J. Mar. Biol. Ass. UK. (2000), 80, 193-202
Printed in the United Kingdom

Animal abundance and food availability in coastal lagoons
and intertidal marine sediments

R.S.K. Barnes* and C.J. de Villiers'

*Department of Zoology, University of Cambridge, Cambridge, CB2 3LEJ. TDepartment of Zoology, University of the Western Cape,
Bellville 7535, Republic of South Africa. * Corresponding author: e-mail: rsb1001 @cam.ac.uk

The relationships between the standing stocks of deposit-feeding benthic invertebrates and benthic
chlorophyll-a, phacopigment and total combustible organic matter were investigated at a series of coastal
lagoons and in the type of intertidal soft-sediment sites from which the lagoons originated. Across all the
sites, in Norfolk, UK, an inverse relationship occurred between (a) the amounts of chlorophyll-a and of
other potential food materials and (b) the degree of coverage by water. The biomass of consumers also
decreased with increased water coverage, so that the lagoons supported less biomass than the adjacent
high-level intertidal sites. Further, the deposit-feeder biomass supported by unit food decreased with
extent of water coverage.

There was no evidence of any relationship between deposit-feeder and food biomass within any single
site, in spite of the study period being selected to be that in which there was maximum likelihood of
competition for microphytobenthic food. Whilst chlorophyll concentrations may set the maximum achiev-
able level of consumer biomass at these sites, including in the deeper lagoons setting very low potential
maximum population densities, the seasonal abundance patterns of the deposit feeders appear to be

determined by other factor (s).

INTRODUCTION

Whether populations of coastal deposit-feeders are
usually structured from the top downwards by epibenthic
and other predators or from the bottom upwards by
resource limitation, especially food, is contentious.
Levinton (1972) argued that deposit-feeders ought to be
limited by competition for resources, and intraspecific
competition has indeed since been demonstrated in some
of the most characteristic soft-sediment species, e.g. those
of Hydrobia (Levinton & Bianchi, 198]; Lopez-Figueroa &
Niell, 1987; Morrisey, 1987), Corophium (Wilson, 1989) and
Macoma (C)lafsson, 1986). Interspecific competition has
also been shown between Corophium spp. (Jensen & Kris-
tensen, 1990) and between Hydrobia spp. (Fenchel &
Kofoed, 1976; Barnes & Gandolfi, 1998); and interspecific
interference 1s widespread (e.g. Flach, 1996). Nevertheless,
several studies have concluded that the overall abundance
of intertidal and non-tidal, soft-sediment deposit feeders
1s not limited by competition, but is likely generally to be
determined by, for example,
(Olafsson et al., 1994), the dynamic nature of their sedi-
mentary and hydrographic environment (Snelgrove &
Butman, 1994; Hall, 1994), and by epibenthic and intra-
sediment predation (see Wilson, 1989 and reviews by
Peterson, 1979; Reise, 1985; Wilson, 1991; Barnes, 1994a
and Gosselin & Qian, 1997). To date, however, most infor-
mation has been derived from highly specific studies of
single species at single sites, and the general argument
has remained at the theoretical level set by Levinton
(1972) and Beukema (1976). No field study has directly
investigated whether a range of populations is actually
held at or near the carrying capacity of their habitats.

recruitment limitation
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A potentially useful system to investigate in this context
is the coastal lagoon vs intertidal marine contrast, in that
intuitively it would seem likely that the microphyto-
benthic food of deposit-feeders would be less abundant
under permanently submerged lagoonal conditions.
Further, population densities of the mudsnails, Hydrobia,
and other deposit-feeding species that dominate these
systems are consistently lower in coastal lagoons than on
adjacent intertidal expanses of equivalent sediment.
Maximum British lagoonal densities of Hydrobia ulvae
(Pennant), for example, are <5000indm~2 whilst
maximum adjacent intertidal ones may exceed
75,000ind m ~? (Barnes, 1990), and lagoonal densities of
H. neglecta Muus are <10,000indm~2 whilst the only
known intertidal population of this species attains
>50,000ind m~2 (Barnes, 1993, 1996). The same effect
can be seen in European densities of the lagoonal
H. ventrosa (Montagu) and H. minoricensis (Paladilhe) vs
those of intertidal Hydrobia populations (Muus, 1967
Asmus & Asmus, 1985; Bachelet & Yacine-Kassab, 1987,
Barnes, 1994b; Drake & Arias, 1995). One tenable
hypothesis is that this phenomenon is related to the
differing carrying capacities of the two types of habitat in
terms of the diatoms on which Hydrobia feeds (Lopez &
Levinton, 1978; Jensen & Siegismund, 1980; Asmus &
Asmus, 1985; Forbes & Lopez, 1989a), and therefore to
resource limitation.

