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SUMMARY
This paper discusses the application of a constraint-based model predictive control (MPC) to mobile
manipulation tracking problems. The problem has been formulated so as to guarantee offset-free
tracking of piecewise constant references, with convergence and recursive feasibility guarantees.
Since MPC inputs are recomputed at every control iteration, it is possible to deal with dynamic
and unknown scenarios. A number of motion constraints can also be easily included: Acceleration,
velocity and position constraints have been enforced, together with collision avoidance constraints
for the mobile base and the arm and field-of-view constraints. Such constraints have been extended
over the prediction horizon maintaining a linear-quadratic formulation of the problem. Navigation
performance has been improved by devising an online algorithm that includes an additional goal to
the problem, derived from the classical vortex field approach. Experimental validation shows the
applicability of the proposed approach.

KEYWORDS: Control of robotic systems; Mobile manipulators; Predictive control; Redundant
manipulators; Navigation; Motion planning.

1. Introduction
Online-solvable instantaneous constrained optimization is getting increasingly popular in recent
years in the context of robot control (e.g., refs. [1–3]), thanks to the easy integration of kinematics,
velocity and acceleration constraints into the problem formulation, without the need of pre-planned
trajectories. Two approaches are mainly used to define the robot task for constrained optimization.
One is to use the task formalism,4 that treats the robot task as a constraint to be respected while
minimizing a suited cost function (i.e., the optimization problem cost function). Conversely, the
task error itself can be considered as the (quadratic) cost function of the optimization problem to
be minimized, while constraints are used to specify additional requirements to be fulfilled by the
problem solution, usually as state and/or input limitations.

One of the problems of instantaneous optimization is however its “blindness”5 with respect to the
system evolution. In fact, the future state and constraints behavior are not included in the problem
definition, so that a feasible solution at a given time instant can lead to an unfeasible configuration
in the future. Optimal control, on the other hand, takes into account the system evolution, and
possibly also the environment one, if an appropriate model is available, but it does not allow to
include constraints on the state and input variables. Model predictive control or MPC6, 7 instead
allows the implementation of a state-feedback controller (through the Receding Horizon Principle)
that is optimal over the future N time steps (the so called prediction horizon), and also complies to
possibly enforced constraints on the state and input variables. The solution of the MPC problem is the
control input sequence that minimizes the problem cost function while complying with the imposed
constraints. The use of MPC for mechatronic system control has not been very common, mainly due
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20 Constrained MPC for mobile robotic manipulators

to the high computational cost that is usually involved compared to the high frequency sampling rates
typical of such systems. However, recent advancements in computational performance, and the use
of tailored solution algorithms,8 can now allow the implementation of MPC also for on-line control
of fast dynamic systems such as robots.

In this context, we are interested in the control of omnidirectional mobile manipulators, moving in
a dynamic environment while subject to a number of constraints (acceleration, velocity and position
constraints for all the joints, collision avoidance constraints both for the arm and the mobile base,
field-of-view (FoV) constraints), and possibly cooperating with humans and interacting with the envir-
onment. With “mobile manipulator,” we intend a robot made up of a mobile robot base and of a robotic
arm mounted on it. The practically unlimited workspace and the usual high degree of redundancy of
mobile manipulators make them particularly interesting for both industrial and domestic use.

The use of MPC for mobile robots navigation is currently investigated in the literature. Among the
others, in ref. [9] the authors use a dipolar vector field and non-linear MPC with FoV constraints to
navigate a non-holonomic vehicle in presence of obstacles, presenting simulation results. In ref. [10],
non-linear MPC (NMPC) is used to control a formation of omnidirectional mobile robots for target
tracking, presenting experimental validation. Each robot solves its own MPC problem, sharing inform-
ation about its planned trajectory with the other robots and dynamically adapting the MPC parameters.
This approach is further developed in ref. [11], where the NMPC is combined with an Artificial
Potential Field to also obtain obstacle avoidance, while switching to the more computationally
intensive A∗ algorithm when dealing with local minima problems. In ref. [12], Rapidly-exploring
Random Tree (RRT) is combined with MPC for mobile robot navigation, imposing kinodynamics
constraints on the vehicle and validating the proposed algorithm in a real-world scenario. Linear MPC
is used in ref. [13] to control an omnidirectional mobile robot while compensating for static friction,
with experimental validation.

On the other hand, in the mobile manipulation field, MPC has been less investigated, and different
control approaches have been proposed. A unified framework for feedback control of both holonomic
and non-holonomic mobile manipulators is introduced in ref. [14], extending the transverse function
approach developed for mobile robots while guaranteeing joint limits compliance. Obstacle avoidance
is however not included in this approach and only simulation results are proposed. In ref. [15], a
framework for the kinematic and dynamic modeling of wheeled mobile manipulators is provided, in
addition to a reactive control scheme that uses potential function to enforce a number of constraints on
the robot motion (joint limits, rated actuator inputs, singularities and obstacle avoidance). Simulated
and experimental results are presented, though no actual obstacles perception (and thus reaction) is
performed in the experimental validation. In ref. [16], a low-level flexible planning method for mobile
manipulators is presented and experimentally tested. Distance information provided by distance
sensors is used to modify online pre-planned motions path in order to avoid collisions with perceived
obstacles, while exploiting redundancy to maintain consistency with the desired path if it is possible.
In ref. [17], a mobile manipulator is controlled through MPC for visual servoing tasks. The image
features are maintained in the camera FoV by suitable state constrains. The Visual Tracking Algorithm
is triggered only when it is necessary to ensure the convergence of the robot to the desired position,
thus reducing the computational load. However, no manipulation task is actually performed by the
robot, and no obstacles are present while the robot is moving. In ref. [18], MPC is actually used
for controlling a mobile manipulator, presenting experimental results of real-time application on a
platform composed of a mobile base and of a three degrees of freedom (DoF) manipulator. However,
obstacles are not considered by the authors, and only state and input constraints are enforced.

