
J. Fluid Mech. (2018), vol. 837, pp. 916–930. c© Cambridge University Press 2018
doi:10.1017/jfm.2017.842

916

Free-stream coherent structures in a planar jet
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The free-stream coherent structure theory developed by Deguchi & Hall (J. Fluid
Mech., vol. 752, 2014, pp. 602–625), valid in the large-Reynolds-number asymptotic
limit, is extended and applied to jet flows. It is shown that a nonlinear exact coherent
structure can be supported at the edge of the jet, and the structure induces a
much bigger streaky flow in the centre of the jet. The lambda-shaped vortices
that characterise the coherent structure are qualitatively consistent with those seen
in experimental observations. Here a planar incompressible jet is investigated for the
sake of simplicity, but the structure we describe could be used as a basis of more
complex theories for incompressible and compressible jets of practical importance.
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1. Introduction
Several investigations of model jet problems such as round or planar jets have

repeatedly shown the appearance of coherent vortical structures in the flow. When
fluid is injected from a round jet nozzle into an open ambient region, the mixing
layer emanating from the lip of the jet nozzle produces coherent ring vortices. The
mixing layer then grows downstream, and eventually a self-similar mean flow is
developed. Jung, Gamard & George (2004) showed that the streamwise evolution
of the coherent structure changes from initially axisymmetric vortices to a helical
structure with maximum energy associated with azimuthal mode number m = 2.
Subsequently Iqbal & Thomas (2007) showed that helical mode m = 1 eventually
grows to dominate. The locally parallel linear stability analysis using the local mean
velocity profile as the background flow indeed predicts the dominance of helical
mode m= 1. The development of the streaky field has also been studied in relation
to the effect of nozzle jet. As shown in Liepmann & Morteza (1992), and in the
more recent review paper by Ball, Fellouah & Pollard (2012), the instability of the
mixing layer produces the streamwise vorticity in the initial development of the jet,
which results from nonlinear roll-up of the vortex sheet. While the turbulent round
jet flow is dominated by the helical inviscid instability mentioned above, there are
various smaller-scale vortical structures induced in the flow. Such short-scale vortices
may also have an ability to modify the streaky field. However, to the best of the
authors’ knowledge, no self-consistent theoretical description of that feedback effect
is yet available.

† Email address for correspondence: kengo.deguchi@monash.edu
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Free-stream coherent structures in a planar jet 917

For simplicity in theoretical and computational studies planar jets have usually been
used; see, for example, Bickley (1937), Tatsumi & Kakutani (1958), Howard (1959),
Clenshaw & Elliott (1960). The scenario described above for round jets is also valid
for planar flows (see Kozlov et al. (2002) for example), and the mechanism by which
the streaky structures are initiated is of great concern. The experimental study of the
planar jet flow has also been an active area of research dating back to Schlichting
(1933); see also Sato (1960), Gutmark & Wygnanski (1976), Thomas & Chu (1989),
Deo, Mi & Nathan (2008). Lambda vortices are typical small-scale coherent structures
observed in various shear flows. Recently, Sakakibara & Anzai (2001) showed that
lambda shape vortices naturally develop in controlled planar jet experiments and
confirmed that the vortices persist for a rather long streamwise distance.

Jet flows involve extraordinarily complicated coherent vortices of various scales
because of their downstream evolution. Therefore, reduction of the flow dynamics
has often been carried out. For example Gordeyev & Thomas (2000, 2002), Gamard,
Jung & George (2004) and Jung et al. (2004) used proper orthogonal decomposition
to reduce the dynamical systems to lower dimensions, whilst Le Ribault, Sarkar &
Stanley (1999) and Fureby & Grinstein (2002) used large eddy simulations to reduce
the computational cost. While the above empirically derived modified descriptions of
the governing equations or the reduced description of the experimental or numerical
results are useful in practice, they are not based on rational theoretical considerations
of the Navier–Stokes equations.

Our aim in this paper is to construct rational approximations to the nonlinear
states for a planar jet using a large-Reynolds-number matched asymptotic expansion
procedure. Unlike the fully computational approach, which becomes progressively
more computationally demanding as the Reynolds number increases, in our reduced
model the Reynolds number is scaled out of the problem. Once a consistent
asymptotic expansion is found, it is straightforward to derive the reduced equations,
without any artificial assumptions. The solution of the reduced equations completely
determines the coefficients in the leading-order asymptotic expansions that can be
used to predict the behaviour of Navier–Stokes solutions.

In order to simplify the problem as much as possible, we restrict our attention to
time-periodic flows. In recent years there has been much interest in the description
of nonlinear periodic states in simple shear flows such as plane Couette flow; see
the review paper by Kawahara, Uhlmann & van Veen (2012). The nonlinear periodic
solutions, also referred to as ‘exact coherent structures’, found in shear flows are
often weakly unstable, in the sense that they only have a few unstable eigenvalues.
Therefore results from dynamical systems theory applied to turbulence suggest that
turbulent trajectories in phase space would tend to stay for a long time around the
solutions before eventually moving away. Therefore, unstable periodic solutions can
be regarded as skeletons on which the chaotic dynamics of developed turbulence or
transition to turbulence hangs. Usually solutions found for parallel shear flows have
been captured by directly applying a Newton method to the discretised Navier–Stokes
equations; see Nagata (1990), Clever & Busse (1992), Kawahara & Kida (2001),
Waleffe (2001).