This paper examines the differential abundance of
Hydrobia and associated deposit feeders in lagoons and
intertidally, and the relationship of consumer abundance
to food stocks, by surveying these over the critical half-
year period when resource limitation and therefore
competition are most likely.
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Table 1. Mean quantities (in g m~% +SE) of chlorophyll-a, phaeopigment, total combustible organic matter (p.o.m.), Hydrobia
plus other chlorophyll-feeders, and total deposit-feeders at the various sites from jJuly 1998 to January 1999.

Chlorophyll Phaeopigment p-o.m. Hydrobia, etc. All deposit feeders
LAGOONS
Broadwater
July 0.37 £0.04 0.26 +0.04 464 £42 1.87 £0.82 6.88 £6.54
August 0.28 £0.02 0.12+0.01 277 £09 0.70 £0.38 8.27+7.65
September 0.23 £0.03 0.2540.02 398 £43 1.16 £0.37 15.24 £18.63
October 0.19 £0.01 0.36 +0.04 575 +£37 0.89 £0.35 14.33 £17.74
November 0.11 £0.01 0.43 +£0.06 892 £47 0.82 £0.23 9.40 £14.95
December 0.18 £0.02 0.41 £0.05 842 £86 1.13 £0.51 10.04 £9.98
Holkham Salts Hole
July 0.05+£0.01 0.12 £0.01 272 £190 0.22 £0.18 0.60 +0.43
August 0.04 £0.01 0.08 +0.01 136 £14 0 0.69 £0.15
September 0.05+£0.01 0.10+0.01 214 %19 0 2.71 £0.54
October 0.05+£0.01 0.12+0.01 230 £21 0 1.48 £0.34
November 0.05+£0.00 0.14+0.01 178 £11 0 2.53 +0.94
December 0.05 £0.01 0.17 £0.01 222 16 0 3.1940.83
January 0 1.37 £0.39
Salthouse Broad
August 0.11 £0.01 0.13+0.01 294 +24 16.82 £2.2 17.31 £2.22
September 0.07 £0.01 0.11+0.01 311 434 10.03 £0.97 10.09 £0.94
October 0.06 +£0.01 0.11+0.01 251 +24 11.83 £0.84 12.40 £0.91
November 0.06 £0.01 0.16 £0.01 256 £41 14.42 £2.73 14.46 £2.74
December 0.08 £0.01 0.14+0.01 249 +18 15.01 £1.16 16.00 £1.17
January 12.64 +1.35 12.80 +£1.37
INTERTIDAL STATIONS
Cocklebight
July 0.14 £0.01 0.1540.02 538 £59 24.23 £2.47 24.38 £2.43
August 0.12 £0.01 0.12 £0.02 385 £53 20.80 +2.05 20.96 £2.04
September 0.05+0.00 0.22 +0.01 715450 21.53 £1.24 21.30£1.20
October 0.07 £0.01 0.13+0.01 391 +£69 19.66 £0.64 20.10£0.58
November 0.06 £0.01 0.12+0.01 268 £27 20.58 +4.56 21.35+4.55
December 0.08 £0.01 0.14 £0.01 270 +08 20.01 £1.61 24.24 £1.66
January 21.72 +£0.48 22.08 £0.50
Anchor
July 0.14 £0.01 0.19 £0.01 849 +81 32.83 +£3.96 32.95+£3.93
August 0.13£0.01 0.24 4+0.03 464 +30 26.73 £3.20 28.91 £3.58
September 0.04 £0.01 0.13 £0.01 475 £28 22.04 £3.47 22.79 £3.43
October 0.05+£0.01 0.18 £0.01 297 +48 18.78 £4.06 19.67 £3.94
November 0.06 £0.01 0.15+0.01 252 £27 24.61 £4.12 25.50 £4.21
December 0.09 £0.01 0.16 £0.01 357 £28 34.98 £3.26 35.00 £3.26
January 33.57+2.85 34.22 £2.96
Hut Gap
July 0.22 £0.02 0.17 +0.02 266 +08
August 0.27 £0.01 0.1540.02 598 £19
September 0.19 £0.02 0.17 £0.01 337 £19
October 0.19 £0.02 0.17 +0.02 412 £70
November 0.1540.01 0.18 £0.02 184 +18
December 0.16 £0.01 0.18 £0.01 273 £26
METHODS 0°40'46"E 52°59'10"N). The opportunity was also taken

