
distribution, and generate a different type of diffusion-like process that has a-stable increments.
Normally distributed increments are the characteristics of a Brownian diffusion process. An a-stable
diffusion process is different, and has the possibility of jumps. It is strictly not a diffusion process,
but it is very like one. It does have the opportunity of jumps. Mr Smith’s paper (Transactions of the
2nd AFIR International Colloquium) includes a graph of such a process.

I disagree with the author and Mr Smith when they talk about the Maturity Guarantees Working
Party model. The author, in 96.5.8, says “although dynamic hedging does not work perfectly when
markets ‘gap’, it does seem to offer some protection, despite the suggestion of the Maturity
Guarantees Working Party to the contrary”. I agree with that statement. The other members of the
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Maturity Guarantees Working Party were short-sighted in not thinking that dynamic hedging would
work a bit. However, they made the sensible point that, if all insurance companies used dynamic
hedging, they would all be wanting to sell shares when prices fell and buy them when prices rose,
and that would produce October 1987 features rather more often than has actually happened, so, to
that extent, it was impracticable.

The fault of the Black-Scholes formulation is that it does not take account of the volume effect. It
works if somebody is writing one option or a small number of options, and buys a small number of
shares to hedge it exactly. If large volumes of options in one direction are bought, then the action of
hedging is going to change the share price as well. The theory works on the assumption that the
option activity does not interact with the share price, but it can quite well do so if volumes are large.
That is an area where there should be further investigation, but I do not think that the Black-Scholes
model should be thrown out just because of that.

In 798.9.6 and 8.9.7 the author is wrong in suggesting that the work of the Maturity Guarantees
Working Party relied on taking advantage of anomalies in the model. It was based entirely on a buy
and hold strategy, buying assets when premiums were available and holding them to maturity. The
Maturity Guarantees Working Party was looking at reserving for maturity guarantees, not at pricing.

There is a conflict between using the short-term standard deviation, which comes through from
the Black-Scholes type of model or the hedging argument where you use the instantaneous standard
deviation, and the position where you get, not deterministic trends in income, but (approximately) a
random walk for dividends, and fluctuations in dividend yield, so prices fluctuate up and down
around the trend of dividends. That produces a narrower spread at maturity than a pure random walk
model with the same instantaneous standard deviation.

The author pointed out that the cumulative quadratic variation — that is the amount that the prices
jiggle up and down — is just as big with my type of autoregressive model as it is with a random
walk model, even though the autoregression means that the spread at maturity is narrower. The
narrower spread at maturity produces lower option prices, but I am not sure about the quadratic
variation effect. Perhaps there should be lower option prices with a buy and hold type of strategy
than with a continuous hedging strategy.

You should not assume that the curious features of the autoregressive model mean that you can
sell when shares are dear and buy when they are cheap. That may be possible; it may be a sensible
thing to do; but you cannot rely on it. The Maturity Guarantees Working Party did not rely on it.
Using option pricing with my model does not rely on it.

Professor R. S. Clarkson, F.F.A.: The abstract of a paper ‘An Actuarial Theory of Option Pricing’,
that T have written and which will be discussed with this one by the Faculty in January 1997, states:
“Using an empirical approach to capital market returns analogous to that used for mortality rates by
Halley more than three centuries ago, a theory of option pricing is built up in terms of the same three
components as for life assurance premiums, namely the expected cost of claims, an allowance for
expenses and a contingency margin as a reserve against the risk of insolvency”.

The mathematics have to be tractable, but also have to be consistent with the empirical evidence.
In 1996 we have seen much evidence that Black-Scholes does not work. Two papers, one by
Bouchaud, Iori & Sornette (Risk Magazine, March 1996, 61) and the other by Geman & Ané (Risk
Magazine, September 1996, 145), point to precisely the types of behaviour that I can generate in my
new model.

My paper also stresses the disadvantages of the cost of entry through advanced mathematics.
Other speakers have picked up that point. I begin the paper with the quotation, “The use of even the
most sophisticated forms of mathematics can never be considered as a guarantee of quality...
Genuine progress never consists in a purely formal exposition, but always in the discovery of the
guiding ideas which underlie any proof”. That was written 40 years ago by Professor Maurice Allais,
who won the Nobel Prize for economics before Markowitz, Sharpe and Miller. Neither Black nor
Scholes has won a Nobel Prize.