In this paper, we present an online MPC strategy for omnidirectional mobile manipulators. The
robot has to move its end-effector toward (possibly time varying) desired configurations, navigating
in an unknown environment. The goal is to safely cooperate with humans, while complying with
a number of constraints (acceleration, velocity and position constraints for all the joints, collision
avoidance constraints, both for the arm and the mobile base, and FoV constraints). Preliminary results
were presented in refs. [19, 20]. In particular, in this paper the following advancements are discussed.
First, in order to solve the problem, a MPC problem in the velocity form21 is formulated instead of
the classical tracking formulation used in ref. [20]. Combining the velocity form formulation with the
results of ref. [22] allows offset-free tracking of piecewise constant reference signals, with recursive
feasibility and asymptotic stability guarantees.23 To our knowledge, this formulation has never been
used for online robot control. An artificial safe vortex field is included in the MPC formulation to

https://doi.org/10.1017/S0263574717000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000133


Constrained MPC for mobile robotic manipulators 21

help reactive autonomous navigation. As a second contribution, a specific algorithm that computes
such vortex field exploiting only sensor-based information about the environment is here presented.
As a third contribution, an inverse kinematics procedure is proposed for omnidirectional mobile
manipulators endowed with an anthropomorphic arm. The whole approach has been experimentally
validated on a mobile manipulator,24 endowed with depth, distance, and vision sensors for environment
and human perception. With respect to ref. [20], all of the obstacles are perceived through exteroceptive
sensors, without requiring any a-priori information. The MPC problem is solved online at each control
cycle, providing the input references for the robot base and the arm, treated as a single system. It does
not require any offline pre-planned path.

The remainder of this work is organized as follows: Section 2 describes the MPC problem
formulation in velocity form for tracking joint space references. Section 3 presents the definition
of an artificial vortex field for sensor-based, online navigation, including the field gradient in the
MPC cost function. Section 4 deals with tracking Cartesian space reference, also presenting a robot-
independent redundancy resolution strategy. In Section 5, the enforced constraints are formulated and
extended over the MPC prediction horizon. Finally, Section 6 presents the experimental setup and
results, while Section 7 summarizes the paper contributions.

2. MPC for Tracking in the Velocity Form
Let us consider a n DoF mobile manipulator, made up of a 3 DoF omnidirectional mobile base and
of a na = n − 3 DoF robotic arm. Let us also assume that the robot is velocity controlled, as it is
common. In this paper, we will concentrate on high-level trajectory planning level, assuming that the
low-level controllers can adequately track references at the velocity level. However, constraints on
the maximum acceleration will be included in order to avoid excessive stress on the actuators and on
the mechanical system. With these premises, the purely kinematic model of the system is reduced to
n decoupled integrators. Therefore, the discrete-time joint-space model of the robot at time instant k

takes the form:

qk+1 = Aqk + Buk, (1)

where q = [qT
b , qT

a ]T ∈ Rn is the robot state vector, containing the base and arm joint variables.
qb = [x, y, θ]T

b ∈ R3 refers to the base joint coordinates (planar positions and orientation), and qa =
[q1, . . . , qna

]T ∈ Rna to the arm joints. A = In ∈ Rn×n is the (identity) state matrix, B = �T In ∈
Rn×n is the input matrix, with �T being the discrete time interval. The input state vector u =
q̇ = dq/dt ∈ Rn is the robot reference velocity. Assume the state accessible and note that (A, B) is
reachable.

Suppose that at time instant k the robot task is to reach a certain configuration qd
k while complying

with a number of motion constraints, namely q ∈ Q and u ∈ U, where Q and U are compact convex
polytopes containing the origin, i.e.,

Q = {q ∈ Rn : Gq q ≤ bq}
U = {u ∈ Rn : Gu u ≤ bu} (2)

(see Section 5 for details on the enforced constraints). The desired goal configuration qd
k is allowed to

change in time, resulting in a piecewise constant reference signal. The MPC approach in the tracking
form can then be effectively used to obtain control inputs that comply with the constraints, while
moving the state toward the desired configuration. Thanks to the receding horizon (RH) principle,
MPC can in fact deal with time varying scenarios, and constraints formulated linearly with respect to
the input u can be easily included in the problem.

When using MPC for tracking, it is wise to include an integral action in the control loop to avoid
offsets in presence of disturbances or model errors. The velocity form formulation can be used to
implicitly include such integrators in the receding horizon control loop.21 The velocity form is based
on redefining the MPC tracking problem in terms of state and control increments:

{
δδδqk = qk − qk−1 ∈ Rn state increment
δδδuk = uk − uk−1 ∈ Rn control increment. (3)
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Besides the use of the velocity form, some considerations on convergence and recursive feasibility
must be done when tracking a piecewise constant reference Notice that an MPC problem is called
recursively feasible if, for all feasible initial states, feasibility is guaranteed at every state along the
closed-loop trajectory. As it is common in MPC, in fact, a terminal weight and a terminal constraint
should be used to guarantee convergence to the desired set-point.7 However, if a modification occurs
in the desired set-point, the MPC can no longer be feasible, i.e., the set-point can correspond to
steady-state and input values that are outside the terminal constraint set, or outside the constraint set
of Eq. (2). To solve this issue, an additional artificial reference q̄k can then be introduced:25 q̄k will be
considered in the MPC problem as an additional optimization variable, that will be constrained to be
always feasible, and it will be used as reference for the state vector q, instead of the actual set point
qd

k (left unconstrained). The error between q̄k and qd
k will then be penalized in the cost function, in

order to guarantee that the state actually evolves toward the actual set point qd
k (see refs. [22, 25–27]

for details on the artificial set point, and ref. [23] for an integration of this approach with the velocity
form, and for recursive feasibility and stability guarantees).

To include the artificial set point, we should define

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ek = qk − q̄k ∈ Rn set-point error

ξξξ = [δδδqT, eT]T ∈ R2n augmented state

ζζζ k = [ξξξT
k , q̄T

k ]T ∈ R3n “terminal” augmented state.

(4)

Combining Eqs. (1), (3) and (4), we obtain the augmented system dynamic equation:

ξξξk+1 =
[

A 0
A In

]
ξξξk +

[
B
B

]
δδδuk = Avξξξk + Bvδδδuk. (5)

Let us also define the sequence of the future control variable increments on the prediction horizon,
composed of N time steps, as δδδUk = [δδδuT

k , δδδuT
k+1, . . . , δδδuT

k+N−1]T. The MPC cost function for the
tracking problem in the velocity form is then defined as

L(δδδUk, q̄k;δδδqk, qd
k ) =

N−1∑
i=0

(‖ξξξk+i‖2
Q + ‖δδδuk+i‖2

R

) + ‖ξξξk+N‖2
P + ‖q̄k − qd

k‖2
T, (6)

where Q ∈ R2n×2n, R ∈ Rn×n, P ∈ R2n×2n and T ∈ Rn×n are all positive definite weight matrices.
The MPC problem for tracking in the velocity form is then, ∀i = 0, . . . , N − 1:

min
δδδUk,q̄k

L(δδδUk, q̄k;δδδqk, qd
k )

s.t. ξξξk+i+1 = Av ξξξk+i + Bv δδδuk+i

δδδuk+i ∈ Uδ

Cv ζζζ k+i ∈ Q × U
ζζζ k+N ∈ Oε.