Sampling was carried out at three lagoonal and two
intertidal-marine sites situated along a 35km stretch of
the north Norfolk coast: the lagoons of Broadwater
(0°33'25"E  52°58'26”"N; salinity during the sampling
period 14-21psu), Holkham Salts Hole (0°48'32"
52°58'11"N; salinity 24-26 psu) and Salthouse Broad
(1°04'57"E 52°57'35"N; salinity 22-30 psu); and intertidal
sites on the nearby Scolt Head Island (Cocklebight,
0°40'48"E 52°59'05”"N; and in front of Anchor Marsh,
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to sample the chlorophyll content of a third site on the
island (Hut Gap Creek, 0°41'31"E 52°59'10”"N): this is a
creck bed that is normally exposed to the air but is
submerged by the highest of spring tides. Before enclosure
within the last 250 years, all three lagoonal sites were
originally intertidal marine areas equivalent to, and at
the same tidal height as, those sampled on Scolt Head
(Hunt, 1971; Barnes, 1999a). Now they are isolated from
direct contact with the sea and are non-tidal; the specific
sampling stations being permanently submerged beneath
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Figure 1. The relationship between biomass of benthic
chlorophyll-a and degree of submergence (m depthxh of
coverage by the depths concerned) in two lagoonal and three
intertidal marine sites in Norfolk. Bars are 2 SE of the mean.

some 0.4-0.5m (Broadwater and Holkham Salts Hole)
or 0.1-0.2m (Salthouse Broad) of water that issues out
of the salt water table within the isolating shingle
barriers.

For ease of comparison with the intertidal stations,
regions sampled in the lagoons were open areas of soft
sediment, i.e. bare of submerged macrophytes such as
Ruppia and Chaetomorpha. Sampling was carried out at
each site within a belt of some 30x1 m monthly from July
1998 to January 1999 (inclusive) to assess the abundance
of deposit-feeding animals and, from July to December
1998 (inclusive), to assess the available food, i.e. sedimen-
tary chlorophyll-a, phaeopigment and total organic
matter. The period from July to December represents the
symmetrical second half of the local period of micro-
phytobenthic productivity, and covers the period when

R.S.K. Barnes and C.]J. de Villiers 195

g transformed AFDW . ni2

0 10 20 30 40
O | 1 { 1 1

a0

intertidal sites

1000
2000
3000

4000

lagoonal sites
5000

m. hrs
submergence
per annum

Figure 2. The relationship between biomass of the gastropod
Hydrobia and degree of submergence (m depth x h of coverage
by the depths concerned) in lagoonal vs intertidal marine sites
in Norfolk. Bars are 2 SE of the mean.

productivity declines from its June/July peak to its
November—February minimum (Leach, 1970; Cadée &
Hegeman, 1974; Joint, 1978).

On each occasion and at each site, a minimum of six
replicate cores of 26.4 cm? cross sectional area were taken
to a depth of 10 cm, were sieved gently through 0.5-mm
mesh, and then either the wet weights (after removal of
surface water) or, in the case of the mudsnail Hydrobia,
the shell heights (to the nearest 0.04 mm as determined
via microscope eyepiece micrometer) of the retained
deposit-feeding species were measured. Wet weights were
converted to ash-free dry weights (AFDW) using the
relationships given by Ricciardi & Bourget (1998) and
shell heights of Hydrobia were similarly converted to
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Figure 3. The overall relationship between the biomass of benthic chlorophyll-a and that of feeders on the microphytobenthos
in two lagoonal and two intertidal marine sites in Norfolk. Bars are 2 SE of the mean.