We are concerned with the nonlinear interaction of small-scale lambda vortices and
the globally induced streaky field. The asymptotic theory on which our solution is
based was first developed by Deguchi & Hall (2014a). In that work the asymptotic
suction boundary layer (ASBL) was investigated. ASBL is a well-known canonical
boundary layer flow where the development of the boundary layer growth is
suppressed by a uniform vertical suction on the wall. Since the flow is parallel,
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918 K. Deguchi and P. Hall

a full Navier–Stokes-based computational approach can also be used to find coherent
structures. By solving for nonlinear states using Newton’s method, two types of
travelling wave solutions have been found. The first one produces near-wall vortices
governed by the vortex–wave interaction theory of Hall & Smith (1991) and Hall
& Sherwin (2010), whilst here our focus is on the second ‘free-stream coherent
structure’ type that has coherent vortices interacting in a layer near the free stream
of the boundary layer. Both of the asymptotic theories were found to be in excellent
agreement with full numerical solutions.

In the layer where free-stream coherent structures are generated the flow satisfies a
canonical nonlinear eigenvalue problem associated with the Navier–Stokes equations
at unit Reynolds number; surprisingly it turns out that the problem is generic to a
wide range of flows. For example, Deguchi & Hall (2014b) investigated the Burgers
vortex sheet and showed that the theory can be used to describe nonlinear structures
associated with the vortex sheet. Subsequently, Deguchi & Hall (2015a) extended
the theory to quite general two-dimensional boundary layers over flat plates, and
accounted for non-parallel effects.

However, here we will show that the extension of the theory to jet problems is not
a trivial task. We begin the analysis by formulating the problem in the next section. In
the same section we shall also highlight the differences between the present problem
and our previous work. In § 3 we shall perform a mathematical analysis and numerical
computations to construct the asymptotic solution based on a large-Reynolds-number
assumption. Finally, in § 4, we shall discuss implications of our analysis.

2. Formulation of the problem
Consider a free planar jet where an incompressible Newtonian fluid is injected

from a steady source at the origin of Cartesian coordinate (x∗, y∗, z∗). We take x∗
to be in the streamwise direction and assume that the injection is uniform in the
spanwise direction z∗. The y∗ direction is referred to as the vertical direction. The
Reynolds number is defined using a typical fluid velocity U∗, a typical streamwise
length scale L∗, and the kinematic viscosity of the fluid ν. If the Reynolds number
R = U∗L∗/ν is large, the vertical thickness of the jet is much smaller than L∗.
The usual boundary layer scaling argument predicts the thickness normalised by
L∗ is proportional to δ ≡ R−1/2. Normalising the spatial variables and velocities as
(x, y, z)= (x∗, δ−1y∗, δ−1z∗)/L∗, (u, v,w)= (u∗, δ−1v∗, δ−1w∗)/U∗, the flow is governed
by the non-dimensional Navier–Stokes equations

(∂t + u · ∇)u=−R−1px + R−1uxx + uyy + uzz, (2.1a)

(∂t + u · ∇)v =−py + R−1vxx + vyy + vzz, (2.1b)

(∂t + u · ∇)w=−pz + R−1wxx +wyy +wzz, (2.1c)
ux + vy +wz = 0. (2.1d)

Here the non-dimensional pressure p and time t are normalised by ρU∗2 and L∗/U∗,
respectively, using the fluid density ρ. Throughout the paper we assume that the flow
is symmetric in y. We also assume that the velocity vanishes for large y and that the
flow is periodic in z with wavenumber β0.

In the large-R limit, the basic two-dimensional flow satisfies Prandtl’s boundary
layer equations with zero-pressure gradient. For the jet problem, there is the well-
known self-similar solution (see Bickley 1937; Schlichting 1979, for example):

u=
f ′

3x1/3
, v =

2ηf ′ − f
3x2/3

, f (η)= 2 tanh η, (2.2a−c)
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FIGURE 1. Schematic of the basic self-similar planar jet flow and the asymptotic regions
concerned in this paper. The arrows indicate the streamwise basic flow profile. The basic
flow develops a thin boundary layer structure near the centre of the jet. However, it should
be noted in the figure that the thickness of that layer is O(1) in our non-dimensional
coordinate as we have used boundary layer scaling. The production layer is the position
where the basic flow advection is comparable to the viscous effect, and wave-like coherent
structures are produced. The thickness of the production layer is the same as that for the
boundary layer.