(7)

The first constraint defines the velocity form system dynamics. The second constraint imposes
limitations on the maximum and minimum increment of the input u. The third constraint is equivalent
to requiring that qk+i ∈ Q, ∀i = 0, . . . , N − 1 and uk+i ∈ U, ∀i = 1, . . . , N − 2, being matrix
Cv ∈ R2n×3n such that (see ref. [23])

[
qk

uk−1

]
= Cv ζζζ k =

[
A B
0 In

]
S−1

v

[
In 0 0
0 In In

] [
ξξξk

q̄k

]
,

with

Sv =
[

A − In B
A B

]
, Cv = [Cξ , Cq] ,
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where Cξ ∈ R2n×2n and Cq ∈ R2n×n. Finally, the last constraint imposes the terminal constraint on
the state, and the feasibility constraint on q̄k .

The outputs of the optimization (7) are both the control input increment δδδUk that steers the state
toward the artificial set-point q̄k , and the value of q̄k itself. In particular, provided that P, T and Oε

are chosen as explained in ref. [23], it can be demonstrated that if at time k = 0 a solution to (7)
exists, then the resulting RH MPC law asymptotically steers qk to the real set point qd

k when feasible,
or to its closest feasible point q̄k when qd

k is unfeasible, with

q̄k = arg min
q

‖q − q̄k‖2
T

s.t. Cq q ∈ Qε × Uε

. (8)

Qε and Uε are subsets of Q and U, that is, with ε ≥ 0:

Qε = {q ∈ Rn : Gq q ≤ bq − ε} ⊆ Q
Uε = {u ∈ Rn : Gu u ≤ bu − ε} ⊆ U

(9)

Constraints on q and u are also fulfilled, and offset-free tracking is achieved thanks to the velocity
form formulation.

3. On-Line Safe Vortex Fields for Improved Navigation
To improve autonomous navigation in unknown environments, besides the reference qd

k , it can be use-
ful to add an additional “evasive” reference qe

k for the robot state qk . In particular, qe
k should be defined

to help the robot mobile base circumnavigate possible obstacles without getting stuck in local minima.

3.1. Potential field rotation algorithm
The classical artificial vortex field formulation28 can be exploited. Briefly, a vortex field Fv is an
artificial potential field depending on obstacles configuration, and its gradient ∇∇∇Fv is a vector that
produces a rotation around the considered obstacles. In particular, as artificial field we use the Danger
Field,29 elaborating a procedure to compute such field based on distance sensors information and to
suitably rotate it, so as to obtain an actual vortex field.

The Danger Field assigns a danger level and the maximum danger growth direction to each point
of the space surrounding a possibly moving robot, considering the robot as the source of danger.
In particular, the Danger Field evaluated in a given point decreases with the distance of such point
from the robot, whereas it increases with the amplitude of the relative velocity, more so if the robot is
moving fast toward the considered position. The vector field

−→
DF can be easily defined in a position r as

−→
DF (r, q, q̇) = DF (r, q, q̇)

∇∇∇DF (r, q, q̇)

‖∇∇∇DF (r, q, q̇)‖ , (10)

where DF is the Danger Field value and ∇∇∇DF its gradient. Thus,
−→
DF (r, q, q̇) is a vector anchored

in r, with the intensity DF (r, q, q̇), pointing in the ∇∇∇DF (r, q, q̇) direction.
Consider now the mobile manipulator platform endowed with a number of exteroceptive sensors,

able to perceive the environment surrounding the robot and to return a measurement that can be
converted into the 3D positions of the detected objects (e.g., distance sensors or depth sensors). Let
us define Po,k as the set containing all the detected obstacle positions roj at time instant k, with

dim(Po,k) = no. Defining DFj = DF (roj , q, q̇) and
−→
DFj = −→

DF (roj , q, q̇), the overall repulsive
Danger Field vector produced by the platform can be defined as

−→
DFr (q, q̇) = max

j
{DFj } (

∑
j

−→
DFj )/‖

∑
j

−→
DFj‖. (11)

−→
DFr (q, q̇) is a vector whose direction is the one of maximum danger increment when considering

all the no points, and having the modulus of the Danger Field computed in the point that is in the most

https://doi.org/10.1017/S0263574717000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000133


24 Constrained MPC for mobile robotic manipulators

(a) Motion State (b) Obstacle occupancy

Fig. 1. (a) Motion State and (b) Occupancy Map.

dangerous configuration. Note that, knowing the platform position and velocity and the positions of
roj , the evaluation of

−→
DFr in closed form is straightforward (see ref. [29]).

Moving the robot in the direction defined by
−→
DFr (q, q̇) would clearly produce the maximal

danger reduction for the considered obstacles configuration. However, as it is common when using
repulsive artificial fields for mobile robots, this evasive motion could be in contrast with the desired
motion toward the goal configuration qd , resulting in a local minimum standstill situation. The vector−→
DFr (q, q̇) must then be properly rotated, obtaining an actual vortex field, that helps mitigating this
issue. Note in particular that a map of the environment is not available; therefore, the best rotation
strategy must be evaluated at runtime based only on sensors perceptions. An algorithm has then
been developed that rotates each component

−→
DFj of 0 or ±90◦, depending on the current platform

position rb,k = [xb,k, yb,k, zb]T (zb is the constant vertical position of the platform center of gravity),
on its velocity ṙb,k = [ẋb,k, ẏb,k, 0]T, on the current goal configuration rd

b,k = [xd
b,k, y

d
b,k, zb]T and on

the remaining perceived obstacles positions roi ∈ Po,k , i �= j . Once the rotated vectors
−→
DFvj are

computed, the overall Vortex Danger Field vector is defined as

−→
DFv = max

j
{DFj } (

∑
j

−→
DFvj )/(‖

∑
j

−→
DFvj‖). (12)

The main rationale behind the rotation algorithm is to rotate each
−→
DF (roj , q, q̇) so that the angle

between the planar projection of
−→
DFvj and the planar projection of the segment (rd

b,k − rb,k) is
the smallest possible one, whenever this condition is not in contrast with the remaining obstacles
configuration at current time. In this way, the platform movement will be deviated as little as possible
from the straight line (rd

b,k − rb,k). Because no map of the environment is available, it is necessary to
also account for the environment configuration at the previous time instant(s). This is done to avoid
“forgetting” obstacles that are no longer detected by the sensors (e.g., because they are out of the
sensors measurement range), but may actually have not moved. The information about the previous
obstacle configuration is derived from the current platform velocity ṗb,k , that is the result of the
algorithm at the previous time instant, and it is then used as a memory of the previous environment
state.

