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SUMMARY

This article deals with the kinematic calibration of the
Delta robot. Two different calibration models are
introduced: The first one takes into account deviations of
all mechanical parts except the spherical joints, which are
assumed to be perfect (“model 547), the second model
considers only deviations which affect the position of the
end-effector, but not its orientation, assuming that the
“gpatial parallelogram” remains perfect (‘“model 247°). A

measurement set-up is presented which allows

determine the end-effector’s position and orientation
with respect to the base. The measurement points are
later be used to identify the parameters of the two
calibration model resulting in an accuracy improvement
of a factor of 12.3 for the position and a factor of 3.7 for

the prediction of the orientation.

KEYWORDS: Delta robot; Kinematic calibration;
calibration models; Implicit calibration.

1. INTRODUCTION

Parallel mechanisms are generally regarded as being
highly accurate due to the non-cumulative joint errors.'
Programming of high precision assembly tasks by the
traditional “‘teach-in”” method becomes very expensive.
Hence, off-line programming is needed which claims a
robot with a small static pose error, or in other words,
with a high accuracy. The accuracy of parallel robot can
be improved by an appropriated calibration technique,

which is the subject of this paper.

The major part of articles addressing calibration
methods for parallel robots are based on the Stewart?
Platform which is a fully parallel non-redundant
manipulator with six degrees of freedom (DOF). Many
used a calibration model assuming universal
(U-) and spherical (S-)joints to be perfect as well as
prismatic (P-)actuators to be perfectly assembled, which
leads to a model with 42 kinematic parameters (‘“‘model
42”}. Not assuming U, S and P-joints to be perfect would

authors®™®

lead to 138 kinematic parameters.

However, some of the problems encountered in
improvement of accuracy of parallel robots cannot be

demonstrated with the Stewart Platform. That is:

a) Model 42 can be established without the risk of
introducing mathematical singularities in the para-
meterization. The 36 parameters used to describe the
Cartesian coordinates of the attachment points of the
U- and S-joints are free of singularities. The
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remaining 6 parameters, the transducers’ off-set,
describing a distance are free of singularities, too.
The modeling process is simple due to the lack of
rotative (R-)joints, the joint axis of which has to be
modeled, and due to the very simple topology of the
kinematic chains (‘‘legs”) which link the end-effector
to the base.

b) Some errors in the pose of the end-effector which
occur for manipulators with less than 6 DOF cannot
be influenced by its actuators. These non-
influenceable errors are imposed by the mechanical
structure of the robot and cannot be corrected by a
calibration procedure. Taking for instance a SCARA
robot with its 4 DOF, it is obvious that the
remaining, non-influenceable 2 DOF correspond to
the perpendicularly of the end-effector with respect to
its base.

A more sophisticated test vehicle for the calibration of

parallel robots may be the Delta robot’” with its 3

translational DOF and rotative actuators (Figure 1). Its

kinematic chains as well are more complex than the

“legs™ of a Stewart Platform, since they are composed of

an “arm” which branches into two parallel ‘“forearms”.

Furthermore, calibration is of particular interest since

this robot is marketed by Demaurex, Robotique &

Microtechnique S.A.

The Delta robot maintains passively its end-effector’s
orientation with respect to the base. The concept was
termed ‘‘spatial parallelogram”. For calibration this
particularity of the Delta robot introduces kinematic
parameters which are nearly unobservable. If for a
calibration model the spatial parallelogram is assumed to
be perfect, the end-effector size as well as the distance
between the two parallel forearms become totally
unobservable and therefore unidentifiable. However,
small mechanical deviations will disturb the spatial
parallelogram and cause small changes of the orientation.
The observability of the kinematic parameters
mentioned above {end-effector size and distance between
the forearms) will still be very small compared to other
parameters such as the length of the arms for instance.

The aim of this paper is to present an experimentally
verified calibration of the Delta robot using the methods
developed in Vischer.”

According to Mooring” a calibration process consists
of four different steps: modeling, measurement, iden-
tification and implementation. This paper is structured
accordingly. Existing work on the calibration of the
Delta robot is first reviewed.
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forearms

spherical (S-) joint
Fig. 1. The Delta robot with 3 translational DOF.

2. SURVEY OF LITERATURE

The first approach to calibrate a Delta robot was made
by Zobel.'® Based on the assumption that the
end-effector remains perfectly parallel to the base, he
proposed a calibration model containing 18 parameters.
To identify these parameters a premeasured fixture
(precision plate) with six touch points for full position
measurement was used. The fixture could be placed in
three different positions on the base plate of the robot.
In a first experiment 3 parameters were identified using 3
error equations and it was shown that an error of 10
millimeters could easily be identified. For verification the
3 parameters have also been directly measured. However,
the introduced test-error of 10 millimeters is large (5%)
compared to the characteristical length of the robot
(length of the arm: 205 mm). Standard manufacturing
tolerances of such a piece are in the range of 0.5-0.01
millimeters (0.25-0.005%).