Flow configuration ASBL Burgers Boundary layers Jet
Far-field form of basic flow Exponential Gaussian Gaussian Exponential
Streamwise development Parallel Parallel Non-parallel Non-parallel

TABLE 1. Summary of the flows relevant to free-stream coherent structures theory for
ASBL (Deguchi & Hall 2014a), the Burgers vortex sheet (Deguchi & Hall 2014b), two-
dimensional boundary layers (Deguchi & Hall 2015a), and planar jets (this study).

where η is the similarity variable η = yx−2/3/3. Here the momentum flux
∫
∞

−∞
u2 dy

is a conserved quantity and, without any loss of generality, we can choose it to be
16/27. A sketch of the basic flow profile is shown in figure 1.

3. The asymptotic description of coherent structures in jets
3.1. Outline of the asymptotic theory

In this section we seek a time-periodic solution of (2.1) with fixed frequency Ω0

using a large-Reynolds-number asymptotic approach. The overall asymptotic structure
is similar to that found for ASBL by Deguchi & Hall (2014a); namely we assume that
wave-like coherent structures are produced in a ‘production layer’ located a distance
O(ln R) from the centre of the jet. A sketch of the different asymptotic regions is given
in figure 1. We denote the basic planar shear flow as ub, vb, where the leading-order
part is given by (2.2). The key step in finding the location of the production layer is
the far-field form of the basic flow:

ub→ FGe−2η, vb→−F, as η→∞, (3.1a,b)
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where F(x) = (2/3)x−2/3, G(x) = 4x1/3. An important point to note here is that the
streamwise component approaches a free-stream speed exponentially as is the case
for ASBL, and the effective Reynolds number becomes small in the far field. In
the production layer, the flow is governed by the Navier–Stokes equations with
an effective Reynolds number of unity, and thus wave-like free-stream coherent
structures can be generated. The position of the layer can easily be found by a simple
order-of-magnitude analysis. We first note that in order to recover the streamwise
derivative in the right-hand side of (2.1), we must set ∂x ∼ O(R1/2). Then for the
convective term to balance with the viscous terms in the equations of motion we
require e−2η∂x ∼O(R0). Combining these balances, we have

e−2η
∼O(R−1/2), (3.2)

from which we find that the production layer is located at η∼O(ln R).
Of course, since the jet problem is non-parallel, the flow structure beneath the

production layer is more complicated than is the case for ASBL. The free-stream
coherent structures theory for the spatially growing problem was developed by
Deguchi & Hall (2015a) for a quite general class of two-dimensional boundary
layers. However, for the reasons given below a direct application of that theory to
the jet problem is not possible.

The first reason is that for the boundary layer flows the decay of the basic flow
correction is Gaussian rather than exponential. As found earlier (Deguchi & Hall
2014b) for the Burgers vortex sheet, even for this case we can determine the location
of the production layer because locally the behaviour of the basic flow correction is of
exponential form in terms of a scaled variable. However, since the basic flow beneath
the production layer is not of exponential form, the induced vortex structure there
develops in a quite different way than was the case for ASBL. In the adjustment
zone between the near-wall boundary layer and the production layer the vertical
and spanwise scales are different. Surprisingly, that difference allows us to solve
the adjustment problem analytically to find the maximum amplitude of the induced
streak there. In contrast, for the jet problem the far-field approximation of the basic
flow (3.1) is valid except for the boundary layer near the centre of the jet. This
means that there is no need for an adjustment layer, and thus the streak beneath the
production layer takes its maximum in the boundary layer as for the ASBL case.
The non-parallel effect becomes evident in the boundary layer, because the natural
streamwise scale of the flow here becomes O(1) in x. The vertical and spanwise
scales are comparable there, and we must therefore use a numerical approach.

The second reason why the jet and growing boundary layer problems differ is the
difference between the free-stream speeds in the jet and boundary layer problems. In
order to construct a periodic solution in the production layer of non-parallel flows,
we describe travelling wave states varying locally using a Wentzel–Kramers–Brillouin
(WKB) method. The streamwise wavenumber of the local travelling wave must be
chosen appropriately to construct the global solution. In the boundary layer problem,
the local wavenumber can be simply fixed by the free-stream speed and the global
frequency of the periodic solution. However, since for the jet problem the free-stream
speed is zero, clearly the same technique cannot be used. Of course this problem is
inherently associated with non-parallel effects. The analysis in the next section shows
that the global frequency of the jet problem can be related to the phase speed of the
local travelling waves, rather than the wavenumber.
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Free-stream coherent structures in a planar jet 921

3.2. Production layer analysis
Now let us derive the canonical problem that governs nonlinear free-stream coherent
structures in the production layer. Following the discussion in the previous section, we
define the scaled vertical coordinate Y ≡ Fy − ln(R1/2G). Since 2η = Fy, the large-η
form of the basic flow (3.1) then becomes

ub = R−1/2Fe−Y
+ · · · , vb =−F+ · · · . (3.3a,b)

Beneath the production layer, we assume that the flow is simply the unperturbed jet
flow to leading order with a small correction induced by the flow in the production
layer.

