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The pressure-driven growth model is used to determine the shape of a foam front
propagating into an oil reservoir. It is shown that the front, idealised as a curve
separating surfactant solution downstream from gas upstream, can be subdivided into
two regions: a lower region (approximately parabolic in shape and consisting primarily
of material points which have been on the foam front continuously since time zero)
and an upper region (consisting of material points which have been newly injected
onto the foam front from the top boundary). Various conjectures are presented for
the shape of the upper region. A formulation which assumes that the bottom of the
upper region is oriented in the same direction as the top of the lower region is shown
to fail, as (despite the orientations being aligned) there is a mismatch in location:
the upper and lower regions fail to intersect. Alternative formulations are developed
which allow the upper region to curve sufficiently so as to intersect the lower region.
These formulations imply that the lower and upper regions (whilst individually being
of a convex shape as seen from downstream) actually meet in a concave corner,
contradicting the conventional hypothesis in the literature that the front is wholly
convex. The shape of the upper region as predicted here and the presence of the
concave corner are independently verified via numerical simulation data.

Key words: computational methods, foams, porous media

1. Introduction
During oil production, typically only a fraction of the oil originally in place flows

out of an oil reservoir under the reservoir’s own pressure. As the reservoir’s own
pressure depletes, driving fluids must be injected into the reservoir to raise the
pressure again, so as to drive out more oil. Foam is one of the preferred driving
fluids (Schramm & Wassmuth 1994; Rossen 1996; Lake 2010) as its non-Newtonian

† Email address for correspondence: paul.grassia@strath.ac.uk
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FIGURE 1. (Colour online) (a) Definition sketch for the pressure-driven growth model.
Gas is injected into a reservoir flooded with surfactant solution. A front of finely textured
foam forms at the boundary between gas and surfactant solution and is driven along
by pressure, and retarded by dissipation. There is a maximum depth to which the front
penetrates (obtained by balancing driving pressure with background hydrostatic pressure).
(b) The foam front in x, y coordinates (assumed to be in dimensionless form here), such
that at dimensionless time t the leading edge at the top of the front is at x =

√
2t. A

material point is shown at vector location x, the distance it has moved is s, and the
distance along the front to reach it measured down from the top is S. The front normal
n at the given point is at an angle α from the horizontal. Motion along the top is
horizontal, and the front can be divided into an upper region (which is influenced by this
top boundary condition, and which grows in extent over time) and a lower region (which
is unaffected by the top boundary condition, but which shrinks over time). One question
to be addressed is whether or not there is a concave corner where there two regions meet.

character makes it particularly effective at moving through a reservoir and displacing
oil: the process is then known as ‘foam improved oil recovery’ or ‘foam IOR’.

What is done typically in foam IOR is that an oil reservoir is first flooded with
surfactant solution, and then gas is injected to form a foam front in situ (Shi & Rossen
1989; Xu & Rossen 2003; Boeije & Rossen 2014; Rossen & Boeije 2015). One then
wishes to compute the shape of the foam front as it sweeps through the reservoir over
time.

The pressure-driven growth model, originally developed by Shan & Rossen (2004)
and discussed extensively by Grassia et al. (2014), is a way of computing the evolving
front shape, which is sketched in figure 1. It considers that the front is propagating
through a porous medium (i.e. the reservoir) and that the net pressure driving the
front depends on the difference between the gas injection pressure and the background
hydrostatic pressure in the reservoir, the latter growing with depth. As a result, the
higher up a given point is on the foam front the faster and further it advances. It
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is relevant to ask whether, as the leading edge at the top of the foam front advances
further and further over time, the portion of the reservoir that is left unswept continues
to grow indefinitely (an undesirable situation known as gravity override (Shi & Rossen
1989; Boeije & Rossen 2014)) or whether the area underneath the front that is left
unswept approaches a well-defined limit even for very long times (i.e. override is
avoided).

Insight into this issue can be obtained by studying asymptotic solutions of pressure-
driven growth, applicable in different time regimes. An early time asymptotic solution
for pressure-driven growth is available (de Velde Harsenhorst et al. 2014) (‘early time’
in this context implies that the leading edge at the top of the front has travelled
less distance than the maximum depth to which the front penetrates, this depth being
reached when the background hydrostatic pressure balances the injection pressure).
This early time solution clearly indicates that the amount of unswept reservoir beneath
the foam front increases with time. If left unchecked indefinitely, this would produce
gravity override. However, a late-time asymptotic solution is also available (Grassia
et al. 2014) (the top of the front has travelled much further than the maximum depth
to which the front penetrates), and this indicates a finite amount of unswept area under
the foam front.

Given the differing predictions at early and late times, it is relevant to ask how the
early time solution gradually gives way to the late-time one. Better understanding of
this can be obtained by noting some properties of the early and late-time solutions.
Firstly the early time solution (de Velde Harsenhorst et al. 2014) describes material
points which have been continuously on the front since foam IOR began at time
zero, and which have moved primarily horizontally, having been at (nearly) the same
vertical height on the front throughout their entire time history to date. The late-time
solution by contrast (Grassia et al. 2014) describes material points which were not
initially on the front, but which rather have spent the overwhelming majority of their
history to date moving horizontally along the top boundary of the system, having then
been ‘injected’ from the top boundary onto the front itself in the comparatively recent
past: detailed discussion of this phenomenon is available in the literature (Grassia et al.
2014).

As will be explained in more detail later, both the early time and late-time solutions
have (in addition to a predominant horizontal motion) a downward vertical motion
of material points superposed. Since material points do indeed migrate downwards, it
follows then that the front is divided, at any given time, into a lower region (consisting
of material points that have been continuously on the front since time zero) and an
upper region (consisting of points that were initially on the top boundary and which
have only been injected onto the front since time zero). In view of the downward
motion of material points, over time, the vertical domain corresponding to the lower
region shrinks, and that corresponding to the upper region grows. The early time
asymptotic solution thus describes the lower region only, and does so at sufficiently
short times when it accounts for the majority of the solution domain. Likewise the late-
time asymptotic solution describes the upper region only, and does so at sufficiently
long times when it likewise accounts for the majority of the solution domain.

Our concern here however is to determine the shape of the upper region at
early times when it is still much smaller than the lower region (albeit growing).
This is actually extremely important for computing the front shape numerically,
particularly when using computational algorithms for pressure-driven growth that
follow Lagrangian front material points. Such Lagrangian algorithms suffer from
the fact these material points move ever further from the top boundary (Grassia

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.541


530 P. Grassia, L. Lue, C. Torres-Ulloa and S. Berres

et al. 2014). Eventually it becomes necessary to regrid and add new material points
close to the top boundary, but the question arises of where exactly they should be
added (Grassia et al. 2014). If one knew the front shape in the upper region exactly,
one would know exactly where to add these new material points. However if one
knew the front shape exactly, one would not be trying to compute it numerically!

Added to this dilemma is the issue that, if material points are placed incorrectly,
it is possible to introduce artificial non-physical concavities into the front shape,
which tend to evolve into concave sharp corners in pressure-driven growth: these
require special handling in numerical schemes otherwise they produce spurious
results (Grassia et al. 2014; Mas-Hernández, Grassia & Shokri 2015a,b). Indeed
concavities have proved difficult to avoid in numerical computations (see e.g. figure 21
in Shan & Rossen (2004)), which begs the question of whether the upper and lower
regions might actually meet one another in a concave corner, despite the conventional
hypothesis in the literature that the front shape in the present context should be
wholly convex (Grassia et al. 2014). This is one of the main questions which we
will explore here.

The rest of this study is laid out as follows. In § 2 we discuss the pressure-driven
growth model in more detail and give the relevant governing equations. In the first
instance (§ 3) we analyse the lower region of the front, switching to analyse the
upper region from § 4. Initially our upper region analyses are only approximate (§ 5),
but in §§ 6 and 7 we offer improvements. Results are compared with a completely
independent technique in § 8, with very favourable comparisons. Conclusions are
outlined in § 9.

2. Pressure-driven growth
As we have said, the pressure-driven growth model (Shan & Rossen 2004; Grassia

et al. 2014) represents the shape of a foam front propagating through a porous
medium, i.e. an oil reservoir during improved oil recovery. In what follows, before
proceeding to describe the model itself, we first describe some features of the foam
front propagation.

It is envisaged that first surfactant solution is injected into the reservoir and
subsequently gas is injected under pressure, with a foam front being formed in situ
at the boundary between surfactant and gas, and propagating along over time: see
figure 1(a). The foam is formed on the pore scale in such a fashion that individual
bubble films tend to span the pore cross-sections: these bubble films then restrict
the ability of the injected gas to flow (Kovscek, Patzek & Radke 1997). Moreover
the water saturation (i.e. the liquid fraction within the foam) is highest at the front
(where the gas meets the surfactant solution) and is lower further upstream. Since
wet foam is more stable than dry foam in this system (Kovscek et al. 1997), the so
called texture of the foam (texture being measured either in terms of average bubble
size, or equivalently in terms of number of bubble films per unit volume) is finer at
the foam front and coarser upstream. It is assumed that there is an abrupt transition
from fine texture to coarse texture as the foam dries out, such that the finely textured
region becomes highly localised near the front (Shan & Rossen 2004). Given that the
bubble films restrict the flow (as was already mentioned above) most of the resistance
to flow through the porous medium comes from the wetter and hence more finely
textured foam localised near the foam front, rather than from the drier and coarser
foam upstream or indeed from the liquid surfactant solution downstream.

Darcy’s law for flow through a porous medium implies that the local velocity of
flow is proportional to a pressure gradient, the coefficient of proportionality involving
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the ratio between the permeability of the medium and the viscosity of the fluid that
is flowing. In the case of multiphase gas–liquid flow such as is being considered here,
it is possible to define for each phase, a relative permeability and also an effective
viscosity. What then governs the flow of each phase is neither the relative permeability
nor the effective viscosity individually, but rather the ratio between them (Shan &
Rossen 2004; Ma et al. 2015): we refer to this ratio as the relative mobility. In what
is called a strong foam (such as the finely textured foam that appears at the front
between injected gas and in situ surfactant solution), bubble films are so plentiful
that there are no pathways for flow through the porous medium that do not involve
crossing foam films. This means that the only way to mobilise gas is to mobilise
bubble films also, a process which is highly dissipative. The relative mobility of the
gas where the bubble films are most plentiful (i.e. in the finely textured foam at the
foam front) is therefore exceedingly low. Having an exceedingly low mobility in a
highly localised region at the foam front is the basis of the pressure-driven growth
model, the physics of which we now describe in detail (§§ 2.1–2.2). Following that
we present the governing equation for the pressure-driven growth model (§ 2.3), cast
it in dimensionless form (§ 2.4), and discuss the nature of the model in general
mathematical terms (§ 2.5).

2.1. Physical nature of pressure-driven growth
As alluded to above, Darcy’s law for flow in a porous medium describes flow down
a gradient of pressure. However in a system for which the relative mobility of a
particular phase is much lower in a restricted part of the flow domain than in any
other part of the domain, almost all the loss in pressure is expected to occur across
that low mobility zone. Indeed the pressure-driven growth model considers a limiting
case (Shan & Rossen 2004) in which the entirety of the loss in pressure occurs
across the neighbourhood of the foam front, the relative mobilities for gas in the
coarsely textured foam upstream and for liquid in the surfactant solution downstream
being assumed to be arbitrarily large compared to the relative mobility of gas in the
finely textured foam at the front itself. Under these circumstances, all the non-trivial
dynamics becomes focussed on the foam front itself: the foam front is pushed along
by pressure, but is retarded by dissipation localised at the front, with pressure falling
from a driving injection pressure upstream of the front to a background hydrostatic
pressure downstream, the latter growing with depth. There is moreover a maximum
depth to which the front can penetrate, corresponding to the depth at which the
injection pressure is balanced by the hydrostatic pressure.

We are interested here, not just in the speed of foam front propagation, but also in
the propagation direction. Since Darcy’s law describes flow down a pressure gradient,
the direction of the flow necessarily matches the direction of the pressure gradient,
which in the circumstances described above, must therefore be across the region of
finely textured foam in the neighbourhood of the front (Shan & Rossen 2004). This
implies the motion of the finely textured foam is normal to the front, i.e. the direction
of propagation of the front is normal to the instantaneous front location. We consider
that the gas is initially injected down a vertical injection well, so that the initial
orientation of the front is vertical, and the initial propagation of the front is therefore
horizontal. Nonetheless points higher up on the front propagate faster than those lower
down, because the deeper one moves, the greater the hydrostatic pressure that opposes
the pressure of gas injection. The front therefore reorients over time away from the
vertical and propagation of the front thereby reorients away from the horizontal.
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To give an idea of scale, in field applications, the foam front can over time (several
days perhaps (Mas-Hernández et al. 2015a)), travel as much as several kilometres
horizontally, penetrating several hundreds of metres below the surface (de Velde
Harsenhorst et al. 2014). In this work however, we shall focus on the comparatively
early time evolution of the front, such that the horizontal displacement has still not
managed to grow any larger than the penetration depth (i.e. several hundreds of
metres). Meanwhile the zone of dissipative, finely textured foam at the foam front
can be up to the order of a hundred metres thick, the thickness being measured along
the direction of motion of the foam front (which is horizontal initially but which
then reorients over time). The front thickness is rather less than either the penetration
depth or the horizontal distance over which the front itself travels (Grassia et al.
2014). Under these circumstances the front can be idealised in the first instance as
being arbitrarily thin. The thickness of the dissipative, finely textured foam zone also
tends to be less, the less the distance that the front has travelled (Shi 1996; Shan &
Rossen 2004): the implication is that the front initially moves quickly, but then slows
down over time as the dissipation grows.

2.2. Physics excluded from pressure-driven growth
In addition to describing the physics included in the pressure-driven growth model,
as was done above, it is also worth considering the physical effects that are excluded.
This is done in what follows, and helps us to appreciate the possible limitations of
the model.

The model treats gas in the finely textured foam as a fluid of low mobility, but
considers the flow to be Newtonian. Foam is in actual fact a non-Newtonian fluid,
so that the slower the motion of the gas in the region containing foam, the more
its relative mobility should decrease. Typically the way that such non-Newtonian
behaviour is modelled (Ma et al. 2015; Zeng et al. 2016) is to suppose that there is
a maximum possible mobility reduction (the maximum amount that the gas mobility
is reduced in the presence of foam compared to the situation without foam) and this
is achieved for gas moving at or below a certain given speed, defined in terms of
a capillary number. If the gas moves more quickly than this given speed however,
the extent to which the mobility is reduced becomes less. It is worth remembering
that the pressure-driven growth model applies specifically to the case in which the
mobility at the finely textured foam front is much less than the mobility elsewhere in
the system (Grassia et al. 2014). The pressure-driven growth model is therefore most
likely to be applicable to systems in which the finely textured foam front experiences
the maximum or close to the maximum mobility reduction. For this reason, within the
pressure-driven growth model to be considered here, we choose to neglect the effect
of non-Newtonian behaviour upon the mobility reduction. Another way of stating this
is that we suppose that gas mobility is far more strongly affected by foam texture
than by non-Newtonian effects, which is consistent with some of the cases considered
in the study by Kovscek et al. (1997).