Mr P. A. Harlow, F.L.A.: I started working as an actuary in life and pensions, and then went to
work in an investment bank, where I have been for the last ten years. I have traded options using
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the Black-Scholes model, so for me it is not so much theoretical as real and practical. I agree with
a lot of the comments made about the difficulties of using Black-Scholes; for the area I am involved
in, interest rate derivatives, Black-Scholes is right at the beginning of what is very complex academic
research.

Significantly, the industry that involves the use of options and other derivatives has a huge mass
of brain power applied to it. Virtually every firm, nowadays, has some Professor of Finance involved,
doing some work on it in the U.S.A,, in the UK. or elsewhere. Also, there is an even greater mass
of money that is being applied to this industry.

I have been disappointed at the early AFIR colloquiums, and until recently at the Institute, in the
lack of serious mathematical work that has been attempted by actuaries in assessing the work that has
gone on in the industry that I have been involved in. I am also deeply suspicious about what people
mean when they talk about ‘tried and tested actuarial techniques’. I am not quite sure that I know any
such things except the famous words ‘actuarial judgement’.

For me there is a very important point about the derivatives industry which the author has brought
out very strongly in his paper; namely the advances that have been made in derivatives and that have
enabled firms to do things that they were not able to do before. This is not necessarily connected with
option pricing. For instance, the massive increase in swap trading that has taken place has resulted in
companies being able to issue complex bonds, and to swap sets of cash flows in ways impossible ten,
or even five, years ago. The increases in liquidity and in the possibilities in markets now are truly
amazing, and certainly require our attention.

A good analogy here is with computer technology. We now have more availability of tools than
ever before on our computers; new products are launched every week, and it is difficult to keep up.
One is tempted to dismiss some or all of them as a fad. The same is happening with financial theory
— it is a revolution. Not all of the developments are going to be really useful, and not all will be
permanent. However, some have lasted, like the swap market, and are worth focusing on.

It is easy to stay firmly on one side of the fence or the other, and to say that option pricing theory
is wonderful or that it is rubbish. I should like to encourage people not to do that, but to adopt a more
measured approach, to get away from debating the mathematics, and rather to listen to what Dr Baxter
was encouraging us to do — to look at the contribution that actuaries can make where banks are not
particularly good, which is reserving, measurement and control of risk.

Mr J. A. Gallacher, F.F.A. (closing the discussion): In some of the discussion we have been going
round in circles. The profession obviously thinks that derivatives are an important topic, as
demonstrated by the papers on financial economics and derivatives pricing written for the B.A.J., for
the Staple Inn Actuarial Society and for investment conferences. However, I think that we have to
decide what we want from this topic. This paper is extremely useful, because it draws parallels
between what actuaries have traditionally done and what people in derivatives pricing are doing now.

Not so long ago the title of the paper would have been a contradiction in terms, but this has
changed in the last couple of years. I offer an alternative title: ‘Everything you wanted to know about
derivatives, but were afraid to bid/ask’.

I have been asked what the difference is between price and value. Maybe traders understand price
as value, but we, as actuaries, understand that they are completely different.

In my opinion, the profession should concentrate on the value concept rather than the pricing
concept. The actuary’s main business is to manage liabilities so that they can be met as and when they
arise. An actuary does that by managing the changes in the environment: tax regulation; demographics;
politics; economics. That is where actuarial strength lies. I do not think that concentrating on the
complex mathematics of derivatives pricing is any more important than becoming demographic
experts. I may have forgotten everything that I knew about cubic spline interpolation, but I can still
apply a mortality table. Even though we may not know very much about the mathematics of
derivatives, it is important that we can apply them for the good of the actuarial profession.