In order to have a unit-Reynolds-number Navier–Stokes problem in the production
layer, the scaled spanwise variable Z = Fz is now introduced. In order to allow for a
wave-like dependence of the flow in the streamwise direction, we introduce a WKB
phase function Φ ∈ [0, 2π] defined by

Φ =−R1/2

(∫ x

[Fα0(x)+ · · ·] dx− R−1/2Ω0t
)
, (3.4)

so that ∂x = −R1/2Fα0∂Φ + · · · . Here α0 is the local streamwise wavenumber of
the travelling wave, and the minus sign has been introduced to aid comparison with
Deguchi & Hall (2014a). Note that α0 is real, and varies in the streamwise direction,
whereas the frequency Ω0 is constant. We now substitute the expansions

u=−R−1/2FU(Φ, Y, Z)+ · · · , v = FV(Φ, Y, Z)+ · · · , (3.5a)
w= FW(Φ, Y, Z)+ · · · , p= F2P(Φ, Y, Z)+ · · · , (3.5b)

into (3.10) and retain the leading-order terms. In order to facilitate comparison with
the canonical nonlinear eigenvalue problem introduced by Deguchi & Hall (2014a) it
is convenient to define

α = α0, β =
β0

F
, c1 =

Ω0

α0F2
. (3.6a−c)

The leading-order problem then becomes

([U + c1i] · ∇)U =−∇P+∇2U, ∇ ·U = 0, (3.7a)

where ∇ = (α∂Φ, ∂Y, ∂Z). Note here that α, β, c1 defined above are functions of x,
but since the wave operates on a shorter streamwise length scale than does the basic
flow, the variables U,V,W,P depend only parametrically on x. Therefore as the wave
system moves downstream at each x we must determine the solution of (3.7a) in the
periodic domain Φ ∈ [0, 2π], Z ∈ [0, 2πF/β] subject to the far-field conditions

(U, V,W)→ (0,−1, 0) as Y→∞, (3.7b)
(U, V,W)→ (−e−Y,−1, 0) as Y→−∞. (3.7c)

The nonlinear eigenvalue problem specified by (3.7) is identical to that defined
by (4.5)–(4.10) in Deguchi & Hall (2014a), except for a typo (the minus sign in
front of c1) in that paper. Therefore, the nonlinear eigenvalue c1 is to be determined
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as a function of the wavenumbers α, β solving ASBL. However, the numerical
results obtained there cannot be directly used here because, when the boundary layer
is growing in x, the wavenumbers and wavespeed satisfy a further constraint, and
interestingly it turns out that the constraint for the jet problem is quite distinct from
that for the growing boundary layer problem discussed by Deguchi & Hall (2014a,
2015a). In the boundary layer problem the free-stream speed is not zero and so α is
determined locally by the condition that the structure in the production layer moves
downstream with the speed of the unperturbed flow in the production layer. The
spanwise and streamwise wavenumbers are then related by the fact that the boundary
layer grows in the streamwise direction. Thus, in the Blasius case it turns out that
moving downstream, αβ−1 must be a constant. That constraint enabled the direct use
of the results of Deguchi & Hall (2014a) which were computed with αβ−1

= 0.5.
The corresponding constraint here follows directly from (3.6) by eliminating x to give
c1αβ

−2
= Ω0β

−2
0 . Thus as a wave of constant frequency Ω0 and constant spanwise

wavenumber β0 moves downstream we must solve (3.7) subject to c1αβ
−2
= Ω0β

−2
0

at each value of x. Since we know that β is given as a function of x by (3.6) the
extra constraint determines α as a function of x. The effect of this is to make the
solution of (3.7) significantly more difficult than the case discussed by Deguchi &
Hall (2014a, 2015a).

Results of our computations for the case c1αβ
−2
=Ω0β

−2
0 = 120 are denoted by the

red solid curve in figure 2(a). At any point on the curve the local value of c1 is found
from c1αβ

−2
= 120. This solution curve was computed starting from the results for the

Blasius problem given in Deguchi & Hall (2015a), and shown by the black dashed
line in the figure. Using Newton’s method we can continue the solution branch in a
certain range of wavenumbers to find the corresponding locus of c1αβ

−2. The detail of
the computational method is given in Deguchi & Hall (2014a). The points (b) and (c)
on the red solid curve are close to the saddle-node points where solutions appear; the
flow visualisations at these points are given in figure 2(b,c). Throughout the paper the
lower branch states are chosen to visualise the flow. The green surfaces represent the
isosurfaces of the streamwise vorticity that shows the presence of free-stream coherent
structures in the production layer. We have extracted that structure from the numerical
result to construct the production layer solution of the jet problem. The blue and
red surfaces show the induced near-wall streak by the free-stream coherent structures;
these are the isosurfaces of the streamwise velocity deviation from the basic flow.
Although these surfaces show the presence of the streak growth beneath the production
layer, it should be noted that the near-wall part of the ASBL solution cannot be a good
approximation of the jet problem because it takes no account of non-parallel effects.

