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I-27100 Pavia, Italy (frediani@dimat.unipv.it)

(Received 19 December 2001; accepted 27 May 2002)

Abstract In this paper we finish the topological classification of real algebraic surfaces of Kodaira
dimension zero and we make a step towards the Enriques classification of real algebraic surfaces, by
describing in detail the structure of the moduli space of real hyperelliptic surfaces.

Moreover, we point out the relevance in real geometry of the notion of the orbifold fundamental group
of a real variety, and we discuss related questions on real varieties (X, σ) whose underlying complex
manifold X is a K(π, 1).

Our first result is that if (S, σ) is a real hyperelliptic surface, then the differentiable type of the pair
(S, σ) is completely determined by the orbifold fundamental group exact sequence.

This result allows us to determine all the possible topological types of (S, σ), and to prove that they
are exactly 78.

It follows also as a corollary that there are exactly eleven cases for the topological type of the real
part of S.

Finally, we show that once we fix the topological type of (S, σ) corresponding to a real hyperelliptic
surface, the corresponding moduli space is irreducible (and connected).

We also give, through a series of tables, explicit analytic representations of the 78 components of the
moduli space.
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1. Introduction

The purpose of this paper is twofold: on the one side, we finish the topological classifi-
cation of real algebraic surfaces of Kodaira dimension zero and we make a step towards
the Enriques classification of real algebraic surfaces, by describing in detail the structure
of the moduli space of real hyperelliptic surfaces; on the other hand, we point out the
relevance in real geometry of the notion of the orbifold fundamental group.

In order to illustrate the latter concept, let us begin by answering the reader’s question:
what is a real variety?
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A smooth real variety is a pair (X, σ), consisting of the data of a smooth complex
manifold X of complex dimension n and of an anti-holomorphic involution σ : X → X

(an involution σ is a map whose square is the identity).
The quickest explanation of what anti-holomorphic means goes as follows: the smooth

complex manifold X is determined by the differentiable manifold M underlying X and
by a complex structure J on the complexification of the real tangent bundle of M .

If instead we consider the same manifold M together with the complex structure −J ,
we obtain a complex manifold which is called the conjugate of X and denoted by X̄.

The involution σ is now said to be anti-holomorphic if it provides an isomorphism
between the complex manifolds X and X̄ (and then (X, σ) and (X̄, σ) are also isomorphic
as pairs).

What are the main problems concerning real varieties? (We may restrict ourselves to
the case where X is compact.)

(i) Describe the isomorphism classes of such pairs (X, σ).

(ii) Or, at least describe the possible topological or differentiable types of the pairs
(X, σ).

(iii) At least describe the possible topological types for the real parts X ′ := X(R) =
Fix(σ).

Remark 1.1. Recall that Hilbert’s 16th problem is a special case of the last question
but for the more general case of a pair of real varieties (Z ⊂ X, σ).

For a smooth real variety, we have the quotient double covering π : X → Y = X/〈σ〉,
and the quotient Y is called the Klein variety of (X, σ).

In dimension n = 1 the datum of the Klein variety is equivalent to the datum of the
pair (X, σ), but this is no longer true in higher dimension, where we will need also to
specify the covering π.

The covering π is ramified on the so-called real part of X, namely, X ′ := X(R) =
Fix(σ), which is either empty, or a real submanifold of real dimension n.

If X ′ := X(R) = Fix(σ) is empty, the orbifold fundamental group of Y is just defined
as the fundamental group of Y .

If instead X ′ �= ∅, we may take a fixed point x0 ∈ Fix(σ) and observe that σ acts on
the fundamental group π1(X, x0): we can therefore define the orbifold fundamental group
as the semidirect product of the normal subgroup π1(X, x0) with the cyclic subgroup of
order two generated by σ. It is easy to verify then that changing the base point does
not alter the isomorphism class of the following exact sequence, yielding the orbifold
fundamental group as an extension

1 → π1(X) → πorb
1 (Y ) → Z/2Z → 1

(changing the base point only affects the choice of a splitting of the above sequence).
We claim that the orbifold fundamental group exact sequence is a powerful topological

invariant of the pair (X, σ) in the case where X has large fundamental group.
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To illustrate a concrete issue of such a statement, let us consider the case of a K(π, 1),
i.e. the case where the universal cover of X is contractible: this case includes the case
of complex tori, of hyperelliptic surfaces and their generalizations, as well as the case of
quotients of the complex n-ball and of polydisks.

Then the homotopy type of X is determined by the fundamental group π and some
interesting quite general open questions are the following ones (where, by abuse of lan-
guage, we shall talk about orbifold fundamental group of a real variety, to refer to the
above orbifold fundamental group exact sequence).

(i) If X is a compact complex manifold which is a K(π, 1), to what extent does π also
determine the differentiable type?

(ii) Same assumptions as above and fix the group π: when is the moduli space of those
manifolds X irreducible or connected?

About this question, a vast literature already exists (cf. [27,37,42,47], cf. also [12]),
especially concerning the rigidity property that a manifold homeomorphic to a
given one should be either biholomorphic or anti-holomorphic to it, but only
recently, in [29] and [13], were concrete examples given of compact complex surfaces
which are K(π, 1), and whose moduli spaces consist of two connected components
exchanged by complex conjugation. This shows that even if we consider Kähler
manifolds, we can find moduli spaces which are not irreducible. The series of exam-
ples in [13] are not rigid, and are quotients X of products of curves which not only
do not admit any real structure but are also such that X and its conjugate X̄ are
not deformation equivalent.

(iii) Assume that we consider real varieties, (X, σ) where X is as above a K(π, 1): does
the orbifold fundamental group determine the differentiable type of the real variety?

(iv) Fixing the orbifold fundamental group, when do we get a connected moduli space?

Our purpose here is thus to give an issue where the classification of real varieties can
be given in terms of the orbifold fundamental group.

Concerning the previous questions, in [14] it is shown that the complex manifolds
isomorphic to a complex torus of dimension greater than or equal to 3 form a connected
component of their ‘moduli space’, which admits other components corresponding to
older examples given by Blanchard and Calabi in [6–8], and rediscovered via a different
approach by Sommese [43]. These other examples provide the underlying differentiable
manifold with a non-Kähler complex structure without trivial canonical bundle.

Our first result, concerning the topological type of real hyperelliptic surfaces, can now
be briefly stated as follows.

Theorem 1.2. Let (S, σ) be a real hyperelliptic surface. Then the differentiable type
of the pair (S, σ) is completely determined by the orbifold fundamental group exact
sequence.
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In a sequel to this paper, we plan to show other issues (e.g. in the Kodaira classification
of non-algebraic real surfaces) where the topology of the pair (S, σ) is determined by the
orbifold fundamental group exact sequence.

Returning to the case of real hyperelliptic surfaces, the previous theorem allows us to
easily determine completely the possible topological types of (S, σ), and in particular we
have the following two results.

Theorem 1.3. Real hyperelliptic surfaces fall into exactly 78 topological types.

Corollary 1.4. Let (S, σ) be a real hyperelliptic surface. Then the real part S(R) is
either

(i) a disjoint union of t tori, where 0 � t � 4;

(ii) a disjoint union of b Klein bottles, where 1 � b � 4;

(iii) the disjoint union of one torus and one Klein bottle;

(iv) the disjoint union of one torus and two Klein bottles.

As the reader may guess, the above results are too complicated to be described in detail
here in the introduction: therefore we will limit ourselves to illustrate the underlying
philosophy by describing it in the much simpler case of the real elliptic curves.

Classically (cf. [1] for a modern account) real elliptic curves have been classified accord-
ing to the number ν of connected components (these are circles) of their real part: ν can
only attain the values 0, 1 and 2 and completely determines the differentiable type of the
involution.

The orbifold fundamental group explains easily this result: if there is a fixed point
for σ, the orbifold fundamental group sequence splits and the action of σ on the elliptic
curve C is completely determined by the action s of σ on H1(C, Z).

This situation gives rise to only two cases: s is diagonalizable, and C(R) consists of
two circles, or s is not diagonalizable, and C(R) consists of only one circle.

If instead there are no fixed points, an easy linear algebra argument (cf. Lemma 5.5)
shows that s is diagonalizable, and the translation vector of the affine transformation
inducing σ can be chosen to be 1

2 of the +1-eigenvector e1 of s.
In fact, σ is represented by an affine transformation (x, y) → s(x, y) + (a, b), and

s is not diagonalizable if and only if s(x, y) = (y, x) for a suitable choice of two
basis vectors. The identity map, which equals the square of σ, is the transformation
(x, y) → (x, y) + (a + b, a + b), thus a+b is an integer, and therefore the points (x, x−a)
yield a fixed S1 on the elliptic curve.

The complete description of the moduli space of real hyperelliptic surfaces is too long
to be reproduced in the introduction, we want here only to mention the following main
result, which confirms a conjecture by Kharlamov, that more generally for all real Kähler
surfaces of Kodaira dimension at most 1 the differentiable type of the pair (S, σ) should
determine the deformation type (this is false already for complex surfaces if the Kodaira
dimension equals 2, cf. [9,11,13,29,33]).
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Theorem 1.5. Fix the topological type of (S, σ) corresponding to a real hyperelliptic
surface. Then the moduli space of the real surfaces (S′, σ′) with the given topological
type is irreducible (and connected).

Again, we wish to give the flavour of the argument by outlining it in the much simpler
case of the elliptic curves. Assume for instance that our involution σ acts as follows:
(x, y) → (y, x). We look then for a translation invariant complex structure J which makes
σ anti-holomorphic, i.e. we seek for the matrices J with J2 = −1 and with Js = −sJ .

The latter condition singles out the matrices(
a b

−b −a

)
,

while the first condition is equivalent to requiring that the characteristic polynomial be
equal to λ2 + 1, whence, it is equivalent to the equation b2 − a2 = 1.

We get therefore a hyperbola with two branches which are exchanged under the invo-
lution J → −J , but, as we already remarked, J and −J yield isomorphic real elliptic
curves, thus the moduli space consists of just one branch of the hyperbola.

This example also serves the scope of explaining the statement in the above theorem
that the moduli space is irreducible (and connected): the hyperbola is an irreducible
algebraic variety, but not an irreducible analytic space, since it is not connected (in
general, moduli spaces of real varieties will be semi-analytic spaces or semi-algebraic real
spaces).

We want to emphasize once more that an interesting question is to determine, in the
realm of the real varieties whose topological type is determined by the orbifold fundamen-
tal group, those for which the corresponding moduli spaces are irreducible (respectively,
connected).

It is now however time to recall what the hyperelliptic surfaces are, why they have
this name and, last but not least, point out how crucial is the role of the hyperelliptic
surfaces in the Enriques classification of algebraic surfaces.

As elliptic curves are exactly the curves such that the homogeneous coordinates of
their points cannot be uniformized by polynomials, yet they can be uniformized by entire
holomorphic functions on C, hyperelliptic varieties of dimension n were generally defined
by Humbert and Picard through the entirely analogous property that the coordinates of
their points, although not uniformizable by rational functions, could be uniformized by
entire meromorphic functions on Cn.

Among these varieties are clearly (nowadays) the abelian varieties, and the classifica-
tion of such varieties in dimension two was achieved by Bagnera and de Franchis who
got the Bordin Prize in 1909 for their important result (the classification by Enriques
and Severi, who got the same prize for it the year before, had serious gaps which were
corrected only later on).

The missing surfaces, which are now called hyperelliptic, were described as quotients
of the product of two elliptic curves by the action of a finite group G. For this reason,
some authors call these surfaces bi-elliptic surfaces (cf. [5]).
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The classification is in the end very simple and produces a list of seven cases where
the Bagnera–de Franchis group G and its action is explicitly written down.

The reason to recall all this is that, as a matter of fact, an important ingredient in
the proof of our theorems is to rerun the arguments of the proof of the Classification
Theorem, which characterizes the hyperelliptic surfaces as the algebraic surfaces with nef
canonical divisor K, with K2 = pg = 0, q = 1, and moreover with Kodaira dimension
equal to 0. This is done in § 2.

To keep close in spirit to the beautiful result of Bagnera and de Franchis we felt
compelled to produce tables exhibiting simple and explicit actions for the 78 types of the
real hyperelliptic surfaces: these are contained in the last section, and they summarize a
lot of information that we could not give in a more expanded form.

Concerning now the Enriques classification of real algebraic surfaces, it has been
focused up to now mostly on the classification of the topology of the real parts, the
topological classification of real rational surfaces going back to Comessatti [16,17,20],
as well as the classification of real abelian varieties [20] (see also [40,41]).

In the case of real K3-surfaces we have the classification by Nikulin and Kharlamov [28,
38], for the real Enriques surfaces the one by Degtyarev and Kharlamov [21,22].

Finally, partial results on real ruled and elliptic surfaces have been obtained by Sil-
hol [41] and by Mangolte [35].

The paper is organized as follows. In § 2 we recall the description given by Bagnera and
de Franchis of the hyperelliptic surfaces as quotients of a product of two elliptic curves
E × F by the product action of a finite group G acting on E as a group of translations
and on F via an action whose quotient is P1.

G is called the Bagnera–de Franchis group (or symmetry group) and is a quotient of
the fundamental group of the surfaces S.

In § 3 we observe that the orbifold fundamental group has a finite quotient Ĝ which
contains G as a normal subgroup of index 2: Ĝ is called the extended Bagnera–de Franchis
group and its structure will be investigated in detail in § 5.

In the rest of § 3 we show that isomorphisms of real hyperelliptic surfaces lift to isomor-
phisms of the respective products of elliptic curves, compatibly with the identifications
of the respective extended Bagnera–de Franchis groups.

Section 4 is devoted first to showing that the representation of the orbifold fundamental
group as a group of affine transformations of Q4 is uniquely determined, up to isomor-
phism, by the abstract structure of the group, which proves Theorem 1.2 (by the way, we
show in the course of the proof a fact hardly mentioned in the literature, namely, that
the differentiable structure of a hyperelliptic surface is determined by the fundamental
group).

Second, after recalling quite briefly the notion of moduli spaces for real varieties, we
show that, once this affine representation is fixed, the moduli space for the compatible
complex structures is irreducible and connected.

Section 5 recalls some known facts about anti-holomorphic maps of elliptic curves and
applies these results to the determination of the possible extended Bagnera–de Franchis
group which do in effect occur.
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Section 6 determines the analytical actions of these groups on the two factors under
the condition that the exact sequence

1 → G → Ĝ → Z/2Z → 1

splits, while § 7 deals with the simpler case where there is no splitting.
Section 8 gives the recipe to identify the real part S(R) of our surfaces as a disjoint

union of Klein bottles and tori.
Finally, § 9 applies the results developed insofar and achieves the classification of the 78

components of the moduli space, for which explicit analytical representations, describing
the action of the extended Bagnera–de Franchis group, are given through a series of
tables.

2. Basics on hyperelliptic surfaces

In this section we recall (see [2, 3]; see also [5, Chapter VI, pp. 91–115], [4, pp. 147–
149]) the definition of hyperelliptic surfaces and their characterization in the realm of
the Enriques classification of complex algebraic surfaces. We shall also briefly recall the
main lines of the proof of the Bagnera–de Franchis Classification Theorem, since we shall
repeatedly need modified or sharper versions of the arguments used therein.

Definition 2.1. A complex surface S is said to be hyperelliptic if S ∼= (E×F )/G, where
E and F are elliptic curves and G is a finite group of translations of E with a faithful
action on F such that F/G ∼= P1.

G ⊂ Aut(F ), so G = T � G′ (semidirect product), where T is a group of translations
and G′ ⊂ Aut(F ) consists of group automorphisms. Since F/G ∼= P1, then G′ �= 0, hence
G′ ∼= Z/m, with m = 2, 3, 4, 6, by the following well-known result.

Fact 2.2. Let F be an elliptic curve. Every automorphism of F is the composite of a
translation and a group automorphism. The non-trivial group automorphisms are the
symmetry x 	→ −x and also

(i) for the curve Fi = C/(Z ⊕ Z · i), x 	→ ±ix;

(ii) for the curve Fρ = C/(Z ⊕ Z · ρ), where ρ3 = 1 �= ρ, x 	→ ±ρx and x 	→ ±ρ2x.

Since G is abelian, as a group of translations of E, the product T � G′ must be direct.
We have the following result.

Theorem 2.3 (Bagnera–de Franchis). Every hyperelliptic surface is one of the fol-
lowing, where E, F are elliptic curves and G is a group of translations of E acting on F

as specified:

(1) (E × F )/G, G = Z/2Z acting on F by symmetry.

(2) (E ×F )/G, G = Z/2Z⊕Z/2Z acting on F by x 	→ −x, x 	→ x+ ε, where ε belongs
to the group F2 of points of F of order 2.

https://doi.org/10.1017/S1474748003000070 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748003000070


176 F. Catanese and P. Frediani

(3) (E × Fi)/G, G = Z/4Z acting on Fi by x 	→ ix.

(4) (E × Fi)/G, G = Z/4Z ⊕ Z/2Z acting on Fi by x 	→ ix, x 	→ x + 1
2 (1 + i).

(5) (E × Fρ)/G, G = Z/3Z acting on Fρ by x 	→ ρx.

(6) (E × Fρ)/G, G = Z/3Z ⊕ Z/3Z acting on Fρ by x 	→ ρx, x 	→ x + 1
3 (1 − ρ).

(7) (E × Fρ)/G, G = Z/6Z acting on Fρ by x 	→ −ρx.

Hyperelliptic surfaces are algebraic surfaces with pg = 0, q = 1, K2 = 0, K nef.
We have the following basic result of the Enriques classification of surfaces (see [30])

(Kodaira indeed proved that the same result holds more generally for compact complex
surfaces provided one replaces the hypothesis q = 1 by b1 = 2).

Theorem 2.4. The complex surfaces S with K nef, K2 = 0, pg = 0, and such that
either S is algebraic with q = 1, or more generally b1 = 2, are hyperelliptic surfaces if
and only if kod(S) = 0 (this is equivalent to requiring that all the fibres of the Albanese
map be smooth of genus 1).