Maurine!' proposed a recalibration procedure for a
Delta robot based on a displacement measurement of a
single Laser sensor (triangulation). He stated that a
calibrated robot moved to a new work place has to be
recalibrated with respect to its environment and that the
offsets of the joint transducers must be reidentified. To
identify 9 parameters he proposed a two-step method. In
a first step a plane is precisely located in parallel to the
base plate and a first set of 6 parameters is identified with
this set-up. In a second step small cylinders are arranged
in a circle on this plane and the remaining three
parameters identified. Simulations were perfromed with
200 to 600 micrometers of measurement noise in order to
show the robustness of the proposed method. For the
experimental part of his work the orientation of the
plane as well as the location of the cylinders were
identified in a previous step. Different sets of parameters
were identified depending on the initial values for the
iterative non-linear least square algorithm (problem of
multiple minima).

Lintott'> simulated the calibration procedure of a
Delta robot by investigating in a first step a Stewart
Platform. He stated that the lower part (sub-structure) of
the Delta robot (Figure 1) represents a general Stewart
Platform when subjected to mechanical errors. He
investigated the optimal choice of measurement points
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and observed that they migrate towards the edges of the
workspace (inverse singularities) and towards the
singular configurations within the workspace (direct
singularities). However, measurement points located
within singularities will cause problems during the
identification phase. He adapted the method developed
for the calibration of serial robots which requires solving
of the direct problem (forward calibration, Figure 9) of
the calibration model during identification. This is very
time-consuming. Based on simulated noisy measurement
data and using the Levenberg-Marquardt algorithm for
non-linear least-squares estimation, the Euclidean norm
of the error vector in the position could be improved by
a factor of 50 (4.33 mm— 0.086 mm). For the orientation
he reached an improvement factor of 417 (3.1
degrees— 27 arcseconds). Such high improvement
factors are difficult to reach in an experimental
calibration as opposed to a simulated one. As a rule of
thumb the accuracy of the measurement unit must be a
magnitude higher than the level which should be gained
by calibration. Using current technology it is difficult and

-+ expansive to provide a 3D-orientation measurement unit

with an accuracy of 2.7 arcseconds.

3. MODELING

A “good” calibration model must fulfill three criteria:

completeness, equivalence, and proportionality:">

o A complete model contains a sufficient number of
parameters to describe the mechanical structure of a
robot without being redundant. According to Vischer®
this number of independent parameters (C) can be
calculated for a multi-loop parallel robot as follows:

C=3R+P+SS+E+6L+6(F—1) 1)

In addition to open-loop structures a multi-loop
mechanism with L loops may contain unsensed
spherical joints (S) as well as revolute (R) and
primsatic joints (P), which can be either sensed or
unsensed. SS counts the number of pairs of S-joints.
The number of measurement transducers is counted by
E whereas F is the number of arbitrarily located
frames. F typically equals two for an arbitrarily located
base frame {B} and moving frame {P}.

» A parameterization is proportional if small changes in
the geometry of the robot are reflected by small
changes in the parameters. Thus, proportionality
addresses the problem of mathematical singularities,
which can be introduced if not choosing carefully the
parameterization. The classical example is the
DH-(Denavit & Hartenberg) parameterization, which
fails to be proportional for nearly parallel joint axes.
According to Hayati'* problems of unproportionality
can be avoided by taking for nearly parallel joint axes
the H-(Hayati) parameterization and for nearly
perpendicular axes the DH-parameterization.

e Two calibration models are equivalent if they are
complete and proportional.

A calibration model for the Delta robot considering all

possible geometrical deviations would have 138 para-

meters. This can be verified by equation (1), where an
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S-pair is modeled as a 5R-joint-link train. (R =33, £ =3,
L=5, F=2). Based on a simulation of a Stewart
Platform, Wang" concluded that errors in passive
multi-DOF joints are negligible compared to other
manufacturing errors. Furthermore, special design efforts
were made in Vischer® to create S-joints which arc as
perfect as possible. If the S-joints are modeled as
perfectly, the number of parameters drops to 54 (R =3,
SS =6, £=3, L.=35, F=2). This calibration model will
be referred to as “model 54”7, Assuming further that the
“spatial parallelogram” remains perfect, model 54 can be
reduced to a model containing 24 parameters, which is
termed “modcl 247, In order to achieve proportionality
special care has to be taken about threc nearly parallel
lines, which are the motor axis, the connecting line of the
proximal and of the distal S-joints (Figurc 2).

3.1. Parameterization )

For better understanding of the parameterization the
Delta mechanism is first shown without geometric
deviations of its mechanical parts (Figure 2, nominal
robot) whereas in Figure 3 deviations are introduced.
The upside-down representation corresponds to the
mcasurement set-up shown in Figure 6.

For parameterization the end-effector is considered to
be fixed to the base-plate (Figure 3). This allows to
parameterize model 24 and modcl 54 using 24 identical
parameters.