3.3. Boundary layer analysis
Deguchi & Hall (2014a) showed that as Y → −∞ the production layer solution
behaves like

U→−e−Y
−K(2ω)−1e(ω−1)Y cos(2βZ)+ · · · , (3.8a)

V→−1+KeωY cos(2βZ)+ · · · . (3.8b)

Here ω = (
√

1+ 16β2 − 1)/2> 0 and therefore the exponential growth of the streak
beneath the production layer is possible when β < 1/

√
2. We can confirm that the

range of wavenumbers shown in figure 2(a) satisfies this condition. The coefficient K
represents the intensity of the induced streak, and can be estimated by the numerical
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FIGURE 2. (Colour online) The travelling wave solutions of the ASBL problem. Note
that the definition of the Reynolds number and the scale of the coordinates used here
are different to those defined for the jet problem. (a) The wavenumbers selected in the
computation. The red solid curve corresponds to the jet problem for cαβ−2

= 120, whilst
the dashed line corresponds to the results computed by Deguchi & Hall (2015a) for
Blasius problem α/β = 0.5. Asymptotic convergence is checked in a range of Reynolds
numbers from 100 000 to 200 000. The numbers of Fourier modes used in x and z are 14
and 26, respectively. In the vertical direction 180 Chebyshev modes are used. (b,c) The
flow field of the solutions at the corresponding points indicated in (a). The interval x ∈
[0, 2π/α], z∈ [0, 2π/β] is used. The green surfaces are 50 % maximum absolute value of
streamwise vorticity. The red/blue surfaces are 25 % maximum/minimum of streak, namely
perturbation of streamwise velocity to the streamwise laminar flow, 1 − e−y. Reynolds
numbers used are (b) 100 000, (c) 200 000.

result as figure 3. We shall shortly see that this coefficient plays an important role in
the computation of the asymptotic boundary layer problem. Reverting to the original
variables, equation (3.8) becomes

u→ FGe−2η
+KF(GR1/2)−ω

G
2ω

e(ω−1)2η cos(2β0z)+ · · · , (3.9a)

v→−F+KF(GR1/2)−ωeω2η cos(2β0z)+ · · · . (3.9b)
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FIGURE 3. (Colour online) The value of K along the solid red curve in figure 2(a).

This expression is valid all the way down to the edge of the boundary layer because
all x derivatives are negligible to leading order, and thus the x dependence remains
parametric.

In the boundary layer ub becomes O(1) and thus the x derivative in the convective
term is no longer negligible. The leading-order equations are the Görtler vortex
equations derived in Hall (1983, 1988) with zero Görtler number:

(∂t + u∂x + v∂y +w∂z)u= uyy + uzz, (3.10a)
(∂t + u∂x + v∂y +w∂z)v =−py + vyy + vzz, (3.10b)
(∂t + u∂x + v∂y +w∂z)w=−pz +wyy +wzz, (3.10c)

ux + vy +wz = 0. (3.10d)

Note that elsewhere the equations are called the parabolised Navier–Stokes equations
or the boundary region equations; see Deguchi, Hall & Walton (2013) and references
therein for other situations where the equations are important. The boundary region
equations are parabolic in x, and thus can be marched downstream given appropriate
upstream conditions.

If we expand

u= ub + R−ω/2ũ cos(2β0z)+ · · · , (3.11a)
v = vb + R−ω/2ṽ cos(2β0z)+ · · · , (3.11b)

in the boundary layer, then (ũ, ṽ) are governed by the leading-order equations

ubũx = (∂
2
y − 4β2

0 − vb∂y − ubx)ũ− ubyṽ, (3.12a)

(ub(∂
2
y − 4β2

0 )− ubyy)ṽx − 2(ubx∂y + ubxy)ũx

= (∂2
y − 4β2

0 − vb∂y + ubx)(∂
2
y − 4β2

0 )ṽ

+ (ubxyy + ubxy∂y)ṽ + (vbx(∂
2
y + 4β2

0 )+ ubxxy)ũ. (3.12b)

We then transform these equations to (x, η) and march in x applying the boundary
conditions

ũ→KFG1−ω(2ω)−1e(ω−1)2η, ṽ→KFG−ωeω2η, as η→∞, (3.13a)
ũy = ṽ = 0, at y= 0, (3.13b)
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FIGURE 4. (Colour online) The streak amplitude ũ computed by the boundary layer
asymptotic problem.

which are derived from the matching to the limiting form (3.9) and the symmetry
with respect to y. The coefficient K(x) found from figure 3 and (3.6) describes
the intensity of the forcing from the free-stream coherent structures. The numerical
scheme to solve the marching problem is similar to that used in Deguchi & Hall
(2015a), where finite differences were used in vertical direction. In order to march
the equations, the Adams–Bashforth method with step size 10−6 is used, except for
the diffusion terms, which are treated by the Crank–Nicolson method.