Since the pressure-driven growth model relies so heavily upon having finely textured
foam at the foam front, any effects that may compromise the integrity of that finely
textured foam at the front may likewise impact upon the validity of the model.
Although the model itself formally describes the process of surfactant alternating
gas (i.e. gas injected into surfactant solution within a porous medium), the ultimate
aim of the surfactant-alternating-gas process is to use foam to improve oil recovery.
The presence of oil mixed with the surfactant solution might negatively affect the
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foam stability (see e.g. Farajzadeh et al. 2012; Osei-Bonsu, Shokri & Grassia 2015,
2016) and thereby influence the texture of the foam at the foam front. In addition to
there being a requirement to maintain the integrity of the finely textured foam at the
front itself, the validity of the model also demands that this finely textured foam be
localised at the front (Shan & Rossen 2004). Failure of the foam to collapse abruptly
and thereby coarsen as it dries out upstream, would affect the validity of the model
in much the same fashion as oil destroying the integrity of the finely textured foam
at the front.

Yet another aspect of the physics of foam in porous media that pressure-driven
growth does not attempt to describe is the relative motion between liquid and gas
within the foam. The model (Shan & Rossen 2004) does consider the gravity-induced
hydrostatic pressure difference between liquid downstream of the foam front and gas
upstream, but not any gravity-induced gas-to-liquid relative motion within the foam
itself. Such relative motion within the foam with liquid draining downwards and gas
rising upwards can lead to very low liquid content at the top of the foam. This dry
out at the top makes the foam very coarsely textured and hence the gas mobility rises
dramatically there. A tongue of highly mobile gas at the top of the system can then
propagate above the liquid surfactant solution, far in advance of the remainder of the
foam front which is much less mobile. This effect has been found by Kovscek et al.
(1997) to result in a concave corner forming at the point where the highly mobile
tongue of gas meets the remainder of the front.

The pressure-driven growth model focusses attention solely on the finely textured
low mobility zone at the foam front: therefore it is not designed to capture the
aforementioned tongue of highly mobile gas at the top nor the concave corner
that occurs where the tongue meets the rest of the front. Pressure-driven growth
can however capture a related phenomenon associated with foam propagating
into a surfactant solution with spatially non-uniform surfactant concentration,
specifically with a lower surfactant concentration (and hence lower density) at
the top, and a higher surfactant concentration (and hence higher density) lower
down (Mas-Hernández et al. 2015a). This again can lead to a concave corner in the
foam front at the point where the lower surfactant concentration region (with less
stable and hence less finely textured foam) meets the higher surfactant concentration
region (with more stable and hence more finely textured foam). Our purpose in this
work however is not to consider such systems with spatial non-uniformities in the
foam texture measured along the front, but rather to investigate whether concave
corners can occur even for foam fronts for which there is no variation in texture
along the front itself: as we shall see later on, concave corners in front shape can
develop even under these conditions.

Having now discussed the physics that the pressure-driven growth model includes,
as well as the physics that it excludes, we proceed (in the next section) to introduce
the governing equations for the model.

2.3. Governing equation for pressure-driven growth
The equation governing the pressure-driven growth model (Shan & Rossen 2004;
Grassia et al. 2014) describes the motion of a material point x on the foam front via

dx
dt
=

kλr

(1− Sw)Φ

1P
τ s

n, (2.1)

where t is time, d/dt represents a time derivative following a front material point,
n is the front normal (which varies with distance S measured along the front, see
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figure 1(b)), k is the permeability of the reservoir, λr is the relative mobility within
the finely textured foam zone (relative mobility being the ratio between a relative
permeability and an effective viscosity as already explained earlier), Sw is the liquid
fraction in the foam, Φ is the reservoir porosity, 1P is the driving pressure difference,
s is the distance the material point has travelled to date (again see figure 1b), τ (a
small dimensionless parameter) is the ratio between the thickness of the finely
textured foam front and the distance a material point has travelled: Grassia et al.
(2014) employed a value τ = 0.01. As the distance s through which the front has
displaced grows, the thickness of the finely textured foam front τ s likewise grows,
and, since the dissipation is tied to the fine texture, the front slows down as a result.
An additional slow down of the front over and above this could be incorporated
into the governing equation due to non-Newtonian effects, but (for reasons already
explained in § 2.2) such effects are neglected here.

The maximum depth to which the foam front can penetrate dmax is given by
balancing injection pressure with hydrostatic pressure and satisfies

dmax = Pinj/(1ρg), (2.2)

where Pinj is the injection pressure, 1ρ is the liquid-to-gas density difference and g
is acceleration due to gravity.

We define our x, y coordinate system (figure 1b) such that x= 0 corresponds to the
location of gas injection and y= 0 corresponds to the maximum penetration depth. It
follows that the net driving pressure (injection pressure less hydrostatic) grows linearly
with coordinate y

1P= Pinjy/dmax. (2.3)

2.4. Dimensionless equations
We now make our governing equations dimensionless. Distances are non-
dimensionalised on the scale dmax, pressures are non-dimensionalised on the scale
Pinj and times are non-dimensionalised on the scale

tscale =
(1− Sw)φ

kλr

d2
max

Pinj
τ . (2.4)

If we now use the symbols x, s and t to denote dimensionless (instead of
dimensional) variables, we deduce the dimensionless analogue of (2.1)

dx
dt
=

y
s

n. (2.5)

Taking the dot product of this with n, it can be deduced that s (the dimensionless path
length over which the material point has travelled in dimensionless time t) evolves
according to

ds/dt= y/s. (2.6)

These dimensionless equations must be solved with suitable initial and boundary
conditions. Regarding initial conditions, at t = 0, we want the front to be at x = 0
for all y values in the solution domain, with additionally s = 0 initially for all y.
This however predicts infinite dx/dt initially. In numerical computations, to avoid
having infinite velocities initially, typically we put the front at some location x = s0

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.541


Foam front advance during improved oil recovery 535

(where s0 is a dimensionless parameter much smaller than unity) with in addition
s= s0 initially. Typically s0 is chosen (Grassia et al. 2014) with a value of the order
of 10−2. Regarding boundary conditions, at the top of the solution domain y = 1,
we require that the front material points move parallel to the top boundary: in other
words the normal n is horizontal at that point. Suppose we use the symbol α (as
sketched in figure 1b) to denote the angle that the normal makes to the horizontal at
any point on the front. By definition

α ≡ arctan(dx/dy), (2.7)

where d/dy denotes a spatial derivative with respect to vertical location along the foam
front at any given instant in time (a contrast from d/dt which denotes the motion of
material points on trajectories that are normal to the instantaneous foam front). In view
of (2.7), another way of writing the top boundary condition is as α = 0 at y= 1.

Corroborating a claim made back in § 2.1, one thing we immediately notice here
based on (2.5)–(2.6) is that points higher up advance faster and hence further than
points lower down. The conventional hypothesis in the literature is that this leads to
a convex front shape as seen from downstream (Grassia et al. 2014; Mas-Hernández
et al. 2015a,b). One of our aims here is to investigate whether that conventional
hypothesis is correct, or whether the shape might admit a concavity. The role that
concavities can play from a mathematical point of view is described in the next
section.

2.5. Mathematical nature of pressure-driven growth and the behaviour of concavities
In order to understand the possible significance of concavities in pressure-driven
growth, it is useful to consider the nature of the model in general mathematical
terms.

A key mathematical feature of pressure-driven growth is that it assigns no energy
cost to the overall length of the front, meaning that the solutions can admit some
really quite unusual front shapes, including shapes containing various types of
singularities. In particular it is known that concave regions in a front tend to focus
down into corners which are ‘arbitrarily’ sharp (‘arbitrarily’ sharp in the current
context implying a radius of curvature comparable with the thickness of the dissipative,
finely textured foam zone, which is much less than the distance over which the front
travels (Grassia et al. 2014)). The fact that singularities can arise within solutions
of pressure-driven growth is unsurprising because a formal equivalence has been
proven (Grassia et al. 2014) between pressure-driven growth and another equation
that admits singularities, namely the eikonal equation, a well-known hyperbolic partial
differential equation originally formulated in the context of optics (Arnold 2004).

Returning to consider the case of pressure-driven growth, when a Lagrangian
scheme is used to evolve the front location, any concave corners that occur need to
be propagated differently from surrounding front material points (Grassia et al. 2014;
Mas-Hernández et al. 2015a,b). In such numerical schemes, the consequences of not
propagating the concave corners correctly are very serious indeed: segments of the
front cross-over one another, forming topologically infeasible spurious loops in the
representation of the front, and these spurious loops then grow indefinitely (Grassia
et al. 2014).

These issues should not arise of course for a wholly convex front. If concavities
do nevertheless appear in a computed foam front shape, we can draw one of two
conclusions: either a numerical scheme has artificially introduced a concavity where
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one is not supposed to be, or else the foam front really does have a concavity
according to the underlying model.

It is explained by Grassia et al. (2014) that it is relatively easy to introduce a
concavity inadvertently in a numerical scheme designed to track Lagrangian material
points on a foam front: particularly when one is adding new material points in the
process of regridding a numerical representation of the front, such regridding needing
to occur from time to time whenever material points are separating from one another.
If the new material point is placed too far back, a concavity is created at the newly
placed point itself. On the other hand, if the new material point is placed too far
forward, a concavity is created above or below the point (or both). The problem is
particularly acute on any parts of the front where the front curvature happens to be
low: since then the set of locations within which new material points can be safely
placed is very limited indeed.

If, even in spite of best efforts to place newly added numerical points in such a
way as to avoid artificially introducing concavities, it still turns out that concavities
manage to arise, the question then arises as to whether the concavities might actually
be an inherent part of the front shape. This is the question we wish to explore here,
employing asymptotic rather than numerical techniques (in order to be confident
that any predictions we make are not simply numerical artefacts associated with
Lagrangian schemes as described above).

3. Front shape in the lower region

An asymptotic solution for the foam front, valid for early times t� 1, has been
proposed by de Velde Harsenhorst and co-workers (de Velde Harsenhorst et al. 2014).
In what follows we call this the Velde solution, and we briefly outline its derivation
below (§ 3.1). After that (going beyond the analysis of de Velde Harsenhorst et al.
(2014)) we demonstrate that the Velde solution is only valid in part of the solution
domain, specifically in the ‘lower region’ of the domain (§ 3.2). We also show how to
improve upon the Velde solution (§§ 3.3–3.4): as we will see, such improved solutions
also help to give us an indication of the time limits of validity of the original Velde
t� 1 solution, so that even for times as large as t= 0.5 the relative error in the Velde
solution is only a few per cent.

3.1. Derivation of the Velde solution
Recall that in the situation under consideration here, gas is injected into surfactant
solution initially along a vertical injection well, so that the foam front is initially
vertical and its normal is initially horizontal. Although the direction of the front
normal does not remain horizontal at all times, the Velde solution recognises that at
sufficiently early times, the front normal will point nearly horizontally and the front
motion is primarily horizontal with only a small vertical component superposed.

The x component of (2.5) can be written

dx
dt
=

y
s

cos α, (3.1)

where we recall that d/dt denotes a time derivative following a material point (a
contrast from the notation d/dy, which denotes a spatial derivative with respect to
vertical location along the foam front from material point to material point). Since for
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nearly horizontal motion, s is nearly the same as x and cos α is close to unity, it
follows from (3.1) that

x≈
√

2yt, (3.2)

where the temporal variation of y has been ignored with respect to that of x.
Equivalently

y≈
x2

2t
, (3.3)

showing that the predicted front shape is a parabola. This parabolic shape relies on the
fact that gas is injected initially over the entire vertical depth of the front: if gas had
not been injected over the entire vertical line but instead over a much more localised
region as has been considered by Kovscek et al. (1997), rather different front shapes
then result.

The Velde solution (3.2) whilst undoubtedly useful has a number of issues. Firstly,
since it implies

dx
dy
≈

√
t

2y
(3.4)

but assumes a nearly vertical front, i.e. dx/dy� 1, it requires y� t/2. Under these
conditions (combining (3.4) with (2.7)) we find

α ≈
dx
dy
≈

√
t

2y
� 1. (3.5)

This is however invalid for small y values of order t/2 or less, but this is actually not
problematic for computing how the front shape evolves. We are dealing with t� 1
here, and hence y must be exceedingly small if it is of order t/2 or less: there is
little net front motion as y→ 0 anyway, because driving pressure and background
hydrostatic pressure are nearly in balance.

Determining what is happening near the top of the front y= 1 is more problematic.
Although the Velde solution (3.2) gives the correct x value for material points moving
along the top boundary x=

√
2t, it gives a value of dx/dy at the top equal to

√
t/2.

We are assuming that t� 1 here, so
√

t/2 is a small parameter, but nonetheless it
differs from zero, despite the fact that the boundary condition at the top requires that
it should be zero. The explanation why the top boundary condition is not satisfied by
the Velde solution is considered below.

3.2. Vertical motion predicted by the Velde solution
The reason why the Velde solution (3.2) is problematic near the top boundary can be
seen by examining the vertical motion of material points. The y component of (2.5)
is

dy
dt
=−

y
s

sin α. (3.6)

Since in the regime of interest, s≈ x and sin α≈ tan α≡ dx/dy, it follows using (3.2)
and (3.4) that

dy/dt≈−1/2 (3.7)

uniformly for all y. In other words, any material points to which the Velde solution
applies also obey (3.7) and hence by time t invariably find themselves at y values
below 1− t/2.
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Thus the Velde solution is only valid in the lower region of the solution domain,
namely for y < 1 − t/2. In the upper region, i.e. in the domain 1 − t/2 6 y 6 1, a
different solution must be found, and this solution must meet the boundary condition
that α = 0 on the top boundary. We will analyse the upper region of the solution
domain in § 4, but before doing that, we wish to consider the consequences that (3.7)
implies for the lower region.

3.3. Improving the Velde solution
Equation (3.7) makes it possible to improve upon the Velde solution (3.2), which
was originally based on the assumption of constant rather than variable y. In what
follows, the improvement to the Velde solution is derived: those readers who wish
to skip the derivation should turn directly to (3.13)–(3.14) and the results in § 3.3.1.
The derivation that we follow is similar to one that has already been employed
by Grassia (2017) to describe pressure-driven growth within porous media with
anisotropic permeability. Here the system is considered to be isotropic, and there
are some subtle (albeit significant) differences in the equations obtained: see Grassia
(2017) for details.