If we concentrate on the value concept — that is: efficient portfolio management; risk management;
legislation; reserving techniques; and also adding value for our customers — the policyholders or the
pension scheme members — then that will serve our profession much better than concentrating on
pricing. The difficulty with option pricing is the very high threshold of knowledge required to get into
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it: stochastic calculus; partial differential equations; and statistics. This involves much which actuarial
training does not prepare us for.

We are encouraged to learn about the pricing of derivatives in order to negotiate with providers
of OTC contracts; but we only need to leave the arena of vanilla option pricing and we are back
where we started. The incorporation of triggers, for example, and all the different payoffs, will take
the mathematics outside our limited knowledge.

It is dangerous for the profession to calculate option prices and develop pricing models. Mr
Pemberton asked whether we can be sure that we have the right model and the right parameters.
Banks will not be particularly charitable if we get it wrong.

We are not in the industry for pricing derivatives. We are at the user end; the policyholder and
pension holder end. When we are selling into the market, even for selling put/call spreads, we are
accepting the market price, not pricing.

It is very easy to criticise models, and it is disappointing to hear the profession go round in circles
in doing so. We are not saying anything that is new. Banks know that models are merely models —
that is something that they have accepted and something which the actuarial profession has not. We
are not short of using models ourselves, some with more shortcomings than Black-Scholes. Try to
explain the rationale behind the net premium valuation; or consider how the actuarial profession
seems inordinately fond of using the gross redemption yield. It is inadequate. Immunisation is a
better approach; but it is still a model like the net premium or bonus reserve valuation methods.
Physics is littered with models which seem rather simplistic, but give, on the whole, very good
results. Some models which are over-specified can be disappointing.

We cannot judge a model by an axiomatic approach — by the fact that it fits 8 out of 10 criteria.
We must judge derivative models by how they actually give a price and the hedging methodology
they actually demonstrate. Our profession is not adding anything to the debate by lengthy discussions
on the limitations of the models, and it is rather naive to think that the banks have not looked at the
model limitations themselves. I know of at least one bank which has done a lot of work on volume
effects, mentioned by Professor Wilkie.

When any actuarial student goes into an exam, the first thing that he or she must put down on the
paper when considering an investigation is: what is the purpose? Though Black-Scholes might be
completely useful for equity vanilla trades, it is absolutely unimportant for interest rates or even
inflation models.

Any FX trader, who is pricing double trigger box options by straight Black-Scholes, will tell you
that he is going to get his fingers singed off at the shoulders. We have all moved on from Black-
Scholes. Banks have made vast sums of money from derivatives, and will continue to do so.

If we decide to become involved in option pricing, then we will have to do a lot of work to catch
up with the research and effort that the banks have put in. I do not think that we all need to be
rocket scientists — if we concentrate on values, then we will miss all the problems of the models.
If we want to price — and there probably is a place for pricing within the profession — I believe
that we should work through some kind of co-ordinated structure like the Option Pricing Techniques
Working Party. This would be analogous to the Continuous Mortality Investigation Bureau. We do
not all perform mortality investigations. Why do we not all pool our resources and formally look at
the models and their limitations. Let us perform some coherent research on this subject.

I am disappointed with the investment education that I received as a trainee actuary. I realise now
that it was completely inadequate. I hope that it is different now. My text books did not give us any
concept of what financial economics is all about. The Actuarial Certificate in Derivatives, mentioned
by Professor Wilkie, goes some way towards improving that. However, I am not too sure, as an
investment banker, that I have anything to gain from taking the exam. My employer will not
recognise it; I will not get promoted or sacked if I pass it or fail it.

We should play to the profession’s strengths and concentrate on the application of derivatives.
That is, after all, what the policyholders and pension holders want. It seems that, over the past couple
of years, we have passed more and more of the investment risk back to the policyholder. We can
use derivatives to stop this trend.

Recently an investment colleague asked if we are embarrassed, as a profession, to be getting
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interested in derivatives at this late stage? I do not think that we have anything to get embarrassed
about; but we have to get our house in order and concentrate on what is important for us.

Mr M. H. D. Kemp, F.I.A. (replying): I have one comment, on the issue of the short term versus
the long term; the long term is, I believe, the sum of lots of short terms. If something is right for all
the consecutive short terms simultaneously, it should be right for the long term, and vice-versa. In any
case, when does the long term start? Is it one year, five years, ten years?