We start the production layer interaction from the point (b) in figure 2(a). Without
loss of generality we can choose the starting point at x= 1. We assume that before
this point the flow is laminar. That choice of the starting point requires us to select
the parameters of the global problem as β0= 0.21× 2/3= 0.14; see (3.6). Also, since
we fix Ω0β

−2
0 = 120 to solve the production layer problem, Ω0= 120× 0.142

= 2.352.
The resultant streak amplitude solution ũ is shown in figure 4. Here we used 400
points in η ∈ [0, 8], but the result is insensitive to the number of points and the
upper bound of the vertical domain size. Consistent with the theory we see that a
large-amplitude streak is generated. The origin of the streak growth is the last term
in (3.12a), where the small vertical perturbation velocity interacts with the basic flow.
The vertical perturbation decays exponentially towards the centre of the jet, but since
the basic flow grows at faster rate, the forcing term becomes large in the boundary
layer. However, the basic flow growth is suppressed when η becomes small, and thus
the growth of the streak is also suppressed there as well.

4. Conclusion and discussions

In this paper we have for the first time presented a high-Reynolds-number
asymptotic representation of three-dimensional nonlinear periodic solutions in a
free planar jet. A matched asymptotic expansion of Navier–Stokes equations was
used to derive the Reynolds-number-independent problem in the production layer and
the boundary layer; see figure 1. In the production layer the flow is governed by
the canonical problem derived previously for ASBL and many other boundary layer
flows. At each streamwise position, the solution of the asymptotic problem can be
found from direct Navier–Stokes solutions of ASBL using the implicit relationship
between local spanwise and streamwise wavenumbers. The coherent vortices localised
in the production layer produce a streaky field growing towards the centre of the jet.
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FIGURE 5. (Colour online) Combined plot of the free-stream coherent structures for the
planar jet; (R, β0, Ω0) = (40 000, 0.14, 2.352). The interval x ∈ [1, 3.7], z ∈ [0, 2π/β0] is
used. The green surface represents the 25 % maximum of the absolute streamwise vorticity
computed by the ASBL solutions. The red/blue surfaces are positive/negative isocontours
of the streak, where the 25 % maximum/minimum of the streamwise perturbation velocity
is visualised.

In the boundary layer near the centre of the jet the non-parallel effect plays dominant
role, and thus we must integrate the asymptotic equations in the streamwise direction
subject to the forcing from the production layer.

The configuration concerned in this paper is the simplest jet flow, and in fact is the
simplest free-stream coherent structure theory in the presence of non-parallel effects.
The solution in the boundary layer depends on the upstream condition, as pointed out
for the Görtler problem by Hall (1983). On the other hand, in the production layer
the free-stream coherent structures fix the form and size of the upstream condition to
maintain the periodic solutions in the jet; if the upstream input in the free stream is
perturbed, the downstream flow may become turbulent or laminar. In an experiment,
the upstream perturbation in the free stream could be related to the perturbation from
the jet nozzle.

Given the asymptotic solutions obtained in the previous section, we can construct
the combined picture of the overall periodic solution for arbitrary Reynolds numbers.
Figure 5 is a snapshot of the combined solution for R= 40 000. The green surfaces
visualise the free-stream coherent structures constructed from (3.4) to (3.6), where
U(Φ, Y, Z) can be obtained by rescaling large-Reynolds-number ASBL solutions in
figure 2; see Deguchi & Hall (2014a). The global solution inherits the appearance of
the lambda-shaped coherent vortices seen in the ASBL solutions, and is reminiscent
of that seen in figures 3 and 4 of Sakakibara & Anzai (2001). The red/blue surfaces
sitting below the coherent vortices are the fast/slow streaks obtained from (3.11a)
using the function ũ(x, y) computed in figure 3. As explained in the asymptotic theory,
the driving mechanism of the streak is the forcing from the vortices modulated by
the non-parallel effect. The formation of the streaky field by pairs of counter-rotating
streamwise vortices is the typical flow topology of the three-dimensional coherent
structures observed in turbulent jet experiments and simulations; see Liepmann &
Morteza (1992), Fureby & Grinstein (2002), Kozlov et al. (2002), Jung et al. (2004),
Ball et al. (2012), for example. It has been pointed in the experimental literature
that the turbulent–laminar interface is highly convoluted. The production layer is
in fact the position where the most complicated flow structure could be observed,
as all the terms in the Navier–Stokes equations must be retained there even at the
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large-Reynolds-number limit. The production layer structure used in this paper is
rather simple, but note that the problem could possess more complicated nonlinear
solutions other than the one we have shown in this paper. Therefore, in view of
the remarks made above, we conclude that the overall structure of our solution is
qualitatively consistent with previous observations in experiments and simulations.

Nevertheless, it should be noticed that direct quantitative comparison of our
solutions with the existent turbulent experimental results such as Deo et al. (2008)
is not easily done. The difficulty is twofold. The first difficulty is that the periodic
solution we have, for example, constructed in figure 5 is the simplest nonlinear
flow where the background flow remains not too far from the analytic laminar
flow profile. The key point in the dynamical systems theory point of view of
turbulence is that turbulence can be understood by a weighted sum of periodic
solutions, because turbulent trajectories in the phase space recurrently visit various
periodic solutions; see Cvitanović (2013), for example. For relatively low Reynolds
numbers, Kawahara & Kida (2001) showed that only one periodic solution gives an
excellent approximation of the turbulent statistics of the flow. However, for large
Reynolds numbers the dynamical systems theory picture of turbulence is much more
complicated, as there are a myriad of solutions with possibly distinct asymptotic
structures. Therefore, our solutions must be regarded as one of the building blocks
to describe large-Reynolds-number dynamics of jet flows, in the sense that they can
only capture some aspects of the dynamics.