Proof. Let α : S → A be the Albanese map, q = 1, so that A is a curve of genus 1. Let
π : C → A be the universal covering and let us consider the pull-back diagram:

S̃

α̃

��

�� S

α

��
C

π �� A

All the fibres of α are smooth; therefore, the fibres of α̃ are also smooth. So α and α̃

are C∞ bundles, by Ehresmann’s Theorem. C is contractible, so S̃ is diffeomorphic to
the product C × F . Thus we obtain a holomorphic map (since we have in fact a locally
liftable holomorphic map f : C → H/PSL(2, Z), and C is simply connected),

f : C → H = {τ ∈ C | Im(τ) > 0}, t 	→ τ,

where
α̃−1(t) ∼= C/(Z ⊕ τZ).

By Liouville’s Theorem, we see that f is constant; therefore,

S̃ ∼= C × F.

If A = C/Λ, then S ∼= (C ×F )/Λ, where Λ acts on C by translations and on F by a map
µ : Λ → Aut(F ).

Let Γ := Aut(F )/ Aut0(F ), where Aut0(F ) are the automorphisms which are homo-
topic to the identity, and let ν : Λ → Γ be the induced map. We set Λ′ := ker ν,
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Γ ′ := ν(Λ). Then we get the following pull-back diagram:

S′ := S̃/Λ′

α′

��

ψ �� S = S′/Γ ′

α

��
A′ := C/Λ′ �� A = A′/Γ ′

Λ′ acts by translations on F , so it acts as the identity on H0(Ω1
F ). Then there exist

η, η′ ∈ H0(Ω1
S′) such that η ∧ η′ �≡ 0, thus KS′ ≡ 0 and q(S′) = 2, so S′ is a complex

torus. The map ψ : S′ → S is an unramified covering of degree m, where m ∈ {2, 3, 4, 6}.
Then mKS = ψ∗ψ

∗KS = ψ∗KS′ = 0. In particular, 12KS ≡ 0. The map α′ : S′ → A′ is
a fibre bundle on an elliptic curve and S′ is a complex torus of dimension 2. Since b1 = 2,
S is algebraic, and hence S′ is algebraic too and, by Poincaré’s Reducibility Theorem,
there exists a finite unramified covering A′′ → A′ yielding a product structure on the
pull-back S′′ of S′:

S′′ := A′′ ×A′ S′ ∼= A′′ × F

α′′

��

�� S′

α′

��
A′′ =: C/Λ′′ �� A′ = C/Λ′

Thus we have found that S ∼= (A′′ × F )/G, where G = Λ/Λ′′.
Moreover, by choosing the covering A′′ → A′ minimal with the above property, one

sees that E := A′′, F , G are as in the list by Bagnera–de Franchis. �

3. Real conjugations on hyperelliptic surfaces

Let us now suppose that S is a real hyperelliptic surface, i.e. there is an anti-holomorphic
involution σ : S → S, and we consider the isomorphism class of the pair (S, σ).

Since, by definition of the Albanese map α, once we fix a point x0 ∈ S, α(x) =
∫ x

x0
, we

obtain

α(σ(x)) =
∫ σ(x)

x0

=
∫ σ(x0)

x0

+
∫ σ(x)

σ(x0)
.

If we define

σ̄(γ) :=
∫ σ(x0)

x0

+σ∗(γ),

we get an induced anti-holomorphic map on the Albanese variety σ̄ : A → A with the
property that the following diagram commutes:

S

α

��

σ �� S

α

��
A = C/Λ

σ̄ �� A = C/Λ
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A direct calculation, or the remark that α(S) generates A and σ̄2 is the identity on
α(S), assures that σ̄ is an anti-holomorphic involution on A.

Notice that, if S(R) �= ∅, we may choose a point x0 with σ(x0) = x0, and then σ̄ will
be a group homomorphism.

We want to prove that σ lifts to a map σ̃ : A′′ × F → A′′ × F , where A′′ and F are as
in the proof of the previous theorem.

Observe that since we have the pull-back diagram

S′′ ∼= A′′ × F

α′′

��

φ �� S

α

��
A′′ = C/Λ′′ �� A = C/Λ

it suffices to prove that the involution σ̄ on A lifts to A′′.
In fact, σ then lifts to S′′ as a fibre product and so we have an induced action on

A′′ × F , preserving α′′.
We need the following result.

Lemma 3.1. Let π : Y → X be a connected covering space, and let g be a homeomor-
phism of X. Choose x0 ∈ X, y0 ∈ Y with π(y0) = x0, and let z0 = g(x0), w0 ∈ Y with
π(w0) = z0.

Then there exists a lifting g̃ of g with g̃(z0) = w0 if and only if, given a path δ̃ from y0

to w0 and setting δ = π ◦ δ̃, and considering the isomorphism ∆ : π1(X, z0)
∼=−→ π1(X, x0)

such that ∆(γ) = δγδ−1, and similarly ∆̃, we have

∆g∗(H) = H, where H = Hy0 = π∗(π1(Y, y0)).

Proof. Consider the diagram of pointed spaces:

(Y, y0)

π

��

(Y, w0)

π

��
(X, x0)

g �� (X, z0)

Then g̃ exists and it is unique if and only if g∗(Hy0) = Hw0 or, applying ∆, if and only if

∆g∗(Hy0) = π∗(∆̃π1(Y, w0)).

But ∆̃π1(Y, w0) = π1(Y, y0), and thus g̃ exists and is unique if and only if ∆g∗(H) = H.
�

Corollary 3.2. Under the above notation, there exists a lifting g̃ of g if and only if
∆g∗(H) is a conjugate of H.

Proof. There exists g̃ if and only if there exists w′
0 ∈ π−1(z0) such that ∆′g∗(H) = H.

This is equivalent to say that ∆g∗(H) is a conjugate of H (we conjugate by δδ′−1, where
δ′ = π ◦ δ̃′ and δ̃′ is a path from y0 to w′

0). �
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Corollary 3.3. There exists a lifting g̃ with a fixed point if and only if there exists
x0 ∈ Fix(g) and a conjugate subgroup H ′ of H such that g∗(H ′) = H ′.

Furthermore, if g has order n, then g̃ also has order n (since g̃n is a lifting of the
identity and has a fixed point).

Now we return to our situation.
Since the fundamental groups of S′ (respectively, S′′) give rise to subgroups of π1(S)

which are the pull-backs of π1(A′) (respectively, π1(A′′)) under the bundle homotopy
exact sequence

1 → π1(F ) → π1(S) → π1(A) → 1,

we obtain that they are preserved under σ∗ if and only if the corresponding subgroups
of π1(A) are preserved under σ̄∗.

In the latter case, all the fundamental groups are abelian and we need to prove that σ̄

lifts to A′′, or equivalently that Λ′′ is σ̄-invariant.
We observe that Λ′ is invariant by σ̄, since Λ′ is the kernel of the topological monodromy

ν : Λ → Γ = Aut(F )/ Aut0(F ), which is induced by α∗, and hence it is σ̄-equivariant.
We observe that while Λ′ is canonically defined as the kernel of the topological mon-

odromy of α, it is a priori not clear that Λ′′ can be canonically defined (we shall indeed
prove later that Λ′′ is the centre of the fundamental group of S).

However, using the list of Bagnera–de Franchis, case by case, we are going to see that
Λ′′ is a characteristic subgroup of Λ and therefore that it is σ̄-invariant.

In fact, in the Cases 1, 3, 5, 7 of the list of Bagnera–de Franchis (see 2.3), there is
nothing to prove, since we have Λ′′ = Λ′.

In Case 2, we find Λ′′ = 2Λ. In fact, we have G = Z/2Z × Z/2Z, acting on A′′ × F as

(x1, x2) 	→ (x1 + η,−x2),

(x1, x2) 	→ (x1 + η′, x2 + ε).

Analogously in Case 6, Λ′′ = 3Λ; in Case 4, Λ′′ = 2Λ ∩ Λ′. Therefore, we always find
that σ(Λ′′) = Λ′′ and thus we get a lifting

A′′ × F

��

σ̃ �� A′′ × F

��
S

σ �� S

Definition 3.4. The extended symmetry group Ĝ is the group generated by G and σ̃.

Ĝ is the group of homeomorphisms of S′′ which lift the group {1, σ}. Hence we have
the following extension that will be studied in the next section:

0 → G
i−→ Ĝ

π−→ Z/2Z → 1. (3.1)

With the same arguments as above. we obtain the following result.
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Theorem 3.5. Let (S1, σ1), (S2, σ2) be isomorphic real hyperelliptic surfaces (i.e. there
exists ψ : S1

∼=−→ S2 such that ψ−1σ2ψ = σ1). Then the respective extended symmetry
groups Ĝ are the same for S1 and S2. Moreover, let S1 = (E1 ×F1)/G, S2 = (E2 ×F2)/G

be two Bagnera–de Franchis realizations. Then there exists an isomorphism Ψ : E1×F1 →
E2×F2, of product type (i.e. Ψ = Ψ1×Ψ2), commuting with the action of Ĝ, and inducing
the given isomorphism ψ : S1

∼=−→ S2.

Proof. ψ induces an isomorphism ψ∗ of the Albanese varieties, which is compatible
with the anti-holomorphic involutions σ̄1 and σ̄2 and such that we have a commutative
diagram:

S1

α1

��

ψ �� S2

α2

��
A1

ψ∗ �� A2

Whence, by taking the coverings associated to the subgroups and points corresponding
under ψ and ψ∗, we obtain isomorphisms ψ̃, ψ1 and a commutative diagram:

S′′
1

α′′
1

��

ψ̃ �� S′′
2

α′′
2

��
A′′

1
ψ1 �� A′′

2

We observe that if (E1 × F1)/G is a Bagnera–de Franchis realization of S1, then
E1 ∼= A′′

1 and there is an isomorphism of (S′′
1 → A′′

1) with (E1 × F1 → E1), commuting
with the action of G.

We obtain therefore a commutative diagram

E1 × F1

��

ψ̃ �� E2 × F2

��
E1

ψ1 �� E2

where, moreover, ψ̃ and ψ1 are real.
Since ψ̃ preserves the fibres of the two projections, we have

ψ̃(e, f) = (ψ1(e), ψ2(e, f)).

Let us fix an origin 0 ∈ E1. Then, since ψ2 is an affine map, we can write

ψ2(e, f) = ψ2(0, f) + r(e),

where r is a holomorphic homomorphism r : E1 → Pic0(F2) (Pic0(F2) is the group of
translations of F2).
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By G-equivariance, for all g ∈ G ⊂ Pic0(E1), we have

ψ2(e + g, g(f)) = g(ψ2(0, f) + r(e)). (3.2)

But the left-hand side of (3.2) equals

ψ2(0, g(f)) + r(e + g) = ψ2(0, g(f)) + r(e) + r(g),

thus if we let g∗ be the linear part of the affine transformation g : F2 → F2, and we
compare the linear parts of both sides of (3.2) with respect to e, we obtain

g∗(r(e)) ≡ r(e).

Since there is a g ∈ G such that g∗ �= IdF2 , we infer that r(e) is constant, or equivalently
that ψ2(e, f) = ψ2(f). �

Proposition 3.6. Let (S = (E × F )/G, σ) be a real hyperelliptic surface, and let
σ̃ : E × F → E × F be a lifting of σ. Then the anti-holomorphic map σ̃ is of product
type.

Proof. As in the proof of the previous theorem, we have

σ̃(e, f) = (σ1(e), σ2(e, f)),

since σ̃ preserves the fibration onto E. Then, after choosing an origin 0 ∈ E, we have

σ2(e, f) = σ2(0, f) + r(e),

where r : E → Pic0(F ) is an anti-holomorphic homomorphism.
We know that σ̃ normalizes the group G. In particular, if we take some element g ∈ G,

such that g∗ �= IdF , σ̃ has a matrix (
a 0
b c

)
,

while

g∗ =

(
1 0
0 ξ

)
,

with ξ �= 1. We must have

(
a 0
b c

) (
1 0
0 ξ̄

) (
a 0
b c

)−1

=

(
1 0
0 θ

)
,

whence b = 0. �

Now we would like to see when the lifting σ̃ is an involution. Let us denote by
φ : A′′ × F → S the map in the diagram.
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Remark 3.7. Let σ̃ be a lifting of σ, we have two different cases.

(1) ∃z ∈ S such that σ(z) = z. Then, since the covering is Galois, for all z′ ∈ φ−1(z),
there exists a lifting σ̃ of σ such that σ̃(z′) = z′. But then σ̃2 lifts the identity and
has a fixed point; therefore, it is the identity.

(2) Fix(S) = ∅. Let z, w ∈ S, ∀z′ ∈ φ−1(z), ∀w′ ∈ φ−1(w), ∃! lifting σ̃, with σ̃(z′) = w′.

4. Orbifold fundamental groups and the topological type of a real hyperel-
liptic surface

Let (X, σ) be a smooth real variety of dimension n (i.e. X is a smooth complex manifold
of complex dimension n given together with an anti-holomorphic involution σ). Then
we have a double covering π : X → Y = X/〈σ〉 ramified on X ′ = X(R) = Fix(σ). Set
Y ′ := π(X ′).

We will define the orbifold fundamental group exact sequence of (X, σ) as the isomor-
phism class of a given extension

1 → π1(X, x0) → πorb
1 (Y, y0) → Z/2Z → 1. (4.1)

The choice of a base point will, however, create some technical difficulties.

Definition 4.1.

(1) If X ′ = ∅, then we define πorb
1 (Y, y0) = π1(Y, y0).

(2) If X ′ �= ∅ and x0 ∈ X ′, y0 = π(x0), σ acts on π1(X, x0) and we define πorb
1 (Y, y0) to

be the semidirect product of the normal subgroup π1(X, x0) with the cyclic group
of order 2 generated by an element which will be denoted by σ̃0 and whose action
on π1(X, x0) by conjugation is the one of σ.

(3) If n � 3, Y ′ �= ∅ and x0 �∈ X ′, define the orbifold fundamental group of Y based on
y0 as π1(Y − Y ′, y0).

(4) Assume x0 �∈ X ′, X ′ �= ∅ and dimC X = 2. Then the orbifold fundamental group of
Y with base point y0 = π(x0) is defined to be the quotient of π1(Y −Y ′, y0) by the
subgroup normally generated by γ2

1 , . . . , γ2
m, where Y ′

1 , . . . , Y ′
m are the connected

components of Y ′ and γi is a simple loop around Y ′
i .

Since in all cases we have a well-defined exact sequence

1 → π1(X, x0) → πorb
1 (Y, y0) → Z/2Z → 1,

this will be called the orbifold fundamental group exact sequence.

Proposition 4.2. The isomorphism class of the fundamental group exact sequence is
independent of the choice of y0.
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Proof. This is well known when comparing Cases 1, 3 and 4, which are mutually exclu-
sive.

In Case 2 (X ′ �= ∅) we claim that πorb
1 (Y, y0) is independent of the choice of x0 ∈ X ′.

In fact, let δ be a path connecting x0 with x1. Then the map

γ 	→ δ−1γδ

yields an isomorphism between π1(X, x0) and π1(X, x1). The action of σ on π1(X, x1)
reads out on π1(X, x0) as the composition

γ 	→ δ−1γδ 	→ σ(δ)−1σ(γ)σ(δ) 	→ δσ(δ)−1σ(γ)σ(δ)δ−1.

But this action is precisely the conjugation by σ̃1 := δσ(δ)−1σ̃0.
Since σ̃1 is an element of order 2, we obtain that the split extensions

1 → π1(X, x0) → πorb
1 (Y, y0) → Z/2Z → 1

and

1 → π1(X, x1) → πorb
1 (Y, y1) → Z/2Z → 1

are isomorphic.
To relate Case 2 with the other two, it suffices, once x0 ∈ X ′ and x1 are given, to

choose a splitting of the extension

1 → π1(X, x1) → πorb
1 (Y, y1) → Z/2Z → 1

simply by taking γj with j such that y0 ∈ Y ′
j . �

Remark 4.3. Let us explain the definition of πorb
1 (Y, y0) in the case where n � 2 and

x0 �∈ X ′.
X ′ is a real submanifold of codimension n, and hence the map

π1(X − X ′, x0) → π1(X, x0)

is surjective if n � 2 and it is an isomorphism for n � 3. The singularities of Y are
contained in Y ′ = π(X ′) and there we have a local model Rn×(Rn/(−1)). Therefore, Y is
smooth for n = 2 and topologically singular for n � 3. The local punctured fundamental
group π1(Y − Y ′)loc is isomorphic to Z for n = 2, while it is isomorphic to Z/2Z for
n � 3. This means that the kernel of the surjection

π1(Y − Y ′, y0) → π1(Y, y0)

is normally generated by loops γ around the components of Y ′. If n � 3, then we
automatically have γ2 = 1.

Let X̃ be the universal covering of X, so that X = X̃/π1(X). The exact sequence (4.1)
defines a group which is the group of liftings of the action of Z/2Z ∼= {IdX , σ} to X̃, so
that Y = X̃/πorb

1 (Y ).
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Remark 4.4. If X ′ �= ∅, then the exact sequence

1 → π1(X) → πorb
1 (Y ) → Z/2Z → 1

always splits, as follows by the definition.

Remark 4.5. The basic topological invariants of (X, σ) that we will use in this paper
are the topological invariants of X(R), the topological invariants of Y and πorb

1 (Y ).

We have the following result.

Theorem 4.6. Let (S, σ) be a real hyperelliptic surface. Then the topological and also
the differentiable type of the pair (S, σ) is completely determined by the orbifold funda-
mental group exact sequence.

Proof. We want first of all to show how Π := π1(S) determines the topological (actually
differentiable) type of the hyperelliptic surface S.

Consider the exact homotopy sequence associated with the covering ψ : S′ → S

described in the proof of Theorem 2.4.

1 → Ω′ = π1(S′) ∼= Z4 → Π → G′ → 1, (4.2)

where G′ = G/T and T is the subgroup of G acting by translations on E × F . Let us
look at the exact sequence

1 → Γ = [Π, Π] → Π → Λ = Π/[Π, Π] → 1. (4.3)

Since the homomorphism Π → Λ is the map of the fundamental groups associated to
the Albanese map (which is a fibre bundle), it follows that Γ ∼= Z2 is the fundamental
group of the fibre of α.