The President (Mr D. G. R. Ferguson, F.I.A.): The author has given us a paper that not only will
be of use to specialists in the field, but also to people who are users of derivatives and to members
of the profession who are neither users of derivatives nor traders, but who realise that this is an arca
that they need to know something about. It is a very well written, easy to read, introduction to the
subject, which leads us gently into some of the complexities.

1 heartily endorse the conclusion of the paper that actuaries need to be more involved and that
there is plenty of work for actuaries in this area.

I agree wholeheartedly with the closer that the actuarial profession should — as I believe that we
do — always concentrate on value. We need to distinguish ourselves from Oscar Wilde’s definition
of accountants — and I wonder whether it applies to derivatives traders as well — who know the
price of everything and the value of nothing. All of our work as actuaries concentrates on value.

I express my own thanks to the author and I know that you will all want to join me in thanking
him in the usual way.

WRITTEN CONTRIBUTIONS

Mr P. G. Kennedy, F.ILA.: The author is to be congratulated on one of the clearest expositions of
the subject that I have yet seen. I can recall, nearly 10 years ago, a distinguished speaker telling the
Australian Institute that he understood the importance of option theory, that he was excited by it, and
that he had even tried it, but, and I remember him pointing his finger as he said it, “I just can’t get
it into my head!” I hope that this paper will do the trick. Yet the underlying concepts should already
be standard for actuaries, and it is surely an indictment of this profession that actuaries are still
qualifying, let alone practising, without a sound grasp of the issues raised in this paper.

In the eyes of the Court of Appeal in Wells v Wells in October 1996, we are already convicted;
for not only did they reject the actuarially inspired Ogden Tables as a basis for personal injury
awards, but they wished that accountants and, yes, investment managers had been consulted in their
construction. We have been warned.

If actuaries wish to see further than other professions, they must be prepared to stand on the
shoulders of others. The author concludes with the hope that this paper will encourage younger
actuaries to enter the field. We should go further and state that this is our field. There should be no
more opt-outs. This paper should not have been presented to the Institute today. It should have been
a model solution from last month’s actuarial examination.

The author subsequently wrote: I agree with Mr Green’s comments on the importance of even quite

elementary control techniques, such as trading limits, on individual traders. I mention these, but

perhaps do not stress them as strongly as I might. Regarding his comments on the Black-Scholes
formula:

(1) T agree that originally people probably believed that the Black-Scholes formula required
successive price movements to be uncorrelated, but leading practitioners in the field would now
agree that this constraint on the price movements is not actually needed for the Black-Scholes
formula to be correct (and Dr Satchell confirmed this later in the meeting).

(2) The main reason that I devoted so much space to the Black-Scholes formula is that it is, I believe,
a first order approximation to all plausible alternatives. Professor Wilkie clearly agrees with me
in this regard. Whilst I agree with Mr Green that markets are not always arbitrage-free, and, with
the other weaknesses that he has highlighted, the spreads of returns on diversified asset categories
are usually tolerably similar to the normal distribution. Instead of discounting the Black-Scholes
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formula, I believe that any ‘actuaries aspiring to be academics’ should develop formulae which
include the Black-Scholes formula as a special case, rather than starting from scratch. An
example of the approach I would suggest is the cost of capital model in Appendix B.2.

There are other advantages in having consistency between actuarial approaches and those that are
accepted (albeit with caveats) in the banking world. Mr Deighton has commented on the complexities
involved in establishing that derivatives meet appropriate DTI defined tests regarding ‘efficient
portfolio management’ or the ‘reduction in investment risks’. He makes the useful point that we need
to watch out for inconsistencies between the sorts of analyses actuaries might undertake to test these
requirements and the approaches used by banks to price the derivatives in question.