The improvement to the Velde solution can be obtained starting from (2.5) by
recognising that s at any instant is slightly larger than x (owing to the vertical
component of motion being superposed upon the horizontal component), that cos α
is well approximated by 1− α2/2, and also that historical values of y for any given
material point were slightly larger than the current values.

Specifically

s=
∫ x

0

(
1+

(ẏ)2

(ẋ)2

)1/2

dx≈
∫ x

0

(
1+

1
2
(ẏ)2

(ẋ)2

)
dx, (3.8)

where ẋ and ẏ are shorthand for time derivatives. If we substitute ẋ from the Velde
solution (3.2), replace dx by ẋ dt, set ẏ≈−1/2 and integrate, we deduce

s≈ x(1+ t/(12y)). (3.9)

It follows (for small t)
s−1
≈ x−1(1− t/(12y)). (3.10)

Meanwhile

cos α ≈ 1−
α2

2
≈ 1−

(dx/dy)2

2
≈ 1−

t
4y
, (3.11)

where (3.4) has been used. Additionally, if a material point is at location y at time t,
then, at some earlier time t′, its location must have been y+ (t− t′)/2 or equivalently
y(1+ (t− t′)/(2y)).

Substituting the above into (3.1) it follows

x≈

√
2y
∫ t

0
(1− t′/(12y))(1+ (t− t′)/(2y))(1− t′/(4y)) dt′. (3.12)

Performing the integrals, retaining only terms through to order t2 (discarding any
higher powers of t) we deduce

x≈
√

2yt+ t2/6. (3.13)
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FIGURE 2. (Colour online) Velde solution (3.2) and ‘improved’ Velde solution (3.13)
compared with numerical simulation data obtained from tracking Lagrangian material
points on the front. Data correspond to time t= 0.5.

Equation (3.13) can be viewed as a correction or improvement to the Velde solution
incorporating contributions to x at order t3/2 over and above the leading-order term
√

2yt. It is clear that (at any given y) the value of x according to (3.13) is slightly
larger than what is predicted by the Velde solution (3.2). In other words the front is
displaced to the right, i.e. it travels slightly further than the Velde solution predicts,
benefitting from the fact that historically material points were moving more rapidly
having been higher up than their current y location.

Equivalent to (3.13) we can write

y≈
x2

2t
−

t
12
, (3.14)

which predicts that the ‘improved’ Velde solution is a vertical distance t/12 below
the original given by (3.3) regardless of the value of x. As a result there is less
unswept area underneath the front (i.e. less gravity override) with the ‘improved’
Velde solution (3.13) than with the original (3.2). Rearranging (3.2) to obtain (3.3),
and integrating equation (3.3) from x= 0 to the leading edge of the front at x=

√
2t,

we deduce the unswept area under the original Velde solution to be
√

2t/3. The
improvement to the Velde solution (i.e. (3.14) obtained from (3.13)) however reduces
this unswept area by an amount

√
2t3/2/12, thereby helping to arrest the growth in

unswept area and limit the override.

3.3.1. Comparison with simulation data
In figure 2 we have compared the prediction of (3.13) with a numerically simulated

foam front, all results corresponding to a time t = 0.5. These numerical simulations
were performed using the same algorithm for computing the trajectories of Lagrangian
material points as described in detail in Grassia et al. (2014). The simulations used 40
material points initially (albeit with additional material points being added over time
as points separate from one another, there being 46 material points in total by time
t= 0.5) and a time step of 5× 10−5.

At time t = 0.5, the error in vertical position between the ‘original’ Velde
solution (3.3) and the ‘improved’ solution (3.14) is t/12 ≈ 0.04. Considering that
y varies between 0 and 1 here, the difference between the ‘original’ and ‘improved’
Velde solutions is still small in relative terms, even for t= 0.5. Nonetheless it is clear
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that the numerical simulation data in figure 2 agree much better with the ‘improved’
Velde solution (3.13) than with the original Velde solution (3.2). Indeed, given that
the ‘improved’ Velde solution is formally a t � 1 solution, it is remarkable that it
agrees so well with t= 0.5 numerical data. Nonetheless it is clear that the ‘improved’
solution still only applies in the lower region of the solution domain. Equation (3.13)
is seen to deviate from the numerical simulation data in the upper region of the
domain as y→ 1. It is not so much a case of (3.13) ceasing to be a valid solution for
pressure-driven growth per se, but instead a case of the upper region being influenced
by a top boundary condition which (3.13) fails to respect. Not only does (3.13) fail
to give dx/dy→ 0 in the limit as y→ 1, it also gives the wrong value of x, predicting
x≈

√
2t+ t2/6 in this limit, instead of the correct value x=

√
2t.

3.4. Improved estimate of vertical motion
Having obtained an improved estimate of the displacement in the x direction
(via (3.13)) and having demonstrated in § 3.3.1 that it really does fit the front
shape better, we can now proceed to obtain an improved estimate of the trajectory
of y versus t. A derivation follows, but some readers may wish to skip to the final
result in (3.23).

We start by considering (2.6), and note that on the right-hand side we can replace
y to a good approximation by the following

y≈ y0 − t/2, (3.15)

where y0 is the initial location of the material point currently at y. Upon integrating
(2.6) and Taylor expanding for small t

s≈

√
2y0t−

t2

2
≈
√

2y0t
(

1−
t

8y0

)
(3.16)

and hence
1
s
≈

1
√

2y0t

(
1+

t
8y0

)
. (3.17)

Via (3.13)
dx
dy
≈

t√
2yt+ t2/6

. (3.18)

Substituting from (3.15) and Taylor expanding for small t it follows

dx
dy
≈

√
t

2y0

(
1+

5t
24y0

)
. (3.19)

Moreover (again via a Taylor expansion)

sin α = sin
(

arctan
dx
dy

)
≈

dx
dy
−

1
2

(
dx
dy

)3

. (3.20)

Upon substituting from (3.19) and expanding for small t

sin α ≈
√

t
2y0

(
1−

t
24y0

)
. (3.21)
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Substituting (3.15), (3.17) and (3.21) into (3.6)

y− y0 ≈−
1

2y0

∫ t

0
(1+ t′/(8y0))(y0 − t′/2)(1− t′/(24y0)) dt′. (3.22)

Integrating, whilst discarding any terms higher than order t2, gives

y≈ y0 −
t
2
+

5t2

48y0
, (3.23)

where y0 6 1 is the material point’s initial location.
This equation indicates that material points actually migrate downward slightly

slower than speed 1/2 (a point we will return to much later on in § 8), the
main contributing effect being that the net driving pressure (injection pressure less
hydrostatic pressure) decays as points move downwards. Nonetheless material points
still do migrate downwards, so the improvements to the Velde solution that we have
presented here cannot apply all the way up to y= 1 for any finite t> 0: that requires
a different analysis as we now consider.

4. Front shape in the upper region
Having discussed how the early time solution behaves in the lower region (material

points which have been continuously on the front since time zero), we now turn to
consider early time solution for the upper region (material points injected onto the
front from the top boundary after time zero).

A description of the shape of the upper region of the foam front at early times is
equivalent to describing how the orientation of the front (represented by an angle α,
specifically the orientation of the front normal with respect the horizontal) depends on
the location 1− y (the vertical distance measured down from the top of the front). In
the upper region of the front at early times, two small distances are relevant: 1 − y
(as mentioned above) and the vertical distance from the top boundary to the matching
point with the lower region (which is expected to be approximately t/2, at least based
on the behaviour observed in the lower region). We shall look in the first instance for
a similarity solution which depends on the ratio between these two small distances.
In what follows we consider, in the upper region, how material elements on the foam
front rotate over time (§ 4.1), and also how they move downwards over time (§ 4.2),
finally relating the change in orientation to the change in vertical position to deduce
a governing equation for the front shape (§ 4.3).

4.1. Rotation rate of material elements
In this section, an equation (namely (4.4)) for the rotation rate of material elements is
derived. One of the key questions that we wish to address in this work is whether or
not this equation for the rotation rate can be replaced by a slightly simpler equation,
namely (4.5). The relevant derivations follow.

Material elements rotate due to non-uniformities in the speed of material points
from place to place. It follows then that the rotation rate of a material element α̇
depends on how the material point speed varies with arc length measured along the
front, i.e.

α̇ =−
d

dS

(y
s

)
. (4.1)
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Here y/s is the material point speed according to (2.6) (y is vertical coordinate, s is
distance measured along the trajectory). Moreover S is distance measured along the
front (in the downwards direction).

We can expand this as follows

α̇ =−
1
s

dy
dS
+

y
s2

ds
dy

dy
dS
. (4.2)

Since dy/dS =−cosα (by definition) we deduce

α̇ =
cos α

s

(
1−

y
s

ds
dy

)
. (4.3)

At small times and near the top boundary, cos α ≈ 1, s≈
√

2t, y≈ 1 and hence,

α̇ ≈
1
√

2t

(
1−

1
√

2t

ds
dy

)
. (4.4)

At early times we know that s is well approximated by x: being able to replace
s by x is a significant simplification as s is history dependent, but x depends only
on instantaneous location of a material point. It is valid to ask whether in the above
formula for α̇ we can then replace ds/dy by dx/dy (the latter being tan α, which is
essentially the same as α at small times when α is invariably small). The difficulty is
that near the top boundary dx/dy vanishes, so (even though x and s are close), it is
not a priori clear whether dx/dy and ds/dy are actually similar in magnitude or not.

Suppose that it is possible to make this replacement. Then

α̇ ∼
1
√

2t

(
1−

1
√

2t

dx
dy

)
≈

1
√

2t

(
1−

α
√

2t

)
. (4.5)

At the top boundary, α → 0, so α̇ ≈ 1/
√

2t regardless of whether (4.4) or (4.5)
is used. Below the top boundary however, the solution for x versus y might be
expected to match onto the lower part of the solution domain, where the Velde
solution x ≈

√
2yt as given by (3.2) should be (approximately) valid. The matching

point is expected to occur somewhere near y ≈ 1 − t/2 (with t being chosen much
smaller than unity here). This implies that α ≈ dx/dy ≈

√
t/(2y) according to (3.4),

which for y values close to unity (i.e. for 1 − y � 1) becomes α ≈
√

t/2. Hence
(according to (4.5) and assuming α is a continuous function moving between the
upper and lower regions) at the matching point, we must have α̇ ≈ 1/(2

√
2t), which

is only half as big as α̇ at the top boundary. It would appear that there are significant
spatio-temporal non-uniformities in α̇ across a comparatively small domain.

4.2. Vertical motion of material elements
According to the pressure-driven growth model, the vertical motion of material
elements is as per (3.6). Since in the upper region we are interested in y values near
unity, s values roughly

√
2t, and α much smaller than unity it follows

ẏ≈−α/
√

2t. (4.6)
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Note this is apparently consistent with the foregoing analysis for the lower region
discussed in § 3. The matching point with the Velde solution, should be close to y= 1
when t� 1, and is expected to satisfy α≈

√
t/2, at least under the assumption that the

upper and lower regions are to join up with the same orientation (in which case (3.4)
can be applied where the regions join). It then follows ẏ≈−1/2, and hence, on the
basis of this assumption, the matching point is therefore predicted to be approximately
a distance t/2 below the top boundary.

What we have demonstrated here is that, if the upper and lower regions match up
with the same front orientation, then the vertical velocity component of the uppermost
material point of the lower region is the same as the vertical velocity component of
the lowermost material point of the upper region. Given these two material points
are initially adjacent, if their subsequent vertical velocity components are also the
same, then they must remain adjacent to one another as time proceeds. Under these
circumstances, the matching point is (by definition) precisely where these two material
points meet, and it too must move downwards with the same velocity component as
the material points themselves do.

What we have not ruled out of course is a more complicated case where the upper
and lower regions join up with different front orientations e.g. in a concave corner.
It is known in the literature for instance that concave corners can consume material
points (Grassia et al. 2014). Thus the material points either side of a concave corner
at any given time are not necessarily the same as those either side of that concave
corner at any other time. It follows then that the downward motion of the concave
corner need not match that of material points either, since the identities of the material
points immediately adjacent to either side of the corner are continually changing.

As we will see (in §§ 6–7), it is absolutely essential to consider this more
complicated situation for a proper understanding of the shape of the foam front.
For the present however, we wish to explore the consequences of assuming the
simpler situation for which the upper and lower regions match with the same front
orientation. Ultimately this assumption will lead us towards a contradiction (see
§ 5), but the analysis we perform here is nonetheless useful, as it is amenable to be
generalised to the more complex situations in §§ 6–7.

4.3. Proposed similarity solution for front shape and its governing equation
In this section, we propose a similarity solution for the front shape, and derive a
governing equation for that similarity solution. The derivation follows, but some
readers may prefer to skip directly to the result given in (4.17).

We begin by defining a similarity variable

ζ = (1− y)/(t/2), (4.7)

with ζ = 0 at the top boundary (y = 1) and ζ = 1 at the expected location of the
matching point (y = 1 − t/2). Clearly ζ represents a ratio of distances, i.e. the ratio
between the distance that a point y is below the top surface, and the (assumed)
distance between the top surface and the matching point itself.

We now look for a similarity solution in the small-time limit assumed to take the
form

α =
√

t/2A(ζ ), (4.8)

where A(ζ ) is a function that we must determine. Matching onto the top boundary
requires A= 0 when ζ = 0 and matching onto the lower region (assuming continuity
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of α and hence of A) implies A= 1 when ζ = 1. Note the geometrical interpretation
of this: the larger the value of A (and hence of α for any given time t) the greater
the extent to which a material element on the front has reoriented compared to the
orientation at the top boundary, and hence the greater the curvature of the front.