The platform state of motion is subdivided into eight possible Motion States, depending on the
angle θv,k between the platform velocity and the platform main axis (whose orientation is θbk), as
shown in Fig. 1.

Moreover, the space surrounding the robot is subdivided into nA = 8 regions, defined by nA planes,
that are attached to the platform and therefore depend on qb,k (the 2D projection of such planes is
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Algorithm 1: Gradient Rotation (see Fig. 1)

Input: qb,k , q̇b,k , rb,k , ṙb,k , Pok , rd
b,k, du (sensor range), dl (threshold, dl < du)

Result: Rotated Danger Field
−→
DFv

begin
compute MotionState

compute Aik , i = 1, . . . , nA

compute O(Aik,Po,k, du), i = 1, . . . , nA

compute O(Aik,Po,k, dl), i = 1, . . . , nA

if (Motion State=1) then. . .

. . .
else if (Motion State=3) then

foreach roj ∈ Po,k do−→
DFj ← −→

DF (roj , rb,k, ṙb,k)
if roj ∈ A2 ∪ A3 ∪ A4 then Fig. 2, case 1

rotate
−→
DFj of −90◦

else if roj ∈ A5 then
if O(A5,Po,k, dl) ∧ O(A3,Po,k, du) then Fig. 2, case 1

rotate
−→
DFj of −90◦

else Fig. 2, case 2

rotate
−→
DFj of 90◦

end
else

set
−→
DFj ← [0, 0, 0]T

end
end

compute
−→
DFv as in Eq. (12)

else. . .
end

reported in Fig. 1). With reference to Fig. 1, let us define for i = 1, . . . , nA the following unitary
vectors:

ni,k = [cos(θb,k − αi + π/2), sin(θb,k − αi + π/2), 0]T.

Each region Ai,k, i = 1, . . . , nA is then defined as

Ai,k = {r ∈ R3 : nT
i,k · (r − rb,k) ≥ 0,

nT
i+1,k · (r − rb,k) < 0}. (13)

Given the detected obstacles point roj and a threshold distance values d (that could be the sensor
range or a specified dangerous threshold), the Occupancy function is defined as

O(Aik,Po,k, d) =
{

1 if ∃ roj ∈ Ai,k ∩ Po,k : ‖roj − rbk‖ ≤ d̄

0 otherwise, (14)

and it helps define an Occupancy Map. Given the Motion State and the Occupancy Map, the rotation
strategy can be defined. Part of the rotation algorithm is reported in Algorithm 1 and exemplified in
Fig. 2.
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(a) First possible situation (b) Second possible situation

Fig. 2. Algorithm effect for Motion State = 2. (a) First possible situation. (b) Second possible situation.

3.2. Inclusion of the evasive motion in the MPC cost function

The planar projection of
−→
DF v = [xv, yv, zv]T computed at time instant k can be interpreted as a desired

(rotational) evasive motion for the robot platform, that would allow the robot to circumnavigate all the
obstacles. In the proposed MPC approach,

−→
DFv is included in the cost function L by modifying the

reference qd
k as follows. Define the evasive reference vector qe

k = [xb,k + xv, yb,k + yv, θb,k, qT
a,k]T ∈

Rn. A new reference is then defined as

qde
k = mqd

k + (1 − m)qe
k, (15)

where m = m(‖−→
DFv,k‖) ∈ R is a scalar value depending on the field gradient modulus as

m =
{

1 if ‖−→
DFv‖ ≤ DFth

0 otherwise.

The new reference qde
k substitutes qd

k in Eq. (6). m assures that local minima are avoided, because at
a given instant k only one of the two possibly conflicting goals qd and qe is considered in L. When
the field modulus is below the threshold DFth (e.g., when obstacles are far from the robot, or the
platform is moving slowly), only qd is considered. When instead ‖−→

DFv‖ > DFth, only the evasive
reference qe is considered in L. Note that such a switch of the problem goal is completely compatible
with the MPC formulation presented in Section 2.

Finally, note that
−→
DFv could be used in different ways, e.g., by directly including it as a term to

be penalized in L, making the cost function non-quadratic and non-convex. The proposed solution,
which includes its gradient as an evasive motion reference, instead, maintains the linear quadratic
formulation of the problem, thus retaining the necessary computational performance.

Summarizing, by replacing qd
k with qde

k in the cost function of (6), the solution of Eq. (7) drives
the robot around obstacles when necessary, while moving toward qd

k otherwise.

4. Cartesian Space Formulation
As of now, the control problem has been defined in the joint space. It is common, however, to define
a robot task in term of the desired end-effector Cartesian position and orientation. In this section, a
methodology to include Cartesian references in the MPC problem is presented.

Let us define an end-effector pose P = [rT
ee, εεε

T
ee]T ∈ R6 as a vector composed of the Cartesian

end-effector position ree = [x, y, z]T
ee ∈ R3 and of a minimal representation of its orientation εεεee =

[φ, χ, ψ]T
ee ∈ R3 (in particular, the rotations around the x, y, z axis of the global reference frame).

The non-linear forward kinematics function f k(·) : Rn → R6 computes the pose P corresponding to
q as P = f k(q).
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The MPC problem with Cartesian space reference is then defined as finding the control inputs
sequence δδδUk that moves the end-effector from its current pose P to a possibly time varying (piecewise
constant) pose Pd

k = [(rd
k )T, (εεεd

k )T]T, if it is feasible in terms of joint variables, while complying with
the imposed constraints of Section 2.

One possibility is to solve the inverse kinematics problem for the considered pose Pd
k , finding

the corresponding desired state vector qd
k , and thus returning to the problem of Section 2. For non-

redundant robots, the inverse kinematics problem can be usually solved in closed form, through
an inverse kinematics function ik(·) = f k−1(·) : R6 → R6, so that qd

k = ik(Pd
k ). However, mobile

manipulators typically have more than 6 DoF, namely possessing nρ = n − 6 degrees of redundancy.
In this case, ik provides infinite solutions for the same P, i.e., the same configuration P corresponds
to an infinity of state vectors q.