According to Figurc 2 and 3 the following points, lines
and frames are defined:

B;,..»: Center points of the S-joints attached to the
end-cffector — distal S-joints

C; .50 Center points of the S-joints attached to the
arms — proximal S-joints

End-
effector

Fig. 2. Delta mechanism without deviations.
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¢, ¢, Connecting straight section from B;, to B;, and
C;, to C;,, respectively

B;C;:  Mid-point of the section ¢, and £, respectively

O;: Projection point of C; on the motor axis

O, ..,: Points on the motor axis located at a distance of
+¢,/2 of O,

{B}:  The base frame {B} is arbitrarily fixed to the base

{P}:  The moving frame {P} is arbitrarily fixed to the
end-effector

{0} The z-axis of the distal S-joint frame {0} is
parallel to ¢,

{1} The z-axis of the motor frame {1} is parallel to
the motor axis

{2} The twisted motor frame {2} is the frame {1}
twisted by the motor angle

+ 6 world coordinates 2)
End-effector’s pose:
fp=1{x,y,z}"

R =Rot(z,v) - Rot(y, B) - Rot (x, a)

* 3 joint coordinates (=1 -3 3)
Motor angles 6;:
1Q=Rot(z, 6,

* 54 kinematic parameters [i=1---3 4)

DH-parameters for nearly perpendicular axes:

5T, =4T, =Rot (z, &) - Rot (x, «;)

H-parameters for nearly parallel axes:

(AT, = Rot (x, A;) - Rot (v, AB,)

distal
S-joints
2

proximal
S-joints
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Fig. 3. Parameterization of one main joint-link train with geometric deviations.

Vector from B; of the attached end-effector to the
point O; on the motor axis:

ODi = {Dxi: Dyi) Dzi}T

Vector O; to the C; including the encoder offset
00, and the arm length La;:

’La;, ={La,;, La,; O}
Vector from the origin of {P}-frame to B;:
Obi = {bxi: byi) bzi}T

Vector whose z-component is half as long as
section €;:

Odi = {0) 0’ dzi}T

Error vector: Difference between vector OC,;
(=C;1 — 0,;)) and vector OC; (=C, — O)):

’AC; ={AC,;, AC,,, AC}}"

Average length of the forearms;

Lb;

Half of the difference of the forearms’ lengths:
ALDb;

These are the scalars, vectors and rotation matrices,
which together parametrize the Delta robot completely.

yis

3.2. Model 54

As model 42 of the Stewart Platform, model 54 must also
satisfy six closure equations since the upper part of a
Delta robot (the 6 forearms and the end-effector) is an
immobile Stewart Platform (Figure 2). These six closure
equations will be coupled in pairs in the three joint
coordinates (motor angles). Such a pair of closure
equations represents one of the three main joint-link
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trains (Figure 3). Since model 54 will later on be reduced
to model 24, it is more convenient to describe one main
joint-link train by the sum (G1) and the difference (G2)
of these two closure equations. For simplicity the leading
sub- and superscripts are dropped yields model 54:

G1: CB!-CB; + Ad! - Ad; = Lb? + ALb?

G2: CB! - Ad;, = Lb;+ALb,

and
CB,=P+R-T; b, —T;: (b; + D; + AT, - Q; - La;)
Ad;=R"-T;-d,—T,;-AT;- (d; + Q; - AC))

i=1---3 (5)

3.3. Model 24

To establish model 24, model 54 is simplified by
assuming that the end-effector remains perfectly parallel
to the base frame. In other words: The spatial
parallelogram is modeled as being perfect:

R =1 where Lis the 3 X 3 identity matrix (6)

The number of world coordinates (equation (2)) is
reduced from 6 to the 3 Cartesian coordinates describing
the origin of the {P}-frame. This simplification is only
valid if the three lines given by the axis of the motor, the
connecting section of the proximal S-joints and the
connecting section of the distal S-joints remain perfectly
parallel to each other. In order to reach this 18
parameters are fixed on their nominal values.

P1: AT, =1, AC,=0, ALb;=0 i=1---3 (7)
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Substituting equation (6) and equation (7) into equation
(5) shows that the b;- as well as the d;-Vector containing
altogether another 12 parameters vanish.

P2: b, di—vanish i=1---3 8)

Geometrically, this corresponds to the reduction of the
end-effector to a single point and the degeneration of the
R(25/25)] joint-link train to a R2S chain as shown in
Figure 4.

A further consequence of equation (8) is the
degeneration of the second set of equations G2 given in
equation (5) to identity (0= 0) whereas the first set G1
leads to model 24:

CB/-CB, = Lb?
with
CB,-=P—T,~'(D,-+Q,-'L2,~)

This model can be applied to the Delta robot assuming
that its end-effector always stays perfectly parallel to the
base, which corresponds to assumption for the nominal
model of Clavel.” It can therefore be said that model 24
is an extended nominal model.

3.4. Conclusion for model 24 and 54

Reducing model 54 to model 24 leads to the following

characteristic properties of model 54:

a) The first set of closure equations G1 contains model
24, whereas the second set G2 will degenerate to
identity (equation (5)).

211

b) Only 30 of the 54 parameters have an influence on
the orientation of the end-effector. These 30
parameters could further be split into two subsets:

¢) The generating set Pl contains 18 parameters of
magnitude A reflecting small errors in the joint-link
train (equation (7))

d) The amplifying set P2 contains 12 parameters of
magnitude 1 describing the dimensions of the
end-effector and the distance between the forearms
(equation (8))

These two sets are related in an interesting way: If P1 is

considered to be zero, P2 has no influence on the pose of

the end-effector. The set P2 cannot generate pose €rrors
by itself, but if P1 is not zero, it will amplify them. In

Figure 5 this is represented symbolically by a triangle.