Our aim here is to obtain a differential equation determining A as a function of
ζ . The proposed similarity form given in (4.8) not only governs how α varies with
position on the front at fixed time t, but also how α and vertical position evolve with
time following a specified material point. Taking a time derivative following a material
point of the expression (4.7) for ζ gives

ζ̇ =−
ẏ

t/2
− ζ/t. (4.9)

Since via (4.6) (applicable in the small-time limit) and (4.8)

ẏ≈−α/
√

2t≈−A/2, (4.10)

it follows

ζ̇ ≈ (A− ζ )/t. (4.11)

We can also differentiate the expression (4.8) for α with respect to time (at fixed y)

∂α/∂t= 1/(2t)α +
√

t/2(−ζ/t)Aζ =
√

t/2A/(2t)+
√

t/2(−ζ/t)Aζ , (4.12)

where Aζ denotes the derivative of A with respect to ζ . Meanwhile

∂α/∂y=−
√

t/2Aζ/(t/2) (4.13)

and moreover (using (4.10))

ẏ∂α/∂y≈
√

t/2AAζ/t. (4.14)

Summing ∂α/∂t and ẏ∂α/∂y we deduce for the rate of change of α following a
material point

α̇ ≈
√

t/2A/(2t)+
√

t/2(A− ζ )Aζ/t. (4.15)

We now equate this to α̇ ∼ (
√

2t)−1(1− α/
√

2t) (via (4.5)) giving

1− A/2≈ A/2+ (A− ζ )Aζ (4.16)

and hence

Aζ ≈ (1− A)/(A− ζ ), (4.17)

which is the similarity equation (applicable in the small-time limit) we seek that
governs the variation A with respect to ζ in the upper region of the front.
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4.3.1. Implications for the similarity solution
Note the implication of (4.17) above: as ζ grows, A must be at least as large as

ζ , since if ζ ever moves too close to A, then A necessarily suddenly increases. On
the other hand, A should not move too close to unity too quickly, otherwise A stops
increasing altogether. At the expected matching point then ζ→ 1 (or equivalently y→
1− t/2), it is permitted only to have A→ 1 (corresponding to A being continuous and
hence α being continuous at the expected matching point).

The above equation however assumes (via (4.5)) that the variation in the path length
travelled from point to point on the front ds/dy can be replaced by the variation in
horizontal location dx/dy. More generally however we have via (4.4) (still assuming
a small-time limit)

Aζ ≈
(

1− A/2−
1
√

2t

ds
dy

)/
(A− ζ ). (4.18)

If, as y decreases moving down along the front starting from the top boundary, the
value of s happens to decrease more slowly than the value of x, then the term in ds/dy
is smaller than dx/dy, then this leads via (4.18) to a larger Aζ and hence a larger
A than previously, corresponding to a more strongly curved front. It is now possible
for A in the upper region of the front to exceed unity even for values of ζ < 1: this
then allows for the appearance of a concave corner in the front shape, since the Velde
solution implies that at the top of the lower region α must jump immediately to

√
t/2

and hence A≡ (t/2)−1/2α must jump immediately to unity. More subtly, it also allows
for the location of the matching point between the upper and lower regions of the
solution being not exactly a distance t/2 below the top boundary (although we will
not demonstrate this fact until later on in § 6).

5. Solving the similarity equation
In what follows we first of all describe (§ 5.1) how to solve (4.17), the similarity

equation which has resulted from the assumption that ds/dy equals dx/dy. We show
moreover (§ 5.2) how the solution can be expressed in terms of an ‘injection time’
(the time at which material points are considered to leave the top boundary and move
onto the front). We demonstrate however (§ 5.3) that whereas this solution has sensible
behaviour in the vertical direction, unfortunately it leads to a mismatch horizontally,
and so does not actually join up properly with the lower region of the solution domain.
We prove moreover (§ 5.4) that the solution obtained leads to a contradiction, i.e. it
violates the very assumption (namely ds/dy equals dx/dy) used to derive (4.17) in the
first place. Even though the derivation of (4.17) is thereby ultimately determined to
be invalid, the analysis that we perform here turns out nevertheless to be very useful
for generalising (4.17) which we do later on in § 6.

5.1. Implicit solution and limiting cases
Equation (4.17) has an (implicit) solution

ζ = A− (1− A) log(1/(1− A)). (5.1)

We deliberately use an equal sign here rather than an approximation sign to convey
the notion that (5.1) is an exact solution of (4.17), even though (4.17) is itself only
approximate, namely a small-time asymptotic approximation to the governing equation
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FIGURE 3. (Colour online) (a) Graph of A versus ζ (a rescaled version of angle through
which the front turns α versus distance from the top boundary 1 − y) applicable to the
upper region of the solution domain. The curve labelled c= 1 is based on assuming that
ds/dy (with s being path length travelled) is the same (at leading order) as dx/dy and
corresponds to (5.1). Although the c= 1 case does admit a branch of solutions with A> 1
(equivalent to saying that α can overshoot the value predicted by the Velde solution lower
down in the solution domain) the A versus ζ curve plotted here exhibits an inflection at
A= 1 (which is not observed in simulation data (Torres-Ulloa 2015)). Alternate solutions
assuming ds/dy is less than dx/dy are also given, parameterised by a value c (the ratio
between ds/dy and dx/dy being equal to 2c − 1): these solutions are given by (6.2).
The case c = 0.9 is plotted (and is close to the original c = 1 data set). The case of
main interest is however c = 0.75. Data obtained from an integro-differential equation
system (7.19) and (7.21) are also shown and are very close to the c = 0.75 data set.
(b) A zoomed view comparing the c = 0.75 data set with the numerical solution of the
integro-differential equation which is discretised into 1000 intervals. The curve labelled
‘less refined’ is for the integro-differential equation discretised into only 100 intervals. A
discretisation into 10 000 intervals (albeit not plotted here) is indistinguishable on the scale
of the graph from that for 1000 intervals. The vertical lines indicate the ζ values at which
the solutions generated are found to match onto the lower region of the solution domain
ζ ≈ 0.94 (for the c= 0.75 solution) and ζ ≈ 0.954 (for the integro-differential equation).

of the front. Later on we will have call to derive expressions which are themselves
approximations to (5.1) and for these we will revert to using an approximation sign
in order to distinguish them.

A graph of the solution (5.1) is plotted in figure 3. In the first instance we focus
on solutions with 0 6 ζ 6 1 and 0 6 A 6 1 which is what (5.1) describes (although
figure 3 includes a solution branch defined all the way up to ζ = 2 and A= 2, as we
will discuss shortly).

Note that for small A� 1, the right-hand side of (5.1) Taylor expands to A2/2 and
hence for ζ � 1, it follows A∼

√
2ζ . In that case, α≡

√
t/2A becomes approximately

√
tζ ≡
√

2(1− y). This is the same behaviour (i.e. a mild singularity) near the top
boundary as has been found for the late-time asymptotic solution (Grassia et al.
2014) (and is applicable here because the material points in question have spent the
overwhelming majority of their history on the top boundary, only having left the top
boundary comparatively recently). It is interesting to note that this finding justifies
the numerical procedure proposed by Grassia et al. (2014) for placement of material
points that were newly introduced near the top boundary which assumed a mild
singularity was present. Formally Grassia et al. (2014) only proved the validity of
this procedure in the long-time limit t� 1, but it evidently has broader applicability.
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Moreover this same behaviour near the top boundary can actually also be obtained
from (4.18) as both (4.17) and (4.18) reduce to Aζ ≈ 1/A in this limit (with in
addition A� ζ in this same limit). This predicted behaviour immediately adjacent to
the top boundary does not then require an assumption that ds/dy≈ dx/dy since (4.18)
does not make that assumption.

Moving away from the top boundary, equation (5.1) given above rearranges to

1− ζ = (1− A)(1+ log(1/(1− A))). (5.2)

When ζ and A are both close to unity (which we expect to happen moving downwards
through the upper region towards the lower region), we have an approximation

1− ζ ≈ (1− A) log(1/(1− A)) (5.3)

and hence
log(1− ζ )≈ log(1− A)+ log log(1/(1− A)). (5.4)

To a very crude approximation it follows from (5.4) that log(1− A)∼ log(1− ζ ) and
hence substituting this result into (5.2)

1− A≈ (1− ζ )(1+ log(1/(1− ζ )))−1. (5.5)

The implication is that, in the limit as ζ→ 1 and A→ 1, A varies more slowly than
ζ , i.e. rescaled front orientation angle varies more slowly than rescaled distance. If
indeed the matching point between the upper and lower regions occurs at ζ = A =
1, this is consistent with the curvature of the front being small near the matching
point. We have already commented (see § 2.5) that numerical schemes for simulating
pressure-driven growth become particularly difficult to implement when curvature is
low, as even small perturbations can then convert convex shapes into a potentially
problematic concave ones: it is unsurprising therefore that previous work (Grassia
et al. 2014) has encountered numerical challenges here.

Interestingly (4.17) for the upper region of the foam front actually admits solutions
for ζ and A both greater that unity: if one replaces ζ by 2 − ζ and A by 2 − A
within (5.1) then a different solution branch is obtained. This branch is also plotted on
figure 3 covering the domain 1 6 ζ 6 2 and 1 6 A 6 2. The existence of this solution
branch raises the possibility that the value of A, even within the upper region, might
rise above unity, in which case in order to match onto the top of the lower region
(which has A= 1) a concave corner would be required. We will see later on (§ 6) that
concave corners can and do indeed occur, albeit not in the fashion that (4.17) predicts.
For the present however we continue to explore the consequences of assuming that the
upper and lower regions join up without a concave corner.

5.2. Re-expressing solution in terms of injection time
It is possible to re-express the solution (5.1) above in terms of an ‘injection time’,
defined as a time at which material points were injected from the top boundary onto
the foam front, a concept that has already been described by Grassia et al. (2014).

The injection time tinj can take any value between zero and the current time t.
If tinj → t then material points are extremely close to the top boundary (i.e. ζ � 1
and hence A � 1). On the other hand if tinj � t then material points are close to
the matching point at which material which has been injected (constituting the upper
region) joins up with material which has been continuously on the front since time
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zero (constituting the lower region). In that case we anticipate ζ ≈ 1 and also (at least
according to (5.1)) A≈ 1.

It turns out that the solution (5.1) given above follows from a particularly simple
functional form

α = (t− tinj)/
√

2t. (5.6)

This equation is ‘exact’ in the same sense that (5.1) is, i.e. it manages to solve (4.17)
exactly, notwithstanding the fact that (4.17) is itself a small-time approximation. Here
we proceed by assuming that α follows (5.6) and then demonstrating that (5.1) follows
as a consequence. If (5.6) holds, then (using the definition α ≡

√
t/2A)

A= 1− tinj/t, (5.7)

a very simple relation indicating that the higher the fraction of total time a material
point has spent on the front since being injected, the more the material element upon
which it finds itself has reoriented. On the other hand, if (5.6) holds, then we can
solve (4.6) for y versus t. The solution is

y= 1− t/2+ tinj/2+ (1/2)tinj log(t/tinj). (5.8)

Since ζ ≡ (1− y)/(t/2), it follows

ζ = 1−
tinj

t
+

tinj

t
log

t
tinj
. (5.9)

Substituting from (5.7) then gives (5.1).
Note that differentiating A and ζ (or equivalently α and y) with respect to tinj at

constant t, corresponds to moving from material point to material point for a given
instantaneous curve shape. Notice that

−
∂α

∂y
=−

∂α/∂tinj

∂y/∂tinj
=

1/
√

2t
(1/2) log(t/tinj)

, (5.10)

where the denominator diverges (albeit exceedingly slowly) as tinj→ 0. This is actually
a demonstration that the predicted curvature falls to zero near the expected matching
point, since (recalling that S is distance measured along the front in a downwards
direction) the curvature becomes ∂α/∂S which is equivalent to −∂α/∂y for a front
that is nearly vertical, such as would happen when t� 1.

This situation near the matching point with tinj� t contrasts with what is happening
at the top boundary where tinj→ t. Near the top α ∼

√
2(1− y) as we saw in § 5.1

and hence −∂α/∂y∼ 1/
√

2(1− y), so curvature is infinite at the top boundary.

5.3. Horizontal mismatch of front shape
One elegant feature of the solution (5.1) for the upper region of the foam front is that
at y= 1− t/2 (equivalently at ζ = 1) it has A= 1 (equivalently α =

√
t/2) which is

the same α value as would be predicted by the Velde solution for the lower region of
the front as discussed in § 3 (see e.g. (3.5) assuming t� 1 and hence with y= 1− t/2
at the top of the lower region being close to unity). Thus we have two solutions for
the distinct regions of the front which have the same orientation at the same vertical
location, suggesting that the solutions for the upper and lower regions might join up

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.541


Foam front advance during improved oil recovery 549

 0

 –0.2

 –0.4

 –0.6

 –0.8

 –1.0

 –1.2

 –0.93

 –0.94

 –0.95

 –0.96

 –0.97

 –0.92

 –0.91

–0.2 0–0.1–0.3–0.4 –0.28–0.29–0.30 –0.27 –0.26

Lower region
Integro-diff.

Lower region
Integro-diff.

(a) (b)

FIGURE 4. (Colour online) (a) Graph of −ζ versus −Ξ (a rescaled version of y versus x)
for the foam front. Solutions in the upper region of the domain are generated in the first
instance assuming ds/dy≈ dx/dy (curve labelled c= 1; with angle A obtained from (5.1),
and Ξ obtained from integrating A via (5.16)) and subsequently with ds/dy<dx/dy (curve
labelled c = 0.75; A obtained from (6.2)) and also shown is a curve where solutions
were obtained via an integro-differential equation (7.19). These solutions for the upper
region are required to intersect solutions that apply in the lower part of the domain (curve
labelled lower region, given by (5.15)). For c= 1, no intersection is seen (at least not in
the neighbourhood of ζ = 1). (b) In this zoomed view, intersections are seen in the case
c= 0.75 and in the case of the integro-differential equation, respectively for ζ ≈ 0.94 and
ζ ≈ 0.954 (horizontal lines).

with the same orientation angle, as we have assumed to date. Unfortunately however
it turns out that there is a horizontal mismatch between these solutions. The detailed
explanation is given below, but some readers may prefer to skip directly to view the
horizontal mismatch plotted in figure 4.

We know via (3.13) that in the lower region of the domain, to a good approximation
x ≈

√
2yt+ t2/6 which can be obtained via a perturbation expansion that improves

upon the original Velde solution (3.2). We know moreover that the leading edge at
the top of the front is at location x =

√
2t with y = 1. Moving away from y = 1, if

we define ξ to be the horizontal distance behind the leading edge (ξ ≡
√

2t − x), it
follows via a difference of squares (remembering that x is itself close to

√
2t)

ξ ≈
(
√

2t− x)(
√

2t+ x)

2
√

2t
≈
(2t− x2)

2
√

2t
≈

2t− 2yt− t2/6

2
√

2t
. (5.11)

If we put y= 1− t/2 (the expected matching point), we deduce ξ ≈ 5t3/2/(12
√

2) via
this ‘improved’ Velde solution (3.13).

There is however an alternative way of computing ξ , as a function of y, namely
integrating dx/dy to measure a change in x for a given change in y. For t� 1, we
can approximate dx/dy by the angle α, and therefore

ξ ≈

∫ 1

y
α dy (5.12)

and hence at y= 1− t/2,

ξ |y=1−t/2 ≈

∫ 1

1−t/2
α dy, (5.13)
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where α is based on the shape of the upper region. Using (5.8) to change the
integration variable from y to tinj, this can also be written

ξ |y=1−t/2 ≈

∫ t

0
α
∂y
∂tinj

dtinj =

∫ t

0

(t− tinj)
√

2t

1
2

log
t

tinj
dtinj = 3t3/2/(8

√
2), (5.14)

where (5.6) has also been used in addition to (5.8). This ξ value in (5.14) is smaller
than the result obtained earlier by a factor 3/8× 12/5= 9/10.