Mr Smith concentrated on whether there is some fundamental distinction between the ‘short term’
and the ‘long term’. I agree that the actuarial profession has been lucky that the long term has not
been colonised by other professionals and that our claim to have tamed the long term contains an
element of wishful thinking, even if it is a useful marketing stratagem. Perhaps the unstated concern
some actuaries have regarding the likes of the Black-Scholes formula is that one day experts in the
banking world will successfully extend the ‘short term’ to the ‘long term’, outflanking this perceived
core actuarial skill base. I think that it is only a matter of time before this breakthrough is made (if
it has not been made already, since I know of banks willing to provide 30-40 year swap contracts able
to match annuity-type liabilities). I hope that it will be actuaries who are in the forefront, rather than
other professions. Interestingly, Mr Smith noted that use of supposedly short-term models often results
in guarantee costs much larger than those produced by supposedly longer-term actuarial approaches.
The usual complaint that I have heard from those objecting to the use of Black-Scholes, or the like,
is that it understates the true cost. Maybe synthesis would be less painful than some actuaries fear!
Our best response, as a profession, is not to stick our heads in the sand, but to accept that we can
also learn from others.

Mr Parsons also seems to be looking forward to the day when long-term derivatives become
commonplace. I am not convinced that everyone needs to be an irrational investor in the eyes of
someone else for the market system to work. My weekly trips to the supermarket, when I want to buy
what the retailer wants to sell, are, I hope, far from irrational.

Mr Hewitson made a number of comments from a regulator’s perspective. I agree with him about
the importance of professional actuarial judgement. I hope that the paper helps actuaries in this
respect. He indicated that he was puzzled by the suggestion that past or implied volatilities could be
a reasonable guide to actual out-turns. I was concentrating here on the pricing of derivatives, rather
than on the setting of prudential capital requirements. It is, after all, commonplace in the pricing of
general insurance contracts to assume that the correct price of, say, motor insurance should at least
bear some passing resemblance to recent claims experience. However, for solvency purposes, I would
agree that it is prudent to assume that the past is not necessarily a good guide to the future.

On the point of diversifying away U.K. equity market risk, Mr Hewitson seems to fall into the
same trap as an earlier draft of my paper, in assuming that diversification is only useful if the risks
are genuinely uncorrelated. Diversification still works, but not so well, if the risks are partly
(positively) correlated. I agree that the U.K. equity market is not wholly independent of other financial
markets, but price movements in it show only limited links to, say, the movement in the yen versus
the U.S. dollar. Even if the degree of independence is limited, the proportion of the world banking
industry’s total derivative exposures arising from U.K. equity price movements is miniscule, but for
U.K. life offices is very substantial, so the general concept of risk pooling ought to encourage greater
spreading of this risk.

I am disappointed that Mr Pemberton did not believe that I had been able to tie up derivatives
concepts with actuarial concepts. I do not believe that there is, in practice, the discrepancy that he
suggested between actuarial theory (as correctly stated) and mathematical economics (as correctly
understood). In 17.3.6 I note that the ‘actuarial’ way of valning a liability is to discount its expected
payout at some suitable rate of interest, usually incorporating somewhere a margin for prudence. 1
show, in 17.3.7, that this is the same as is used in the derivatives field, as long as an appropriate
probability distribution and discount rate are chosen. However, the main lesson from the derivatives
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industry is that there is a constraint regarding the discount rate that should be used in this calculation.
This constraint is that, if we have a whole series of derivatives which, in aggregate, pay out exactly
the same as investing in the underlying share or index, then the price of the whole should be the same
as the price of the parts. Suppose that I write a life insurance contract and incur two sorts of initial
charges, both, say, 1% of the premium invested. Whilst there are circumstances in which the net
impact of both is not the same as a single 2% charge (e.g. if one is tax deductible and one is not), it
is hard to identify them.

I do not believe that the paper is overly mathematical, except, perhaps, for the appendices, which
are usually considered an acceptable repository for things complex. Having recently seen Mr
Pemberton’s proposed paper on the use of step functions, I do not think it makes the mathematics
simpler. Step functions, per se, are like trying to find the area under a curve by fitting rectangles
underneath it. We were all taught at school that, with sufficient rectangles, the calculation becomes
the same as carrying out integration. Is he proposing that integration and differentiation are too
difficult for most actuaries? He may be right, but I hope not. They should not be. If they are, we
would need to abandon the use of continuously compounded forces of interest!