It can further be concluded:

— Variation of P1 affects the orientation much more
than variation of P2. Thus, P1 is much more sensitive
to orientation errors than P2. To build Delta robots
with smallest possible orientation errors efforts have
thus to be concentrated on the 18 parameters of set
P1.

— A parameter set which causes small end-effector errors
over the whole workspace is nearly unobservable in
the identification phase. For identification the para-
meters of set P2 will be fixed to their nominal values
and only the remaining 42 parameters will be
identified.

— The bigger P2 becomes, the smaller is the orientation
error. This is useful for the choice of the nominal
parameters for an application of the Delta robot

End-effector (B 1~ gistal

4]

B} L
{(0}

Base

{p S-joint

ODi

Fig. 4. Geometric interpretation of model 24 as a spatial 3[R28] structure.
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‘m- Pl
- O O6 € O
P2

Fig. 5. Symbolical representation of the relation between the
parameter set P1 and P2.

aiming at being very precise. In this case P2 should be
chosen as large as possible with respect to the
remaining parameters. A larger distance between the
forearms for instance will decrease the resulting
orientation error of the end-effector.

4. MEASUREMENT

The principle goal of the measurement step is to gain
some redundant information about the robot to be
calibrated. Measurement set-ups can be grouped into
classes, depending on whether external measurement
devices are used or not:

Set-ups without external measurement devices are
very dependent on the robot’s topology. They provide
only partial information on the end-effector’s pose (e.g.
when sliding on a plane'”). For parallel robots this is fatal
since the direct problem of the calibration model has to
be solved (in order to substitute x, y, z in the equation of
the plane). This results not only in a cumbersome
mathematical treatment, but also the problem of multiple
minima arises.*"'

Set-ups with external measurement devices are more
expensive since external sensors are added, but they offer
the advantage that the end-effector’s full pose (position
and orientation) can be measured. By substituting these
measurement points into the 3 pairs of closure equations
of a main joint-link train, the pairs become decoupled
and there is no need to solve the direct nor the inverse
problem.

Figure 6 shows our full pose measurement set-up for
the Delta robot. Its base is rigidly attached to a 3D
measuring machine (TESA Validator 10) whereas the
end-effector is fixed to the z-axis of the measuring
machine by means of a spherical joint (Figure 7). The
accuracy of the measuring machine is +£10 micrometers
and the measurement volume 300X 300X 120 milli-
meters.

The end-effector is able to twist about the spherical
joint when the orientation changes with respect to the
base. Three linear digital probes (TESA-GT22C)
orthogonally arranged to each other are used to measure
the orientation with an accuracy of +15 arcseconds
(within 1.9 degrees). The measurement volume is +4.7
degrees for each of the three angles.

The joint angles are measured by high resolution
Laser encoders (CANON M1) with an accuracy of 25
arcseconds (accumulated error per revolution).

With the full-pose measurement set-up shown in
Figure 6 a set of 74 measurement points was acquired,
which are about uniformly distributed within the
workspace. This set is used in the next section for
identification of the kinematic parameters.
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Fig. 6. Full pose measurement set-up.

5. IDENTIFICATION

Identification is the central step of calibration. The
parameters of the calibration model are determined to
match the measurement data most closely.

Based on simulations of the calibration of a single-
loop structure, implicit calibration (Figure 8) was pro-
posed as the standard calibration method for parallel
mechanisms.®

fixed to the z-axis of
the measuring machine

4.7°

Spherical joint

Fig. 7. Orientation measurement unit.
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Fig. 8. Implicit calibration for parallel robots.

residuals

In contrast to forward calibration (Figure 9), which is
the standard calibration method for serial robots, implicit
calibration (Figure 8) doesn’t require the resolution of
the direct problem. This difference becomes important
for parallel robots since solving the direct problem
requires to sort out the multiple solutions.

In addition to implicit calibration a further interesting
method is introduced in this section called ‘‘semi-

parametric calibration”.’

5.1. Implicit calibration

Implicit calibration of parallel robots starts from the
closure equations. These equations are generally coupled
in the world coordinates and decoupled in the joint
coordinates and the kinematic parameters. (Only valid
for not too complicated models such as model 24 and
model 42. In contrast, model 54 is also pairwise coupled
in the joint coordinates as well as the kinematic
parameters.) Measuring all joint coordinates and
especially all world coordinates the identification
problem becomes decoupled for each chain. Taking for
instance model 24 (equation (9)) the residual (r;) of one
of the three main chains can be written as:

r,=CB” - CB — Lb?
with
CB=P-T-(D+Q," La)

The “-sign indicates a measured value, which is
subjected to measurement noise. Due to this noise the

j=1---N  (10)

individual,
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number of measurement points taken (N) has to be
larger than the number of kinematic parameters (n). It
results an estimation problem where a merit function
must be minimized. According to Schroer'® the square
of the residuals is well suited for robot calibration:

O=r""r
with (11)
l':{"b”z,-u,r,',-u;rN}T

Equation (10) together with equation (11) yields a
non-linear least-squares estimation problem since the
kinematic parameters are contained in the model
(equation (10)) in a non-linear way. Furthermore, the
tolerances allocated to the mechanical parts are ignored,
which allows to treat the estimation problem as
unconstrained. It can be solved with the Levenberg-
Marquardt (LM-)algorithm'’ which is implemented in
the “optimization toolbox” of MatLab™. The LM-
algorithm is a mixture between the Gauss—Newton and
the steepest descent algorithm aiming at keeping the
quadratic convergence rate of the Gauss—Newton
algorithm by avoiding the problem of rank deficiency of
the identification Jacobian.