The second difficulty is the inviscid instability of the laminar basic flow due to
the inflection point of the flow. In fact inviscid instability mechanisms seem to be
very powerful in the jet flows; for example, in the round jet experiments the origin
of the observed helical modes were explained by the local linear stability of the mean
flow (Liepmann & Morteza 1992; Jung et al. 2004; Iqbal & Thomas 2007). Once the
mode is generated in the flow, the instability might well dominate other smaller-scale
vortices including free-stream coherent structures. Since the streaky field generated by
the free-stream coherent structures may be subdominant in turbulence, some special
control technique must be employed in the experiment. For inviscidly stable class
of flows in channel or pipe, a simple successful flow control technology has been
developed to directly observe periodic solutions in experiments/simulations; see Itano
& Toh (2001), de Lozar et al. (2012). However, the linear instability of the basic jet
flow even at low Reynolds numbers may present a difficulty in observing our solutions
in their pure form.

The prediction by the asymptotic model may be extended by including the above
effects missing in the present theory. For example, we can consider the interaction
of the inviscid instability with the free-stream coherent structures. That interaction
might produce significant problems able to describe more quantitative results for
large-Reynolds-number fully developed turbulent jet flows. The feedback effect from
the inviscid wave from the background flow may be considered in a similar manner
as the vortex–wave interaction theory by Hall & Smith (1991). The distortion of the
background flow possibly changes the position of the production layer, and then the
effect of the free-stream coherent structures on the jet centre through the growing
streak would be altered. Moreover, although application of the present theory to the
axisymmetric jet may be of interest from a practical point of view, it also needs
some extension of the theory. For example, in view of the experimental observations,
the use of helical coordinate seems crucial in order for a better flow prediction. The
asymptotic description of oblique vortical structures in shear flows given by Deguchi
& Hall (2015b) could be used to describe such helical flows. Another ingredient
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missing in our theory is the effect of the jet nozzle. As remarked in § 1, it is
well-known from the experimental observation that axisymmetric vortices produced
by Kelvin–Helmholtz instability at the lip of round jet nozzle are the dominant flow
structures in the initial development of jet flows. In the planar jet, the analogous
result corresponds to the initial development of the quasi-spanwise vortices placed
anti-symmetrically near the jet centre. The three-dimensional breakdown of such
vortices is an alternative significant source of streaky flow. Thus, the excitation of
the breakdown by the free-stream coherent structures is of obvious interest; such an
excitation of instability by external effects is called receptivity. It would be noteworthy
that recently Deguchi & Hall (2017) and Dempsey, Hall & Deguchi (2017) found that
the free-stream coherent structures are remarkably efficient generator of streaks in
boundary layer flows over a curved wall, through the receptivity mechanism. Although
any above extension is of interest, it makes the theory extremely complicated, and thus
mathematical consistency would be increasingly difficult to maintain. The computation
of the production layer structure is already challenging, and thus further extension
of the asymptotic model would make the numerical work formidable. As our aim in
this paper is to describe the basic idea of the new theory in its simplest form, we
leave those further analyses to future work.

Finally, we comment on the possible relevance of this work to jet acoustics. High-
frequency noise from a compressible jet is attributed to short-scale turbulent structures
within the jet. Low-frequency noise is associated with hydrodynamic instabilities of
the mean part of the turbulent jet flow. The implication of our analysis here to round
compressible jets is that low-frequency noise could be generated a long way from
the centre of the jet, and that it would depend crucially on how the jet adjusted to
its free-stream value. The frequency of the waves generated would be small because
the nonlinear waves in the production layer move downstream slowly. Therefore, the
mechanism we describe here can provide an alternative source of low-frequency noise
from a compressible jet.
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CVITANOVIĆ, P. 2013 Recurrent flows: the clockwork behind turbulence. J. Fluid Mech. 726, 1–4.
DEGUCHI, K. & HALL, P. 2014a Free-stream coherent structures in parallel boundary-layer flows.

J. Fluid Mech. 752, 602–625.
DEGUCHI, K. & HALL, P. 2014b Canonical exact coherent structures embedded in high Reynolds

number flows. Phil. Trans. R. Soc. Lond. A 372, 20130352.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

84
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.842


Free-stream coherent structures in a planar jet 929

DEGUCHI, K. & HALL, P. 2015a Free-stream coherent structures in growing boundary layers: a link
to near-wall streaks. J. Fluid Mech. 778, 451–484.

DEGUCHI, K. & HALL, P. 2015b Asymptotic descriptions of oblique coherent states in shear flows.
J. Fluid Mech. 782, 356–367.

DEGUCHI, K. & HALL, P. 2017 The relationship between free-stream coherent structures and near-wall
streaks at high Reynolds numbers. Phil. Trans. R. Soc. Lond. A 375, 20160078.