Two possibility then exist for the intended approach. On the one hand, it is possible to augment
the task space (see refs. [30, 31]) by including nρ tasks to be fulfilled by the robot besides the
end-effector position and orientation task. This can be done, e.g., by defining a vector of redundancy
parameters ρρρ(q) = [ρ1(q), . . . , ρnρ

(q)]T that depends on the joint configuration q. Suitable desired
values ρρρd ∈ Rnρ can then be chosen, and ρρρ(q) = ρρρd can be used as the additional task. An inverse
kinematics function ikρ(·) : R6+nρ → Rn can thus be derived, so that qd = ikρ([(Pd )T, (ρρρd )T]T) exists
in closed form. Redundancy parameters are particularly useful, because they give a direct physical
interpretation of the robot redundancy (see the appendix, where a set of redundancy parameters
ρρρ = [ρ1, ρ2, ρ3] (Fig. 13) is introduced for solving the inverse kinematics of a mobile manipulator
endowed with a 6 DoF anthropomorphic arm with spherical wrist). We exploited this particular
approach in the experiments presented in Section 6.

On the other hand, however, it is not always easy to identify suited redundancy parameters for a
given robot. In this case, a Closed Loop Inverse Kinematics (CLIK) algorithm (see, e.g., ref. [32])
can for example be used to solve the inverse kinematics problem, computing at each control cycle a
reference qd that iteratively converges to Pd = f k(qd ).

Finally, note that a third different approach to the Cartesian problem would be to directly replace
the set-point error of Eq. (4) with ek = P̄k − Pd

k , and the term q̄k − qd
k in the cost function of Eq. (6)

with P̄k − Pd
k , P̄k being a new optimization variable instead of q̄k . In this case, however, the direct

kinematics f k(·) must be added as a constraint: L would no longer be quadratic with respect to
the decision variables, and the problem would lose its QP formulation, seriously increasing the
computational load for the numerical solver, especially for longer prediction horizons. It should
be noted in any case that recent ad-hoc implementations (see, e.g., ref. [8]) allow for the on-line
resolution of non-linear MPC. However, as explained in Section 2, in this paper we concentrated on
high-level trajectory planning, thus considering a purely kinematic model of the robot. With this in
mind, the added burden of developing a tailored solution algorithm for the resolution of the non-linear
problem does not appear to offer significant advantages with respect to the more agile and compact
implementation of a QP problem, which has then been considered in the remaining of this work.

5. Constraints Formulation
Once the MPC problem for the joint space and for the Cartesian space has been set, the problem
constraints must be defined, specifying Q, U and Uδ of Eqs. (2) and (7). We will define polytopic
constraints sets, i.e., expressed through a matrix inequality of the form Gu ≤ b, that is linear with
respect to u. The resulting MPC problem (7) is then a linear-quadratic one, that can be efficiently
solved online with QP numerical methods. In particular, the following constraints are enforced:
velocity bounds for the mobile base and arm, position limits for the arm joints, acceleration bounds
for each joint, collision avoidance constraints for both the base and the arm, and FoV constraints.

5.1. Linear constraints over the prediction horizon
First note that the evolution of the system on the prediction horizon can be expressed as

qk+i = Aiqk +
i−1∑
j=0

Ai−j−1B uk+j , (16)
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(a) Robot mobile base. (b) Generic robot link

Fig. 3. Collision avoidance constraint for a mobile manipulator. (a) Robot mobile base. (b) Generic robot link.

so that the constraints on the state variables q can be expressed as linear constraints on the input
variable sequence Uk = [uT

k , uT
k+1, . . . , uT

k+N−1]T on the whole prediction horizon. uk+i can be
computed from the sequence δδδUk as

uk+i = uk−1 +
i∑

j=0

δδδuk+j . (17)

The first set of constraints limit the translational and rotational velocity for the robot base and the
rotational velocity for the arm joints. They can be simply expressed as

|Ea uk+i | ≤ q̇max
a . (18)

where Ea ∈ Rna×n is such that qa = Eaq.
The velocity limits q̇max

b for the mobile base may not be immediately available, but they
should instead be derived from the speed limits of the platform wheels. For the common case of
omnidirectional platforms endowed with Mecanum wheels, with reference to Fig. 3(a), the platform
kinematics yields

ωωωw = 1

R

⎡
⎢⎣

1 1 −(l1 + l2)
1 −1 (l1 + l2)
1 −1 −(l1 + l2)
1 1 (l1 + l2)

⎤
⎥⎦ q̇b = Lq̇b = LEbq̇.

where R, l1 and l2 are reported in Fig. 3(a), ωωωw ∈ R4 is a vector containing the four Mecanum wheels
spinning velocities and Eb ∈ R3×n is an extraction matrix that satisfies qb = Ebq. Thus, to constrain
the platform velocities, the following inequalities can be defined:

−ωωωmax
w ≤ LEbuk+i ≤ ωωωmax

w . (19)

The second set of constraints, concerning the arm joints position limits, is written as

qmin
a ≤ Ea(Aqk+i + Buk+i) ≤ qmax

a . (20)

Acceleration constraints can be enforced by approximating q̈k = u̇k � (uk − uk−1)/�T =
δδδu/�T , so that

|δδδuk+i | ≤ �T q̈max, (21)

is the linear constraint to be imposed on the decision variable δδδu, and defines the set Uδ in Eq. (7).
Note that constraints (18)–(21) are easily enforced on the whole prediction horizon, being always
linear with respect to uk+i or δδδuk+i , ∀i.
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5.2. Non-linear constraints over the prediction horizon
Differently from the previous case, there might exist constraints whose matrices Gk+i = G(qk+i) non-
linearly depend on q, i.e., G is a generic non-linear function of q. This means that these constraints
are non-linear with respect to u when i > 0. In fact, at time instant k + i, G depends non-linearly on
qk+i , that is linear in uk, . . . , uk+i−1. Hence, Gk+i depends non-linearly on uk, . . . , uk+i−1, and the
constraint Gk+iuk+i is non-linear in the control input sequence.

A possible way to maintain linearity is to exploit the MPC recursive nature. At time k, in fact,
qk+i , i = 1, . . . , N can be approximated as q̃k+i , that is computed through Eq. (16) using as input
the sequence Uk−1 = [uT

k−1, uT
k , . . . , uT

k+N−2]T. Uk−1 is computed through Eq. (17) from the solution
δδδUk−1 of the previous controller iteration. It is then possible to approximate G(qk+i) � G(q̃k+i). In
this way, the constraint G(q̃k+i)q̇ ≤ b is again linear in the control input sequence.