The nominal parameters of the Delta robot shown in
Figure 6 are listed in Table I. They are used as initial
values for the iterative LM-algorithm.

¢ Identification of model 24

For the identification of the 8 parameters (n = 8) of one
of the three main chains (equation (10)) of model 24
(equation (9)) only the position of the end-effector and
joint angle are required from the 74 measurement
(N=74) points collected. The 74 X8 identification
Jacobian needed for the LM-algorithm can be analyti-
cally differentiated. The eight partial derivatives consist
of only 61 different factors.

With 3 X9 iterations the LM-algorithm has identified
the following parameter set (Table II) in 3 X 29 seconds
(Pentium processor running at 90MHz) using the
nominal parameters given in Table I as initial guess. In
contrast to in here discussed implicit calibration (Figure
8), forward calibration (Figure 9) with a numerically

noise

achieved world
coordinates

measurement

real robot

Joint
coordinates

static pose
error

desired world

model

kinematic Solve the direct
> problem

coordinates

individual set
f parameter

Fig. 9. Forward calibration for serial robots.
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Table I. Nominal parameters of the Delta robot

model 24

main
chain D, D D b3 @ La, La Lb

¥y z ¥y

unit [mm] [mm] [mm] [9] [°] [mm] [mm] [mm]

1 76 —16.5 0 0 90 119963 -3 240
2 76 —16.5 0 120 90 119963 -3 240
3 76  —16.5 0 240 90 119963 -3 240

additional 30 parameters for model 54

set P1 (equation (7)) set P2 (equation (8))
main

chain A«

AB AC, AC, AC, ALb d, b, b, b

y z

unit [ []

1 0 0 0 0 0 0 20 24 0 0

[mm] [mm] [mm] [mm] [mm] [mm]} [mm] [mm]

2 0 0 0 0 0 0 20 24 0 0

3 0 0 0 0 0 0 20 24 0 0

derivated identification Jacobian takes about six times
longer.

In order to check if there are other minima around this
minimum, the initial guess was varied. By increasing the
distance in the parameter space between the identified
parameters (Table IT) and the initial guess, it could be
observed that the algorithm —-if it converges — always
finds the same minimum (the minimum listed in Table
IT). Furthermore, the algorithm is still converging for an
initial guess which differs much more from the identified
parameters than the nominal set (Table I).

The norm of the position error of the end-effector
before and after calibration is shown in Figure 10,
whereas the improvement in quantitative terms is given
by the mean error and the standard deviation in the
Table III.

In Figure 11 the mean as well as the standard deviation
of the norm of the position error (l{Ax, Ay, Az}|) is
plotted versus the number of measurement points used
for idefintification. Already 2 X 8 measurement points

Delta robot

'
5 a4
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measurement points

Fig. 10. Position error of the Delta’s end-effector before
(dashed line) and after (solid line) calibration of model 24
(equation (9)).

yields to a quite reliable calibration. This rule of thumb
of taking twice as much measurement points as
parameters of the model (one main chain has 8 kinematic
parameters) is also supported by the work of Zhuang.?

* Identification of model 54

As shown in the modeling section, 12 parameters (set P2,
equation (8)) of model 54 will be set to their nominal
values since they are much less likely to cause pose
errors than the remaining 42 parameters. The entire
measured pose of the 74 collected measurement points is
needed, including the measured deviations of the
parallelism between the end-effector and the base.

Implicit calibration was performed by splitting the
entire problem into three subproblems. Thus, each main
joint-link train forming a double-loop structure together
with the measurement device was identified separately.
In 3 X 13 iterations using 3 X 740 seconds of calculation
time, the LM-algorithm has identified the parameter set
shown in Table IV using the nominal parameter set
(Table I) as an initial guess.

The improvement of the end-effector’s position is
comparable to the result of model 24 (Figure 10).
Furthermore, the calibrated model 54 allows a better
prediction of the end-effector’s orientation. In Figure 12
the norm of the error vector of the orientation is shown.
It corresponds to the difference between the measured
values and the values calculated based on model 54

Table II. Identified parameters of model 24 (equation (9))

model 24
main
chain D, D, D, 0 a La, La, - Lb
unit  [mm] [mm] [mm] M| [°] [mm] [mm] [mm]
1 75949 —16.410 0.404 0.064 89.881 119.960 -—3.702 240.130
2 76.141 —16.709 0.182 120.008 90.044 119.933 —3.204 240.067
3 76.023 —16.624 0.062 239.998 90.010 119.990 —2.672 239.949
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Table I1I. Position error of the end-effector before
and after calibration of model 24 (equation (9))

Position error [um)]

Ax Ay Az {Ax, Ay, Azl

before calibration

mean 260 350 -230 550

deviation 220 99 190 180

after calibration

mean -0.7 -01 -36 44

deviation 37 19 29 26

Factor of position improvement
550

F Pos ...
44

=123

before and after calibration. The improvement in
quantitative terms is given by the mean error and the
standard deviation in the Table V.