Ω′ is then the kernel of the action of Π on Γ by conjugation. In fact, Γ ⊂ Ω′ and
Ω′ is abelian. Moreover, by definition, the linear action of G′ on the tangent space to F

(which is Γ ⊗ R) is faithful.
Now Ω′ is a representation of G′ and Γ is a subrepresentation. An easy calculation

(using, for example, the Bagnera–de Franchis list) shows that (Ω′)G′
= Λ′′, which yields

a direct sum Ω = Λ′′ ⊕ Γ , such that Π/Ω = G. Notice that since Ω′ is abelian and
by (4.2), we know that (Ω′)G′

is the centre of Π, so Λ′′ is the centre of Π.
Since Ω ⊂ Ω′, the universal cover X̃ ∼= R4 of S is homeomorphic to Ω′ ⊗ R on which

Ω′ acts freely by translations. We have S ∼= (Ω′ ⊗R)/Π, thus it suffices to show that the
exact sequence (4.2) determines the action of Π on the universal covering Ω′ ⊗ R.

The action is given by a group of affine transformations of R4 and since Ω′ is the
subgroup of translations, the action of G′ on the torus Ω′ ⊗R/Ω′ has a linear part which
is determined by the conjugation action of G′ on Ω′.

Since G′ is cyclic, we may find a lifting λ(g) to Π of its generator g. Now, for all g′ ∈ G′,
we have a lifting λ(g′) in Π, and if m = |G′|, we have λ(g)m ∈ Ω′. Every element γ ∈ Π

can be uniquely written as ω′λ(g′), with ω′ ∈ Ω′, g′ ∈ G′.

https://doi.org/10.1017/S1474748003000070 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748003000070


Real hyperelliptic surfaces and the orbifold fundamental group 185

Since λ(g)m ∈ Ω′ and it is invariant by conjugation by λ(g), we have λ(g)m ∈
(Ω′)G′

= Λ′′. Therefore, we let g act on (Λ′′ ⊗ R) ⊕ (Γ ⊗ R) by

(e, f) 	→
(

e +
1
m

λ(g)m, g(f)
)

,

where g acts on Γ by conjugation.
It is immediate that the above action is precisely the one yielding S as (E × F )/G =

(Λ′′ ⊗ R ⊕ Γ ⊗ R)/Π and that the way we described it is completely dictated by Π as
an abstract group.

Thus we have proven that Π determines the topological type of S.
Let us now consider the ramified covering E × F → E × F/Ĝ, where Ĝ is the extended

symmetry group defined in (3.4). Then we have the following exact sequences:

1 → Ω → Π → G → 1,

‖ ∩ ∩
1 → Ω → Π̂ → Ĝ → 1,

where Π̂ is the orbifold fundamental group

1 → Ω′ → Π → G′ → 1,

‖ ∩ ∩
1 → Ω′ → Π̂ → Ĝ′ → 1.

We want to describe how Π̂ acts on Ω′ ⊗ R. In order to understand the action of Π̂,
it suffices to describe the action of a suitable element σ in Π̂ − Π. σ acts on Ω′ ⊗ R

by an affine transformation, v 	→ Av + b, of which we know the linear part A, which is
determined by the conjugation action of σ on Ω′.

On the other hand, we have σ2 ∈ Π. Therefore, we know the affine map σ2. Since we
have

σ2(v) = A2v + Ab + b =: A2v + b′,

we are able to determine b uniquely from A and b′, in the case in which (A + I) is
invertible.

We also know that σ is of product type and that A2 = A2
1 ⊕ A2

2 has the property that
A2

1 = I. Thus W = R2
1 = Λ′′ ⊗ R splits as a direct sum of eigenspaces W+ ⊕ W− and

we can recover the translation vector b+
1 by what we have remarked above. Whereas on

W− = Im(A1 − I) we can change coordinates by a translation in such a way that the
action of σ is linear on W−.

Let us now determine the second component A2. If (−1) is not an eigenvalue of A2, we
argue as before. Since σ is anti-holomorphic, (−1) is an eigenvalue of A2 if and only if
A2

2 = I. Therefore, it remains to treat the case in which A2
2 = I and (A2g)2 = I, ∀g ∈ G.

In this case, the second component of σ is given by σ2(x) = A2x + c. Let us consider
another element in Π̂ − Π, s = g ◦ σ, where g ∈ G is not a translation. We know the
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action of σ ◦ s and of s ◦ σ, since they are in Π,

σ2 ◦ s2(x) = A2(gA2x + c′) + c,

s2 ◦ σ2(x) = gA2(A2x + c) + c′ = gx + gA2c + c′.

Looking at the translation terms, we get knowledge of gA2c + c′ and A2c
′ + c.

We argue by looking at the rank of the matrix(
gA2 I

I A2

)
,

which is applied to the vector (
c

c′

)
.

It has the same rank as

rank

(
g I

A2 A2

)
= rank

(
g − I I

0 A2

)
= 2 + rank(g − I).

Then we are done, since (g − I) is invertible, because g is holomorphic and it is not
a translation, thus it does not have 1 as an eigenvalue. So the proof of the theorem is
concluded, since we have shown that the exact sequence of the orbifold fundamental
group completely determines the action of Π̂ on Ω ⊗ R. �

Corollary 4.7. The topological type of a real hyperelliptic surface (S, σ) determines the
following.

(1) The Bagnera–de Franchis group G.

(2) The extension 1 → G → Ĝ → Z/2Z → 1.

(3) The topological type of the action of (Ĝ ⊃ G) on E and F , or equivalently the
affine equivalence class of the representation of Π̂/Γ ⊃ Π/Γ on Λ′′ ⊗ Q and of
Π̂/Λ′′ ⊃ Π/Λ′′ on Γ ⊗ Q. In particular, it determines the topological type of the
real elliptic curve (E/G, Ĝ/G).

Remark 4.8. Notice that the representation ρ of Π̂ in the group of the affine transfor-
mations of Ω ⊗ Q takes values in A(2, Z, Q) × A(2, Z, Q), where

A(2, Z, Q) = {v 	→ Bv + β | B ∈ GL(2, Z), β ∈ Q2}.

We want now to discuss, in some greater generality than needed for our present pur-
poses, the notion of moduli space of real varieties. Since we will only assume that X is a
complex manifold, we have to adopt the point of view of Kodaira, Spencer and Kuranishi
(cf. [10,31,32]).

For a general complex manifold X, we have the Kuranishi family of deformations of
X, φ : X → B. Here, the base B of the Kuranishi family is a complex analytic subset of

https://doi.org/10.1017/S1474748003000070 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748003000070


Real hyperelliptic surfaces and the orbifold fundamental group 187

the vector space H1(X, ΘX), corresponding to the complex structures J , which satisfy
Kuranishi’s integrability equation.

If (X, σ) is real, we want to see when a neighbouring complex structure J is such that
the differentiable map σ remains anti-holomorphic (thus we get a deformation Xt of the
complex manifold X such that the new pair (Xt, σ) is still real).

The corresponding equation is simply

σ∗J = −Jσ∗,

or, equivalently,
−σ∗Jσ∗ = J.

We see immediately that this condition means that J lies in the fixed locus of the
involution induced by σ on the Kuranishi family.

Interpreting J as a harmonic representative of a Dolbeault cohomology class θ ∈
H1(X, ΘX), we are going to show, more precisely, that σ induces a complex anti-linear
involution σ∗ on the vector space H1(X, ΘX), such that the real part B(R) consists of
the deformations of X for which σ remains real.

Recall that the complex structure J0 of X induces a splitting of the complexified real
tangent bundle of X, TX ⊗ C = T 0,1 ⊕ T 1,0, where T 0,1 = T̄ 1,0.

The form θ = Σij̄θij̄(∂/∂zi ⊗ dz̄j) can be interpreted as yielding a linear map
θ′ : T 0,1 → T 1,0 and, accordingly a new subbundle,

T 1,0
θ = {(u, v) ∈ T 0,1 ⊕ T 1,0 | v = θ′(u)}.

θ′ is completely determined by the matrix φ = θij̄ and then the subspace

T 0,1
θ = {(u, v) ∈ T 0,1 ⊕ T 1,0 | u = θ̄′(v)},

where θ̄′ is determined by the matrix φ̄ = θ̄īj in the chosen coordinate basis.
Saying that σ is anti-holomorphic amounts to saying that its differential induces com-

plex linear isomorphisms σ∗ : T 0,1 → T 1,0 and σ∗ : T 1,0 → T 0,1, which are inverses and
conjugate to each other.

Thus, if A is the matrix of σ∗ : T 0,1 → T 1,0, A−1 = Ā is the matrix of σ∗ : T 1,0 → T 0,1.
We want now to write down the condition that σ be anti-holomorphic for the new

complex structure induced by the form θ.
Again, this means that σ∗ : T 1,0

θ → T 0,1
θ , i.e. that, for each vector u, the image

σ∗(u, θ′(u)) = (Āφ(u), A(u))

satisfies the equation of T 0,1
θ , namely, we have

Āφ(u) = φ̄A(u).

Again, we can equivalently define

σ∗(φ) := Aφ̄A.
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Write the above (since it must hold for each vector u) as

φ = σ∗(φ).

It is now obvious that σ∗ is complex anti-linear, and it is an involution since

σ∗2(φ) = AĀφĀA = φ.

By what we have shown above, it follows right away that B(R), being the intersection
of a complex analytic space with the fixed part of a complex anti-linear involution, is a
real analytic space.

In general, by a result of Wavrik [46], if the function h : B → Z given by

h(t) = h0(Xt, ΘXt)

is constant on the germ B, then the quotient

B/ Aut(X)

is a local moduli space.
The group Aut(X) does not, however, act on the set B(R). Therefore, we take the

smaller subgroup
Autσ(X) := {φ ∈ Aut(X) | φ∗(σ) = σ},

where
φ∗(σ) := φσφ−1.

We can finally define the real local moduli space as follows.

Definition 4.9. Under the assumption that the function h0(Xt, ΘXt) is constant on
the base of the Kuranishi family, the real local moduli space of (X, σ) is defined as the
quotient

B(R)/ Autσ(X).

Remark 4.10. Therefore, the real local moduli space is just a real semi-algebraic space,
and it maps neither surjectively nor one-to-one to the real part of the complex local
moduli space.

Remark 4.11. Once we have local moduli spaces for the varieties or manifolds under
consideration, the standard procedure is to consider the global moduli space as the set
of isomorphism classes of such varieties and to use the local moduli spaces as giving
local charts. For instance, if we have local moduli spaces for a certain class of complex
manifolds, these charts provided by the local moduli spaces yield, for our global moduli
space, the structure of a complex analytic space, possibly non-Hausdorff.

Likewise, for real algebraic varieties such that Wavrik’s condition holds, the global
moduli space is a semi-analytic space.

Now, one can give different definitions for polarized algebraic varieties, and again one
has to distinguish between the real part of the quotient of a Hilbert scheme, and the
quotient of its real part. However, the approach via the Kuranishi family is particularly
suitable for the case of hyperelliptic surfaces, as we are going now to see.
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Theorem 4.12. The moduli space of real hyperelliptic surfaces of a given topological
type is irreducible.

Proof. Let us fix an orbifold fundamental group Π̂. Then Theorem 4.6 and Corollary 4.7
tell us that Π̂ determine the representation ρ : Π̂ → A(2, Z, Q)2. Such a representation
induces a representation of Ĝ′ into GL(2, Z)2,

Ĝ′ (λ1,λ2)−−−−−→ GL(2, Z)2,

where Ĝ′ is the group fitting into the exact sequence

1 → G′ → Ĝ′ → Z/2Z → 1. (4.4)

We observe that giving a hyperelliptic surface with the given topological type amounts
to giving two complex structures J1, J2 on Z2 ⊗ Q such that λi(G′) consists of C-linear
maps, whereas λi(Ĝ′ − G′) consists of C-anti-linear maps (i = 1, 2).

Therefore, we have to solve the following problem. Given a representation λ : Ĝ′ →
GL(2, Z), find all the complex structures J such that, for a generator g′ of G′, we have

λ(g′)J = Jλ(g′),

and for a σ �∈ G′, we have

λ(σ)J = −Jλ(σ).

We have, of course, to keep in mind that if M is a fixed differentiable manifold with
an involution σ : M → M , and we look for the complex structures J which make σ an
anti-holomorphic involution, for each solution J we shall also find the solution −J .

But, as we already remarked in § 1, σ provides an isomorphism between the complex
manifolds (M, J) and (M, −J), and clearly it conjugates the involution σ to itself.

Therefore, if we shall see that the parameter space for our complex structures J will
consist of exactly two irreducible components, exchanged by the involution J → −J , it
will follow that the moduli space is irreducible.

We shall prove in the next section that the extension (4.4) always splits (see Corol-
lary 5.3); therefore, we may assume that σ2 = 1. In particular, we can find a basis in
such a way that either

ζ := λ(σ) =

(
1 0
0 −1

)

or

ζ =

(
0 1
1 0

)
.

If we now set B := λ(g′), since G′ ∼= Z/qZ for q = 2, 3, 4, 6, we have either ζBζ = B

or ζBζ = B−1. We have two different cases.
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Case I. We have

ζ := λ(σ) =

(
1 0
0 −1

)
.

Then, if we set

B = λ(g′) =

(
b11 b12

b21 b22

)
,

we have again two cases:

(1) ζBζ = B; and

(2) ζBζ = B−1.

In case 1, we find (
b11 b12

b21 b22

)
=

(
b11 −b12

−b21 b22

)
,

whence, since det(B) = 1, we have B = ± Id. But we shall see in Lemma 5.8 that this
case occurs if and only if q = 2 and B = − Id.

In Case 2, we find (
b11 −b12

−b21 b22

)
=

(
b22 −b12

−b21 b11

)
,

whence b11 = b22 =: b, b2 − b12b21 = 1, the characteristic polynomial is λ2 − 2bλ + 1. But
since either B = − Id or B has no real eigenvalues, b2 − 1 < 0. Thus b = 0, whence

B = ±
(

0 −1
1 0

)

and we may assume

B =

(
0 −1
1 0

)

by changing the choice of a generator of G′.

Case II. We have

ζ =

(
0 1
1 0

)
.

We then again have the two cases 1 and 2.

Case II.1. We find (
b11 b12

b21 b22

)
=

(
b22 b21

b12 b11

)
,

thus

B =

(
b c

c b

)
,
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and since det(B) = b2 − c2 = 1, we have b + c = ±1, b − c = ±1, whence c = 0 and
B = − Id.

Case II.2. We have (
b22 b21

b12 b11

)
=

(
b22 −b12

−b21 b11

)
,

which yields

B =

(
b11 c

−c b22

)
.

But b11b22 + c2 = 1, thus either c = 0 and B = − Id, or b11b22 � 0.
If c = ±1, b11b22 = 0. By exchanging the two basis vectors e1 and e2, we may assume

c = −1 and, by replacing B with B−1, we can assume b22 = 0.
Thus

B =

(
b −1
1 0

)

and either b = ±1 if G′ = Z/6Z or G′ = Z/3Z, or b = 0,

B =

(
0 −1
1 0

)

if G′ = Z/4Z.
Assume then that |c| � 2. Since Bq = 1 (q = 2, 3, 4, 6), we have |b11 + b22| < 2, else

B = ± Id, which implies c = 0; absurd.
Thus we have two possible cases,

b11 + b22 = 0,

b11 + b22 = ±1.

In the first case, we find

B =

(
b c

−c −b

)

and −b2 + c2 = 1, thus b = 0, c = ±1; a contradiction.
In the second case, the matrix B has the form(

b c

−c ±1 − b

)
,

we may assume b > 0, and we have ±b − b2 + c2 = 1.
The equation ±b − b2 + c2 = 1 is equivalent to c2 = 1 + b2 ∓ b = (b ∓ 1)2 ± b, whence

±b = (c − b ± 1)(c + b ∓ 1). Taking absolute values in the last equation, we see that we
cannot have |c| � 2.
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We have therefore obtained the following possibilities for ζ and B.

Case I.1: ζ =

(
1 0
0 −1

)
, B = − Id .

Case I.2: ζ =

(
1 0
0 −1

)
, B = − Id or B =

(
0 −1
1 0

)
.

Case II.1: ζ =

(
0 1
1 0

)
, B = − Id .

Case II.2: ζ =

(
0 1
1 0

)
, B = − Id or B =

(
1 −1
1 0

)

or B =

(
−1 −1
1 0

)

or B =

(
0 −1
1 0

)
.

We now look for a complex structure

J =

(
d11 d12

d21 d22

)

such that

ζJζ = −J,

BJ = JB.

Case I. The first equation reads(
d11 −d12

−d21 d22

)
= −J.

Thus d11 = d22 = 0, and since the characteristic polynomial for J is λ2 + 1, we have
det(J) = 1, equivalently, d12d21 = −1, whence J has the form(

0 −d

1/d 0

)
.

Whence, as promised, the parameter space consists of the two branches of a hyperbola,
which are exchanged by multiplication by −1.

Case II. The equation ζJζ = −J reads(
d22 d21

d12 d11

)
= −J.
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Thus we obtain

J =

(
a b

−b −a

)
,

with a2 − b2 = −1. Whence we can write a = 1
2 (c − 1/c), b = 1

2 (c + 1/c) and the conclu-
sion is exactly as before.

Let us now consider the commutation relation BJ = JB.
If B = − Id, it is obviously verified.
If

B =

(
0 −1
1 0

)
,

we have Cases I and II.
In Case I, the commutation relation yields(

−d 0
0 −1/d

)
=

(
−1/d 0

0 −d

)
,

whence d2 = 1, i.e. d = ±1,

J = ±
(

0 1
−1 0

)
.

In Case II, the commutation relation yields(
b −a

−a b

)
=

(
b a

a b

)
,

whence a = 0 and b2 = 1, i.e. b = ±1,

J = ±
(

0 1
−1 0

)
.

Assume now that

B =

(
1 −1
1 0

)
.

Then we are in Case II and the commutation relation reads(
a + b a + b

a b

)
=

(
a + b −a

−a − b b

)
,

whence b = −2a and since b2 − a2 = 1, we have a = ±1/
√

3.
We observe that if J commutes with B, it also commutes with B2. Thus, up to a base

change, we have also solved the case G′ = Z/3Z. �
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5. The extended symmetry group

In this section we want to describe the extended Bagnera–de Franchis group, fitting into
the exact sequence (3.1),

0 → G
i−→ Ĝ

π−→ Z/2Z → 1.