This approximation is evidently less accurate whenever major modifications occur either in the
environment (e.g., new obstacles appear) or in the task (a new value of Pd is set). In these situations,
a “worst case” approach has been defined to compute suitable values of G(qk+i), as will be detailed
in the following for the different constraints.

5.2.1. Base collision avoidance. This constraint is used to avoid collisions of the mobile base with
perceived and possibly known obstacles (note that the rotational field of Section 3 does not guarantee
collision avoidance, not being repulsive). The approach presented in ref. [19] and inherited from ref.
[33] is here developed, extending such constraints on the whole MPC prediction horizon.

With reference to Fig. 3(a), consider one of the no perceived obstacles, located in roj ∈ Po, and the
mobile base at position pb = [x, y]T

b having velocity ṗb. Let poj = [rojx, rojy]T be the projection of
roj on the x–y plane, and E′

b ∈ R2×n be an extraction matrix, so that pb = E′
bq. Based on ISO/ANSI

safety standards, in order to avoid collisions, the robot motion is restricted through the inequality
V · Ts ≤ max(0, d − �), where V is the signed component of the robot velocity toward the obstacle,
Ts is the worst case robot stopping time, d is the robot–obstacle distance and � > 0 is a clearance
parameter. As explained in ref. [19], for j = 1, . . . , no, at time instant k such obstacle avoidance
constraint can be arranged as

TsdT
j,kE′

buk ≤ (
max(0, ‖dj,k‖ − �)

)2
, (22)

where dj,k = poj,k − pb,k . max(0, ‖dj,k‖ − �) denotes the distance between a circle having radius D

built around the robot base, and a circle centred in poj with radius (� − D).
This constraint does not enforce a minimum distance between the robot and the obstacle: It is in

fact possible that dm = minj=1,...,no
‖dj,k‖ < �, e.g., if an obstacle that is closer to the robot than �

suddenly appears. In this case, the constraint will forbid any further robot motion toward the obstacle,
ensuring collision avoidance. Note that no can be very high, e.g., if depth sensors are used to perceive
the environment. In this case, a clustering technique should be used to group the detected points into
a smaller number of obstacles. The collision avoidance constraint can then be enforced for the closest
point of each cluster to the robot, thus avoiding an explosion of the problem constraints. Alternatively,
in ref. [34], it is shown how to formalize this constraint for the convex hull containing the clustered
obstacle points.

The “worst case” situation for the considered constraint can now be derived, so as to extend this
constraint on the prediction horizon whenever qk+i cannot be properly approximated by q̃k+i . The
worst case situation occurs when the robot base and the obstacle move at maximum speed VM one
toward the other (see Fig. 3(a)), so that at time instant k + i the robot is in position pwc

b,k+i . Following
a procedure that is similar to the one reported in ref. [19], after some manipulation the worst case
obstacle avoidance constraint at time instant k + i, i = 0, . . . , N − 1 can be expressed as

TsdT
j,kE′

buk+i ≤ (max(0, ‖dj,k‖ − (li + �)))2, (23)

where li = i VM�T expresses the space covered in i time steps by the robot base and the obstacle
moving at maximum speed VM toward each other.

Extending the obstacle avoidance constraint at time instant k + i is therefore equivalent to
increasing the clearing distance � by the quantity li , that accounts for the worst case relative motion
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Fig. 4. Field-of-view constraint for a generic sensing device.

between the robot and the obstacle. When considering no obstacles, constraint (23) can be rewritten
as Gb(qk)uk+i ≤ bb,k+i , with Gb ∈ Rno×n and bb ∈ Rno , that is linear with respect to u(k + i).

5.2.2. Arm collision avoidance. Collision avoidance constraints can be applied also to the robotic
arm of the mobile manipulator, so as to avoid impacts of the arm with perceived or possibly known
obstacles in the environment, and with the mobile base itself. Again with reference to ref. [33] and to
Fig. 3(b), the collision avoidance constraints of Section 5.2.1 can be formulated in the 3D Cartesian
space for a generic robot link as the pair

TsdT
1o,kv1,k ≤ (max(0, dlj,k − �l))

2

Ts(dT
1o,kv2,k − dT

12,kv1,k) ≤ (max(0, dlj,k − �l))
2,

where

⎧⎨
⎩

d1o,k = roj,k − r1,k

d12,k = r2,k − r1,k

dlj,k = mins ‖roj,k − rs,k‖.
When it is positive, dlj − �l represents the distance between a sphere of radius �l centred in roj

and the segment from r1 to r2. Defining J1,k and J2,k as the position Jacobians of r1,k and r2,k , and
blj,k = (max(0, dlj,k − �l))2, the above constraint can be formulated at time instant k as

[
TsdT

1o,kJ1,k

Ts(dT
1o,kJ2,k − dT

12,kJ1,k)

]
uk ≤

[
blj,k

blj,k

]
(24)

that is linear with respect to uk . Note that the position Jacobians J1,k and J2,k take into account the
effects of all the mobile manipulator (i.e., base and arm) velocities uk to compute v1,k and v2,k .

This constraint has been extended over the prediction horizon in the “worst case” scenario with a
similar procedure to Section 5.2.1. Defining lli = iVlM�T , i = 0, . . . , N − 1, the worst case situation
has been tackled by modifying constraint (24) right-hand side as

blj,k+i = (max(0, dlj,k − (�l + lli))
2. (25)

Considering all no obstacles (with the same clustering consideration as Section 5.2.1), constraints
(24) and (25) are rewritten as Ga(qk)uk+i ≤ ba,k+i , with Ga ∈ R2no×n and ba ∈ R2no , that is linear
with respect to u(k + i).

5.2.3. Field-of-view constraint. With reference to Fig. 4, suppose that the robot platform is endowed
with a sensing device (e.g., a depth sensor or a camera) to track some features placed in a possibly
time varying position rf,k . The FoV constraint is designed to keep rf,k in the device FoV.
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Fig. 5. Block diagram scheme of the controller.

Defining φ = 2α < π as the FoV angle, and pf,k as the x–y projection of rf,k , such constraint at
step k + 1 can be formulated as

|βk+1| ≤ α ⇒ cos(βk+1) ≥ cos(α) = cα.