The standard deviation doesn’t decrease a lot since it is
very difficult to measure the orientation of a rigid body in
space with sufficient accuracy.

However, the mean values have improved by a factor
of 12 in the position and 3.7 in the orintation, which
proofs that implicit calibration works well for parallel
robots.

5.2. Semiparametric calibration
By expanding the closure equations and replacing each
coefficient in front of a combination of joint and/or
world coordinates by a linear independent factor, the
calibration model becomes linear, which is referred to as
semiparametric calibration. Joint coordinates and joint
offset are separated by expanding the trigonometric
function into a sum of trigonometric functions. The more
non-linear the original kinematic parameters are, the
more linear factors are needed (model 24— 36, model
42— 186, model 54 — 366).

For model 24 (equation (9)) semiparametric calibra-

g

[~

=}

g

£

Q

w

E

E h"-.-‘.‘"‘ﬂ- ~~~~~ . —— e e PR »
§ P Rl o Womoms P-f— - M
E 0ty T 20 30 20 P 0 70 80

number of measurement points taken for calibration

Fig. 11. Mean value (solid line) and standard deviation (dashed
line) plotted versus the number of measurement points based
on model 24 (equation (9)).
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tion becomes also decoupled for one main chain. Hence
expanding one of these equations and replacing the 24
kinematic parameters (p;..3;..s) by 36 linear factors

('Vl‘..3’1...12) yields:
Vi,l + V,‘)z*x + 'V,"3 *y + U,"4*Z + V,~,5*COS o;
+ V,‘Y6*Sin ; + Vi7 * X *COS o + Vi,S*y *COS «;
+ Vio *Z *COS «; + Vi’u)*x * 8N O;

+ Vi,l] *y *Sin o; + Vi,lZ*Z *Sin ; =0

i=1---3 (12)
with
Vit =Pites Piteat Dige  Dicwr— Diss
Via = —2(Pi1 ¥ COS Pig — Pi2 % COS Py s *Sin p; 4
+ pis*sinp; s *sinp; 4);
Viz = —2(pi1 #SIN P4+ ;2% COS Py s*COSPia
—Pi3*C0S P a*sin p; 5);
Via= —2(piz*cosp;s+ p;p*sinp;s);
Vis =2(Pi1*Pis + Pi2*Pi7);
Vie = 2(Pi2*Pis — Pia *Pin);
Vi7 = —2(Pi6* COS Pi 4 — Pi7%COS P;s*Sin p; 4);
Vig = ~2(Di6*SINP; 4+ Pi7*COS D5 % COS P;4);
Vo= —2p;7*sinp;s;
Vit0 = 2(Pi7* COS Pia+ Pis* COS ;s *SIN Py 4);
Vi = 2(pi7*SiNPp; 4 — Pi6* COS P; s * COS P;4);
Vi = —2%pig*sinp;s;
i=1---3 (13)

Equation (13) shows the linear factor as a function of the
kinematic parameters (Table IL: p;,=D,,, p;»=D,,,
piz=D;,, p.4=10, etc). However, since they are
assumed to be independent, these geometric constraints
are dropped, hence the name “‘semiparametric”’ calibra-
tion. From now on it is important to work consequently
with the 36 linear factors. The direct and inverse problem
for instance have to be solved directly from the
semiparametric model (equation (12)).

By substituting the measurement points into the
equation (12) the residuals of one main chain result in:

Vit vpR® F Vs P+ vyk g+ vskcos 4
+ Ve #SIN &; + V% COS @; + Vg * J; % COS &;
T vgx Zikcos @; + Vip* X, kSN &;
+ Vll*)’)\I*Sin&j‘i‘Vlz*zA/*SinaA{j=p,~

j=1---N (14)

Again the square of the residuals (p;) is used as merit
function. The same set of 74 measurement points as for
implicit calibration is used for identification. The
resulting 12 X 74 matrix was inverted by means of
singular values decomposition.'”” Within 0.5 seconds the
linear factors (v..31..;2) of all three main chains were
identified leading to the improvement presented in Table
VI

From Table VI and Table III it can be seen that
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Table IV. Identified parameters of model 54 (equation (5))

24 parameters influencing the position

main

chain D, D, D, o La, La, Lb

unit [mm] [mm] [mm] [] [mm] [mm] [mm]
1 75902 —16.32 -0.642 —0.517 89.513 11997 —3.693 240.07
2 76116  -16.72 —-0.793 119.37 90268 119.94 -—3.236 240.11
3 76.063 —-16.79 —0.658 239.57 119.98  119.98 —2.673 240.01

30 parameters affecting orientation & position
set P1 (equation (7)) set P2 (equation (8))

main

chain  Aa AB AC, AC, AC, ALb d, b, b, b,

wit [ [l [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
1 0.343 0582 —0.023 —0.005 —0.006 0.092 20 24 0 0
2 —0235 0610 -0.049 0.069 0023 0.009 20 24 0 0
3 -0.080 0.404 —-0.049 0.076 —-0.012 -0.062 20 24 0 0

semiparametric calibration works better than implicit
calibration being 174-times faster. However, semi-
parametric calibration has the disadvantage of the linear
factors not having a physical meaning anymore. This
makes it impossible to replace mechanical parts which
are out of tolerances. Such quality control is only
possible by implicit calibration, which is the reason for
proposing this method as standard method for calibration
of parallel robots.