In other words, moving downwards from the top boundary, the solution α versus
y predicted by (5.1) does not curve sufficiently as to join up with the x versus y
function in the lower region. The predicted horizontal location of the bottom of the
upper region (5.14) is not the same as that of the top of the lower region ((5.11) with
y= 1− t/2). We can see this graphically in figure 4. In this figure we have defined
a variable Ξ = (

√
2t− x)/t3/2

≡ ξ/t3/2 along with ζ = (1− y)/(t/2), and have plotted
−ζ against −Ξ , which has the same orientation as a graph of y versus x.

In terms of Ξ , equation (5.11) describing the lower region of the front in the
neighbourhood of the matching point becomes

Ξ ≈
ζ

2
√

2
−

1

12
√

2
(5.15)

whilst in the upper region we have (via (5.12))

Ξ ≈
1

2
√

2

∫ ζ

0
A dζ , (5.16)

where A is obtained in the first instance from (5.1).
Clearly in figure 4 there is no intersection between the upper and lower region

curves near ζ = 1, at least when (5.1) is used to describe the upper region. In order
to make the curves intersect, what we require in the upper region is a solution for α
versus y that curves slightly more than that computed above, giving a slightly larger α
at any given y (or equivalently a slightly larger A at any given ζ ). As was mentioned
in § 4.3.1, the solution to (4.18), in lieu of (4.17) which is what we have been solving
to date, should have that property.

5.4. Predicted difference between ds/dy and dx/dy
In addition to the horizontal mismatch discussed above, it is possible to demonstrate
that (5.1) contradicts the assumptions used to derive it. It turns out to predict
that ds/dy (with s being a history-dependent path length variable) is significantly
less than dx/dy, even though (4.17) (of which (5.1) is the solution) was derived
assuming ds/dy ≈ dx/dy. Some readers may wish to turn directly to (5.25)–(5.26)
which demonstrate that this assumption is invalid. Nonetheless we will see that (5.1)
still manages to make useful predictions at least on parts of the front, because
there are parts of the front for which the local shape is unaffected in spite of the
aforementioned contradiction.

The analysis proceeds as follows. To a good approximation

s≈
∫ x

0

(
1+

1
2
(ẏ)2

(ẋ)2

)
dx≈

∫ x

0

(
1+

1
2
α2

)
dx, (5.17)
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where we have used the fact that at early time vertical velocity is much weaker than
horizontal velocity |ẏ|� |ẋ|, and also at leading order near the top boundary, ẏ≈−α/s
and ẋ≈ 1/s via e.g. (3.6) and (3.1).

Evaluating the integral in (5.17) is not possible without a priori information
about α.

We know however via (5.6) that a material point injected onto the front at time tinj

has an α value α = (t− tinj)/
√

2t. Substituting this into (5.17) we deduce

s≈ x+
∫ t

tinj

(t− tinj)
2

4t
dt
√

2t
= x+

(t− tinj)
3

12
√

2t3/2
, (5.18)

where we have used the fact that dx= ẋ dt≈ dt/s≈ dt/
√

2t.
We know moreover that

x=
√

2t− ξ ≈
√

2t−
∫ 1

y
α dy. (5.19)

Changing the integration variable from y to tinj using (5.8) which implies ∂y/∂tinj =

(1/2) log(t/tinj), we deduce

x≈
√

2t−
∫ t

tinj

(t− tinj)
√

2t

1
2

log(t/tinj) dtinj (5.20)

and hence

x≈
√

2t−
t3/2

2
√

2

(
−

tinj

t

(
1−

tinj

2t

)
log(t/tinj)−

tinj

t

(
1−

tinj

4t

)
+

3
4

)
. (5.21)

Combining (5.18) and (5.21) we deduce

s≈
√

2t−
t3/2

2
√

2

(
−

tinj

t

(
1−

tinj

2t

)
log(t/tinj)−

tinj

t

(
1−

tinj

4t

)
+

3
4

)
+

t3/2

12
√

2
(1− tinj/t)3.

(5.22)
The physical content of both (5.21) and (5.22) is that as tinj falls below t

(corresponding to choosing material points further and further below the top boundary)
both x and s fall short of the value

√
2t (which is the displacement of the front on the

top boundary), however they fall short of
√

2t by differing amounts. The predicted
ratio between the s-shortfall and the x-shortfall is sensitive to tinj/t (and hence is
sensitive to the precise location within the upper region of the front which depends
on tinj/t). In what follows the limiting case tinj→ t (i.e. the behaviour at the very top
of the upper region) is considered.

5.4.1. Limiting case tinj→ t
A Taylor expansion of (5.21) for tinj close to t (or in other words for vertical

locations exceedingly close to the top boundary) reveals

x≈
√

2t−
t3/2

6
√

2
(1− tinj/t)3 (5.23)
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from which it then follows

s≈
√

2t−
t3/2

12
√

2
(1− tinj/t)3, (5.24)

which can also be expressed in the form (using results from Grassia et al. (2014))

x≈
√

2t−
2
√

2
3
(1− y)3/2 (5.25)

s≈
√

2t−

√
2

3
(1− y)3/2. (5.26)

Hence very close to the top boundary of the front at least, the variation of s with
respect to position is exactly half the variation of x with respect to position, i.e. ds/dy
is half of dx/dy.

Some comments are pertinent. The predictions of (5.21) and (5.22) for the extent
that x and s vary potentially contain errors/artefacts as those equations were derived
based on an approximate front shape that assumed equality between dx/dy and ds/dy,
but subsequently discovered that assumption is contradicted. Equations (5.23)–(5.24)
or equivalently (5.25)–(5.26), although they only apply to tinj values very close to
t, and need not apply all the way to the matching point for which tinj � t, do
not suffer from such artefacts. In the present limit tinj/t → 1 (which also implies
(1 − y)� t/2 and hence similarity variable ζ ≡ (1 − y)/(t/2)� 1), we obtain the
same results regardless of whether we use (4.4) or (4.5) to obtain α̇, or equivalently
regardless of whether we use (4.17) or (4.18) to obtain Aζ . In the neighbourhood of
the top of the front, the numerators of both (4.17) and (4.18) involve subtracting an
exceedingly small term from unity, implying insensitivity to what the exact value of
that exceedingly small term is. Hence the difference that is predicted between dx/dy
and ds/dy neighbouring the top of the front is not merely an artefact of using (4.17)
instead of (4.18). This then gives a strong indication that it might be possible for
ds/dy to remain smaller than dx/dy throughout the entire upper region of the front,
all the way down to the matching point, in which case (4.18) predicts a different A
versus ζ relation from that given in (5.1) which relied upon (4.17). This alternative A
versus ζ relation for the upper region should join up with the solution in the lower
region without exhibiting the horizontal mismatch that was observed previously (in
§ 5.3) although the cost of eliminating the horizontal mismatch, could be that the
front orientation angles might cease to be aligned where the upper and lower regions
meet (i.e. a concave corner might be present). In the following section, we present a
technique for determining the alternative A versus ζ relation.

6. Alternative solution for upper region A versus ζ
In what follows we make an assumption that ds/dy remains half of dx/dy all the

way down to the matching point (rather than merely exceedingly close to the top
boundary as has been demonstrated in § 5.4.1). There is no a priori reason why this
should be the case, but as we will see when we compare with more accurate solutions
later on, the assumption actually turns out to be a remarkably good one.

If we substitute ds/dy= (dx/dy)/2 into (4.18), then in lieu of (4.17), we now have

Aζ ≈ (1− cA)/(A− ζ ), (6.1)

where specifically c= 3/4, with the ratio between ds/dy and dx/dy being 2c− 1.
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Equation (6.1) but with c taken to be a free parameter (somewhere between 3/4 and
unity, in the latter case (4.17) being recovered) is actually quite a powerful equation
which can help us to understand how the A versus ζ relation can be varied to ensure
that the upper and lower regions of the front can be made to intersect. The solution
of (6.1) is

ζ = 1/c− (1− cA)/(c(1− c))+ (1− cA)1/c/(1− c), (6.2)

where in keeping with the practice adopted in § 5.1 we use an equal sign in (6.2)
rather than an approximation sign, reflecting the fact that this is an exact solution of
(6.1), albeit equation (6.1) is itself a small-time asymptotic approximation to the true
governing equation of the front. With (6.2), it is now quite possible for A to exceed
unity even for ζ <1. In fact A attains the value unity when ζ = (1− c)−1+1/c. Moreover
A attains the value 1/c when ζ = 1/c.

The function (6.2) is plotted on figure 3, and, as c decreases, A values are clearly
seen to be larger than those predicted by (5.1). According to (5.16), Ξ values are
also larger at any given ζ , implying in figure 4 that the upper region of the front
curves more than previously, such that the horizontal location of any point on the
upper region of the front is further back from the leading edge than previously. This
then gives an opportunity for the upper and lower regions of the front to intersect
without any horizontal mismatch. In what follows we identify this intersection point
(§ 6.1), and then relate its location to injection times (§ 6.2), and also to the distances
that material points have travelled (§ 6.3).

6.1. Matching or ‘cross-over’ point
Assuming that (6.1) with c= 3/4 is a good representation of the shape of the front
over the entire upper region of the domain, it is possible to identify a matching or
‘cross-over’ point at which the front shapes computed in the upper and lower region of
the domain intersect or ‘cross-over’ one another. The cross-over point (still assuming
c= 3/4) is found to be around ζcross≈ 0.94, corresponding to an A value Across≈ 1.18:
these values can be easily read off from figures 3(b) and 4(b) respectively.

The fact that Across exceeds unity is encouraging: it suggests that the orientation
angle of the upper region of the front overshoots that on the lower region, so the front
has a concave corner there. The value of A jumps from Across ≈ 1.18 immediately
above the concavity to unity immediately below it, or in other words, the front
orientation angle α, which is related to A via α ≡

√
t/2A, jumps from around

0.834
√

t to around 0.707
√

t, implying a jump of 0.09 radians or approximately 5◦
at the instant t = 0.5 (which happens to be the specific time at which the distance
through which the top of the front has advanced, namely

√
2t, is the same as the

front’s depth, i.e. unity).
The prediction that ζcross is smaller than unity is slightly curious: it implies that the

depth 1− y below the top boundary at which the concave corner is located is slightly
less than the depth t/2 to which the material point initially at the top of the lower
region of the front is expected to migrate. This in turn suggests that, rather than the
concave corner consuming material points on the front on either side of it (as we
expect in conventional pressure-driven growth (Grassia et al. 2014)), material points
are actually being extracted from the concavity on the side below the concave corner
(a behaviour which has only previously been observed in pressure-driven growth
systems for which the reservoir properties are taken to be highly anisotropic (Grassia
et al. 2016), and not in isotropic systems as are considered here). Indeed recognising
that the location ζ = 1 on the lower part of the curve (which is already a small
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but finite distance below the concavity) corresponds to a material point which was
initially adjacent to the top surface, any points between ζ = ζcross and ζ = 1 must
have been extracted from the corner itself.

The reason the points at the top of the lower region of the front manage to ‘outrun’
those at the bottom of the upper region (despite the fact that points on the upper
region immediately adjacent to the corner are instantaneously moving downward faster
owing to their greater A value remembering that ẏ≈−A/2 via (4.10)) is that the upper
region of the curve exhibits strong spatio-temporal non-uniformities in the vertical
velocity component. Thus knowing the instantaneous vertical velocity alone (which
is −Across/2 immediately above the corner) is inadequate for determining the vertical
distance that points in the upper region have propagated over a given time interval up
to time t, even in the case of arbitrarily small values of t. A conventional pressure-
driven growth picture of a concavity that consumes material points on both sides of
it (Grassia et al. 2014), would apply to a system for which velocities of neighbouring
material points are locally nearly uniform and nearly constant in time, but that is not
the case here.

To reiterate, the material point which is instantaneously at location ζcross at time t
cannot have spent its entire history at or near that particular ζ value. This follows
because points at location ζcross have an instantaneous vertical velocity ẏ equal to
−Across/2. Were the point to move with that velocity at all times between zero and t,
it would attain a y value y= 1−Acrosst/2 and hence a ζ value of ζ =Across instead of
its actual location ζ = ζcross. Spatio-temporal non-uniformity in the vertical trajectories
of material points is an essential feature of the upper region.

6.2. Minimum permitted injection time
As was mentioned above, at any given time t, the material point in the upper region
of the solution domain immediately adjacent to the concave corner ζ = ζcross, cannot
have always been at that location, but instead must have migrated there from smaller
ζ values (which must also have a lesser downward velocity component) earlier on.
Points in the upper region of the front continue to be consumed by the concave corner,
so there must exist a well defined injection time tinj (itself dependent on the current
time t) at which the point instantaneously at the concave corner was injected onto the
front from the top boundary. This is the minimum permitted injection time (in the
sense that, at time t, out of all the currently surviving points on the upper region of
the front, the point that is currently adjacent to the concave corner was injected earlier
than any of the others): we denote this minimum permitted injection time tinj(min). Any
material points which were injected onto the front earlier than time tinj(min) have already
been consumed by the concave corner. Consequently, whereas points in the lower
region of the solution domain have been moving downward over the entire interval
of time from zero to t, those in the upper region have only been moving downward
for an interval no longer than t− tinj(min) (with tinj(min) depending on t).

We expect the following relations (which serve to fix the value of tinj(min)) to be
valid ∫ t

tinj(min)

A
2

dt′ = ζcross
t
2
, (6.3)

(which uses the fact that the downward velocity component ẏ of material points is
A/2, with ζ = ζcross being a distance 1 − y = ζcrosst/2 below the top boundary) and
also ∫ t

tinj(min)

(A− ζ )
t′

dt′ = ζcross (6.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.541


Foam front advance during improved oil recovery 555

(using the expression (4.11) for ζ̇ of a material point). Nonetheless tinj(min) (or more
precisely the ratio between tinj(min) and t) can be obtained most straightforwardly by
manipulating the expression (4.11) for ζ̇ as follows

d log t/dζ = 1/(A− ζ ) (6.5)

and hence (integrating from tinj(min) to t, or equivalently from 0 to ζcross)

log(t/tinj(min))=

∫ ζcross

0
dζ/(A− ζ ). (6.6)

If A versus ζ happened to be known numerically at any given time (e.g. from
a numerical simulation technique such as that described later on in § 8) the above
equation gives a way of determining tinj(min)/t at the matching point ζcross without even
making a priori assumptions about the existence of a similarity solution. Moreover to
the extent that (6.1) applies

log(t/tinj(min))=

∫ Across

0

ζA dA
(A− ζ )

=

∫ Across

0

dA
(1− cA)

=
1
c

log(1/(1− cAcross)) (6.7)

and hence
tinj(min)/t= (1− cAcross)

1/c. (6.8)

In other words, the ratio tinj(min)/t for the longest surviving point on the upper region
of the front (i.e. the longest surviving point which has not yet been consumed by the
lower region of the front), can be obtained solely in terms of the parameters c and
Across (with c being estimated as 3/4 and Across being estimated as the ratio of the α
values either side of the concave corner at which the upper and lower regions of the
front join together). Taking the value Across≈ 1.18 quoted previously, still with c= 3/4,
we estimate tinj(min) ≈ 0.056t.