Since

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos(βk+1) � cos(βk) + �T ˙cos(βk)

cos(βk) = (pf,k − psd,k)Tnb,k

‖pf,k − psd,k‖ = dT
sd,k nb,k

‖dsd,k‖ ,

˙cos(βk) = ∂ cos(β)

∂q

∣∣∣∣
k

uk = JFoV,k uk

the FoV constraint can be written as

1 ≥ dT
sd,k nb,k

‖dsd,k‖ + �T JFoV,k uk ≥ cα. (26)

This constraint is clearly linear with respect to uk , and thus it can be expressed in the form
GFoV,k uk ≤ bFoV,k , where GFoV,k ∈ R1×n and bFoV (k) ∈ R.

6. Experiments
The control scheme implementing the introduced MPC approach is reported in Fig. 5. A task scheduler
manages the different phases of the robot task, that is divided into a sequence of subtasks defining the
desired motion, either in the joint space as qd

k or in the Cartesian space as Pd
k . For the Cartesian space,

qd is computed through the inverse kinematics approach (Section 4). A new subtask is triggered by
the scheduler whenever the error with respect to the desired set-point is small enough. During motion,
all constraints described in Section 5 are enforced. The input of the controller are the robot state qk ,
the measured velocities (corresponding to uk−1) and the goal qd

k , as well as the perceived obstacles
positions Po,k , the perceived feature position rf,k and the perceived position rg,k of objects to be
grasped. The output of the controller consists of the velocity commands uk = δδδuk + uk−1 (i.e., the
first element of the MPC solution), which is sent to the lower level axis controllers. In the receding
horizon fashion, the computation is iterated at every control cycle.

6.1. Setup
Our approach has been validated experimentally on a KUKA youBot mobile manipulator,24 which
possesses n = 8 DoF (3 for the omnidirectional platform and 5 for the arm) and can be velocity
controlled. A PC runs the control code and manages communications with the different sensors and
with the low-level axis controllers. The robot state and velocity are measured by proprioceptive
sensors, including a built-in dead reckoning algorithm. Eleven inexpensive Sharp GP2Y0A02YK
distance sensors fixed to the mobile base detect the obstacles. Their signals are acquired by an
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Fig. 6. Arm collision avoidance experiment snapshots.

Fig. 7. Arm collision avoidance experiment. 3D plot of the end effector position (black dots), the goal position
(red star) and the obstacle position (green lines) as tracked by the depth sensor.

Arduino board, interfaced with the PC. A camera is mounted on the end-effector, in order to detect
and localize objects to be grasped. Images are acquired and processed by the PC exploiting OpenCV
libraries.35 An Asus Xtion depth sensor is also mounted on the platform to detect and track the desired
feature (e.g., the hand of a human operator) and obstacles that cannot be detected by the distance
sensors (e.g., if they do not touch the ground), thanks to the OpenNI36 and PCL37 libraries.

The MPC controller is implemented with a sampling rate Tc = 40 ms, considering a 6-s prediction
horizon divided into N = 6 steps. An active-set method implementation (namely qpOases38) is used
to solve the QP optimization. The problem consists of 56 variables (nN = 48 control variables plus
n = 8 artificial set-point), with 56 boxed constraints and up to 457 linear constraints of the form
Gu ≤ b (they are actually enforced on δδδU). During experiments, the required time to solve online the
MPC problem was less than 1 ms on average, with maximum values of about 10 ms.

The inverse kinematics problem has been solved by exploiting the redundancy parameters described
in Section 4 and in the appendix. Note that the youBot arm has 5 DoF, therefore the use of ρ3 is
necessary only when the desired end-effector pose is “vertical” (i.e., χd

ee = π).

6.2. Experiments
Two experiments are reported (also refer to the accompanying video). First, the arm obstacle avoidance
is tested. The robot must reach a time invariant pose Pd . A bridge-like obstacle is placed between
the starting position and the desired position. The obstacle position is not a priori known and it is
detected by the Xtion mounted on the front of the platform (color segmentation is used to detect
the obstacle). Figures 6 and 7 report how the arm bends backwards before an impact occurs, thanks
to the enforced constraints. Figure 8 shows the behavior of the constraint enforced between the last
link of the manipulator and the closest obstacle point on the first step of the prediction horizon: The
upper bound limit decreases as the robot moves closer to the obstacle, until the constraint becomes
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Fig. 8. Obstacle avoidance constraint for the end-effector with respect to the obstacle closest point on the first
prediction step (first experiment). (a) First constraint of Eq. (24) with respect to the obstacle closest point. (b)
Second constraint of Eq. (24). The upper bound limit is in solid black, while the left hand side of Eq. (24) in in
dashed black.

Fig. 9. Obstacle avoidance constraint for the end-effector with respect to the platform closest point on the first
prediction step (first experiment). (a) First constraint of Eq. (24). (b) Second constraint of Eq. (24). The upper
bound limit is in solid black, while the left hand side of Eq. (24) in in dashed black.

active. Figure 9 shows the collision avoidance constraint enforced between the end-effector link and
the closest point on the robot platform on the first prediction step, that assures that while bending
backward the arm does not collide with the platform.

The second experiment (Fig. 10) has been used to assess the controller behavior in a dynamic
scenario. The task sequence is activated by a gesture of the human (hand waving) detected trough
the Xtion, that asks the robot for an object. The robot picks up the object, detected through the
eye-in-hand camera, and brings it to the human, avoiding collisions with obstacles (also “U-shaped”),
which are unknown and detected only by the distance sensors. The FoV constraint assures that the
human hand remains in the Xtion FoV. During this phase, the human hand itself is the time-varying
goal position for the end-effector. To avoid collisions, during navigation the arm is kept retracted
over the mobile base, and it starts reaching out when close to the goal. The necessary references for
the arm are managed by the task scheduler of Fig. 5, together with the different experiment phases
(looking for the object, moving the end-effector in the grasping position, moving toward the human
hand, and so on). In order to handle the limited sensing range of the Xtion, the task scheduler stops
the robot motion whenever the human hand is too far away. The motion is resumed when the hand is
detected again. Figure 11 illustrates the x–y projection of the positions of the base, the end-effector,

https://doi.org/10.1017/S0263574717000133 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000133


34 Constrained MPC for mobile robotic manipulators

Fig. 10. Snapshots of task execution in a dynamic environment.

Fig. 11. x–y positions of the mobile base center (solid black and oriented black triangles), of the end-effector
(blue), of the detected obstacles (black dots) and of the tracked human hand (i.e., the goal position, magenta
circles) during second experiment.

the detected obstacles and the goal (i.e., the tracked hand) during the navigation phase. Figure 12(a)
reports the collision avoidance constraint enforced between the platform and the obstacles detected
by one of the front distance sensors, while Fig. 12(b) shows the FoV constraint.