Since G is a normal abelian subgroup of Ĝ, conjugation induces an action of
Ĝ/G = Z/2Z on G.

Recall that once such an action is specified, the equivalence classes of such extensions
are in bijective correspondence with the elements of

H2(Z/2Z, G) =
ker(σ − 1)
(1 + σ)G

=
GZ/2

(1 + σ)G
,

where Z/2Z = 〈σ〉.
Let us consider the anti-holomorphic elements of the extended Bagnera–de Franchis

group, which will be denoted by σ̃ (they are the liftings of σ in Ĝ). We showed in
Proposition 3.6 that their action is also of product type, whence we can restrict our
preliminary investigation to the question: which extended Bagnera–de Franchis groups
act as a group of diholomorphic automorphisms of an elliptic curve?

Definition 5.1. A diholomorphic action of an extended Bagnera–de Franchis group Ĝ

on an elliptic curve is an action such that G is precisely the subgroup of holomorphic
automorphisms in Ĝ, while the elements in Ĝ − G act as anti-holomorphic automor-
phisms.

Lemma 5.2. Consider a di-holomorphic action of an extended Bagnera–de Franchis
group Ĝ on an elliptic curve. Then the square of an anti-holomorphic map σ̃ in Ĝ is a
translation.

Proof. Let σ̃2 = g ∈ G. Passing to the universal cover, we can write

σ̃(z) = az̄ + b.

We then have
σ̃2(z) = aāz + ab̄ + b = g(z).

We know that g(z) = ξz + c with ξn = 1, n = |G|.
Since ξ = |a|2 ∈ R>0, we obtain ξ = 1. �

Corollary 5.3. If the group G is cyclic, then the extension (3.1) always splits.

Proof. Since G = G′, for any lifting σ̃ of σ, we must have

σ̃2 = Id ∈ G,

so (3.1) splits. �
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We want now to recall the description of the anti-holomorphic maps σ acting on an
elliptic curve C, whose square σ2 is a translation.

Write

C = C/Γ,

σ(z) = az̄ + b,

σ2(z) = aāz + ab̄ + b.

Whence
|a|2 = 1. (5.1)

The following condition must be verified,

aΓ̄ = Γ,

which is clearly equivalent to the existence of integers m, n, m′, n′ such that

a = m + nτ ∈ Γ, (5.2)

aτ̄ = m′ + n′τ, m′, n′ ∈ Z, with mn′ − nm′ = −1. (5.3)

We may rewrite (5.1) as

(m + nτ)(m + nτ̄) = m2 + n2|τ |2 + mn(τ + τ̄) = 1. (5.4)

We may assume that τ lies in the modular triangle, i.e. that

|τ | � 1, | Re τ | � 1
2 .

Then Im(τ) � 1
2

√
3, and since a = m + nτ , Im(a) = n Im(τ) � 1, and we conclude

that |n| � 1.

Remark 5.4. Exactly the following cases are the cases which occur.

(i) n = 0. Then, since |a| = 1,
m = a = −n′ = ±1.

Moreover, equation (5.3) tells us that 2(Re)τ = −n′m′, whence we either have

Re(τ) = 0

or

Re(τ) = − 1
2 .

(ii) Observing that if |n| = 1, by (5.4), we infer that

m2 + 1 � m2 + |τ |2 = 1 ± (τ + τ̄) � 1 + |m|,

and thus |m| � 1, |τ | = 1, giving rise to the following two cases.

https://doi.org/10.1017/S1474748003000070 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748003000070


196 F. Catanese and P. Frediani

(1) |n| = 1, m = 0, |τ | = 1 (thus a = ±τ).

(2) |n| = 1, |m| = 1, |τ | = 1 and since 1 + |τ |2 = 1 − mn(τ + τ̄), we may also
assume that

Re(τ) = − 1
2 ,

and thus m = n, a = m(1 + τ).

Lemma 5.5. Assume now that σ is an anti-holomorphism of an elliptic curve whose
square is a translation of finite order d. Then we may choose the origin in the universal
cover C in such a way that σ(z) = az̄ + b, with a as above,

b ∈ (1/d)Z for a �= ±1,

b ∈
(

1
2d

)
Z if a = 1,

b ∈
(

1
2d

)
Z(τ) for a = −1, Re τ = 0,

b ∈
(

1
2d

)
Z(2τ + 1) for a = −1, Re τ = − 1

2 .

Assume further that d = 1, i.e. that σ is an involution. Then, obviously, we may get
b = 0 if and only if Fix(σ) �= ∅.

Fix(σ) = ∅ if and only if Re(τ) = 0 and we may choose the origin in such a way that
b = 1

2 for a = 1, or b = 1
2τ for a = −1.

Moreover, σ normalizes a finite group of translations T if and only if, identifying T

with a subgroup of C, aT̄ = T .

Proof. We first look for a vector w such that

aw̄ − w + b := β

be either a real vector, or an imaginary vector.
We therefore look at the image of the linear map

w → aw̄ − w.

Its complexification C ⊗ C → C ⊗ C has a matrix(
−1 a

ā −1

)
,

whose determinant is zero, whence the image of the above linear map equals R(a−1) for
a �= 1, and Ri(Im τ) for a = 1. We can therefore achieve that β is a real vector, unless a

is real, a �= 1, i.e. a = −1, in which case, we can achieve that β is an imaginary vector.
Since

σ2(z) = z + aβ̄ + β,
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if β is real, we get
2β ∈ (1/d)Z if a = 1.

If a �= ±1 and β is real, then we have

(1 ± τ)β ∈ (1/d)Γ,

so
β ∈ (1/d)Z.

If a = −1 and β is imaginary, then

2β ∈ (1/d)Γ

and the first assertion follows.
If d = 1 and a �= ±1, then β ∈ Z ⊂ Γ , thus there is a fixed point. Otherwise, we

observe that if Re(τ) = − 1
2 , the involutions

z 	→ z̄ + 1
2 ,

z 	→ −z̄ + 1
2 + τ = −z̄ + i Im(τ)

have, respectively, 1
2 i Im(τ), 1

4 as fixed points, thus in both cases we can assume β = 0.
It is immediate to verify that if Re(τ) = 0 and a = 1, b = 1

2 , or a = −1, b = 1
2τ , there

are no fixed points.
The third assertion follows from the fact that

σ−1(z) = az̄ − ab̄,

whence, for a translation z → z + c, conjugation by σ yields z → z + ac̄. �

Remark 5.6. Assume now that σ is an anti-holomorphic involution of an elliptic curve
C, as in the previous lemma. Then there are only three possible topological types for the
action of σ on C.

(i) Fix(σ) = ∅.

(ii) Fix(σ) is homeomorphic to S1. This occurs if

|τ | = 1, a = ±τ

or if
Re(τ) = − 1

2 , a = ±1, b = 0.

(iii) Fix(σ) has two connected components homeomorphic to S1. This occurs if

Re(τ) = 0, a = ±1, b = 0.
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Proof. Fix(σ) = ∅. By Lemma 5.5, there are only two cases. They are obviously topo-
logical equivalent (exchange the two basis vectors of Γ , 1 and τ).

If Fix(σ) �= ∅, then we may assume b = 0, and the topological type is completely
determined by the integral conjugacy class of the matrix

A =

(
m m′

n n′

)
,

whose square is the identity and which has 1 and −1 as eigenvalues.
If A is diagonalizable, then Fix(σ) has two connected components homeomorphic to

S1, otherwise A is conjugated to the matrix(
0 1
1 0

)

and Fix(σ) is homeomorphic to S1. �

Remark 5.7. Let G be a Bagnera–de Franchis group. Then G has a first incarnation as
a group of translations of E, and a second one as a direct product

G = G′ × T,

where T is a group of translation and G′ is cyclic and a subgroup of the multiplicative
group. If Ĝ is an extended Bagnera–de Franchis group, we let σ be an element in Ĝ − G:
it conjugates G, sending T to itself. In the first incarnation, group conjugation is given,
as we saw in the previous lemma, by complex conjugation followed by multiplication by
a (if σ acts by σ(z) = az̄ + b).

It follows that the extension

0 → G → Ĝ → Z/2Z → 0

splits if and only if, c′ being the translation vector of σ2, then c′ lies in the image of the
endomorphism of G given by s + Id, s being the action of σ. In the second incarnation,
let

z → ξz

be a generator g′ of G′ and let σ(z) = az̄ + b. Then σ conjugates g′ to the transformation

z → ξ̄z + a(ξ̄ − 1)b̄.

Whence, if the action of σ on G′ by conjugation is trivial, then

G′ ∼= Z/2Z and 2b ∈ Γ.

Proof. We only need to remark that ac̄ ∈ Γ holds if and only if c ∈ Γ . �

We can now give the list of all the possible groups Ĝ.
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Lemma 5.8. Let us consider the extension (3.1),

0 → G → Ĝ → Z/2Z = 〈σ〉 → 0.

We have the following possibilities for the action of σ on G.

(1) If G = Z/2Z, then
Ĝ = Z/2Z × Z/2Z.

(2) If G = Z/2Z × Z/2Z, then either σ acts as the identity on G and

Ĝ = Z/2Z × Z/2Z × Z/2Z,

if (3.1) splits,
Ĝ = Z/4Z × Z/2Z

if (3.1) does not split, and in this latter case the square of σ is the generator of T .

Or σ acts as (
1 0
1 1

)
,

the sequence splits,
Ĝ = D4,

the dihedral group, and again the square of the generator of Z/4Z is the generator
of T .

(3) If G = Z/4Z, then σ acts as − Id on G and

Ĝ = D4.

(4) If G = Z/4Z × Z/2Z, then either

Ĝ = T × D4 ∼= Z/2Z × D4

or Ĝ is isomorphic to the group

G1 := 〈σ, g, t | σ2 = 1, g4 = 1, t2 = 1, tσ = σt, tg = gt, σg = g−1tσ〉,

and its action on the second elliptic curve F is generated by the following transfor-
mations:

σ(z) = z̄ + 1
2 , g(z) = iz, t(z) = z + 1

2 (1 + i).

The group G1 is classically denoted by c1 (cf. [26, p. 39]).

In particular, in both cases, sequence (3.1) splits.

(5) If G = Z/3Z, then σ acts as − Id on G and

Ĝ = S3.
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(6) If G = Z/3Z × Z/3Z, then we may choose G′ so that σ acts as − Id × Id on
G = G′ × T and

Ĝ = S3 × Z/3Z.

(7) If G = Z/6Z, then σ acts as − Id on G and

Ĝ = D6.

Proof. Thanks to (5.3), we know that in the Cases 1, 3, 5, 7, the sequence (3.1) splits.

Case 1. If G = Z/2Z, then σ acts as the identity on G, whence Ĝ = Z/2Z × Z/2Z.

Cases 3, 5, 7. From the previous remark, we can immediately determine Ĝ in these
cases where G is, respectively, equal to Z/4Z, Z/3Z, Z/6Z. In fact, |ξ| = 1, whence
ξ̄ = ξ−1. Thus σ acts as − Id on G = G′, the extension splits and Ĝ is a dihedral group,
respectively, D4, D3 = S3, D6.

Case 6. (G = Z/3Z × Z/3Z.) Any element σ of order 2 makes (3.1) split.
Since T = Z/3Z is invariant and σ acts as −1 on G/T , we can take eigenspaces T and

G′ such that σ acts on G′ as − Id and as + Id or − Id on T . The second case is not
possible, since, looking at the first incarnation, we obtain that the two eigenvalues of the
action of σ on the lattice Γ of E (either equal to 1 or −1) reduce to −1 modulo 3, thus
they equal −1 and σ acts holomorphically; a contradiction.

Case 2. (G = Z/2Z × Z/2Z.) σ acts on G and trivially on T = Z/2Z, whence either
the action is the identity, or is given by(

1 0
1 1

)
.

In the latter case, since, as we noticed,

H2(Z/2Z, G) =
ker(σ − 1)
(1 + σ)G

,

then
H2(Z/2Z, G) = 0,

so the extension splits and Ĝ = D4 (and an element of order 4 is given by σe1, whose
square is indeed e2, the generator of T ).

If σ acts as the identity on G, Ĝ is abelian, and the exact sequence splits if and only
if there is no element of order 4. Hence the only possibilities for Ĝ are the following:

(i) Ĝ = Z/2Z × Z/2Z × Z/2Z, and the sequence splits;

(ii) Ĝ = Z/4Z × Z/2Z.

In the latter case, we recall that by Lemma 5.2 the square of σ is the generator of T .
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Case 4. (G is, non-canonically, isomorphic to Z/4Z × T , with T ∼= Z/2Z.) σ2 belongs
to T . Moreover, σ acts as Id on T and as − Id on G/T .

Case 4.I. There is an element g such that σgσ−1 = g−1. In this case, for each g ∈ G,
we get

(σg)2 = σgσ−1g(σ)2 = (σ)2

because Id +s = 0.
Whence, we distinguish two cases.

Case 4.I.a. ((σ)2 = 1.) Here, it follows right away that

Ĝ ∼= T ⊕ D4.

Case 4.I.b. ((σ)2 = t, t being the generator of T .) This case can be excluded as
follows. First of all, notice that for the elliptic curve F we have τ = i, and t equal to the
translation by the half-period 1

2 (1 + i).
We have σgσ−1 = g−1 for each element of order 4, in particular, for the multiplication

by i. Furthermore, up to multiplying σ by a power of the above element, we may assume
(cf. the discussion preceding Lemma 5.5) that a = 1, i.e. that σ(z) = z̄ + b.

Then our conjugation relation reads out as follows,

a(−1 − i)b̄ ≡ 0 (mod Γ ),

or, more simply, as

(1 + i)b̄ ≡ 0 (mod Γ ).

Whence b is a half-period b = 1
2 (x + iy) (x, y ∈ Z) and the above condition means that

x + y ≡ 0 (mod 2).
But a previous calculation shows that the square of σ is a translation by

ab̄ + b = x ≡ 0 (mod Γ ),

contradicting (σ)2 = t.
There remains the following case.

Case 4.II. (σgσ−1 = g−1t.) In this case, we can always choose σ such that (σ)2 = 1.
In fact, if (σ)2 = t, then

(σg)2 = σgσ−1g(σ)2 = g−1tg(σ)2 = g−1tgt = 1.

Again, here, σgσ−1 = g−1t for each element of order 4 in G. As in Case 4.I.b, we
choose g as the element given (on F ) by multiplication by i, and we have that t is the
translation by the half-period 1

2 (1 + i).
In this case, however, we can only multiply σ by the square of g, whence we may only

assume a = 1 or a = i.
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Table 1.

case a

Re(τ) = 0, |τ | > 1 ±1
τ = i 1 ≡ −1
τ = i i ≡ −i

|τ | = 1, − 1
2 < Re(τ) < 0 ±τ

τ = ρ 1 ≡ ρ ≡ ρ2

τ = ρ −1 ≡ −ρ ≡ −ρ2

Re(τ) = − 1
2 , |τ | > 1 ±1

Since we are assuming (σ)2 = 1, we get that ab̄ + b ≡ 0 (mod Γ ). Furthermore,
σgσ−1 = g−1t reads, if σ(z) = az̄ + b, as follows,

(∗∗) − a(1 + i)b̄ ≡ 1/2(1 + i) (modΓ ),

i.e.
(1 + i)[ab̄ + 1

2 ] ∈ Γ,

whence, as before, b is a half-period b = 1
2 (x + iy) (x, y ∈ Z), and (∗∗) simply means

x + y ≡ 1 (mod 2).
Up to exchanging σ with σt, we may assume x = 1, y = 0 and either

σ(z) = z̄ + 1
2

or

σ(z) = iz̄ + 1
2 .

However, the condition ab̄ + b ≡ 0 (mod Γ ) is only verified in the former case.
Our group Ĝ is generated by elements t, σ of order 2, g of order 4, t, g2 are in the centre.

Moreover, the relation σgσ−1 = g−1t holds. Ĝ is thus isomorphic to the group G1. �

6. The split case

In the next two sections we shall collect a number of auxiliary results (for instance,
showing that certain cases cannot occur) upon which the classification tables in § 9 are
based.

In this section we first treat the case in which the extension (3.1)

0 → G
i−→ Ĝ

π−→ Z/2Z → 1,

that we studied in the last section, splits.
Let σ be an anti-holomorphic involution on an elliptic curve C.
For the reader’s convenience, we reproduce once more (see Remark 5.4) the list of the

possible linear parts of the anti-holomorphic maps σ with σ2 equal to a translation.
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In Table 1 we have used the fact that if τ = i, by conjugating with the automorphism
of C given by multiplication by i, we can reduce the case a = −1 to the case a = 1, and
the case a = i to the case a = −i.

Analogously, if τ = ρ, by conjugating with the automorphisms of C given by multi-
plication by ρ, or by ρ2, we can reduce the cases a = ρ, ρ2 to the case a = 1, the cases
a = −ρ,−ρ2 to the case a = −1.

First of all, we consider the action of Ĝ on the curve E. Let σ(z) = az̄ + b be any
anti-holomorphic involution of Ĝ acting on E. By Lemma 5.5, we know that we have the
following possibilities for b: if Re(τ) = 0, a = 1, we have b = 0, 1

2 ; if Re(τ) = 0, a = −1,
we have b = 0, 1

2τ ; if |τ | = 1, or Re(τ) = − 1
2 , we can assume b = 0.

Definition 6.1. We call Cases 1, 3, 5, 7 of Lemma 5.8 the simple dihedral cases: they
are characterized by the property that G = Z/qZ, Ĝ = Dq (where we have, respectively,
q = 2, 4, 3, 6).

Remark 6.2. In a dihedral case with G = Z/qZ, Ĝ = Dq, Ĝ is generated by elements g

and σ, where g acts on E by g(z) = z + c, c being a torsion element in Pic0(E) of order
precisely q and such that ac̄ ≡ −c (mod Γ ).

Proof. We choose generators σ and g such that σ ◦ g ≡ g−1 ◦ σ, equivalently ac̄ ≡ −c

(mod Γ ). �

Lemma 6.3. The subgroup Hq of Pic0(E)q on which σ acts as − Id is isomorphic to
Z/qZ if and only if either

|τ | = 1, a = ±τ, q = 2, 4, 3, 6,

or

Re(τ) = − 1
2 , a = ±1, q = 2, 4, 3, 6,

or

Re(τ) = 0, a = ±1, q = 3.