6.3. Distances that material points travel to the matching point
One of the issues we have not yet discussed concerning the concave corner at the
matching point is that material points immediately adjacent to the corner on either
side could potentially have followed different paths to reach their current position.
Hence there could potentially be two adjacent points on the front which have different
s values, i.e. s is not necessarily continuous at a concave corner.

Adjacent to a concave corner, the direction of motion of material points is certainly
discontinuous, since motion is along the front normal, and the front normal undergoes
a discrete change in direction. However any discontinuity in s would also imply that
the speed of material points (which is just y/s according to (2.6)) is necessarily
discontinuous there. Nonetheless significant discontinuities are unlikely to manifest
themselves at early times, since motion is primarily horizontal at early times, so that
s at leading order is almost the same as x, regardless of the path followed to arrive
at any (x, y) location.

Specifically the relationship giving s for the point initially at the top of the lower
region is (following § 3.3)

s≈
∫ x

0

(
1+

1
2
(ẏ)2

(ẋ)2

)
dx= x+

∫ t

0

1
2

1/4
1/(2t′)

dt′
√

2t′
= x+ (2t)3/2/24≈ x(1+ t/12), (6.9)
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whereas that giving s within the upper region is by analogy

s≈ x+
∫ t

tinj

1
2

A2/4
1/(2t′)

dt′
√

2t′
= x+ t3/2

inj

∫ ψ

0

√
2A2

8
dψ ′

(1−ψ ′)5/2
, (6.10)

where we have defined a new variable ψ to be

ψ = 1− tinj/t, (6.11)

(with ψ being the fraction of time relative to the current time t that a given material
point has been present on the front), and a corresponding dummy integration variable
ψ ′ such that ψ ′ = 1 − tinj/t′, from which it follows t′ = tinj/(1 − ψ ′) and hence
dt′ = tinj dψ ′/(1 − ψ ′)2. We can also consider A to be a function of ψ instead of
being a function of either ζ or tinj/t. The value of ψ at the matching or cross-over
point, which we denote ψcross, is given by ψcross= 1− tinj(min)/t. For the material point
within the upper region immediately adjacent to the concave corner, the above (6.10)
becomes

s ≈ x+
√

2t3/2(1−ψcross)
3/2
∫ ψcross

0

A2

8
dψ ′

(1−ψ ′)5/2

≈ x
(

1+ t(1−ψcross)
3/2
∫ ψcross

0

A2

8
dψ ′

(1−ψ ′)5/2

)
. (6.12)

Comparing (6.9) and (6.12), at any given time t, and depending on the form of the
function A versus ψ , it appears at first sight as though a discontinuity in the value of
s of up to order t times s itself could potentially occur.

Remember from § 6.1 however an unusual property for the concave corner: instead
of consuming material points on both sides, immediately above the corner the
system is consuming material points but immediately below the corner the system
is creating them. As a result (6.9) gives the s value for the material point within
the lower region that was initially at the top of the front, but not the s value of
newly created points that lie between it and the concave corner. Indeed those newly
created material points need to be assigned an s value at the time they are created. If
points created immediately below the corner are given the same s value as those that
are being destroyed immediately above the corner, then continuity of s through the
corner can be ensured. Interestingly a recent simulation study (Torres-Ulloa 2015) on
pressure-driven growth using a completely different numerical simulation technique
(i.e. an Eulerian technique which does not make reference to material points) did
indeed indicate continuity of s through the concave corner at least to the extent that
the numerical technique could resolve. More discussion of this Eulerian technique
will be given in § 8.

7. Integro-differential equation approach
In the preceding sections we either assumed that ds/dy was equal to dx/dy (which is

itself well approximated by α in the small-time limit) or else was directly proportional
to dx/dy (with a proportionality coefficient 2c − 1, the case of main interest being
c= 3/4). These relationships were assumed to apply uniformly over the entire upper
region of the front. That however is an approximation. More generally it is necessary
to represent ds/dy in terms of certain integrals (see § 7.1 below). This leads to an
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integro-differential equation for the front shape (see § 7.2 and in particular (7.19))
which, despite being comparatively complicated to derive in the first place, can be
readily solved numerically (see §§ 7.3–7.4). Readers who are interested primarily in
the results (rather than the background derivations) should turn immediately to § 7.4
and in particular figures 3 and 4. As we will see, one of the main findings here is
that the earlier results of § 6 (even though they make an entirely ad hoc assumption
that the ratio between ds/dy and dx/dy is uniform over the entire front) are in
remarkably good agreement even quantitatively with the integro-differential equation
approach presented below. Thus key results from § 6, concerning the description of
the concave corners, such as the size of the jump in orientation angle at the concave
corner, and the vertical position of the matching or ‘cross-over’ point at which the
concave corner is located, are all found to remain valid here.

7.1. Integral expression for ds/dy
Here we derive an integral expression for ds/dy. In order to do this we re-express
derivatives along the front with respect to y in terms of derivatives along the front with
respect to the injection time tinj. The derivation is quite detailed, and some readers may
prefer to skip directly to the final result which is given by (7.13).

The derivation proceeds as follows. We know via (2.6) (with in addition y≡ 1 for
any time t prior to the injection time, i.e. for 0 6 t 6 tinj) that

s2
= 2t+

∫ t

tinj

2(y− 1) dt′, (7.1)

where (at leading order for small t) via (4.10)

y− 1≈−
∫ t

tinj

A/2 dt′′. (7.2)

Alternatively we can write

s2
≈ 2t+

∫ t

tinj

F(t′, tinj) dt′, (7.3)

where F is a function defined as

F(t, tinj)=−

∫ t

tinj

A dt′′. (7.4)

Hence if we differentiate s2 with respect to tinj at fixed t

∂s2/∂tinj ≈−F(tinj, tinj)+

∫ t

tinj

∂F/∂tinj dt′ =
∫ t

tinj

∂F/∂tinj dt′ (7.5)

since F(tinj, tinj) vanishes by construction.
Moreover since F = −

∫ t
tinj

A dt′′, with A = A(t, tinj) taken to be a function of both
variables t and tinj it follows

∂F/∂tinj = A(tinj, tinj)−

∫ t

tinj

∂A/∂tinj dt′′ =−
∫ t

tinj

∂A/∂tinj dt′′ (7.6)
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since A(tinj, tinj) vanishes (owing to the fact that when t = tinj the material point has
just been injected at the top boundary, and the top boundary condition on the front
then demands that A vanishes).

It now follows from (7.5) and (7.6)

∂s2/∂tinj ≈−

∫ t

tinj

(∫ t′

tinj

∂A/∂tinj dt′′
)

dt′ (7.7)

and also since y− 1≈ F/2 (based on (7.2) and (7.4))

∂y/∂tinj ≈−
1
2

∫ t

tinj

∂A/∂tinj dt′. (7.8)

As in § 6.3, we define a variable ψ such that ψ = 1 − tinj/t, and analogously a
dummy integration variable ψ ′ (in terms of a dummy time variable t′) such that ψ ′=
1 − tinj/t′. We assume moreover that A can be expressed in similarity form, as a
function of the single variable ψ instead of in terms of two variables t and tinj. It
follows that

∂A
∂tinj
=

dA
dψ ′

∂ψ ′

∂tinj
=

dA
dψ ′

(
−

1
t′

)
=

dA
dψ ′

(
−
(1−ψ ′)

tinj

)
. (7.9)

Moreover, on the grounds that dt′ = tinj dψ ′/(1 − ψ ′)2, we deduce (via substitution
into (7.7) and (7.8))

∂s2/∂tinj ≈ tinj

∫ ψ

0

(∫ ψ ′

0

dA
dψ ′′

dψ ′′

(1−ψ ′′)

)
dψ ′

(1−ψ ′)2

= (1−ψ)t
∫ ψ

0

(∫ ψ ′

0

dA
dψ ′′

dψ ′′

(1−ψ ′′)

)
dψ ′

(1−ψ ′)2
(7.10)

and

∂y/∂tinj ≈

∫ ψ

0

1
2

dA
dψ ′

dψ ′

(1−ψ ′)
. (7.11)

Since s≈
√

2t at leading order for points close to the top boundary, we deduce

1
√

2t
ds/dy≈

1
s

ds/dy=
2s∂s/∂tinj

2s2∂y/∂tinj
≈
∂s2/∂tinj

4t∂y/∂tinj
(7.12)

implying finally via (7.10)–(7.11) that

1
√

2t
ds/dy≈

1
2
(1−ψ)

∫ ψ

0

(∫ ψ ′

0

dA
dψ ′′

dψ ′′

(1−ψ ′′)

)
dψ ′

(1−ψ ′)2∫ ψ

0

dA
dψ ′

dψ ′

(1−ψ ′)

, (7.13)

which is the expression we have been seeking to derive. As long as the function A
versus ψ is known, it is possible to deduce ds/dy at that same ψ value. Note that
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this depends on the entire set of A values up to and including ψ : in other words
it depends on the entire history that a material point has experienced from injection
(when by definition ψ = 0) up to its current ψ value.

Note that the expression above for (2t)−1/2 ds/dy becomes ill behaved as ψ → 1.
This implies that it is not permitted to consider tinj values that are arbitrarily small
compared to t. This is however not problematic if material points are being consumed
by the concave corner, as in that case no points with arbitrarily small tinj can ever
survive. Nonetheless in the limit as tinj→ t (corresponding to material points that are
extremely close to the top boundary) the equations are well behaved. Indeed near the
top boundary (i.e. for ψ � 1) it is possible to show A ≈ ψ : this actually follows
from (5.7), which we already know to be accurate very close to the top of the upper
region of the front (see e.g. the explanation for this given in § 5.4.1). Under these
circumstances, with ψ� 1, the above expression (7.13) for (2t)−1/2 ds/dy very clearly
approximates to ψ/4, which (as is again expected via § 5.4.1) is only half as big as
(2t)−1/2 dx/dy∼ (2t)−1/2α ∼ A/2∼ψ/2.

7.2. Derivation of integro-differential equation
Having obtained an expression for ds/dy, an integro-differential equation for Aψ (the
derivative of A with respect to ψ) can now be derived analogously to the derivation
for the differential equation for Aζ obtained earlier (see e.g. § 4.3). It is however now
far more convenient to parameterise in terms of ψ instead of in terms of ζ .

We assume a small-time similarity solution of the form

α =
√

t/2A(ψ) (7.14)

in other words we assume A depends solely on ψ ≡ 1− tinj/t rather than upon t and
tinj separately. This then implies

α̇ =
1
2t

√
t
2

A+

√
t
2

Aψψ̇, (7.15)

where ψ̇ is the time derivative of ψ following a fixed material point (corresponding
to a fixed tinj). Hence

ψ̇ = tinj/t2
= (1−ψ)/t (7.16)

and it follows
α̇ =

1
√

2t

A
2
+

1
√

2t
(1−ψ)Aψ . (7.17)

Equating the two expressions for α̇ that from (4.4) (which recall is an approximation
in the limit of small times) and that from (7.17) then gives

1
√

2t

(
1−

1
√

2t

ds
dy

)
≈

A
2
+ (1−ψ)Aψ (7.18)

and hence substituting from (7.13)

Aψ ≈ (1−ψ)−1

1−
A
2
−

1
2
(1−ψ)

∫ ψ

0

(∫ ψ ′

0

dA
dψ ′′

dψ ′′

(1−ψ ′′)

)
dψ ′

(1−ψ ′)2∫ ψ

0

dA
dψ ′

dψ ′

(1−ψ ′)

 . (7.19)

This is an integro-differential equation that we can solve for A versus ψ .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.541


560 P. Grassia, L. Lue, C. Torres-Ulloa and S. Berres

7.2.1. Obtaining A versus ζ
So far we have only derived an equation for A versus ψ , not for A versus ζ . Such

a relation is however simple to obtain. We know (via (4.11)) that ζ̇ ≈ (A − ζ )/t in
the small-time asymptotic limit. Combining this with an assumption that ζ can be
expressed solely in terms of ψ , and hence

ζ̇ = ψ̇ζψ =
tinj

t2
ζψ =

(1−ψ)
t

ζψ (7.20)

we can then deduce
ζψ ≈ (A− ζ )/(1−ψ). (7.21)

Once A versus ψ is known, it is possible to obtain ζ versus ψ (and hence A versus
ζ parametrically of ψ). Indeed the solution for ζ versus ψ is

ζ = (1−ψ)
∫ ψ

0

A
(1−ψ ′)2

dψ ′, (7.22)

which is an ‘exact’ solution of (7.21), although (7.21) is of course only an
approximate representation of the front applicable at small times, and furthermore the
integral within (7.22) typically needs to be obtained by quadrature.

7.2.2. Obtaining ζ versus Ξ
Recall that we are interested in finding an intersection point between the upper and

lower regions of the front. This is most easily determined in terms of a Cartesian
coordinate plot in (x, y) coordinates, or analogously a plot of ζ versus Ξ (ζ being a
rescaled version of the vertical distance measured downwards from the top boundary,
and Ξ being a rescaled version of the horizontal distance measured backwards from
the leading edge of the front). The value of Ξ versus ψ in the upper region is given
by (see (5.16) and substitute from (7.21))

Ξ ≈
1

2
√

2

∫ ζ

0
A dζ ≈

1

2
√

2

∫ ψ

0

A(A− ζ )
(1−ψ ′)

dψ ′. (7.23)

Clearly ζ versus Ξ can now be obtained parametrically (in terms of ψ) for the upper
region, with (5.15) continuing to give the relation between Ξ and ζ in the lower
region. Our aim is to find the matching or ‘cross-over’ point ψcross and corresponding
values ζcross and Across such that the Ξ values in the upper and lower regions intersect.
Note that ζcross and Across will differ from the values found earlier in § 6.1 because the
integro-differential equation (7.19) is not the same as the differential equation (6.1)
which was obtained via an ad hoc approximation. We will see however that the
differences turn out to be exceedingly small, indicating that the ad hoc approximation
of § 6.1 was a remarkably good one.