6.3. Comments
The presented experiments show the applicability of the proposed MPC approach to mobile
manipulation. The implemented control strategy is able to handle both joint space and Cartesian space
time varying references during the same experiment, thanks to the inverse kinematics procedure based
on the introduced redundancy parameters. The robot moves in a completely unknown environment,
avoiding collisions with obstacles perceived on the fly, thanks to the imposed constraints and to the
evasive motion reference that has been included in the MPC cost function. Cooperation with a human
operator has been demonstrated, thus validating the viability of our approach in dynamic scenarios.

7. Conclusions
In this paper, a controller based on constrained optimization has been developed for tracking problems
in mobile manipulation: An MPC problem treating the mobile manipulator as a single system has been
defined in a suited velocity form that guarantees offset-free tracking, recursive feasibility, convergence
and stability. The problem is set and solved online, allowing to deal with dynamic scenarios and
unforeseen events. Navigation performance of the platform has been improved by including an
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Fig. 12. (a) Obstacle avoidance constraint of Eq. (23) for the base: upper bound limit in solid black, constraint
value in dashed black. (b) Field-of-view constraint of Eq. (26): upper and lower bounds in solid black, the
constraint in dashed black.

additional goal to the MPC problem, derived from the vortex field approach, and implemented
through an algorithm that deals with online-only perception of the environment. Tracking of Cartesian
space references has also been considered, also proposing a redundancy resolution method for
mobile manipulators endowed with anthropomorphic arm. Besides acceleration, velocity and position
constraints, collision avoidance constraints for the mobile base and the arm and FoV constraints have
been enforced and extended over the prediction horizon, while maintaining the linear-quadratic
formulation of the problem. Experimental validation on a KUKA youBot mobile manipulator shows
the online applicability of the presented approach.

Appendix
This appendix deals with the inverse kinematics of a mobile manipulator endowed with a six DoF
anthropomorphic arm with spherical wrist (n = 9 DoF). Since Pd ∈ R6, while q ∈ Rn, the inverse
kinematics problem is under-constrained if n > 6: A certain end-effector pose can be obtained with
any posture of the mobile platform of the robot qb, provided that it resides in the reachable workspace
of the arm. To solve the inverse kinematics, a set of redundancy parameters ρρρ = [ρ1, ρ2, ρ3] (Fig. 13)
is here introduced that fully constrain qb, extending the results of,39 that treated the particular case
of a 5-DoF arm mounted on a mobile platform. Parameter ρ1 describes the angular displacement
between the mobile platform main axis and the x–y projection of (ree − ra) linking the arm base
position ra to the end-effector position ree:

ρ1 = atan ((yee − ya)/(xee − xa)) − θb. (27)

Parameter ρ2 is the length of the x–y planar projection of vector (ree − ra), i.e., the robotic arm
extension:

ρ2 =
√

(xee − xa)2 + (yee − ya)2, (28)

ρ3 defines the angular displacement between the end-effector orientation angle ψee and the x–y

projection of (ree − ra):

ρ3 = tan−1
(yee − ya

xee − xa

)
− ψee. (29)
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Fig. 13. Generalized mobile manipulator redundancy parameters.

Given a desired end-effector pose Pd
ee, once suited parameters ρρρd are chosen, the base configuration

qd
b is completely defined through the following relation:

qd
b =

⎡
⎢⎣

xd
b

yd
b

θd
b

⎤
⎥⎦ =

⎡
⎢⎣

xd
ee − ρd

2 cos(ρd
3 + ψd

ee) − Lcos(ρd
3 + ψd

ee − ρd
1 )

yd
ee − ρd

2 sin(ρd
3 + ψd

ee) − Lsin(ρd
3 + ψd

ee − ρd
1 )

ρd
3 + ψd

ee − ρd
1

⎤
⎥⎦

where L is the x–y planar projection of rb − ra . The standard arm inverse kinematics can then be
solved, obtaining the joint values qd

a . First, a value ρd
3 should be chosen for parameter ρ3, which

can be used to reduce the mobile platform motion in the “approach phase,” that is usually the first
part of a mobile manipulation task. Note that, for a given value of ρd

2 , Pd
ee can be realized with the

mobile platform lying in any position that satisfies ρ2 = ρd
2 , i.e., the platform center can lie in any

point of a circle centred in [xd
ee, y

d
ee], with different values of ρ3. ρd

3 should be chosen to minimize
the platform movement with respect to its current position. In particular, ra,k = [xa,k, ya,k, za,k]T

should always be aligned with the goal position rd
ee. In this way, during the approach phase, it is

sufficient for the robot to straightforwardly move toward rd
ee. As soon as rd

ee enters the arm reachable
workspace, the positioning task can be executed, without further motions of the mobile platform to
align the end-effector with the desired orientation εεεee. Given Pd

ee, and without needing to know ρ2
d ,

this behavior can be achieved by setting ρd
3 as

ρd
3 = atan

(
(yd

ee − ya,k)/(xd
ee − xa,k)

) − ψd
ee. (30)

Parameter ρ1 can be used, e.g., to maintain a certain position rf = [xf , yf , zf ]T in the “platform field-
of-view,” which can be useful if an object placed in rf has to be tracked by some platform-mounted
sensing device (see Figs. 13 and 4). This can be achieved, e.g., by setting

ρd
1 = ψd

ee + ρd
3 − atan

(
(yf − ya,k)/(xf − xa,k)

)
, (31)

so that rf planar projection always lies on the platform axis.
Finally, parameter ρ2 has been exploited to maximize the manipulability measure40 for the whole

mobile manipulator, following the example of ref. [19]. The manipulability index Um(q) is defined as

Um(q) =
√

(∂f k(q)/∂q)T(∂f k(q)/∂q). (32)

The optimization problem has been solved with gradient descent on-line method,41 which allows
to constantly optimize the robot configuration. At each time instant k, a value ρ+

2,k = ρ2,k + γ is
defined, where γ > 0 is a parameter tuning the speed of convergence. Then, the corresponding values
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q+ = ik(Pk, [ρ1,k, ρ
+
2 , ρ3,k]T) is computed. The value of ρd

2 is then determined as

ρd
2 = ρ2,k + γ · (Um(q+) − Um(qk)). (33)

Supplementary material
For supplementary material for this article, please visit https://doi.10.1017/S0263574717000133
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