If Re(τ) = 0, a = ±1, q = 2, 4, 6, then Hq is isomorphic to Z/qZ × Z/2Z.

Proof. We know that the map z 	→ az̄ is represented by a matrix of the form(
m m′

n n′

)

on Z ⊕ Zτ , hence the action on Pic0(E) with basis 1/q, τ/q is given by the reduction
modulo q of the above integral matrix.

We have to solve the equation ac̄ + c ≡ 0 (mod Γ ), with c ∈ Pic0(E)q, so we consider
the kernel of the reduction of the matrix

M =

(
m + 1 m′

n n′ + 1

)

modulo q.
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For |τ | = 1, a = ±τ , we have

m = n′ = 0, n = m′ = ±1,

while for Re(τ) = − 1
2 , a = ±1, we have

n = 0, m = ±1, n′ = m′ = −m,

therefore, the kernel of the linear map az̄ + z on Pic0(E)q is isomorphic to Z/qZ.
It remains to consider the case Re(τ) = 0, a = ±1. We have

n = m′ = 0, m = ±1, n′ = −m.

So, if a = 1,

M =

(
2 0
0 0

)
,

and if a = −1,

M =

(
0 0
0 2

)
.

This tells us that the kernel of M is isomorphic to Z/3Z if q = 3, while it is isomorphic
to Z/2Z × Z/qZ if q = 2, 4, 6. �

Lemma 6.4. If G = Z/2Z × Z/2Z and Ĝ = Z/2Z × Z/2Z × Z/2Z, we must have

Re(τ) = 0, a = ±1,

and b = 0, 1
2 for the case a = 1, b = 0, 1

2τ for the case a = −1.
If G = Z/2Z × Z/2Z and Ĝ = D4, we have either

|τ | = 1, a = ±τ,

or

Re(τ) = − 1
2 , a = ±1.

Proof. If G = Z/2Z × Z/2Z and Ĝ = Z/2Z × Z/2Z × Z/2Z, since Ĝ is abelian, the map
d 	→ ad̄ is the identity on the points of two torsion and one can easily see (cf. the proof
of the previous lemma) that this can happen if and only if Re(τ) = 0 and a = ±1.

If G = Z/2Z × Z/2Z, Ĝ = D4, we know from Lemma 5.8 that σ acts as(
1 0
1 1

)

on the points of two torsion of E. Then we have either |τ | = 1, a = ±τ or Re(τ) = − 1
2 ,

a = ±1. �
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Lemma 6.5. If G = Z/4Z × Z/2Z, then again we must have

Re(τ) = 0, a = ±1,

and b = 0, 1
2 for the case a = 1, b = 0, 1

2τ for the case a = −1.
For the case

Ĝ ∼= T × D4 ∼= Z/2Z × D4,

the subgroup G ⊂ Pic0(E)4 consists of the points c of four torsion satisfying the equation
ac̄ ≡ −c.

For the case Ĝ = G1, we can choose generators of Ĝ,

σ(z) = az̄ + b, g(z) = z + η, t(z) = z + ε,

with η of order 4, ε of order 2, such that

(i) if a = 1, ε = 1
2 and η = 1

4 + 1
4τ , b = 0, 1

2 ;

(ii) if a = −1, ε = 1
2τ , η = 1

4 + 1
4τ , b = 0, 1

2τ .

Proof. In both cases, the action of σ on Pic0(E)2 ⊂ G is trivial, whence we get the
same conditions upon a, b, τ as in the previous lemma.

Let g be any element in G of order 4. Then the following relations hold,

σ ◦ g = g−1 ◦ σ

for the case Ĝ = Z/2Z × D4,

σ ◦ g = g−1t ◦ σ

for the case Ĝ = G1 (where t is the generator of T ).
If Ĝ ∼= Z/2Z × D4, then the above equation shows that G is contained in the subgroup

of Pic0(E)4, where σ acts as − Id. But we have seen in the proof of Lemma 6.3 that this
subgroup is isomorphic to Z/2Z × Z/4Z if Re(τ) = 0, a = ±1, whence it equals G.

If Ĝ = G1, then the relation

aη̄ + η ≡ ε (mod Γ )

gives

2 Re(η) ≡ ε (mod Γ )

if a = 1,

2i Im(η) ≡ ε (mod Γ )

if a = −1; therefore, ε ≡ 1
2 if a = 1, ε ≡ 1

2τ if a = −1.
If a = 1, it follows that Re(η) = ± 1

4 , and since 2η is of two torsion but distinct from ε,
we get that η = ± 1

4 + ± 1
4τ . Up to replacing g with its inverse, or up to composing with t,

we achieve η = 1
4 + 1

4τ , and an entirely similar argument works in the case a = −1. �
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Lemma 6.6. If G = Z/3Z × Z/3Z, Ĝ = S3 × Z/3Z, then G is isomorphic to the group
Pic0(E)3 and the action of any anti-holomorphic involution σ on Pic0(E)3 has 1 and −1
as eigenvalues.

Therefore, the datum of a Ĝ-action is equivalent to the datum of an isomorphism class
of an anti-holomorphic involution.

We thus have the usual following possibilities for σ:

(i) Re(τ) = 0, a = 1, b = 0, 1
2 ;

(ii) Re(τ) = 0, a = −1, b = 0, 1
2τ ;

(iii) |τ | = 1, a = ±τ ;

(iv) Re(τ) = −1
2 , a = ±1.

Proof. Since σ is an anti-holomorphic involution, the eigenvalues of the action of σ

on the lattice Γ of E are 1 and −1, thus the same holds for their reduction modulo 3,
therefore we have all the possible values of a and b (see Lemma 5.5). �

Let us now consider the action of Ĝ on F .

Lemma 6.7. Consider a cyclic group G′ of automorphisms on an elliptic curve F ,
generated by a transformation g having a fixed point 0.

Then the order d of g equals 2, 4, 3, 6 and Fix(g) is as follows.

(i) If d = 2, Fix(g) is the subgroup F2 of the 2-torsion points of F .

(ii) If d = 4, Fix(g) is the subgroup of F2 isomorphic to Z/2Z generated by 1
2 (1 + i).

(iii) If d = 3, Fix(g) is the subgroup of F3 isomorphic to Z/3Z generated by 1
3 (1 − ρ).

(iv) If d = 6, Fix(g) is reduced to the origin.

Proof. The proof is a simple computation. We notice that if d = 3, or d = 6,
Γ ∼= Z[ρ]/(ρ2 + ρ + 1). �

Remark 6.8. Let σ be an anti-holomorphic involution in Ĝ acting on F .
If g ∈ G and σ ◦ g = g−1 ◦ σ, then σ leaves the sets Fix(g), Fix(g2) − Fix(g) and

Fix(g3) − Fix(g) invariant.
Moreover, Fix(g) is a subgroup of F and σ acts on Fix(g) by an affine transformation.
Notice that g acts trivially on Fix(g), whence the action on Fix(g) = Fix(g−1) is inde-

pendent of the choice of σ in the simple dihedral case, when we take for g a generator of
the subgroup G. We thus get, in this case, a topological invariant of the real hyperelliptic
surface.

Corollary 6.9. In the Cases 5, 7 of Lemma 5.8, we may pick as the origin in F a common
fixed point of g and σ. Therefore, if G = Z/3Z, we may assume σ(z) = ±z̄; if G = Z/6Z,
we may assume σ(z) = z̄.
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Proof. We have already observed that we may choose a = ±1. If G = Z/6Z, by exchang-
ing σ with gn ◦ σ, we see that we can assume a = 1.

If G = Z/3Z, g(z) = ρz, Fix(g2) − Fix(g) is reduced to the origin, and σ must act on
Fix(g2) − Fix(g) by the previous remark.

If G = Z/6Z, g(z) = −ρz, Fix(g) is reduced to the origin and σ must act on Fix(g) by
the previous remark. �

Lemma 6.10. If G = Z/4Z, Ĝ = D4, we may assume a = 1, and either

σ(z) = z̄

or

σ(z) = z̄ + 1
2 (1 + i).

Proof. We know that a = ±1,±i, but, by exchanging σ with gn ◦ σ, we can assume
a = 1.

By Lemma 6.7 and Remark 6.8, we know that σ acts on the subgroup of F2 generated
by 1

2 (1 + i), which concludes the proof. �

Lemma 6.11. If G = Z/3Z × Z/3Z, Ĝ = D3 × Z/3Z, we may choose generators of Ĝ

acting on F given by

σ(z) = −z̄, g(z) = ρz, t(z) = z + 1
3 (1 − ρ).

Proof. By Lemma 5.8, we know that we may assume that Ĝ is generated by

σ(z) = az̄ + b, g(z) = ρz, t(z) = z + 1
3 (1 − ρ)

such that σ ◦ g = g−1 ◦ σ, σ ◦ t = t ◦ σ. We have already remarked that we may choose
a = ±1, and one can easily see that the relation σ ◦ t = t ◦ σ holds only for a = −1.

Since σ◦g = g−1◦σ, we can assume b = 0, by Remark 6.8, as in the case G = Z/3Z. �

Lemma 6.12. If G = Z/4Z × Z/2Z, we have the following cases.

(i) If Ĝ = Z/2Z × D4, we can choose the following set of generators of Ĝ acting on F :

g(z) = iz, t(z) = z + 1
2 (1 + i), σ(z) = z̄.

(ii) If Ĝ = G1, we can choose the following set of generators of Ĝ acting on F :

g(z) = iz, t(z) = z + 1
2 (1 + i), σ(z) = z̄ + 1

2 .

Proof. For the case Ĝ = G1, see Lemma 5.8.
Assume Ĝ = Z/2Z × D4, then we have already observed in Lemma 5.8 that we may

assume that Ĝ is generated by the transformations

g(z) = iz, t(z) = z + 1
2 (1 + i), σ(z) = az̄ + b,

such that σ ◦ g = g−1 ◦ σ, σ ◦ t = t ◦ σ.
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Therefore, by composing σ with a power of g, we may assume a = 1, and the relation
σ ◦ g = g−1 ◦ σ gives, by Remark 6.8, either b = 0 or b = 1

2 (1 + i). The second case can
be excluded by exchanging σ with t ◦ σ. �

Lemma 6.13. If G = Z/2Z, Ĝ = Z/2Z × Z/2Z generated by

σ(z) = az̄ + b, g(z) = −z,

we have the following possibilities for F , a and b:

(i) Re(τ) = 0, a = 1, b an element in F2;

(ii) |τ | = 1, a = τ , b = 0;

(ii) Re(τ) = − 1
2 , a = 1, b = 0.

Moreover, there are three different topological types of the action of the affine transfor-
mation σ on Fix(g), where g is a generator of G (see Remark 6.8), namely:

(i) if Re(τ) = 0, a = 1, b = 0, then σ acts as the identity on Fix(g);

(ii) if Re(τ) = 0, a = 1, b ∈ Pic0(E)2 of order 2, then σ acts as a translation on Fix(g);

(iii) if |τ | = 1, a = τ , or Re(τ) = −1
2 , a = 1, then σ acts as a linear map with matrix(

1 1
0 1

)

on Fix(g).

Proof. Since Ĝ is abelian, we have the condition 2b ≡ 0 (mod Γ ), while the condition
σ2 = 1 reads ab̄ + b ≡ 0 (mod Γ ).

By exchanging σ with −σ, a gets multiplied by −1, so we obtain the statement on the
possible values of a.

Assume now that Re(τ) = 0, a = 1.
The conditions

2b ≡ 0 (mod Γ ), ab̄ + b = b̄ + b = 2 Re(b) ≡ 0 (mod Γ )

give us the following possibilities for b:

b = 0, 1
2 , 1

2τ, 1
2 (1 + τ).

Assume now that |τ | = 1, a = τ . The condition 2b ≡ 0 (mod Γ ), allows us to write
b = 1

2x + τ 1
2y, with x, y ∈ {0, 1}.

The condition
ab̄ + b = τ b̄ + b ≡ 0 (mod Γ )
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implies x ≡ y (mod 2), so either b = 0 or b = 1
2 (1 + τ), but, by conjugation with the

translation φ(z) = z + 1
2 , we can assume

b = 0, σ(z) = τ z̄.

Assume now that Re(τ) = − 1
2 .

We may assume a = 1, and the condition 2b ≡ 0 (mod Γ ) allows us to write b =
1
2x + τ 1

2y, with x, y ∈ {0, 1}, while the condition ab̄ + b ≡ 0 (mod Γ ) reads 2 Re(b) =
x − 1

2y = n ∈ Z. Thus y ≡ 0 (mod 2) and either b = 0 or b = 1
2 , but, by translating by

φ(z) = z + 1
2τ , we can assume

b = 0, σ(z) = z̄.

Finally, we know from Remark 6.8 that σ acts as an affine transformation on Fix(g) =
Pic0(E)2, that this action is a topological invariant, and we observe that there are the
following four different types of affine transformations acting on Pic0(E)2: the identity;
a translation; the map

A =

(
1 1
0 1

)
;

and the map A composed with a translation.
Then the statement follows by an easy computation. �

There remains to treat the case G = Z/2Z × Z/2Z.

Lemma 6.14. Let G = Z/2Z × Z/2Z. Then either

Ĝ = Z/2Z × Z/2Z × Z/2Z

or

Ĝ = D4,

and we can choose generators of Ĝ as follows,

g(z) = −z, t(z) = z + ε,

ε of order 2,
σ(z) = az̄ + b,

where the following hold.

(i) If Ĝ = Z/2Z × Z/2Z × Z/2Z, we have the following cases. Re(τ) = 0, a = 1: if
ε = 1

2 , b = 0, 1
2τ ; if ε = 1

2τ or ε = 1
2 + 1

2τ , we can choose b = 0, 1
2 ,

|τ | = 1, a = τ, ε = 1
2 (1 + τ), b = 0,

Re(τ) = − 1
2 , a = 1, ε = 1

2 , b = 0.
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(ii) If Ĝ = D4, we have the following cases. Re(τ) = 0: if a = 1,

b = 1
4τ, 1

4τ + 1
2 , ε = 1

2τ ;

if a = −1,

b = − 1
4 , − 1

4 + 1
2τ, ε = 1

2 .

|τ | = 1: if a = τ ,

b = 1
4 − 1

4τ, ε = 1
2 + 1

2τ ;

if a = −τ ,

b = 1
4 + 1

4τ, ε = 1
2 + 1

2τ.

Re(τ) = − 1
2 : if a = 1,

b = 1
4 + 1

2τ, ε = 1
2 ;

if a = −1,

b = − 1
4 , ε = 1

2 .

Proof. Assume, first of all, that

G = Z/2Z × Z/2Z, Ĝ = Z/2Z × Z/2Z × Z/2Z.

By exchanging σ with −σ, a gets multiplied by −1, thus we have the statement for a.
Since Ĝ is abelian, we have the condition 2b ≡ 0 (mod Γ ), while the condition σ2 = 1

reads ab̄ + b ≡ 0 (mod Γ ).
Assume, first of all, that Re(τ) = 0, a = 1. Then, as in the case G = Z/2Z, the

conditions 2b ≡ 0 (mod Γ ) and ab̄ + b ≡ 0 (mod Γ ) give us the following possibilities for
b:

b = 0, 1
2 , 1

2τ, 1
2 (1 + τ).

Now, by composing σ with t, we obtain the statement.
If |τ | = 1, a = τ , as in the case G = Z/2Z, we find σ(z) = τ z̄. Since σ must commute

with t, we must have aε̄ = τ ε̄ = ε, which yields ε = 1
2 (1 + τ).

If Re(τ) = − 1
2 , we can assume a = 1, and, as in the case G = Z/2Z, we find σ(z) = z̄.

The condition aε̄ = ε̄ = ε yields ε = 1
2 .

If G = Z/2Z × Z/2Z, Ĝ = D4, we know by Lemma 5.8 that we may choose generators
g, t, σ such that σ(−z) = −σ(z)+ε or, equivalently, 2b ≡ ε ∈ 1

2Γ − Γ , σ(z+ε) = σ(z)+ε

or, equivalently, aε̄ ≡ ε (mod Γ ), while σ2 = 1 yields ab̄ + b ∈ Γ . An element of order 4
in Ĝ is σ ◦ g, whose square is t.

Assume Re(τ) = 0, a = 1. Then the conditions 2b ∈ 1
2Γ − Γ and 2 Re(b) ≡ 0 (mod Γ )

imply 2b ≡ 1
2τ (mod Γ ). Therefore, we can choose

b = ± 1
4τ,
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or
b = ± 1

4τ + 1
2 , ε = 1

2τ.

But, by composing σ with t, we can assume

b = 1
4τ,

or

b = 1
4τ + 1

2 .

A similar computation gives the result for a = −1.
If |τ | = 1, a = τ , then the conditions 2b ∈ 1

2Γ − Γ and τ b̄ + b ≡ 0 (mod Γ ) tell us that
we can choose

b = 1
4 − 1

4τ, ε = 1
2 (1 + τ).

In fact, by the first condition, we can write 2b = 1
2n + 1

2mτ , with n, m ∈ {0, 1}. We
have 2(ab̄ + b) = 2(τ b̄ + b) = 1

2 (n + m) + 1
2τ(n + m) ∈ 2Γ , thus n + m ≡ 0 (mod 4), and

we obtain b ≡ 1
4 − 1

4τ (mod Γ ). A similar computation gives the result for a = −τ .
If Re(τ) = − 1

2 , a = 1, the conditions 2b ∈ 1
2Γ − Γ and b̄ + b = 2 Re(b) ≡ 0 (mod Γ )

tell us that we can choose
b ≡ 1

4 + 1
2τ, ε = 1

2 .

In fact, we can write 2b = 1
2n + 1

2mτ , with n, m ∈ {0, 1}, Then we have
2 Re(b) = 1

2n − 1
4m ≡ 0 (mod Γ ) and m ≡ 2n (mod 4), whence we may take

b ≡ 1
4 + 1

2τ,

and therefore
ε = 1

2 .