7.3. Numerical method for integro-differential equation
If integro-differential equation (7.19) can be solved for A versus ψ , then ζ versus
ψ and Ξ versus ψ can be solved by quadrature on (7.22) and (7.23). Our solution
technique for (7.19) involved dividing the domain 0 6 ψ < 1 into a large number of
intervals (denoted N, and chosen to be either 100 or 1000 or 10 000). The size of
each interval, which we denote δψ , equals 1/N. Suppose ψi(l) and ψi(r) denote the ψ
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values at the left- and right-hand boundaries of interval i, so that ψi(l)= (i− 1)δψ and
ψi(r)= i δψ . We assumed that on each interval A versus ψ could be represented by a
quadratic function

A≈ Ai(0) + Ai(1)(ψ −ψi(l))+ Ai(2)(ψ −ψi(l))
2. (7.24)

Recall from § 7.1 that, for the very first interval, we know that A≈ ψ which tells
us immediately that A1(0)= 0 and A1(1)= 1. We guessed a value of A1(2) (initially zero)
and then, on the basis of that guess, computed the right-hand side of (7.19) up to ψ1(r)
using the trapezoidal rule to determine any integrals. This however should equal the
left-hand side, which at ψ = ψ1(r) must be A1(1) + 2δψA1(2). We used this to update
our guess for A1(2), and then recomputed the right-hand side, iterating until the process
converged, which took typically 3 or 4 iterations.

Subsequent intervals beyond the first one were treated similarly. Values of Ai(0) and
Ai(1) are known immediately, by requiring that A and Aψ are continuous from the
right-hand side of interval i − 1 to the left-hand side of interval i. Initial guesses
for Ai(2) could be obtained by using the corresponding value from interval i− 1, and
Ai(2) values were then improved iteratively, typically converging within a couple of
iterations. It turns out that the integro-differential equation becomes badly behaved as
ψ→ 1, so we only took the computations as far as ψ = 0.95 but (as we shall see)
this proved sufficient to locate the matching point ψcross.

7.4. Numerical results from the integro-differential equation
This numerical results section is laid out as follows. Data for the (rescaled) front
orientation angle A across the upper region of the front, as predicted by the integro-
differential equation, are presented first (§ 7.4.1). We then do a convergence check
(§ 7.4.2) to demonstrate that differences observed from the results of the differential
equation approach of § 6 cannot be attributed merely to truncation error. Next we
present data for Ξ , the (rescaled) amount that the horizontal displacement of points
on the front fall short of that of the leading edge (§ 7.4.3) and for the variation of the
path length s swept out by material points in the upper region of the front (§ 7.4.4).
We also look at unswept area beyond the front (§ 7.4.5), which is associated with
the amount of gravity override, and furthermore discuss how to track material point
trajectories traversing the upper region of the front (§ 7.4.6).

7.4.1. Data for front orientation angle A
A graph of A versus ψ computed from the numerical scheme used to solve the

integro-differential equation is shown in figure 5. The function does display some
deviation away from a straight line, a contrast from (5.7) which would predict an
exact straight line. Computed values of ζ versus ψ and Ξ versus ψ are also shown in
the figure. These increase only very slowly with ψ at first, but show more significant
increases as ψ grows. Such behaviour can be expected: indeed for ψ � 1 it is
possible to show (using the known asymptotic behaviour near the top boundary of
the front (Grassia et al. 2014)) that ζ ≈ψ2/2 and Ξ ≈ψ3/(6

√
2).

Integro-differential equation data re-expressed in the form A versus ζ (which recall
are equivalent to plotting α versus 1− y, because α ≡

√
t/2A and ζ ≡ (1− y)/(t/2))

are shown in figure 3. Clearly the integro-differential equation solutions are extremely
close to those predicted by (6.2) with c = 3/4: on the scale of figure 3(a) they are
virtually indistinguishable. By implication the assumption upon which the c= 3/4 data
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 0.5

1.0

1.5

2.0

0 0.2 0.4 0.6 0.8 1.0

FIGURE 5. (Colour online) Solutions (corresponding to the upper region of the solution
domain) obtained from the integro-differential equation for A versus ψ and ζ versus ψ
and Ξ versus ψ , with A being rescaled angle through which the front turns, ψ being a
measure of time that a given material point has been on the front (relative to total time
elapsed), ζ being rescaled vertical distance, and Ξ being rescaled horizontal distance. The
domain has been divided into 1000 intervals. The vertical line indicates where matching
is achieved with the lower region of the solution domain (which occurs when ψ equals
0.948, and the solution of the integro-differential is stopped at this point).

were derived (namely that ds/dy is uniformly half of dx/dy) must be an exceedingly
good one (a point to which we will return shortly). It is only in the zoomed view in
figure 3(b) that a difference can be detected between the integro-differential equation
data and the c= 3/4 data, with the former giving slightly smaller A values than the
latter.

7.4.2. Convergence check
Figure 3(b) also demonstrates a convergence check on the integro-differential

equation data: data with 1000 intervals are compared with less refined data using 100
intervals. A slight difference is seen, albeit smaller than the difference between
the integro-differential equation data and those obtained instead via (6.2) with
c = 3/4. Although not shown on the plot, integro-differential equation data with
10 000 intervals would be indistinguishable from those with 1000 intervals, at
least on the scale of this (already highly zoomed) plot. In effect this means that
integro-differential equation data with 1000 intervals have negligible truncation error,
so that the difference observed from the c = 3/4 data is not due to truncation error
alone. Instead it must be attributed to at least some degree of non-uniformity in the
ratio between ds/dy and dx/dy, which cannot be captured by (6.2) with a constant
value of c.

7.4.3. Data for horizontal distance behind the leading edge Ξ and matching
point ζcross

In addition to expressing the integro-differential equation data in the form A versus
ζ , it is also possible to plot Ξ versus ζ , or equivalently −ζ versus −Ξ (which has
the advantage that it has the same orientation as a plot of y versus x). Relevant data
are shown in figure 5. A difference between the integro-differential equation data and
the data corresponding to (6.2) with c= 3/4 is only visible in a highly zoomed plot
such as figure 3(b). This zoomed view identifies the matching point or ‘cross-over’
point ζcross forming the junction between the upper and lower regions of the solution
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domain. We deduce ζcross≈ 0.954, the concave corner then being predicted at vertical
location y = 1 − ζcrosst/2. Previously in our computations with c = 3/4 we had (see
§ 6.1) ζcross ≈ 0.94.

The corresponding cross-over ψ value obtained from the integro-differential
equation approach (which we denote ψcross) is ψcross = 0.948 and has moreover
an A value Across ≈ 1.17 (as can be seen by referring back to figure 3a). Recall the
significance of this value Across: at the concave corner, the orientation angle α of
the front jumps from Across

√
t/2 down to

√
t/2. Note also that the ratio tinj(min)/t

(i.e. minimum permitted injection time for points that are still surviving on the front
expressed as a fraction of the current time) equals 1 − ψcross and so has the value
0.052. Previously with c = 3/4 we found Across ≈ 1.18 and tinj(min)/t ≈ 0.056 (see
§§ 6.1–6.2). The differences predicted between the differential equation approach
adopted in § 6 and the integro-differential equation approach adopted here are really
very small indeed, which is remarkable given that the former approach made an
entirely ad hoc assumption about the uniformity of the ratio between ds/dy and
dx/dy.

7.4.4. Data for path length s travelled by material points
Recall that Ξ ≡ (

√
2t− x)/t3/2 is a rescaled measure of the amount that x falls short

of the leading edge of the front at location
√

2t. We also define a rescaled measure
of the extent to which path length s exceeds horizontal coordinate x. We denote this
by the symbol σ and define it by σ ≡ (s− x)/t3/2. It is clear from (6.10)–(6.11) that

σ = (1−ψ)3/2
∫ ψ

0

√
2A2

8
dψ ′

(1−ψ ′)5/2
(7.25)

meaning that σ can be readily obtained by quadrature once A versus ψ is known. The
difference Ξ − σ is a rescaled measure of the amount that s falls short of

√
2t, and

the ratio (Ξ − σ)/Ξ (which is identical to the ratio (
√

2t − s)/(
√

2t − x)) is then a
measure of the amount that s varies in the upper region of the front relative to the
amount that x varies.

We have evaluated this ratio (Ξ − σ)/Ξ based on the numerical data for Ξ versus
ψ and A versus ψ which have already been presented in figure 5. Although we do not
show the data for (Ξ − σ)/Ξ here, remarkably in the domain from zero to ψcross the
value of this ratio always falls between 0.5 and 0.51. This reiterates that the ad hoc
assumption that was made in § 6, namely that ds/dy is uniformly exactly half of dx/dy
is an extremely good approximation, and hence explains why the results obtained in
that section agree so closely with the integro-differential equation results presented
here.

7.4.5. Unswept area
Another quantity of interest (relevant e.g. to figure 4) is the integral

∫ ζcross

0 Ξ dζ .
This represents the area to the right of the curve in figure 4, and hence can be
viewed as a measure of the area that the upper region of the foam front has left
unswept, or analogously the amount of gravity override. For the numerical Ξ versus
ζ data obtained from our integro-differential equation approach, this integral evaluates
numerically to approximately 0.108. For comparison the Velde solution (3.2) when
linearised near the top of the front and converted into rescaled Ξ versus ζ coordinates
gives Ξ ≈ ζ/(2

√
2). Integrating from zero to ζcross gives ζ 2

cross/(4
√

2) ≈ 0.160 with
ζcross ≈ 0.954 as given above. The appearance of an upper region therefore leads to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.541


564 P. Grassia, L. Lue, C. Torres-Ulloa and S. Berres

less unswept area (i.e. less override) than the Velde solution predicts. Nonetheless in
the small-time limit t� 1 that we are considering here, the reduction in the amount
of unswept area is very small indeed: the variable Ξ represents a horizontal distance
scaled by t3/2 and the variable ζ represents a vertical distance scaled by t/2, hence
we are talking about a reduction of unswept area of the order of t5/2.

7.4.6. Tracking the trajectory of material points through the upper region
As we have said, figure 5 is a rescaled view of a y versus x plot. It corresponds to

plotting the (x, y) location of a multitude of material points all with different tinj values
at a given time t, and then rescaling the plot to eliminate any t dependence. There
is an alternative way one can present the data arising from the integro-differential
equation. This corresponds to fixing the material point (i.e. fixing tinj) and following
the trajectory of the given material point with time t, and then rescaling the trajectory
to eliminate tinj dependence. This alternative approach gives new insights into the data
and is described in the appendix A.

8. Comparison with Eulerian simulations
We have already discussed (see e.g. § 3.2) how one of the major problems

with Lagrangian simulations of foam front shapes via pressure-driven growth is
that Lagrangian material points tend to migrate away from the top boundary. To
compensate for this, it is necessary to add new grid points near the top boundary.
However to place these new grid points properly one needs to know the foam front
shape. This shape is however is a priori unknown: indeed it is the very thing that
the Lagrangian simulations are attempting to compute. Added to this is the issue
that, if newly added points in a Lagrangian scheme are placed improperly, the
resulting numerical solutions can become unstable, and the predicted shape of the
front front can develop spurious loops (see § 2.5 and see also Grassia et al. (2014)).
This problem with Lagrangian simulations can however be avoided by switching
to an Eulerian simulation scheme. Eulerian simulations can in fact be very useful
here because they provide an entirely independent check on the results that we have
presented in the foregoing sections.

It is not our purpose here to describe the Eulerian simulations in great detail
(they are described elsewhere (Torres-Ulloa 2015)) but we merely note that they
correspond to defining a function φ(x, y, t) representing (at least locally near the
front) the distance between any given point (x, y) and the front itself at any instant
of time t. The function φ(x, y, t) is evolved via a Hamilton–Jacobi equation (Kurganov,
Noelle & Petrova 2001) and the instantaneous front location is obtained as the zero
level set (Peng et al. 1999; Sethian 1999; Osher & Fedkiw 2003) of the function
φ. The Eulerian simulation data to be presented here were obtained by Torres-Ulloa
(2015) on a grid of 400× 400 elements in the x and y directions (convergence checks
with other grid sizes having been done by Torres-Ulloa (2015)). The time step is
set as 0.475 times the grid size divided by the maximum possible front propagation
speed: choosing the time step at this level ensures stable simulations according to a
Courant–Friedrichs–Levy condition (Press et al. 1992).

Data for A= (t/2)−1/2α versus ζ = (1− y)/(t/2) from Eulerian numerical simulations
are shown in figure 6 for two different times t = 0.5 and t = 0.25. Although the
Eulerian simulations were computed over the entire y domain, including both the
upper and lower regions of the front, we focus in figure 6 on the upper region,
through to the point where A changes suddenly in order to match with the lower
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FIGURE 6. (Colour online) Graphs of rescaled angle A≡ α/
√

t/2 versus rescaled vertical
location ζ ≡ (1− y)/(t/2) computed from Eulerian numerical simulations at different times,
(a) t= 0.5 and (b) t= 0.25. Eulerian simulation data are compared with the results from
the integro-differential equation model, and also are contrasted with results (labelled c= 1)
from (5.1) that assume ds/dy ≈ dx/dy. The thin vertical line is the prediction of where
the concave corner (i.e. a downward step change in A) is expected to be, based on the
integro-differential equation. The thick vertical line is the numerically determined location
of the corner obtained from the Eulerian scheme, i.e. the location where A is decreasing
most rapidly with respect to ζ .

region. The matching point as obtained from the Eulerian simulation is considered to
be the point at which A is decreasing most rapidly with ζ .

The computed A versus ζ curves are shown to compare very favourably with
the predictions from the integro-differential equation model. This good agreement
is remarkable considering there are no adjustable fitting parameters whatsoever here
in figure 6. Indeed the integro-differential equation model is a much better fit to
the Eulerian data than (5.1), which is based on the (incorrect) assumption that
ds/dy ≈ dx/dy. Thus any attempt to represent the front shape via an early time
similarity solution must be able to account for differences between ds/dy and dx/dy.

Note that the location of the matching point between upper and lower regions of
the front as found by the Eulerian simulation, does not quite correspond to where
the integro-differential equation predicts it to be. Instead it tends to be at a lower ζ
location (i.e. a higher y value) than predicted. Notice however that at smaller times,
the observed location of the matching point tends to move closer to the predicted
location. This suggests that the difference between observed and predicted matching
points might be attributed to a second order effect in time. We have already discussed
such effects in the context of the lower region of the front (see (3.4)): points on the
front migrate downwards more slowly than the leading order approximations predict,
due to (amongst other things) a gradual reduction in the net driving pressure with
downward motion.