Journal of the Marine Biological Association of the United Kingdom (2000)

https://doi.org/10.1017/5S0025315499001782 Published online by Cambridge University Press


https://doi.org/10.1017/S0025315499001782

196 R.S.K. Barnes and C.]J. de Villiers

Chlorophyll vs deposii-feeder abundance

0.34
£
J EN

02, i —a&— Holkham
gm2 | I I _ - Galthouse
gﬁlnot::)ighy” ----0---- Gocklebight

014 —-0-— Anchor

---0--- Creek
0

T T T T T T
Jul Aug Sept Oct Nov Dec

Figure 4. Changes in the biomass of benthic chlorophyll-a in two lagoonal and three intertidal marine sites in Norfolk during

the period July to December 1998. Bars are 2 SE of the mean.
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Figure 5. Changes in the biomass of feeders on the micro-phytobenthos in two lagoonal and two intertidal marine sites in
Norfolk during the period July 1998 to January 1999. Bars are 2 SE of the mean.

AFDW using the equations given by Siegismund (1982)
and Bachelet & Yacine-Kassab (1987). All individual
weights (in mg AFDW) were transformed to (mg
AFDW)%” hefore being summed, since metabolic rate
07 and metabolic rate per unit mass is a
better indicator of required food consumption than is
biomass (Schmidt-Nielsen, 1984). All biomasses of
animals stated below are these transformed values. True
total biomasses approximate 75% of transformed values.
Of the benthic animals encountered (Appendix 1),
Hediste diversicolor (Miller) was assumed not to be a
deposit-feeder, because this feeding mode figures only half
way down the preference hierarchy of this species
(Pashley, 1985), and neither were the predatory or suspen-
sion-feeding Nematostella vectensis Stephenson, nemertines,
phyllodocid and sabellid polychaetes, Carcinus maenas (L),
Retusa obtusa (Montagu) and cockles (Cerastoderma spp.).
Pelagic or epibenthic animals (mysids, prawns and the
1sopod Idotea chelipes (Pallas)) accidentally retained by the
lagoonal coring procedure were also discounted.

scales as mass
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Hydrobiids, Corophium spp., Abra tenuis (Montagu) and
Pygospio elegans (Claparede), were scored as chlorophyll-
feeders (after information in Muus, 1967, Lopez &
Levinton, 1978; Coles, 1979; Jensen & Siegismund, 1980;
Cammen, 1989; Forbes & Lopez, 1989a; etc.), whilst chir-
onomid and tipulid larvae, tubificid oligochaetes, and the
rarer capitellid, orbiniid and ampharetid polychaetes and
Scolelepis spp. were included as ‘other deposit-feeders’.

At the same time as the faunal samples, 20 replicate
cores of 1.77 cm? cross sectional area and depth of 15 mm
were taken from the same immediate area for absorption
spectrophotometric determination of surface chlorophyll-a
and phaeopigment by the acetone-extraction method-
ology recommended by Wolff (1987) and Greiser & Faubel
(1988), together with a minimum further five similar cores
for determination of total contained organic matter by incin-
eration in a muffle furnace, for 24 h at 475°C to avoid decom-
position of carbonates (Greiser & Faubel, 1988). All samples
for chlorophyll determination were taken during mid
morning low tides, without other allowance for potential
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Figure 6. The specific relationship between the biomass of benthic chlorophyll-z and that of feeders on the micro-phytobenthos
in the Salthouse Broad lagoon (A & B) and in the Cocklebight intertidal site (C & D). In A and C, consumer biomass is plotted
against the chlorophyll-a values recorded at the same time; in B and D, it is plotted against the chlorophyll-a levels of the previous

month. Bars are 2 SE of the mean.

vertical migration within the sediment. Annual water
coverage was calculated directly for the lagoons, and was
estimated for the intertidal sites from their heights on the
beach and thelocal tide curves.

Relationships between chlorophyll-a, phaeopigment,
etc. and other variables were tested by correlation and
regression  analyses.  Correlation  coeflicients  were
subjected to Fisher’s r to < transformation, and the regres-
sion I was derived from the sum of squares and mean
squares as in ANOVA.