6. IMPLEMENTATION

The implementation step deals with the question of how
to solve the direct and inverse problem of the calibration
model. This is a very difficult task if trying to find the
solution by reducing the non-linear system of equations
to a univariate polynomial since simplifications (e.g.
intersecting axes) which allow the reduction of the

0.7
:
o.6} B )
i "
" ) I [
"o, " I R ;“ "
os} A fta AR A
: YA Pvagy o daa i b e
A Py gt ay %
Rend} -y \ VAL e e e LAY
Yool voade W vty PR RN
0.4 Ve ™ "o v e YR
= o RN [ v
g N s !
g 0.3 ! 3\
D)
>
= 0.2
g
L 0.1
—
] 10 20 30 40 50 60 70 80
.
measurement pomts

Fig. 12. Orientation error of the Delta end-effector before

(dashed line) and after (solid line) calibration of model 54

(equation (5)).
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nominal model into a polynomial, may not be valid any
more. Simple polynomial solutions can be found for
model 24 whereas for model 54 this is not possible any
more.®

However, numerical algorithms such as Newton-
Raphson work generally well for such kind of problems.
In order to reduce the calculation time solutions must be
found which are based on solutions of low order
polynomials.

Due to the splitting of model 54 (equation (5)) into
two sets of equations (G1 and G2) a simple algorithm to
solve the direct problem (Figure 13) could be found. It is
polynomial based and faster than the Newton-Raphson
algorithm.

Table V. Orientation error of the end-effector before
and after calibration of model 54 (equation (5))

Orientation error [']

Aa AB Ay HAa, AB, Ay}
before calibration
mean 13 -94 18 27
deviation 6.8 82 31 49
after calibration
mean -0.10 —-025 -0.04 7.2
deviation 6.1 5.6 2.2 4.5

Factor of position improvement

27
Fo=2=31
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Table IV. Position error of the end-effector before
and after calibration of the semiparametric model
(equation (12)) which is based on model 24

Position error [pm]

Ax Ay Az {Ax, Ay, Az}
before calibration
mean 260 350 -230 550
deviation 220 99 190 180
after calibration
mean =072 —-0.36 0.01 36
deviation 31 18 24 23

Factor of position improvement

550
Fre=22=152
36

The direct problem of model 54 is that of calculating
no, one ore several sets of world coordinates (P, R) for a
given set of joint angles (Q). As an initial guess (R*) the
orientation matrix can be set equal to the identity matrix
since the end-effector is almost parallel to the base. By
substituting this guess (R*) and the joint angles (@) into
the first set of equations G1 an estimation of the
end-effector’s position (P;) can be calculated based on a
second order univariate polynomial. This estimation as
well as the joint angle set are forwarded to the second set
of equations G2. The rotation matrix can be linearized in
G2 since the deviations in the parallelism are small. By
doing so G2 can be linearly solved for the orientation
(R;). This procedure can be continued iterativelly. It
remains an error due to the linearization of the rotation
matrix. However this error is small and the algorithm
converging very fast.

Table VII shows a comparison of the calculation time
(Motorola 68040 with co-processor) with an accelerated
Newton-Raphson algorithm (no updating of the Jaco-
bian, no precalculation of the position with the nominal
model, stopping after five steps). The iteration of the
cascaded iterative algorithm is stopped after one and a
half steps.

The third column of Table VII gives the remaining
error in the calculation of the end-effector’s pose as
compared to a Newton-Raphson solution of machine

R*
Q 61(P) = 0| op] G2(R) = 0 -2
Ri " . B
Pi-Pi-1,Ri-Ri-t < € PR

Fig. 13. Cascaded iterative algorithm to solve the direct
probem of model 54 (equation (5)).
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Table VII. Calculation time of a Newton-Raphson algo-
rithm and the cascaded iterative algorithm (Figure 13)

Direct Remaining pose
solution error

Algorithm [s] {[um], [arcseconds]}
accelerated Newton-Raphson 2.7 {0.02, 0.3}
Cascaded iterative (Figure 13) 2.0 {0.1, 1.3}

precision. The inverse problem of model 54 is not easy to
solve since it is coupled by pairs in the joint coordinates
and all six equations are coupled in the orientation
angles. However, it can be solved similarly to the direct
problem (Figure 13) leading to a calculation time of 1.9
seconds.

7. CONCLUSIONS

In this paper the kinematic calibration of the Delta robot
was reported. Two parametric models were established.
Model 24 takes only position errors of the end-effector
into account, whereas in the model 54 models deviations
from the parallelism between the base and the
end-effector are also considered.

A measurement set-up was built with a measuring
machine and linear probes capable to measure the full
pose of the end-effector with respect to the base.