At the top of the lower region of the front we computed the extent of this
second-order drift in y to be 5t2/48 superposed on a uniform downward motion
at speed −1/2. It is less straightforward to compute the level of the second
order drift in the upper region of the front, because of strong non-uniformities
in even the leading-order downward motion, but the formula for the lower region is
straightforward. According to this second-order formula (3.23), a point in the lower
region of the front which starts off immediately adjacent to the top boundary, finds
itself at respective ζ locations 0.948 at time 0.25, and 0.896 at time 0.5. Interestingly
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these ζ values are just very slightly greater than the numerically determined locations
of the matching point according to the Eulerian scheme namely ζ = 0.94 at time
0.25, and ζ = 0.88 at time 0.5. In the context of a Lagrangian scheme, this suggests
that (when second-order effects are taken into account) the downward motion of the
concave corner very nearly keeps pace with that of the Lagrangian material point
originally at the top of the lower region, the gap between these points only opening
up very slowly. Consequently the rate at which material points need to be extracted
from the concave corner so as to enter the lower region to fill this gap is very small
indeed.

9. Conclusions

We have considered the pressure-driven growth model for a foam front propagating
through a porous medium in the context of the surfactant-alternating-gas process,
which can be employed to improve oil recovery from a reservoir. The pressure-driven
growth model describes a situation in which a finely textured foam is formed at the
boundary between an initially injected surfactant solution and a subsequently injected
gas, with an abrupt collapse of the foam to a much coarser texture moving upstream.
The relative mobility of the gas within the finely textured foam is supposed to be
much less than that of either the liquid surfactant solution downstream of the front
or the gas within the much more coarsely textured foam upstream. Such a model
captures some of the physics of foam propagation albeit not all of it: non-Newtonian
effects causing the mobility of foamed gas to depend on velocity have been neglected,
and also the formation a tongue of gas (whereby exceedingly mobile gas separates
from liquid and thereafter flows along the top of the medium) is ignored, because the
model focuses exclusively on the finely textured zone where the mobility is lowest. It
is also assumed that the presence of oil within the reservoir, despite possible adverse
effects upon the foam stability (Farajzadeh et al. 2012; Osei-Bonsu et al. 2015, 2016),
is insufficient to destroy the finely textured foam at the front completely.

According to the assumptions underlying pressure-driven growth, all the Darcy
pressure drop driving the flow is confined at the finely textured front itself, and
the evolution of the front shape can be deduced by considering solely the front
without having to compute the flow fields throughout the entire flow domain. Thus
the solution domain for pressure-driven growth is confined to the foam front itself.
We have shown that at any given time, the solution domain can be divided into
lower and upper regions. The former region contains material points which have
been continuously on the foam front since time zero. The latter region, which grows
downwards from the top boundary over time, contains material points which have
been injected onto the front from the top boundary. As time proceeds, the former
region gives way to the latter, and the amount of unswept area under the foam front,
which initially grows with time, eventually saturates at a finite level, limiting the
amount of gravity override of the foam front. This prediction that gravity override
is thereby limited is important in petroleum engineering operations: at the instant
when foam breaks through from an injection well to a production well, we know
that there is only a comparatively limited region of the reservoir which remains
still unswept by foam. We have focussed on early time solutions here, for which the
lower region accounts for most of the front, and the upper region is still comparatively
small but growing. The shape of the lower region of the front is approximately a
parabola (a result which is known from the literature (de Velde Harsenhorst et al.
2014)). Moreover the shape of the upper region of the front is amenable to a
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similarity solution. The way in which the lower and upper regions match together
is however surprisingly complex. Although both the lower and upper regions are
convex in shape (as seen from downstream), they are found (despite conjectures to
the contrary in the literature (Grassia et al. 2014)) to meet in a concave corner: the
predictions of the similarity solution indicating the presence of the concave corner
have moreover been corroborated entirely independently by a numerical technique
(namely an Eulerian scheme). Confirming mathematically the presence of the concave
corner within the solution for pressure-driven growth as we have done here, requires
a correct formulation of the similarity solution for the upper region of the front, the
formulation relying on deducing how the path length that is followed by material
elements varies with vertical position on the front. Physically the concave corner
represents a neighbourhood in which a finely textured foam front (with the front
thickness being much less than the distance over which the front has propagated)
reorients itself on a length scale comparable with the thickness. According to the
predictions, the angle through which the front reorients itself at the concave corner is
initially very small, being proportional to square root of time based on our early time
similarity solution. By the particular time at which the top of the front has advanced
a horizontal distance equal to the front’s vertical extent, the predictions indicate a
concave corner turning through approximately 0.09 radians, roughly 5◦, the location
of the concave corner being at nearly at one quarter of the full front depth (measured
down from the top).

Whether this early time solution predicting a concave corner developing in a foam
front would be readily observable in an experimental system we cannot at present
say, particularly because in a real experimental system there will be other separate
effects (e.g. reservoir heterogeneity), that can themselves produce concavities in the
front (Grassia et al. 2014; Mas-Hernández, Grassia & Shokri 2016), and these latter
effects potentially could be rather more significant at producing concavities than the
one under consideration here. Knowing about the potential for a concave corner (as
predicted even for purely homogeneous reservoirs such as have been been considered
here) is nonetheless very important for simulating the pressure-driven growth model
numerically: concave corners need special treatment (and need to be propagated
in special ways) to avoid problems within the numerical scheme used to predict
foam front shapes obtained during surfactant-alternating-gas processes in reservoirs.
Since the predictions are invariably that the concave corner migrates downward
over time (as indeed front material points themselves do), at sufficiently long times,
eventually it should reach the bottom of the foam front at which injection pressure
and hydrostatic pressure are balanced, such that the corner eventually comes to rest
and has no further bearing on the front shape. The time to achieve this long-time
state, is estimated as slightly over 2 dimensionless time units. This follows since the
dimensionless depth of the front is unity, whereas the downward velocity component
of the concave corner has been predicted to be just under 1/2 dimensionless units,
albeit the time estimate that follows from this is rough, because we are extrapolating
from a downward velocity component applicable at early times only. As we have
said, at long times, the concave corner reaches the bottom boundary of the front
whereby its motion ceases, but prior to that long-time state being attained, having a
numerical scheme capable of tracking the motion of the concave corner is essential
for computing the front shape evolution.
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Appendix A. Trajectories that are followed by material points
A figure such as figure 4 as discussed in the main text can be considered to give

the shape of the foam front y versus x at any given time t, which owing to the
self-similar form of the solution, at different times t can be collapsed onto a single
rescaled curve as in figure 4, regardless of the value of t (subject to the restriction that
t 6O(1) in order for this early time similarity solution to apply in the first place). In
the upper region of the foam front, different points on the curve in figure 4 correspond
to different injection times tinj and hence different values of the variable ψ ≡ 1− tinj/t.
There is however an alternative way of causing the value of this variable ψ to vary,
namely keeping tinj fixed (corresponding to fixing the material point) and allowing
t to vary. It must therefore be possible to use the similarity solution(s) obtained in
the main text (including that obtained via an integro-differential equation approach
in § 7) to deduce the locus that a given material point sweeps out as time t varies.
The underlying source of the information (i.e. the similarity solution describing the
front) is unchanged, but the information we actually extract is quite different from
what is represented in figure 4. In what follows we show how useful information can
be obtained about the trajectories of material points via this approach.

Note that at early times t � 1 the velocity of material points is primarily in
the horizontal direction. Nonetheless in the upper region of the front, which is of
very limited vertical extent when t � 1, the horizontal velocity component of all
the material points is virtually the same. Small differences in the horizontal motion
can be detected at different heights, but in order to see significant differences in
the horizontal velocity component, one would have to move a considerable distance
downwards (i.e. far outside the upper region which for t� 1 only extends a small
distance of roughly t/2 down from the top). Thus, in effect, points in the upper region
of the front all move horizontally with approximately the same velocity component as
the leading edge at the top of the front, with only tiny differences, such that points
slightly lower down are also very slightly further back horizontally (in fact, by order
t3/2 amounts, with t� 1). Given this near uniformity of the horizontal displacement
in the upper region, our focus here will be on the vertical motion of material points
within the upper region, and in particular how these points manage to traverse this
region from top to bottom. The vertical velocity component is of course much smaller
than the horizontal velocity component, but unlike the horizontal component, it turns
out to exhibit rather more significant and quite complex variation across the upper
region.

Our analysis proceeds as follows. For any given tinj it is possible to define a time
tmax (the maximum time for which the material point injected at time tinj can survive
before being consumed by the concave corner). Since our variable ψ ≡ 1− tinj/t, and
since the largest permitted value of ψ is a well-defined ‘matching’ or ‘cross-over’
value ψcross (the numerical value of ψcross being given in § 7.4), it then follows

tmax = tinj/(1−ψcross) (A 1)

and hence
t/tmax = (1−ψcross)/(1−ψ). (A 2)

Formally we restrict consideration to the small-time asymptotic limit, and hence we
require that tmax� 1. We choose to represent the scaled vertical position of material
points not in terms of a similarity variable ζ ≡ (1− y)/(t/2) (as was done in the main
text) but instead in terms of a quantity ζ∗ defined as

ζ∗ =
(1− y)
tmax/2

= ζ
t

tmax
= ζ

(1−ψcross)

(1−ψ)
. (A 3)
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Since ζ is a known function of ψ in the upper region of the foam front (as was
determined in § 7.4 of the main text), and t/tmax and ψ are themselves related by (A 2),
it follows ζ∗ is likewise a well-defined function of t/tmax, within the upper region of
the front.

The matching or ‘cross-over’ point at which the upper and lower regions of the front
meet at a concave corner, satisfies ζ = ζcross (where ζcross is a well-defined constant, the
numerical value of which is given in § 7.4) and hence in terms of this new variable
ζ∗ the cross-over point obeys

ζ∗,cross = ζcrosst/tmax. (A 4)

Remember that this concave corner is not itself a material point (but rather
corresponds to a sequence of different material points from the upper region which
are gradually consumed by the corner itself). Hence material point trajectory ((A 3)
for the upper region) and corner trajectory (A 4) differ. In addition, it follows from
§ 3.2, that the material point which was originally at the top of the lower region has
a trajectory ζ ≡ 1 and hence in terms of the variable ζ∗ obeys

ζ∗,lower = t/tmax. (A 5)

Finally it is possible to identify a so-called ‘virtual’ material point (in the sense
defined by Grassia et al. (2016)) which, starts off in the upper region, but which
tracks the motion of ζ∗,lower whilst remaining a fixed distance away (i.e. despite its
location in the upper region, this ‘virtual’ point moves with the speed applicable to
material points in the lower region), and which only at time tmax reaches the concave
corner so as to enter the lower region exactly at location ζcross. This thereby satisfies

ζ∗,virtual = t/tmax − 1+ ζcross. (A 6)

Using the results for ζ versus ψ in the upper region of the foam front (as obtained
in § 7.4), and using also (A 2) and (A 3) we plot −ζ∗ versus t/tmax for the upper
region of the front, and compare with plots of −ζ∗,lower, −ζ∗,cross and −ζ∗,virtual: results
are shown in figure 7. The reason for plotting in terms of −ζ∗ instead of ζ∗ is to
preserve the same vertical orientation as for the unscaled coordinate y (i.e. points
move downwards with time in figure 7). The reason for plotting in the form −ζ∗
versus t/tmax instead of simply −ζ∗ versus t, is that in terms of t/tmax all the data
collapse together regardless of the value of tmax, as indeed one would expect for a
similarity solution. This assumes of course that we confine attention to cases for tmax 6
O(1) so that an early time similarity solution (such as we are considering here) can
apply.

Whereas −ζ∗,lower, −ζ∗,cross and −ζ∗,virtual in figure 7 are all straight lines, the plot
of −ζ∗ is a curve, the curve only being defined on the domain tinj 6 t 6 tmax and
hence tinj/tmax 6 t/tmax 6 1, where tinj/tmax≡ 1−ψcross is a well-defined numerical value
(see § 7.4). Initially this curve decreases only very gradually, but the rate of decrease
becomes more significant as time evolves: as was alluded in § 6.1, there are strong
spatio-temporal variations in the vertical velocity here (even in the limit of arbitrarily
small tmax). By definition, −ζ∗ (representing a material point trajectory in the upper
region) intersects with −ζ∗,cross (the concave corner) when t/tmax = 1. At the instant
when this occurs, the material point is already moving downwards more quickly than
the concave corner itself is, as figure 7 makes clear.
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FIGURE 7. (Colour online) Plot of rescaled vertical location −ζ∗ versus rescaled time
t/tmax representing the vertical trajectory executed by a material point in the upper region
of the solution domain (see (A 3)). In addition we plot, as functions of t/tmax, the trajectory
of the concave corner −ζ∗,cross (which separates the upper and lower regions at any given
time; see (A 4)), the trajectory of the material point that was originally at the top of the
lower region of the solution domain −ζ∗,lower (see (A 5)), and the trajectory of a ‘virtual’
material point −ζ∗,virtual, which initially is in the upper region (but which moves at a speed
applicable to material points in the lower region), and which is only extracted from the
concave corner so as to enter the lower region at time t= tmax (see (A 6)).

Notice however that at this instant, there is always a gap between −ζ∗,lower (the
trajectory of the material point initially at the top of the lower region) and −ζ∗,cross

(which by definition separates the upper and lower regions). This indicates that
new material points in the lower region need to be extracted from the corner as
time proceeds in order to fill the gap between −ζ∗,lower and −ζ∗,cross. Such points
are considered to be ‘virtual’ initially (Grassia et al. 2016). Mathematically they
correspond to a continuation of the solution for the lower region of the front into the
domain belonging to the upper region (i.e. (3.13) with y values higher up than the
lower region would strictly admit). In other words, they are points that would have
been present in the lower region of a ‘hypothetical’ foam front had the top boundary
of the solution domain simply been shifted upwards (with the entire upper region
of the front shifted upwards along with it) and hence with the lower region being
more extensive than before. In our case however, with the top boundary fixed in
place, these points are initially ‘hidden’ within the upper region, until such time as
they are extracted from the concave corner. The line −ζ∗,virtual in figure 7 shows the
trajectory of a virtual material point which is on the point of being extracted from
the concave corner when t/tmax = 1. This particular point is extracted immediately
below the corner at precisely the same instant as when the point in the upper region
(that is represented by the curve −ζ∗) is consumed by the corner (itself represented
by −ζ∗,corner). Hence the functions −ζ∗, −ζ∗,virtual and −ζ∗,corner all intersect when
t/tmax = 1.

To summarise, this appendix A has demonstrated that the similarity solutions
developed in the main text, not only furnish interesting information about the front
shape at any given instant, but also provide insights into the trajectories that given
material points execute over time in particular as they migrate across the upper region
of the front.
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