RESULTS
Nature of the fauna

The deposit-feeding fauna of the various lagoons was
dominated by the following animals, with their average
percentage of the total biomass given parenthetically:
Holkham Salts Hole, Tubificoides pseudogaster (Dahl) and

other tubificids (64%); Broadwater, chironomid larvae
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(88%); and Salthouse Broad, Abra tenuis, Corophium
volutator (Pallas) and Hydrobia ventrosa (43%, 36% and
15%, respectively). The intertidal sites were all dominated
by Hydrobia ulvae (with an average of 91% of the total
biomass). The intertidal animal biomasses ranged from 16
to 28 ¢ AFDW m~2 (untransformed) and were therefore all
average by world mudflat standards (Piersma et al., 1993).

Almost throughout the entire period of study, the water
body of Broadwater supported a dense ‘pea-soup’ bloom
of phytoplankton, with Secchi disc depths of the order of
15cm, suggesting (after Moss, 1998) a photic zone of
some 25cm (maximum 40cm). Since this depth is less
than that of the lagoon bed, it was therefore assumed that
the apparent measured benthic chlorophyll, which was at
0.23gm~2 (average) five times higher than in Holkham
Salts Hole and three times that in the shallow Salthouse
Broad, was not produced iz situ but had sedimented out of
the water column. It supported less than 1.2 gAFDW
m ™2 of chlorophyll-feeding hydrobiids, and Broadwater is
mostly excluded from the results presented below.
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Between-site comparisons

Across all the sites, excluding Broadwater but including
Hut Gap Creek, chlorophyll-a levels declined with
amount of coverage by water, as estimated by metres
depth multiplied by hours of submergence by those depths
(r=—063; {=-3.78; P=0.0002; Regression F=9.3;
P=0.0001) (Figure 1), as did total combustible matter
(r=—040, =-—213; P=0.03; Regression F=4.2;
P=0.01) and phacopigment (r=-—044; J=-—241;
P=0.02; Regression I'=2.9; P=0.04). The biomass of both
assumed  chlorophyll-feeding  species (r=—0.61
{=—13.526; P=0.004; Regression F'=66.4; P<0.0001)
and all deposit feeders (r=0.57, {=—3.269; P=0.001;
Regression /=61.3; P<0.0001) did likewise (Table 1). The
biomass of hydrobiid molluscs was throughout the study
period lower under the permanently submerged condi-
tions of the non-tidal lagoons than it was intertidally
(Figure 2), with a maximum lagoonal density of
17000ind m~2 and a minimum intertidal one of 30,000
(maximum 110,000) ind m ~2,

Across these sites, there was a significant relationship
between values of chlorophyll-a and the supported
biomass of both chlorophyll feeders (r=0.57, {=2.83;
P=0.005; Regression '=9.7; P=0.005) (Figure 3) and all
deposit-feeding  species  (=0.57; =2.85, P=0.004;
Regression £=9.9; P=0.005). The biomass of consumers
was less related to the quantity of chlorophyll-a available
the previous month (r=0.46; {=2.20; P=0.03; Regression
F=5.55.7, P=0.03). It is evident, however, that the
lagoons  support concentrations of benthic
chlorophyll-a and lesser biomasses of deposit feeders than
do the adjacent high-level intertidal zones, such as
Cocklebight and Anchor, from which type of habitat they
originated. It was also evident that there was no overlap
in the ratio of detritus-feeder to chlorophyll-a 4 phaeco-
pigment biomass between the intertidal sites and the
lagoons, being high intertidally (minimum of 78:1 and an
average of 104:1) and much lower lagoonally (maximum
of 74:1), averaging 68:1 at Salthouse Broad, 21:1 at Broad-
water and 11:1 at Holkham. This is another clear relation-
ship with degree of water coverage (r=—0.89; {=—6.15;
P <0.0001; Regression F=>50; P<0.0001).