DEGUCHI, K., HALL, P. & WALTON, A. G. 2013 The emergence of localized vortex–wave interaction
states in plane Couette flow. J. Fluid Mech. 721, 58–85.

DEMPSEY, L. J., HALL, P. & DEGUCHI, K. 2017 The excitation of Görtler vortices by free-stream
coherent structures. J. Fluid Mech. 826, 60–96.

DEO, R. C., MI, J. & NATHAN, G. J. 2008 The influence of Reynolds number on a plane jet.
J. Fluid Mech. 20, 075108.

FUREBY, C. & GRINSTEIN, F. F. 2002 Large eddy simulation of high-Reynolds-number free and
wall-bounded flows. J. Comput. Phys. 181, 68–97.

GAMARD, S., JUNG, D. & GEORGE, W. K. 2004 Downstream evolution of the most energetic modes
in a turbulent axisymmetric jet at high Reynolds number. Part 2. The far-field region. J. Fluid
Mech. 514, 205–230.

GORDEYEV, S. V. & THOMAS, F. O. 2000 Coherent structure in the turbulent planar jet. Part 1.
Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J. Fluid
Mech. 414, 145–194.

GORDEYEV, S. V. & THOMAS, F. O. 2002 Coherent structure in the turbulent planar jet. Part 2.
Structural topology via POD eigenmode projection. J. Fluid Mech. 460, 349–380.

GUTMARK, E. & WYGNANSKI, I. 1976 The planar turbulent jet. J. Fluid Mech. 73 (3), 465–495.
HALL, P. 1983 The linear development of Görtler vortices in growing boundary layers. J. Fluid

Mech. 130, 41–58.
HALL, P. 1988 The nonlinear development of Görtler vortices in growing boundary layers. J. Fluid

Mech. 193, 243–266.
HALL, P. & SHERWIN, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the

skeleton of coherent structures. J. Fluid Mech. 661, 178–205.
HALL, P. & SMITH, F. T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer

transition. J. Fluid Mech. 227, 641–666.
HOWARD, L. N. 1959 Hydrodynamic stability of a jet. J. Math. Phys. 37, 283–298.
IQBAL, M. O. & THOMAS, F. O. 2007 Coherent structure in a turbulent jet via a vector

implementation of the proper orthogonal decomposition. J. Fluid Mech. 571, 281–326.
ITANO, T. & TOH, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan

70, 703–716.
JUNG, D., GAMARD, S. & GEORGE, W. K. 2004 Downstream evolution of the most energetic

modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region.
J. Fluid Mech. 514, 173–204.

KAWAHARA, G. & KIDA, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration
cycle and burst. J. Fluid Mech. 449, 291–300.

KAWAHARA, G., UHLMANN, M. & VAN VEEN, L. 2012 The significance of simple invariant solutions
in turbulent flows. Annu. Rev. Fluid Mech. 44, 203–225.

KOZLOV, V. V., GREK, G. R., LÖFDAHL, L. L., CHERNORAI, V. G. & LITVINENKO, M. V. 2002
Role of localised streamwise structures in the process of transition to turbulence in boundary
layers and jets (review). J. Appl. Mech. Tech. Phys. 43 (2), 224–236.

LE RIBAULT, C., SARKAR, S. & STANLEY, S. A. 1999 Large eddy simulation of a plane jet. Phys.
Fluids 11 (10), 3069–3083.

LIEPMANN, D. & MORTEZA, G. 1992 The role of streamwise vorticity in the near-field entrainment
of round jets. J. Fluid Mech. 245, 643–668.

DE LOZAR, A., MELLIBOVSKY, M., AVILA, M. & HOF, B. 2012 Edge state in pipe flow experiments.
Phys. Rev. Lett. 108, 214502.

NAGATA, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation
from infinity. J. Fluid Mech. 217, 519–527.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

84
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.842


930 K. Deguchi and P. Hall

SAKAKIBARA, J. & ANZAI, T. 2001 Chain-link-fence structures produced in a jet. Phys. Fluids 13
(6), 1541–1544.

SATO, H. 1960 The stability and transition of a two-dimensional jet. J. Fluid Mech. 7 (1), 53–80.
SCHLICHTING, H. 1933 Laminare Strahlenausbreitung. Z. Angew. Math. Mech. 13, 260–263.
SCHLICHTING, H. 1979 Boundary-Layer Theory, 7th edn. McGraw-Hill.
TATSUMI, T. & KAKUTANI, T. 1958 The stability of a two-dimensional laminar jet. J. Fluid Mech.

4 (3), 261–275.
THOMAS, F. O. & CHU, H. C. 1989 An experimental investigation of the transition of a planar jet:

subharmonic suppression and upstream feedback. Phys. Fluids A 1, 1566–1587.
WALEFFE, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93–102.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

84
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.842

	Free-stream coherent structures in a planar jet
	Introduction
	Formulation of the problem
	The asymptotic description of coherent structures in jets
	Outline of the asymptotic theory
	Production layer analysis
	Boundary layer analysis

	Conclusion and discussions
	Acknowledgements
	References