Based on the same set of 74 measurement points the
parameters of model 24 and model 54 were identified.
The parameter estimation problem was defined using
directly the implicit closure equations, which is referred
to as implicit calibration. This method enables to solve
the direct and inverse problem during identification.
Improvement in position of a factor of 12.3 was reached
by the identified model 24. Prediction of the orientation
could be improved by a factor of 3.4 for the identified
model 54. :

A second linear calibration method referred to as
semiparametric calibration was tested. Starting by
expansion of the closure equations and replacing all
coefficients in front of the joint and world coordinates by
linear factors leads to the semiparametric model. Its
linear factors can be identified linearly which is very
advantageous, compared to non-linear estimation: no
initial guess is needed, no Jacobian is needed, there is no
problem with multiple minima since the solution is
unique, it is very fast since there is no need for iteration.
And last but not least, improvement in the position is
with a factor of 15.2 higher than the one of implicit
calibration. However, semiparametric calibration allows
no quality control of the mechanical parts of the robot
and further tests will be necessary to check its reliability.
Hence, implicit calibration is proposed as standard
calibration method for parallel robots.

In a last section a new algorithm was presented
allowing to solve the direct as well as the inverse
problem of model 54 faster than with the Newton-
Raphson algorithm.

The main contribution of this paper is the experimen-
tal verification of the proposed theoretical tool. It was
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shown that improved accuracy of the parallel Delta
robot by means of calibration is possible.

Acknowledgements

The research was financed by a scholarship promoting
the exchange between the two Swiss Federal Institutes of
Technology, “ETHZ” and “EPFL”.

References

1. K.H. Hunt, Kinematic Geometry of Mechanisms (Oxford
Clarendon Press, Oxford, 1978).

2. D. Stewart, “A Platform with Six Degrees of Freedom”
Proc. of the Institution of Mechanical Engineering (1965)
180, Part 1, No. 15, pp. 371-386.

3. H. Zhuang, Z. Roth and F. Hamano, “A Method for
Kinematic Calibration of Stewart Platforms™, Proc. of
ASME Annual Winter Meeting, Atlanta, GA (Dec., 1-6,
1991) Vol. 29, pp 43-48.

4. J. Wang, “Workspace Evaluation and Kinematic Calibra-
tion of Stewart Platform”, PhD. thesis (Florida Atlantic
University, Boca Raton, FL, 1992).

5. Z. Geng and L.S. Haynes, “An Effective Kinematic
Calibration Method for Stewart Platforms”, ISRAM,
Hawai (15-17 August, 1994) pp. 87-92.

6. C. Innocenti, “Algorithms for Kinematic Calibration of
fully-Parallel Manipulators”, In: Computational Kinematics
(eds., J.P. Merlet and B. Ravani) (Kluwer Academic
Publisher, Sophia Anitpolis, France, Sept. 4-6, 1995) pp.
241-250.

7. R. Clavel, “Conception d’un robot parallele rapid a 4

https://doi.org/10.1017/50263574798000538 Published online by Cambridge University Press

10.

11.

12.

13.

14.

15.

16.
17.

Delta robot

degrés de liberté”, PhD thesis No. 925 (Ecole
Polytechnique fédérale de Lausanne, EPFL, 1991).

. P. Vischer, “Improving the Accuracy of Parallel Robots”,

PhD thesis No. 1570 (Ecole Polytechnique fédérale de
Lausanne EPFL, 1996).

. B.W. Mooring, Z.S. Roth and M. Driels, The Fundamentals

of Manipulator Calibration (John Wiley & Sons, New
York, 1991).

P.B. Zobel and R. Clavel, “On the static Calibration of the
Delta Parallel Robot”, IASTED Robotics and
Manufacturing, Oxford, England (1993) pp. 88-91.

P. Maurine and E. Dombre, “A Calibration Procedure for
the parallel robot Delta 4”, ICRA, Minneapolis, Minesota
(April, 1996) pp. 975-980.

A. Lintott and G.R. Dunlop, “Calibration of a parallel
topology robot”, Proc. Robotics and Manufacturing,
ISRAM (1996) pp. 429-434.

L.J. Everett, M. Driels and B.W. Mooring, “Kinematic
Modeling for Robot Calibration”, ICRA, Raleigh, NC
(Mar, 1986) Vol. 1, pp. 183-189.

S.A. Hayati, “Robot Arm Geometric Link Parameter
Estimation™, Proc. 22nd IEEE Conf. Decision and Control
(Dec, 1983) pp. 1477-1483.

M.L. Hornick, “Compensation and Calibration for
Improvement of Static Absolute Accuracy of IR Part 2:
Measurement Techniques for Estimation of Parameter
Errors”, 22th ISIR Int. Symp. on Industrial Robots,
Detroit, USA (21-24 Oct., 1991).

K. Schroer, Identifikation wvon Kalibrationsparametern
kinematischer Ketten (Carl Hanser Verlag, Ed.1, 1993).
W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T.
Vetterling, Numerical Recipes in Pascal — The Art of
Scientific Computing (Cambridge University Press, Cam-
bridge, 1989).


https://doi.org/10.1017/S0263574798000538

https://doi.org/10.1017/50263574798000538 Published online by Cambridge University Press


https://doi.org/10.1017/S0263574798000538