The surface layers of the sediments of all sites were rich
in organic matter, with an average of 340 g m~2 those of
the intertidal zone visibly containing salt-marsh debris
and those of the lagoons material deriving from adjacent
beds of Ruppia and/or Chaetomorpha. Although the ratio of
total organic matter to chlorophyll carbon (assuming a
carbon to chlorophyll ratio of 50:1) was effectively the same
in the lagoons and the intertidal zone (lagoons 82:1, SE 4;
intertidal 89:1, SE 16) (Mann—Whitney U=51; P=0.78),
the intertidal sites were considerably more variable, with
ranges of: lagoonal 55:1 to 110:1; intertidal 24:1 to 294:1.

lower

Within site comparisons

The quantity of benthic chlorophyll-a was relatively
constant in Holkham Salts Hole. In Salthouse Broad and
the two main intertidal sites, however, it more or less
followed the expected pattern of seasonal productivity,
being high in July and August and declining thereafter,
although in all three it rose again unexpectedly in
December (Figure 4). Chlorophyll-feeder biomass at
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Figure 7. Variation in the population density of the
gastropod Hydrobia ulvae in the Norfolk intertidal mudflat sites
over the study period, with the contributions to the total of
the component cohorts. Average data of the Cocklebight and
Anchor sites; bars being 2 SE of the mean. Note the apparent
December/January increase in the autumn 1997 and earlier
cohorts as a result of movement.

those three sites also reached a minimum in September/
October and rose in November and/or December to a
level almost as high or even higher than summer values
(Figure 5). Unit standing stock of chlorophyll then sup-
ported least chlorophyll feeder biomass during July/
August (or at Salthouse in September), and most inter-
tidally in September and, lagoonally, in November.
Nevertheless, within each site, there were no significant
relationships between the biomass of chlorophyll feeders
or that of all deposit feeders and either chlorophyll-a or
chlorophyll-a + phacopigment, either when analysed as
contemporaneous comparisons (for all correlations
P>0.2) or when the fauna was compared with the
phaeopigment and/or chlorophyll-a present the previous
month (for all correlations P> 0.5), except in respect of the
Salthouse Broad lagoon in which the relationship between
chlorophyll-a and the consumers one month later was
significant but negative (r=-—0.89; {=—2.03; P=0.04)
(see Figure 6), and of the intertidal Cocklebight site with
regard to chlorophyll-a + phaeopigment and all deposit-
feeders one month later which approached significance and
was also negative (r=—0.75; {= —1.66; P=0.09). Nor were
any significant positive relationships found between consu-
mers and total combustible matter (for all correlations
P>0.15), although a negative relationship was present
between total combustible matter and the abundance of
consumers one month later at Cocklebight (r=—0.85;
L=—2.19; P=0.03; Regression F=10.7; P=0.03).

The population of H. ulvae dominating the deposit-
feeding biomass of the larger Cocklebight region (the
Cocklebight and Anchor stations) increased considerably
from October 1998 to January 1999. This, however, was not
solely due to the continued recruitment of small mudsnails
that was first encountered in the sampled population in
August, but was also a result of movement of individuals
from older cohorts into the general area (Figure 7).
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DISCUSSION

The effect of the permanent water mass in coastal
lagoons will be to reduce light intensities at the sediment
surface and this is reflected in lower concentrations of
benthic chlorophyll-a than in the intertidal
although, as in Broadwater, there can be an input of
chlorophyll to the benthos in the form of fall-out from the
water column. The same effect of light limitation has
been noted on individual mudflats. At mid-tide level in
those of the Lynher Estuary in south-western England,
for example, the ‘rate of [benthic] photosynthesis de-
creased rapidly as the mudflat was submerged and was
not detectable. .. only 30 min after flooding’ (Joint, 1978).
In the sites investigated here this is correlated with a
lesser biomass of benthic deposit feeders in the lagoons.
The reduction is not pro rata, however, in that lagoonal
biomasses are small in relation to unit standing stock of
chlorophyll-a. This is in spite of the fact that, being situated
at about high water neap tide level, consumers living in the
intertidal sites sampled can devote considerably less than
half the time feeding that can be achieved by the lagoonal
species. It can be concluded that the productivity of the
lagoonal benthic microflora is disproportionately small.