A similar computation gives the result for a = −1. �

7. The non-split case

In this section we want to treat the case where the exact sequence (3.1) does not split.
We have

G = T × Z/2Z ∼= Z/2Z × Z/2Z,

0 → T × Z/2Z
j−→ Z/4Z × Z/2Z → Z/2Z → 1

and

σ2 = t,

where t is the generator of T , a translation.
We get as generators σ and g, where g acts on F by multiplication by −1.
We consider first the action of Ĝ on F .
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Let σ(z) = az̄ + b. Then b is a half-period for the following reasons: σ, g commute,
a condition that is equivalent to 2b ≡ 0 (mod Γ ), and, moreover, b �= 0, else σ2 is the
identity.

If b is a half-period, then necessarily σ2 has order at most two, and it has order exactly
two if and only if (ab̄ + b) �∈ Γ .

Lemma 7.1. The case Re(τ) = 0, |τ | > 1 is impossible for the curve F . In the case
τ = i, for the curve F we can assume a = i.

Proof. In fact, assume a = ±1. Then, since (ab̄ + b) ∈ 1
2Γ − Γ , either

2 Re(b) ∈ 1
2Γ − Γ

or

2i Im(b) ∈ 1
2Γ − Γ,

contradicting 2b ∈ Γ , which in this case is equivalent to 2 Re(b) ∈ Γ and 2i Im(b) ∈ Γ .
Finally, if τ = i, the case a = −i can be reduced to the case a = i modulo changing

coordinates via the automorphism of F given by multiplication by i. �

Proposition 7.2. In the non-split case, let |τ | = 1 for F . Then we can choose an element
σ of Ĝ of order 4 such that

σ(z) = τ z̄ + 1
2 .

In this case, σ2 is the translation by the vector t = 1
2 (1 + τ).

If Re(τ) = − 1
2 , we can choose an element σ of Ĝ of order 4 such that

σ(z) = z̄ + 1
2τ.

In this case, σ2 is the translation by the vector t = 1
2 .

If τ = ρ, the case a = ρ can be reduced to the case a = 1, by conjugating with the
automorphism of F given by multiplication by ρ. Thus we can always assume

σ(z) = z̄ + 1
2τ, σ2(z) = z + 1

2 .

Proof. We observe first of all that by exchanging σ with σg, a gets multiplied by −1,
while conjugating σ with an automorphism of F given by multiplication by λ, a gets
multiplied by λ2.

Therefore, we may assume a = τ if |τ | = 1 and a = 1 if Re(τ) = − 1
2 .

Furthermore, by exchanging σ with σ−1, we can substitute b with −ab̄.

Case 1. (|τ | = 1.) Since 2b ∈ Γ , we may write b = 1
2x + 1

2yτ , with x, y ∈ {0, 1}.
The condition

ab̄ + b = τ b̄ + b ∈ 1
2Γ − Γ

yields x + y ≡ 1 (mod 2), so either b = 1
2 or b = 1

2τ . But, by exchanging b with −τ b̄, we
can assume b = 1

2 .
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Whence we have
σ(z) = τ z̄ + 1

2 ,

and therefore
σ2(z) = z + 1

2 + 1
2τ.

Case 2. (Re(τ) = − 1
2 .) The condition

ab̄ + b = b̄ + b ∈ 1
2Γ − Γ

is equivalent to the condition 2 Re(b) ∈ 1
2Γ − Γ , which implies Re(b) ≡ ± 1

4 (mod Γ ).
Since 2b ∈ Γ , we easily see that b is either congruent to 1

2τ or to 1
2 + 1

2τ . But, by
exchanging b with −ab̄ = −b̄, we can assume b = 1

2τ .
Thus we may assume

σ(z) = z̄ + 1
2τ,

and

σ2(z) = z − 1
2 ≡ z + 1

2 (mod Γ ).

In the case τ = ρ, we observe that the two maps z 	→ τ z̄ + 1
2 and z 	→ z̄ + 1

2τ are
conjugated by the automorphism given by multiplication by ρ. �

Proposition 7.3. In the non-split case for the curve E, only the case Re(τ) = 0, |τ | � 1,
a = ±1 occurs.

If a = 1, σ(z) = z̄ + b, we have σ2(z) = z + 1
2 , b ≡ 1

4 .
If a = −1, we have σ(z) = −z̄ + b, σ2(z) = 1

2τ , b ≡ 1
4τ .

Proof. The fact that Ĝ is abelian implies that for every d ∈ 1
2Γ − Γ , we must have

ad̄ ≡ d (mod Γ ), whence the map d 	→ ad̄ is the identity on the points of two torsion
of E.

If |τ | = 1, we know that a = ±τ , but then, for d = 1
2 , we have

ad̄ = ± 1
2τ �≡ 1

2 (mod Γ );

a contradiction.
If Re(τ) = − 1

2 , then a = ±1 and if we take d = 1
2τ ,

ad̄ = ± 1
2 τ̄ = ∓ 1

2 (τ + 1) �≡ 1
2τ (mod Γ );

again a contradiction.
Therefore, we can assume Re(τ) = 0, a = ±1. In this case, the map d 	→ ad̄ is the

identity on the points of two torsion of E.
If a = 1, the condition

σ2(z) − z = ab̄ + b = b̄ + b = 2 Re(b) ∈ 1
2Γ − Γ
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implies Re(b) ≡ ± 1
4 and σ2(z) = z + 1

2 . By Lemma 5.5, we can assume b ≡ ± 1
4 and by

exchanging σ with σ−1 we can assume b = 1
4 .

If a = −1, the condition

σ2(z) − z = ab̄ + b = −b̄ + b = 2i Im(b) ∈ 1
2Γ − Γ

implies Im(b) ≡ ±1
4 Im(τ) and σ2(z) = z + 1

2τ . Again, we conclude by Lemma 5.5 and
by substituting σ with σ−1. �

Remark 7.4. Observe that, by Remark 3.7 (1), in the non-split case we must have
Fix(σ) = S(R) = ∅.

8. Topology of the real part of S

In this section we want to describe the topology of the fixed-point locus of the involution
σ acting on a real hyperelliptic surface S.

Remark 8.1. The fixed-point locus of σ can only be a disjoint union of tori and Klein
bottles.

In fact, we have the Albanese map

S

α

��

σ �� S

α

��
A = C/Λ

σ̄ �� A = C/Λ

and each component of the real locus is a S1 bundle on S1.

We have the following result.

Lemma 8.2. Let σ be as above with Fix(σ) �= ∅ and assume that the group G is of odd
order, i.e. either Z/3Z or Z/3Z × Z/3Z. Then the connected components of Fix(σ) are
homeomorphic to S1 × S1.

Proof. Let π : E × F → (E × F )/G be the projection. We notice (see Remark 3.7) that
if z ∈ Fix(σ), then, for every z̃ ∈ π−1(z), there exists σ̃ : E × F → E × F such that
σ̃(z̃) = z̃. We have the following commutative diagram,

E × F

π

��

σ̃ �� E × F

π

��
S

σ �� S

where σ̃ is an anti-holomorphic involution on E × F .
Let C be the connected component of Fix(σ) that contains z and let C̃ be the connected

component of π−1(C) that contains z̃.
Clearly, σ̃(C̃) = (C̃). Moreover, σ̃ is a lifting of the identity of C and with σ̃(z̃) = (z̃),

whence σ̃ is the identity on C̃.
We know that the components of Fix(σ) can be either tori or Klein bottles.
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Since C̃ ∼= S1 × S1, in the latter case, C̃ would be an oriented covering of odd degree
(equal to |G|) of a Klein bottle. But this is impossible since every oriented covering of a
Klein bottle factors through the orientation covering which has degree 2. �

Using the Harnack–Thom–Krasnov inequality (cf. [41, p. 16] or [24, Chapter 1]), we
are able to bound the number of connected components of the real part of S in all the
cases given by the list of Bagnera–de Franchis. We will show later that for all G we can
find real hyperelliptic surfaces S that reach these bounds (i.e. we can find M -surfaces).

Remark 8.3.

(1) If G = Z/2Z, then h0(S(R), Z/2Z) � 4.

(2) If G = Z/2Z × Z/2Z, then h0(S(R), Z/2Z) � 3.

(3) If G = Z/4Z, then h0(S(R), Z/2Z) � 3.

(4) If G = Z/4Z × Z/2Z, then h0(S(R), Z/2Z) � 2.

(5) If G = Z/3Z, then h0(S(R), Z/2Z) � 2.

(6) If G = Z/3Z × Z/3Z, then h0(S(R), Z/2Z) � 2.

(7) If G = Z/6Z, then h0(S(R), Z/2Z) � 2.

Proof. We recall the Harnack–Thom–Krasnov inequality,∑
m

(dimZ/2 Hm(S(R), Z/2Z)) �
∑
m

(dimZ/2 Hm(S, Z/2Z) − 2λm),

where
λm := dimZ/2(1 + σ)Hm(S, Z/2Z).

Now we have∑
m

(dimZ/2 Hm(S(R), Z/2Z)) = 2h0(S(R), Z/2Z) + h1(S(R), Z/2Z),

and since the components of S(R) are either tori or Klein bottles, we have

h1(S(R), Z/2Z) = 2h0(S(R), Z/2Z).

Thus we find
4h0(S(R), Z/2Z) �

∑
m

(dimZ/2 Hm(S, Z/2Z)). (8.1)

We notice that b2(S) = 2, and we have the following list for H1(S, Z) (see, for exam-
ple, [44]):

(i) G = Z/2Z, H1(S, Z) = Z2 ⊕ (Z/2Z)2;

(ii) G = Z/2Z ⊕ Z/2Z, H1(S, Z) = Z2 ⊕ Z/2Z;
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(iii) G = Z/4Z, H1(S, Z) = Z2 ⊕ Z/2Z;

(iv) G = Z/4Z ⊕ Z/2Z, H1(S, Z) = Z2;

(v) G = Z/3Z, H1(S, Z) = Z2 ⊕ Z/3Z;

(vi) G = Z/3Z ⊕ Z/3Z, H1(S, Z) = Z2;

(vii) G = Z/6Z, H1(S, Z) = Z2.

The universal coefficients theorem and the Poincaré duality allow us to compute all the
Betti numbers of S with coefficients in Z/2Z. Then, by (8.1), we obtain the given bounds
on the number of connected components of S(R). �

We want now to show how one can compute the number k of Klein bottles, respectively,
the number t of two-dimensional tori in the real part S(R) of a real hyperelliptic surface.

For every connected component V of Fix(σ) = S(R), the inverse image π−1(V ) splits
as the G-orbit of any of its connected components; let W be one such.

We have already observed that there is a lifting σ̃ of σ such that W is in the fixed
locus of σ̃.

If σ̃1, σ̃2 are two distinct anti-holomorphic involutions, then

π−1(V ) ∩ Fix(σ̃1) ∩ Fix(σ̃2) = ∅.

In fact, otherwise, there would exist a component Wh such that σ̃1|Wh
= σ̃2|Wh

= Id, and
thus σ̃1σ̃2 = Id; a contradiction.

We conclude from the above argument that the connected components of Fix(σ) cor-
respond bijectively to the set C obtained as follows. Consider all the liftings σ̃ of σ which
are involutions and pick one representative σ̃i for each conjugacy class.

Then we let C be the set of equivalence classes of connected components of ∪ Fix(σ̃i),
where two components A, A′ of Fix(σ̃i) are equivalent if and only if there exists an
element g ∈ G such that g(A) = A′.

Let σ̃ be an anti-holomorphic involution which is a lifting of σ and such that Fix(σ̃) �= ∅.
Since σ̃ is of product type, Fix(σ̃) is a disjoint union of 2a1+a2 copies of S1 ×S1, where

ai ∈ {0, 1}.
In fact, if an anti-holomorphic involution σ̂ on an elliptic curve C has fixed points,

then Fix(σ̂) is a disjoint union of 2a copies of S1, where a = 1 if the matrix of the action
of σ̂ on H1(C, Z) is diagonalizable, else a = 0.

The above considerations allow us to compute the number of such components V : in
order to determine their nature, observe that V = W/H, where W is as before and
H ⊂ G is the subgroup such that HW = W .

Since the action of G on the first curve E is by translations, the action on the first S1

is always orientation preserving, whence V is a Klein bottle if and only if H acts on the
second S1 by some orientation-reversing map, or equivalently H has some fixed point on
the second S1.
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Let h ∈ H be a transformation having a fixed point on the second S1. Since the
direction of this S1 is an eigenvector for the tangent action of h, it follows that the
tangent action is given by multiplication by −1.

The existence of such an element h for the second S1 is obvious if a1 = a2 = 0 and
there exists h ∈ H which commutes with σ̃ (this always occurs except in the last case of
Lemma 5.8 (2)). In this case, we get one Klein bottle.

In the other cases, one needs a more delicate analysis, the details of which we omit
here.

In the next section we shall give a precise description of all the isomorphism classes
of real hyperelliptic surfaces and we shall also determine the real part S(R) for each
isomorphism class.

We end this section by showing, with a simple example, the kind of computations that
we make in order to find the real part of a given hyperelliptic surface.

Assume that
S = (E × F )/G,

where
E = C/(Z + iZ), F = C/(Z + τZ),

with Re(τ) = 0, G = Z/2Z acting on E × F by

(z1, z2) 	→ (z1 + 1
2 (1 + i),−z2).

Assume that the anti-holomorphic involution σ acting on S has a lifting σ̃ = σ1 × σ2,
where

σ1(z1) = iz̄1,

σ2(z2) = z̄1.

If g is the generator of G, g(z1, z2) = (z1 + 1
2 (1 + i),−z2), then the other lifting of σ is

given by
σ̃′ := σ̃ ◦ g(z1, z2) = g ◦ σ̃(z1, z2) = (iz̄1 + 1

2 (1 + i),−z̄2).

The fixed-point locus of σ̃ is

(Γ1 × Γ2) ∪ (Γ1 × Λ2),

where

Γ1 = {z1 ∈ C/(Z + iZ) | Re(z1) = Im(z1)},

Γ2 = {z2 ∈ C/(Z + τZ) | Im(z2) = 1
2},

Λ2 = {z2 ∈ C/(Z + τZ) | Im(z2) = 0}.

The fixed-point locus of σ̃′ is

(Γ ′
1 × Γ ′

2) ∪ (Γ ′
1 × Λ′

2),
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where

Γ ′
1 = {z1 ∈ C/(Z + iZ) | Re(z1) = Im(z1) ± 1

2},

Γ ′
2 = {z2 ∈ C/(Z + τZ) | Re(z2) = 1

2},

Λ′
2 = {z2 ∈ C/(Z + τZ) | Re(z2) = 0}.

Now, if
(z1, z2) ∈ Γ1 × Γ2,

then
(z1 + 1

2 (1 + i),−z2) ∈ Γ1 × Γ2

also, so, if we denote by π : E × F → S the projection, we obtain that π(Γ1 × Γ2) is a
Klein bottle.

If

(z1, z2) ∈ Γ1 × Λ2,

then

(z1 + 1
2 (1 + i),−z2) ∈ Γ1 × Λ2

also, and again π(Γ1 × Λ2) is a Klein bottle.
Analogously, one verifies that

g(Γ ′
1 × Γ ′

2) = (Γ ′
1 × Γ ′

2)

and

g(Γ ′
1 × Λ′

2) = (Γ ′
1 × Λ′

2),

thus also π(Γ ′
1 × Γ ′

2) and π(Γ ′
1 × Λ′

2) are disjoint Klein bottles and the real part S(R) of
S is a disjoint union of four Klein bottles.

We observe that the example that we have just computed is a special case of the second
case in Table 2.

9. Moduli space of real hyperelliptic surfaces

In this section we describe all the isomorphism classes of real hyperelliptic surfaces. Each
slot in the following tables corresponds to a fixed topological type.

In the column of the values of σ1, we have the occurrence of two possible values
corresponding to two anti-holomorphic maps which are topologically equivalent, but not
necessarily analytically equivalent. As explained in § 1, they are in the same connected
component of the moduli space of real elliptic curves. The key observation is that the
curve with τ1 = i has an isomorphism given by the multiplication by i that conjugates
the two different anti-holomorphic maps; hence this isomorphism class is a ramification
point for the map between the moduli space of real curves and the real part of the moduli
space of complex curves.
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Assume first of all that we are in the split case for the extension (3.1).
We set

E = C/(Z + τ1Z),

F = C/(Z + τ2Z),

τj = xj + iyj ,

σ̃ = (σ1, σ2) : E × F → E × F.

The action of G is given as in the Bagnera–de Franchis list.
The first case that we will consider is the one with

G = Z/2Z, Ĝ = Z/2Z × Z/2Z.

Let g be a generator of G: its action on E is a translation by an element η ∈ Pic0(E)2,
thus

g(z1, z2) = (z1 + η,−z2) ∀(z1, z2) ∈ E × F.

Let us now give a list of the topological invariants that distinguish the different cases
presented in Table 2.

(Recall that, for an anti-holomorphic involution σ on an elliptic curve C, the number
ν(σ) of connected components of Fix(σ), which is either 0 or 1 or 2, is a topological
invariant of the involution.)

(1) In our case, given an anti-holomorphic involution on a hyperelliptic surface S, since
we have exactly two liftings of σ on E × F ,

σ̃ = (σ1, σ2), σ̃ ◦ g,

the sets

{ν(σ1), ν(σ1 ◦ g)}, (1a)

{ν(σ2), ν(σ2 ◦ g)}, (1b)

are topological invariants of σ.

Since G acts on E by translation and on F by multiplication by −1, the parity
of ν(σi) (determined by the alternative; the action on the first homology group
is diagonalizable or not) is independent of the choice of the lifting σi, whence it
provides a topological invariant.

Other topological invariants are

(2) the homology of S(R);

(3) the action of the involution σ2 on the fixed-point locus of g in F (see Remark 6.8);
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Table 2.

(G = Z/2Z, Ĝ = (Z/2Z)2.)