However, I do agree with Mr Pemberton that my paper provides little explicit guidance on how to
choose the parameters to feed into a pricing model. I recommend choosing parameters consistent with
market prices to identify the value (or price) of a derivative. I agree that historic experience is an
important input in the process of identifying what additional reserves need to be established to protect
a derivatives book from default. Listing in detail precisely how to do this for every possible contract
would be nigh on impossible. However, I did attempt, in Section 9, to show how it could be done in
principle, for just one sort of contract based on the FT-SE Index. Perhaps his main criticism is that I
did not distil all of this into a simple formula that could be programmed into a pocket calculator. The
real world is more complicated than this.

Dr Satchell seems to share my enthusiasm for not dumping the Black-Scholes baby out with the
bath water, as does Professor Wilkie. If the actuarial profession is to have any credibility with
academics outside actuarial departments, then we should heed their words.

I can understand Professor Wilkie’s reluctance to accept the comments in Section 8.9, since they
refer specifically to the Wilkie model. The results surprised me too when I first identified them. Dr
Satchell indicated that he believed it possible to show that the Wilkie model was compatible with
Black-Scholes. 1 agree. My recent paper to the Staple Inn Actuarial Society titled ‘Asset/liability
modelling for pension funds’ did just that, and contains details on how to price options under the
Wilkie model.

I have not yet studied Professor Clarkson’s paper in detail, but I hope that he, too, is willing to
accept that Black-Scholes, although subject to flaws, is nevertheless a useful starting point. He refers
to a short paper in the March 1996 edition of Risk Magazine called ‘Real world options’ by
Bouchaud, Iori & Somnette. If I had spotted this paper earlier I would have included references to it
in my own, since it adopts precisely the sort of approach that I tried to propose in my paper, i.c. take
the Black-Scholes formula, find the circumstances in which it does not work, and then add appropriate
adjustments. The two additions that they incorporate are to allow for jumps (and fat tails), and to
allow for transaction costs, i.e. two of the three circumstances that I highlight, in which the
generalised Black-Scholes formulation will break down. I would recommend study of their paper, but
I fear that it would not meet Mr Pemberton’s test of containing less mathematics. It involves more
extensive and complicated use of integration. However, it does satisfy my criterion that it should
exhibit the Black-Scholes formula as a special case, again justifying my belief that the Black-Scholes
formula is right to a first approximation.

I found Mr Harlow’s comments on the huge mass of brain power, and even greater mass of
money, that has been directed towards the derivatives markets very helpful. The swaps market is
many trillions of dollars (measured by notional principal), and the daily volume traded on the
forward foreign exchange market is equally mind-boggling. The UK. life insurance and pension
fund industries combined are, on these measures, mere drops in an ocean. That huge brain power
has produced an amazing spread of derivatives. I had to change my paper near the end of writing
it to avoid claiming that derivatives linked purely to volatility did not trade, when a piece from a
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leading derivatives house landed on my desk describing just such a trade that they had recently
executed.

I thank the closer for his comments. I still have some difficulty in consenting to the distinction that
he and others have suggested between ‘price’ and ‘value’. I agree that the most obvious way of
checking the price of a derivative is to find out its price in the market place. However, I am not
convinced that we can, or should, leave option pricing to others. What about the derivative-like
guarantees included in with-profits contracts? Is he suggesting that we do not need to be able to price
or to place a value on these, or is it just derivatives that we rarely meet which he thinks that we do
not need to be able to price? And what about those in the profession who want this skill to improve
their marketability in the job market?

I was interested to hear of his working party on option pricing techniques and wish it well. I would
again recommend that they study the Bouchaud, lori & Somnette paper referred to earlier. I am
virtually certain that the three things that they will find most difficult to incorporate are jump risk,
uncertain volatility and transaction costs (but not necessarily in that order of importance), because, as
I note in 18.3.1, if these are not incorporated, then the price of a vanilla option must be expressible
in a form akin to the Black-Scholes formula if it is to avoid introducing arbitrage.
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