Hydrobiid populations in small coastal lagoons are
known often to be short-lived and/or to fluctuate between
two or more dominant species (Barnes, 1991, 1994b), and
this study has produced further evidence of this. As
suggested by earlier studies, the biomass of hydrobiids
was throughout this study period lower in the non-tidal
lagoons than intertidally, the maximum lagoonal density
being 17,000 ind m =2 In the recent past, Hydrobia densities
at Broadwater and Holkham Salts Hole have been higher,
though not exceeding 30,000ind m~2 The Salts Hole
supported a population of up to 4000 H. ulvae m~? ten
years ago (Barnes, 1988, 1990) that now appears to be
extinct, and that of H. ventrosa in Broadwater (Barnes,
1994b) has, perhaps in conjunction with the shading
effects of the phytoplankton bloom, currently declined to
<1000 ind m~2 This continues the trend reported earlier
for Broadwater which saw a reduction from nearly
30,000ind m~? in early 1992 down to 10,000ind m 2 in
late 1993 (Barnes, 1994b). Despite the salinity being
> 14 psu, the hydrobiid population there was during the
study period dominated by the relatively freshwater
Potamopyrgus antipodarum (Gray). Hitherto, such population
declines and species replacements have been attributed to
the action of predation, competition and periodically
adverse climate (Fenchel, 1975; Lassen & Kristensen,
1978; Hylleberg & Siegismund, 1987; Planas & Mora,
1987; Barnes, 1994a, 1999b; Barnes & Gandolfi, 1998).
The results presented here suggest that the very low
benthic chlorophyll-a levels characterizing such systems
may also set such low ceilings to maximum population
density as to render local extinction statistically likely. It
is notable in this context that the feeding rate of Hydrobia
appears to be constant regardless of the chlorophyll-a
content of the sediment, although it does remain longer in
areas rich in chlorophyll by reducing its speed of move-
ment (Forbes & Lopez, 1986), and it would therefore be
ill-equipped to compensate for low food concentrations.

Notwithstanding the general relationship seen between
deposit feeding biomass and chlorophyll-a concentrations

zone,
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across the range of habitats, however, there is no evidence
within any of the individual sites that consumers are at
and held to the carrying capacity of their habitat in
respect of chlorophyll-a in that no (positive) relationships
between deposit-feeder and chlorophyll-a biomass were
found. This is in spite of the study period being the one
during which microphytobenthic productivity and chloro-
phyll biomass are declining from their mid-summer peak
(Leach, 1970; Cadée & Hegeman, 1974; Joint, 1978) whilst
at the same time hydrobiid and other deposit feeder
numbers are being boosted by the influx of new, fast-
growing recruits (Barnes, 1994b and the results above)
with, presumably, large food requirements. Peak
consumer biomasses in the late summer or early autumn
have been recorded for several equivalent north-west
European lagoons and estuaries (e.g. Muus, 1967; Joint,
1978). Forbes & Lopez (1989a,b) have also concluded that
one population of the mudsnail Hydrobia was held below
its carrying capacity, although Levinton & Lopez (1977)
considered that some Hydrobia populations may be at the
carrying capacity of their habitats, but one set not by
food per se but by the breakdown rate of their faecal
pellets into re-ingestible materials (see also Forbes &
Lopez, 1986). No evidence for pelletization of the sedi-
ments was forthcoming from this study.

Although standing stock is what is immediately avail-
able to consumers, they are obviously really dependent on
productivity and hence arguments based on biomass data
must be treated with caution. If the benthic position here
1s comparable with the local seasonal pattern of phyto-
plankton and dependent herbivore biomass (Steele, 1974),
then one would expect to see deposit-feeder biomass
mirror than of benthic chlorophyll with a time lag of
some weeks. Such is certainly the case in the River
Lynher (Joint, 1978), where the benthic heterotrophs
reach their maximum some three months after the major
peak in chlorophyll-a, although their August peak there
does coincide with a secondary peak in chlorophyll-a
biomass. No such relationship was evident at these sites,
and indeed in Salthouse Broad the low point in deposit-
feeder biomass occurred in September, one month before
that of the chlorophyll began. It must be said, however,
that if the time lag is very long, this study would not have
detected its action.