τ1 τ2 σ1(z1), η σ2(z2) S(R)

x1 = 0 x2 = 0 z̄1, η = 1
2 or −z̄1, η = 1

2τ1 z̄2 4K

|τ1| = 1, x2 = 0 ±τ1z̄1, η = 1
2 (1 + τ1) if |τ1| = 1, z̄2 4K

∪x1 = − 1
2 ±z̄1, η = 1

2 if x1 = − 1
2

x1 = 0 x2 = 0 z̄1, η = 1
2 or −z̄1, η = 1

2τ1 z̄2 + 1
2τ2 2T

x1 = 0 x2 = 0 z̄1, η = 1
2τ1 or −z̄1, η = 1

2 z̄2 + 1
2τ2 2T

x1 = 0 |τ2| = 1 or z̄1, η = 1
2τ1 or −z̄1, η = 1

2 τ2z̄2 if |τ2| = 1, 2T

x2 = − 1
2 z̄2 if x2 = − 1

2

x1 = 0 x2 = 0 z̄1, η = 1
2 (1 + τ1) or −z̄1, η = 1

2 (1 + τ1) z̄2 2T

x1 = 0 x2 = 0 z̄1, η = 1
2 (1 + τ1) or −z̄1, η = 1

2 (1 + τ1) z̄2 + 1
2τ2 2T

x1 = 0 x2 = 0 z̄1, η = 1
2 or −z̄1, η = 1

2τ1 z̄2 + 1
2 ∅

x1 = 0 x2 = 0 z̄1, η = 1
2 or −z̄1, η = 1

2τ1 z̄2 + 1
2 (1 + τ2) ∅

x1 = 0 x2 = 0 z̄1, η = 1
2τ1 or−z̄1, η = 1

2 z̄2 + 1
2 (1 + τ2) ∅

x1 = 0 x2 = 0 z̄1, η = 1
2 (1 + τ1) or −z̄1, η = 1

2 (1 + τ1) z̄2 + 1
2 ∅

x1 = 0 x2 = 0 z̄1, η = 1
2 (1 + τ1) or −z̄1, η = 1

2 (1 + τ1) z̄2 + 1
2 (1 + τ2) ∅

|τ1| = 1, x2 = 0, ±τ1z̄1, η = 1
2 (1 + τ1) if |τ1| = 1, z̄2 + 1

2 (1 + τ2) ∅
∪x1 = − 1

2 , ±z̄1, η = 1
2 if x1 = − 1

2

|τ1| � 1

x1 = 0 x2 = 0 z̄1 + 1
2 , η = 1

2τ1 or −z̄1 + 1
2τ1, η = 1

2 z̄2 ∅

x1 = 0 x2 = 0 z̄1 + 1
2 , η = 1

2τ1 or −z̄1 + 1
2τ1, η = 1

2 z̄2 + 1
2τ2 ∅

x1 = 0 x2 = 0 z̄1 + 1
2 , η = 1

2τ1 or −z̄1 + 1
2τ1, η = 1

2 z̄2 + 1
2 (1 + τ2) ∅

x1 = 0 |τ2| = 1, z̄1 + 1
2 , η = 1

2τ1 or −z̄1 + 1
2τ1, η = 1

2 τ2z̄2 if |τ2| = 1, ∅
∪x2 = − 1

2 z̄2 if x2 = − 1
2

x1 = 0 |τ2| = 1, z̄1, η = 1
2 or −z̄1, η = 1

2τ1 τ2z̄2 if |τ2| = 1, 2K

∪x2 = − 1
2 z̄2 if x2 = − 1

2

|τ1| = 1, |τ2| = 1, ±τ1z̄1, η = 1
2 (1 + τ1) if |τ1| = 1, τ2z̄2 if |τ2| = 1, 2K

∪x1 = − 1
2 ∪x2 = − 1

2 ±z̄1, η = 1
2 if x1 = − 1

2 z̄2 if x2 = − 1
2

x1 = 0 x2 = 0 z̄1, η = 1
2τ1 or −z̄1, η = 1

2 z̄2 4T

x1 = 0 |τ2| = 1, z̄1, η = 1
2 (1 + τ1) or −z̄1, η = 1

2 (1 + τ1) τ2z̄2 if |τ2| = 1, T

∪x2 = − 1
2 z̄2 if x2 = − 1

2

|τ1| = 1, x2 = 0 ±τ1z̄1, η = 1
2 (1 + τ1) if |τ1| = 1, z̄2 + 1

2τ2 T

∪x1 = − 1
2 ±z̄1, η = 1

2 if x1 = − 1
2
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(4) the action of Ĝ′ on Λ′′ ⊗ R, where Λ′′ = π1(E) ∼= Z2, given by the orbifold funda-
mental group exact sequence

1 → Λ′′ ⊕ Γ → Π̂ → Ĝ → 1,

where Γ = π1(F ) (see § 4).

In particular, given a transformation in G, we have the condition whether its first
action is representable by a translation in Λ′′ ⊗ R which is an eigenvector for σ1.

Table 2 classifies the case with

Ĝ = Z/2Z × Z/2Z.

We are in the split case, whence the results of § 6 apply. Thus we can give a complete
list of normal forms for the action of Ĝ.

Notice once more, however, that normal forms which are non-isomorphic for general
choices of the parameters may turn out to be equivalent for special values.

Let us now explain how to distinguish the different cases listed in Table 2.

Case 1. (S(R) = 4K.) The first two cases of the list are distinguished by the parity
of ν(σ1) (ν = 2, respectively, ν = 1).

Notice here that if S(R) has four connected components, then necessarily the number
of connected components of Alb(S)(R) is two. However, since E and Alb(S) are only
isogenous, ν(σ1) does not need to equal ν(Alb(σ)) (see the example at the end of § 8).

Case 2. (S(R) = 2T .) The third case listed with S(R) = 2T is distinguished from all
the others by the parity of ν(σ2) = 1.

The fourth case is distinguished from all the others by the invariant (3), or by (1b)
(the set of values of ν(σ2) equals {2, 2}).

The first is distinguished from the second by the invariant (1a) (the respective sets are
{2, 0}, {2, 2})) and from the fifth by the invariant (4); in fact, the action of g on Λ′′ ⊗ R

is given by

z1 	→ z1 + 1
2

in the first case, by

z1 	→ z1 + 1
2 (1 + τ1)

in the fifth case, and
σ1(z1) = z̄1

in both cases, but 1
2 is an eigenvector of the action of σ1 on Λ′′, while

1
2 (1 + τ1)

is not.
The second is distinguished from the fifth by the invariant (1a) (the respective sets are

{2, 2}, {2, 0})).
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Case 3. (S(R) = ∅.) The sixth is distinguished from all others by the parity of
ν(σ1) = 1.

The last one is distinguished from all others by the parity of ν(σ2) = 1.
The seventh is distinguished from all others by the invariant (3), or by (1b) (the set of

values of ν(σ2) equals {2, 2}, while in all the other cases it equals either {0, 2} or {0, 0},
or {1, 1} in the last case).

The first case is distinguished from the second, the third, the fifth and the ninth case
by the invariant (1b); in the first case the set of values of ν(σ2) equals {0, 2}, in the others
{0, 0}.

The first case is distinguished from the eighth case by the invariant (1a); in the first
case the set of values of ν(σ1) equals {2, 0}, in the eight case it equals {0, 0}.

The first case is distinguished from the fourth by the invariant (4); in fact, the action
of g on Λ′′ ⊗ R is given by

z1 	→ z1 + 1
2

in the first case, by

z1 	→ z1 + 1
2 (1 + τ1)

in the fourth case, and
σ1(z1) = z̄1

in both cases, but 1
2 is an eigenvector of the action of σ1 on Λ′′, while 1

2 (1 + τ1) is not.
The second case is distinguished from the third by the invariant (4); in fact, the action

of g on Λ′′ ⊗ R is given by

z1 	→ z1 + 1
2

in the second case, by

z1 	→ z1 + 1
2τ1

in the third case, and
σ1(z1) = z̄1

in both cases, but 1
2 is the +1 eigenvector of the action of σ1 on Λ′′, while 1

2τ1 is the
−1 eigenvector.

The second case is distinguished from the fourth and the eighth case by the invari-
ant (1b); in the second case the set of values of ν(σ2) equals {0, 0}, in the other cases
{0, 2}.

The second case is distinguished from the fifth by the invariant (4); in fact, the action
of g on Λ′′ ⊗ R is given by

z1 	→ z1 + 1
2

in the second case, by

z1 	→ z1 + 1
2 (1 + τ1)
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in the fifth case, and
σ1(z1) = z̄1

in both cases, but 1
2 is an eigenvector of the action of σ1 on Λ′′, while 1

2 (1 + τ1) is not.
The second case is distinguished from the ninth case by the invariant (1a); in the

second case the set of values of ν(σ1) equals {2, 0}, in the ninth case it equals {0, 0}.
The third case is distinguished from the fourth by the invariant (1b); in the third case

the set of values of ν(σ2) equals {0, 0}, in the fourth case {0, 2}.
The third case is distinguished from the fifth by the invariant (4); in fact, the action

of g on Λ′′ ⊗ R is given by

z1 	→ z1 + 1
2τ1

in the third case, by

z1 	→ z1 + 1
2 (1 + τ1)

in the fifth case, and
σ1(z1) = z̄1

in both cases, but 1
2τ1 is an eigenvector of the action of σ1 on Λ′′, while 1

2 (1 + τ1) is not.
The third case is distinguished from the eighth and the ninth case by the invariant (1a);

in the third case the set of values of ν(σ1) equals {2, 2}, in the eighth and the ninth case
it equals {0, 0}.

The fourth case is distinguished from the fifth and the ninth case by the invariant (1b);
in the fourth case the set of values of ν(σ2) equals {0, 2}, in the other cases {0, 0}.

The fourth case is distinguished from the eighth case by the invariant (1a); in the
fourth case the set of values of ν(σ1) equals {0, 2}, in the eighth case it equals {0, 0}.

The fifth case is distinguished from the eighth case by the invariant (1b); in the fifth
case the set of values of ν(σ2) equals {0, 0}, in the eighth case {2, 0}.

The fifth case is distinguished from the ninth case by the invariant (1a); in the fifth
case the set of values of ν(σ1) equals {2, 0}, in the ninth case it equals {0, 0}.

The eighth case is distinguished from the ninth case by the invariant (1b); in the eighth
case the set of values of ν(σ2) equals {2, 0}, in the ninth case {0, 0}.

Case 4. (S(R) = 2K.) The parity of ν(σ1) distinguishes the two cases.

Case 5. (S(R) = T .) The parity of ν(σ2) distinguishes the two cases.
Let us now consider the case G = Z/4Z (Table 3). If g is a generator of G, we denote

by
g(z1, z2) = (z1 + η, iz2)

the action of g on E × F .
The topological invariants that distinguish the different cases here are the above-

mentioned invariant (2) and the analogous of the invariants (1a) and (1b) that we had
in the case G = Z/2Z,

{ν(σ1 ◦ gn) for n = 0, 1, 2, 3}, (1a′)

{ν(σ2 ◦ gn) for n = 0, 1, 2, 3}. (1b′)
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Table 3.

(G = Z/4Z, Ĝ = D4; τ2 = i.)

τ1 σ1(z1), η σ2(z2) S(R)

x1 = 0 z̄1, η = 1
2 + 1

4τ1 or −z̄1, η = 1
4 + 1

2τ1 z̄2 2T

x1 = 0 z̄1 + 1
2 , η = 1

2 + 1
4τ1 or −z̄1 + 1

2τ1, η = 1
4 + 1

2τ1 z̄2 T

x1 = 0, z̄1, η = 1
4τ1 or −z̄1, η = 1

4 z̄2 + 1
2 (1 + i) T

x1 = 0 z̄1 + 1
2 , η = 1

2 + 1
4τ1 or −z̄1 + 1

2τ1, η = 1
4 + 1

2τ1 z̄2 + 1
2 (1 + i) T

x1 = 0 z̄1, η = 1
2 + 1

4τ1 or −z̄1, η = 1
4 + 1

2τ1 z̄2 + 1
2 (1 + i) ∅

x1 = 0 z̄1 + 1
2 , η = 1

4τ1 or −z̄1 + 1
2τ1, η = 1

4 z̄2 ∅

x1 = 0 z̄1 + 1
2 , η = 1

4τ1 or −z̄1 + 1
2τ1, η = 1

4 z̄2 + 1
2 (1 + i) ∅

x1 = 0 z̄1,η = 1
4τ1 or −z̄1, η = 1

4 z̄2 3T

|τ1| = 1, τ1z̄1, η = 1
4 (1 − τ1) or −τ1z̄1, η = 1

4 (1 + τ1) if |τ1| = 1, z̄2 3K

∪x1 = − 1
2 z̄1, η = 1

4 + 1
2τ1 or −z̄1, η = 1

4 if x1 = − 1
2

|τ1| = 1, τ1z̄1, η = 1
4 (1 − τ1) or −τ1z̄1, η = 1

4 (1 + τ1) if |τ1| = 1, z̄2 + 1
2 (1 + i) K

∪x1 = − 1
2 z̄1, η = 1

4 + 1
2τ1 or −z̄1, η = 1

4 if x1 = − 1
2

In the list, if S(R) = T , the second and the third cases are distinguished by invari-
ant (1a′); in the second case the set of values of ν(σ1) equals {2, 2, 2, 2}, in the third it
equals {0, 2, 0, 2}.

The first case is distinguished from the others by the invariant (1b′); in the
first case {ν(σ2 ◦ gn) for n = 0, 1, 2, 3} = {2, 1, 2, 1}, while in the other cases
{ν(σ2 ◦ gn) for n = 0, 1, 2, 3} = {0, 1, 0, 1}.

If S(R) = ∅, the first case is distinguished from the third case by the invariant (1a′); in
the first case the set of values of ν(σ1) equals {2, 0, 2, 0}, in the third it equals {0, 0, 0, 0}.

The second case is distinguished from the other cases by the invariant (1b′); in the
second case the set of values of ν(σ2) equals {2, 1, 2, 1}, in the other cases it equals
{0, 1, 0, 1}.

If G = Z/4Z × Z/2Z (Tables 4 and 5), we take generators g, t such that, on F ,

g(z2) = iz2, t(z2) = z2 + 1
2 (1 + i).

If Ĝ ∼= G1 (Table 4), we see that the topological type of S(R) distinguishes the cases.
The same holds if

Ĝ ∼= D4 × Z/2Z.

If G = Z/3Z (Table 6), we denote by

g(z1, z2) = (z1 + η, ρz2)

the action of a generator g of G on E × F .
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Table 4.

(G = Z/4Z × Z/2Z, Ĝ = G1; τ2 = i.)

τ1 σ1(z1) σ2(z2) S(R)

x1 = 0 z̄1, G = 〈 1
4 (1 + τ1)〉 × 〈 1

2 〉 or z̄2 + 1
2 , ε = 1

2 (1 + i) ∅
−z̄1, G = 〈 1

4 (−1 + τ1)〉 × 〈 1
2τ1〉

x1 = 0 z̄1 + 1
2 , G = 〈 1

4 (1 + τ1)〉 × 〈 1
2 〉 or z̄2 + 1

2 , ε = 1
2 (1 + i) T

−z̄1 + 1
2τ1, G = 〈 1

4 (−1 + τ1)〉 × 〈 1
2τ1〉

Table 5.

(G = Z/4Z × Z/2Z, Ĝ = D4 × Z/2Z; τ2 = i.)

τ1 σ1(z1) σ2(z2) S(R)

x1 = 0 z̄1, G = 〈 1
4τ1〉 × 〈 1

2 〉 or z̄2, ε = 1
2 (1 + i) 2T

−z̄1, G = 〈 1
4 〉 × 〈 1

2τ1〉

x1 = 0 z̄1, G = 〈 1
4τ1〉 × 〈 1

2 (1 + τ1)〉 or z̄2, ε = 1
2 (1 + i) K � T

−z̄1, G = 〈 1
4 〉 × 〈 1

2 (1 + τ1)〉

x1 = 0 z̄1 + 1
2 , G = 〈 1

4τ1〉 × 〈 1
2 〉 or z̄2, ε = 1

2 (1 + i) T

−z̄1 + 1
2τ1, G = 〈 1

4 〉 × 〈 1
2τ1〉

x1 = 0 z̄1 + 1
2 , G = 〈 1

4τ1〉 × 〈 1
2 (1 + τ1)〉 or z̄2, ε = 1

2 (1 + i) K

−z̄1 + 1
2τ1, G = 〈 1

4 〉 × 〈 1
2 (1 + τ1)〉

We notice that
Fix(g) = Z(1 − ρ)/3Z(1 − ρ)

and the action of σ2(z2) = z̄2 on Fix(g) is − Id, while the action of σ2(z2) = −z̄2 on
Fix(g) is Id, so these two actions are topologically different.

This invariant and S(R) are sufficient to distinguish all the cases.
If G = Z/3Z × Z/3Z (Table 7), with generators g, t acting on F , by

g(z2) = ρz2, t(z2) = z2 + 1
3 (1 − ρ),

the homology of S(R) is the only topological invariant needed in order to distinguish the
three cases.

If G = Z/6Z (Table 8), we take a generator g of G such that

g(z1, z2) = (z1 + η,−ρz2),

and also here the homology of S(R) is the only topological invariant needed to distinguish
the four cases.

Let us now consider the case where

G = Z/2Z × Z/2Z
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Table 6.

(G = Z/3Z, Ĝ = S3; τ2 = ρ.)

τ1 σ1(z1), η σ2(z2) S(R)

x1 = 0 z̄1, η = 1
3τ1 or −z̄1, η = 1

3 z̄2 2T

x1 = 0 z̄1, η = 1
3τ1 or −z̄1, η = 1

3 −z̄2 2T

x1 = 0 z̄1 + 1
2 , η = 1

3τ1 or −z̄1 + 1
2τ1, η = 1

3 z̄2 ∅

x1 = 0 z̄1 + 1
2 , η = 1

3τ1 or −z̄1 + 1
2τ1, η = 1

3 −z̄2 ∅

|τ1| = 1, τ1z̄1, η = 1
3 (1 − τ1) or −τ1z̄1, η = 1

3 (1 + τ1) if |τ1| = 1, z̄2 T

∪x1 = − 1
2 z̄1, η = 1

3 (1 − τ1) or −z̄1, η = 1
3 if x1 = − 1

2

|τ1| = 1, τ1z̄1, η = 1
3 (1 − τ1) or −τ1z̄1, η = 1

3 (1 + τ1) if |τ1| = 1 −z̄2 T

∪x1 = − 1
2 z̄1, η = 1

3 (1 − τ1) or −z̄1, η = 1
3 if x1 = − 1

2

Table 7.

(G = Z/3Z × Z/3Z, Ĝ = S3 × Z/3Z; τ2 = ρ.)

τ1 σ1(z1) σ2(z2) S(R)

x1 = 0 z̄1, G = 〈 1
3τ1〉 × 〈 1

3 〉 or −z̄2, ε = 1
3 (1 − ρ) 2T

−z̄1, G = 〈 1
3 〉 × 〈 1

3τ1〉

x1 = 0 z̄1 + 1
2 , G = 〈 1

3τ1〉 × 〈 1
3 〉 or −z̄2, ε = 1

3 (1 − ρ) ∅
−z̄1 + 1

2τ1, G = 〈 1
3 〉 × 〈 1

3τ1〉

|τ1| = 1, τ1z̄1, G = 〈 1
3 (1 − τ1)〉 × 〈 1

3 (1 + τ1)〉 or −z̄2, ε = 1
3 (1 − ρ) T

−τ1z̄1, G = 〈 1
3 (1 + τ1)〉 × 〈 1

3 (1 − τ1)〉 if |τ1| = 1,

∪x1 = − 1
2 z̄1, G = 〈 1

3 (1 − τ1)〉 × 〈 1
3 〉 or

−z̄1, G = 〈 1
3 〉 × 〈 1

3 (1 − τ1)〉 if x1 = − 1
2

Table 8.

(G = Z/6Z, Ĝ = D6; τ2 = ρ.)

τ1 σ1(z1), η σ2(z2) S(R)

x1 = 0 z̄1, η = 1
6τ1 or −z̄1, η = 1

6 z̄2 2T

x1 = 0 z̄1, η = 1
2 + 1

6τ1 or −z̄1, η = 1
2τ1 + 1

6 z̄2 T

x1 = 0 z̄1 + 1
2 , η = 1

6τ1 or −z̄1 + 1
2τ1, η = 1

6 z̄2 ∅

|τ1| = 1, τ1z̄1, η = 1
6 (1 − τ1) or −τ1z̄1, η = 1

6 (1 + τ1) if |τ1| = 1, z̄2 2K

∪x1 = − 1
2 z̄1, η = 1

6 + 1
3τ1 or −z̄1, η = 1

6 if x1 = − 1
2
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(Table 9). Here, we may choose as generators of G the generator t of T and another
element g, which is not canonically defined.

Let η1, ε1, ε2 be such that

g(z1, z2) = (z1 + η1,−z2), t(z1, z2) = (z1 + ε1, z2 + ε2).

Here we have the same topological invariants (1), (2) as in the case G = Z/2Z.
Furthermore, the normal subgroup T of G is of order 2. Let, as usual, t be a generator.

We may consider all the possible liftings of t to a vector t′ in the lattice

Ω′ = Λ′ ⊕ Γ.

The condition whether there exists such a t′ whose two components are eigenvectors
for the action of σ̃ on Ω′ is a topological invariant of the real hyperelliptic surface (notice
that the two possible choices for σ2 differ just up to multiplication by −1).

Let us now explain how to distinguish the different cases listed in Table 9. Assume
first of all that

Ĝ = Z/2Z × Z/2Z × Z/2Z.

Case 1. (S(R) = 2K.) The first case is distinguished from the second and the fourth
since in the first case ε2 = 1

2 (1 + τ2), therefore any lifting of t to a vector t′ ∈ Ω′ cannot
be an eigenvector for the action of σ2, while in the second and the fourth case ε2 = 1

2 ,
respectively, 1

2τ2, which are eigenvectors for the action of σ2.
The first case is distinguished from the third and the sixth by the parity of ν(σ2). In

fact, ν(σ2) = 2 in the first case, while in the third and the sixth case we have ν(σ2) = 1.
The first case is distinguished from the fifth since in the first case ε1 is an eigenvector

for the action of σ1 on Λ′, while in the fifth case ε1 = 1
2 (1+τ1), which is not an eigenvector

for the action of σ1.
The second case is distinguished from the third and the sixth by the parity of ν(σ2).

In fact, ν(σ2) = 2 in the second case, while in the third and the sixth case we have
ν(σ2) = 1.

The second case is distinguished from the fourth since in the second case ε1 is an
eigenvector for the action of σ1 on Λ′, while in the fourth case ε1 = 1

2 (1 + τ1), which is
not an eigenvector for the action of σ1.

The second case is distinguished from the fifth since in the second case ε2 is an eigen-
vector for the action of σ2 on Γ , while in the fifth case ε2 = 1

2 (1 + τ2), which is not an
eigenvector for the action of σ2.

The third case is distinguished from the fourth and the fifth by the parity of ν(σ2). In
fact, ν(σ2) = 1 in the third case, while in the other two cases we have ν(σ2) = 2.

The third case is distinguished from the sixth since in the third case ε1 is an eigenvector
for the action of σ1 on Λ′, while in the sixth case ε1 = 1

2 (1+τ1), which is not an eigenvector
for the action of σ1

The fourth and the fifth cases are distinguished from the sixth by the parity of ν(σ2).
In fact, ν(σ2) = 1 in the sixth case, while in the other two cases we have ν(σ2) = 2.

The fourth case is distinguished from the fifth since in the fourth case ε2 is an eigen-
vector for the action of σ2 on Γ , while in the fifth case ε2 = 1

2 (1 + τ2), which is not an
eigenvector for the action of σ2.

https://doi.org/10.1017/S1474748003000070 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748003000070


228 F. Catanese and P. Frediani

Table 9.

(G = (Z/2Z)2, Ĝ = (Z/2Z)3; τ1: x1 = 0.)

τ2 σ1(z1), η1, ε1 σ2(z2), ε2 S(R)

x2 = 0 z̄1, η1 = 1
2 , ε1 = 1

2τ1 or z̄2, ε2 = 1
2 (1 + τ2) 2K

−z̄1, η1 = 1
2τ1, ε1 = 1

2

x2 = 0 z̄1, η1 = 1
2 , ε1 = 1

2τ1 or z̄2, ε2 = 1
2 2K

−z̄1, η1 = 1
2τ1, ε1 = 1

2

|τ2| = 1 or z̄1, η1 = 1
2 , ε1 = 1

2τ1 or τ2z̄2, ε2 = 1
2 (1 + τ2) if |τ2| = 1, 2K

x2 = − 1
2 −z̄1, η1 = 1

2τ1, ε1 = 1
2 z̄2, ε2 = 1

2 if x2 = − 1
2

x2 = 0 z̄1, η1 = 1
2 , ε1 = 1

2 (1 + τ1) or z̄2, ε2 = 1
2τ2 2K

−z̄1, η1 = 1
2τ1, ε1 = 1

2 (1 + τ1)

x2 = 0 z̄1, η1 = 1
2 , ε1 = 1

2 (1 + τ1) or z̄2, ε2 = 1
2 (1 + τ2) 2K

−z̄1, η1 = 1
2τ1, ε1 = 1

2 (1 + τ1)

|τ2| = 1 or z̄1, η1 = 1
2 , ε1 = 1

2 (1 + τ1) or τ2z̄2, ε2 = 1
2 (1 + τ2) if |τ2| = 1, 2K

x2 = − 1
2 −z̄1, η1 = 1

2τ1, ε1 = 1
2 (1 + τ1) z̄2, ε2 = 1

2 if x2 = − 1
2

x2 = 0 z̄1, η1 = 1
2 , ε1 = 1

2τ1 or z̄2 + 1
2τ2, ε2 = 1

2 T

−z̄1, η1 = 1
2τ1, ε1 = 1

2

x2 = 0 z̄1, η1 = 1
2 , ε1 = 1

2 (1 + τ1) or z̄2 + 1
2τ2, ε2 = 1

2 T

−z̄1, η1 = 1
2τ1, ε1 = 1

2 (1 + τ1)

x2 = 0 z̄1, η1 = 1
2 (1 + τ1), ε1 = 1

2 or z̄2, ε2 = 1
2τ2 T

−z̄1, η1 = 1
2 (1 + τ1), ε1 = 1

2τ1

x2 = 0 z̄1, η1 = 1
2 (1 + τ1), ε1 = 1

2 or z̄2, ε2 = 1
2 (1 + τ2) T

−z̄1, η1 = 1
2 (1 + τ1), ε1 = 1

2τ1

x2 = 0 z̄1, η1 = 1
2 (1 + τ1), ε1 = 1

2τ1 or z̄2, ε2 = 1
2 (1 + τ2) T

−z̄1, η1 = 1
2 (1 + τ1), ε1 = 1

2

x2 = 0 z̄1, η1 = 1
2 , ε1 = 1

2τ1 or z̄2 + 1
2 , ε2 = 1

2τ2 ∅
−z̄1, η1 = 1

2τ1, ε1 = 1
2

x2 = 0 z̄1, η1 = 1
2 , ε1 = 1

2 (1 + τ1) or z̄2 + 1
2 , ε2 = 1

2τ2 ∅
−z̄1, η1 = 1

2τ1, ε1 = 1
2 (1 + τ1)

x2 = 0 z̄1, η1 = 1
2 (1 + τ1), ε1 = 1

2 or z̄2 + 1
2 , ε2 = 1

2τ2 ∅
−z̄1, η1 = 1

2 (1 + τ1), ε1 = 1
2τ1

x2 = 0 z̄1 + 1
2 , η1 = 1

2τ1, ε1 = 1
2 (1 + τ1) or z̄2, ε2 = 1

2 (1 + τ2) ∅
−z̄1 + 1

2τ1, η1 = 1
2 , ε1 = 1

2 (1 + τ1)

x2 = 0 z̄1 + 1
2 , η1 = 1

2τ1, ε1 = 1
2 or z̄2, ε2 = 1

2 (1 + τ2) ∅
−z̄1 + 1

2τ1, η1 = 1
2 , ε1 = 1

2τ1

x2 = 0 z̄1, η1 = 1
2τ1, ε1 = 1

2 or z̄2, ε2 = 1
2τ2 3T

−z̄1, η1 = 1
2 , ε1 = 1

2τ1
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Table 9. (Cont.)

(G = (Z/2Z)2, Ĝ = (Z/2Z)3; τ1: x1 = 0.)

τ2 σ1(z1), η1, ε1 σ2(z2), ε2 S(R)

x2 = 0 z̄1, η1 = 1
2τ1, ε1 = 1

2 or z̄2, ε2 = 1
2 (1 + τ2) 2T

−z̄1, η1 = 1
2 , ε1 = 1

2τ1

x2 = 0 z̄1, η1 = 1
2τ1, ε1 = 1

2 or z̄2 + 1
2τ2, ε2 = 1

2 2T

−z̄1, η1 = 1
2 , ε1 = 1

2τ1

|τ2| = 1 or z̄1, η1 = 1
2τ1, ε1 = 1

2 or τ2z̄2, ε2 = 1
2 (1 + τ2) if |τ2| = 1, 2T

x2 = − 1
2 −z̄1, η1 = 1

2 , ε1 = 1
2τ1 z̄2, ε2 = 1

2 if x2 = − 1
2

x2 = 0 z̄1, η1 = 1
2τ1, ε1 = 1

2 (1 + τ1) or z̄2, ε2 = 1
2 (1 + τ2) 2T

−z̄1, η1 = 1
2 , ε1 = 1

2 (1 + τ1)

x2 = 0 z̄1, η1 = 1
2 , ε1 = 1

2τ1 or z̄2, ε2 = 1
2τ2 2K � T

−z̄1, η1 = 1
2τ1, ε1 = 1

2

x2 = 0 z̄1, η1 = 1
2 , ε1 = 1

2 (1 + τ1) or z̄2, ε2 = 1
2 2K � T

−z̄1, η1 = 1
2τ1, ε1 = 1

2 (1 + τ1)

Table 9. (Cont.)

(G = (Z/2Z)2, Ĝ = D4; τ1: |τ1| = 1 or x1 = − 1
2 ; τ2: x2 = 0.)

σ1(z1), η1, ε1 σ2(z2), ε2 S(R)

τ1z̄1, η1 = 1
2 , ε1 = 1

2 (1 + τ1) or z̄2 + 1
4τ2, ε2 = 1

2τ2 or 2T

−τ1z̄1, η1 = 1
2τ1, ε1 = 1

2 (1 + τ1) if |τ1| = 1, −z̄2 − 1
4 , ε2 = 1

2

z̄1, η1 = 1
2τ1, ε1 = 1

2 or
−z̄1, η1 = 1

2τ1, ε1 = 1
2 if x1 = − 1

2

τ1z̄1, η1 = 1
2 , ε1 = 1

2 (1 + τ1) or τ2z̄2 + 1
4 (1 − τ2), ε2 = 1

2 (1 + τ2) or 2T

−τ1z̄1, η1 = 1
2τ1, ε1 = 1

2 (1 + τ1) if |τ1| = 1, −τ2z̄2 + 1
4 (1 + τ2), ε2 = 1

2 (1 + τ2) or

z̄1, η1 = 1
2τ1, ε1 = 1

2 or z̄2 + 1
4 + 1

2τ2, ε2 = 1
2 or

−z̄1, η1 = 1
2τ1, ε1 = 1

2 if x1 = − 1
2 −z̄2 − 1

4 , ε2 = 1
2 if x2 = − 1

2

τ1z̄1, η1 = 1
2 , ε1 = 1

2 (1 + τ1) or z̄2 + 1
2 + 1

4τ2, ε2 = 1
2τ2 or ∅

−τ1z̄1, η1 = 1
2τ1, ε1 = 1

2 (1 + τ1) if |τ1| = 1, −z̄2 − 1
4 + 1

2τ2, ε2 = 1
2

z̄1, η1 = 1
2τ1, ε1 = 1

2 or
−z̄1, η1 = 1

2τ1, ε1 = 1
2 if x1 = − 1

2

Case 2. (S(R) = T .) The first two cases are distinguished from the last three cases
by the invariant (1b); in the first two cases the set of values of ν(σ2) equals {2, 0}, in the
last three cases it equals {2, 2}.
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The first case is distinguished from the second since in the first case ε1 is an eigenvector
for the action of σ1 on Λ′, while in the second case ε1 = 1

2 (1 + τ1), which is not an
eigenvector for the action of σ1.

The third case is distinguished from the fourth and the fifth since in the third case ε2
is an eigenvector for the action of σ2 on Γ , while in the other two cases ε2 = 1

2 (1 + τ2),
which is not an eigenvector for the action of σ2.

The fourth case is distinguished from the fifth since in the fourth case ε1 is the +1
eigenvector for the action of σ1 on Λ′, while in the fifth case ε1 is the −1 eigenvector for
the action of σ1.

Case 3. (S(R) = ∅.) The first three cases are distinguished from the last two cases by
the invariant (1b); in the first three cases the set of values of ν(σ2) equals {0, 2}, in the
last two cases it equals {2, 2}.

The second case is distinguished from the first and the third since in the first and
the third case ε1 is an eigenvector for the action of σ1 on Λ′, while in the second case
ε1 = 1

2 (1 + τ1), which is not an eigenvector for the action of σ1.
The first case is distinguished from the third since in the first case ε1 is the −1 eigen-

vector for the action of σ1 on Λ′, while in the third case ε1 is the +1 eigenvector for the
action of σ1.

The fourth case is distinguished from the fifth since in the fifth case ε1 is an eigenvector
for the action of σ1 on Λ′, while in the fourth case ε1 = 1

2 (1 + τ1), which is not an
eigenvector for the action of σ1.

Case 4. (S(R) = 2T .) The third case is distinguished from all the others by the parity
of ν(σ2) = 1.

The second case is distinguished from all the others by the invariant (1b). In fact, the
set of values of ν(σ2) is {2, 0} in the second case, while in the other cases it is either
{2, 2}, or {1, 1} (only in the third case).

The first case is distinguished from the last one since in the first case ε1 is an eigenvector
for the action of σ1 on Λ′, while in the last case ε1 = 1

2 (1+τ1), which is not an eigenvector
for the action of σ1.

Case 5. (S(R) = 2K � T .) The first case is distinguished from the second one since
in the first case ε1 is an eigenvector for the action of σ1 on Λ′, while in the second case
ε1 = 1

2 (1 + τ1), which is not an eigenvector for the action of σ1.
If Ĝ = D4, the cases with S(R) = 2T are distinguished by the parity of ν(σ2), which

is equal to 2 in the first case, and equal to 1 in the second case.
We finally give the table for the non-split case, where

G = Z/2Z × Z/2Z

is generated by elements g, t such that

g(z1, z2) = (z1 + η1,−z2), t(z1, z2) = (z1 + ε1, z2 + ε2).

Recall the by now standard notation τj = xj + iyj .
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Table 10.

(G = (Z/2Z)2, Ĝ = Z/4Z × Z/2Z; S(R) = ∅.)

τ1 τ2 σ̃1, η1, ε1 σ̃2, ε2

x1 = 0 |τ2| = 1 or z̄1 + 1
4 , ε1 = 1

2 , η1 = 1
2 (1 + τ1) or τ2z̄2 + 1

2 , ε2 = 1
2 (1 + τ2) if |τ2| = 1,

x2 = − 1
2 −z̄1 + 1

4τ , ε1 = 1
2τ1, η1 = 1

2 (1 + τ1) z̄2 + 1
2τ , ε2 = 1

2 if x2 = − 1
2
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Note added in proof. In a recent preprint ‘Real structures on minimal ruled sur-
faces’ (AG/0201158), J. Y. Welschinger showed that the deformation classes of minimal
ruled surfaces are determined by the topology of the real structure.

References

1. N. L. Alling, N. Greenleaf, Foundations of the theory of Klein surfaces, vol. 219,
Lecture Notes in Mathematics (Springer, 1980).

2. G. Bagnera and M. de Franchis, Sopra le superficie algebriche che hanno le coordinate
del punto generico esprimibili con funzioni meromorfe 4ente periodiche di 2 parametri, Note
1, 2, Rend. Acc. Dei Lincei 16 (1907), 492–498 and 596–603.

3. G. Bagnera and M. de Franchis, Le superficie algebriche le quali ammettono una
rappresentazione parametrica mediante funzioni iperellittiche di due argomenti, Mem.
Acc. Dei XL 15 (1908), 251–343.

4. W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces (Springer, 1984).
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