Thus it appears that whilst consumer biomass does
vary with chlorophyll levels across the range of habitats
studied and to that extent food supplies may set a theore-
tical maximum level of consumer biomass, the precise
abundances of the deposit-feeders are determined by
some other factor(s), and the results from the sites studied
do not contradict the hypothesis that this other factor
may lie within intra-sediment, epibenthic and vertebrate
predation. Predation has been much studied in the type
of environment under investigation here (see, e.g.
McArthur, 1998a,b,c; Van der Veer et al., 1998; and the
reviews of Reise, 1985; Barnes, 1994a), and predators of
deposit feeders are also an important element in the
faunas of these Norfolk sites. The intertidal stations and
Salthouse Broad support numerous shore-birds, and
Broadwater and Holkham Salts Hole are frequented by
wildfowl] (Eve & Hibberd, undated). Gobies (Pomatoschistus
microps (Krovyer)), eels (Anguilla anguilla (L.)), sticklebacks

(Gasterosteus aculeatus 1..) and prawns (Palaemonetes varians
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(Leach)) have been commonly observed (e.g. Downie,
1996; Bamber, 1997; and Appendix). Benthic samples also
yielded Carcinus maenas, Retusa obtusa, Hediste diversicolor,
Lineus ruber (Miiller), Tetrastemma spp. and, at Salthouse, the
Red Data Book anemone Nematostella vectensis in densities of
up to 950 ind m =2 These are all species known to consume
hydrobiids and other small benthic invertebrates (Reise,
1985; McArthur, 1998a,b,c; R.S.K. & C.J. de V., personal
observations).

Predation, however, is not the only potential control-
ling process. Random factors are also likely to be
involved, especially at the intertidal sites. It was evident
that considerable movement of the dominant Hydrobia
ulvae into (and possibly out of) the Cocklebight and
Anchor sites was occurring. Large scale involuntary
movement of H. ulvae at the mercy of flooding tides has
previously been reported from this area (Barnes, 1998), as
has passive floating from salt-marsh plants, etc. under
equivalent circumstances (Barnes, 1981). Although not
observed locally, drifting (sensu Armonies, 1994) may also
occur as it does so across other southern North Sea flats
(Armonies & Hartke, 1995; Jaklin & Ginther, 1996).
These could well serve to render any potential numerical
relationship between consumers and their food in any
precise local region transitory.
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Appendix 1. Benthic fauna encountered in the core-tube samples. Note that this Appendix does not purport to be a_fauna list for the
areas concerned in that it is restricted to the precise stations sampled.

LAGOONS
Species Holkham Salts Hole Broadwater Salthouse Broad

Nematostella vectensis Stephenson 4

Tubificoides pseudogaster (Dahl) v v v
Other tubificids v

Pygospio elegans (Claparde) v
Scolecolepis spp. v
Hediste diversicolor (Miiller) v v v
Arenicola marina (L.) v

Tetrastemma sp. v
Hydrobia ventrosa(Montagu) v 4
Potamopyrgus antipodarum (Gray) v

Rissostomia membranacea (Adams) v

Laittorina saxatilis (Olivi) v
Abra tenuis (Montagu) v
Cerastoderma glaucum (Poiret) v

Corophium volutator (Pallas) v
Idotea chelipes (Pallas)
Paramysts nouveli Labat v

AN
AN
<

Praunus flexuosus (Miller)
Neomysis integer (Leach)
Palaemonetes varians (Leach)
Conopeum seurati (Canu)

DN N N NN
AN
AN

Chironomid larvae

INTERTIDAL SITES
Species Cocklebight Anchor Hut Marsh Creek

Tubificoides pseudogaster v
Tubificoides benedeni (Udekem) v
Pygospio elegans v
Scolecolepis spp.

Tharyx marioni (St Joseph) v
Scoloplos armiger (Miiller)

v
v
v

AN
NN N SNASN

AN

Hediste diversicolor
Nephtys sp.

Eteone longa (Fabricius)
Phyllodoce sp.

AN

AN

Arenicola marina

Capitella capitata (Fabricius)
Notomastus latericeus M. Sars
Ampharete acutifrons Grube
Lanice conchilega (Pallas)
Fabricia sabella (Ehrenberg)
Lineus ruber (Miiller)

Hydrobia ulvae (Pennant) v
Littorina saxatillus

Luttorina littorea (L.) v
Retusa obtusa (Montagu) v
Cerastoderma edule (L.) v
Abra tenuis v
Macoma balthica (L.)

Scrobicularia plana (da Costa) v
Corophium volutator v
Lekanesphaera rugicauda (Leach) v
Crangon crangon (L.) v v

ANEANER NN

AN NI N

AN
NSNS S

AN NI

Carcinus maenus (L.)
Tipulid larvae v v
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