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Sufficient conditions are obtained for a ring R, faithfully graded by a bisimple inverse
semigroup S, to be (a) prime and (b) right primitive, these conditions being on the
subring Rqg consisting of all elements of R with support contained in G, a maximal
subgroup of S. Earlier results on semigroup rings arise as special cases.

1. Introduction

Let R be a ring and S a semigroup. Then R is said to be S-graded (equivalently,
graded by S) if and only if (i) its additive group is expressible as a direct sum of
subgroups R, (x € S) and (ii) the multiplication in R is such that, for all z, y € S,
R.R, C Rgy. Such a ring R is said to be faithful (equivalently, faithfully graded
by S) if and only if, for all z, y € S and each non-zero a € R;, aR, # 0 and
Ry,a # 0. For a subgroup G of S, the subring ®©,cq R, of R is denoted by Rg. An
important example of an S-graded ring R is the semigroup ring A[S] of S over a
given ring A: here R, = Az (z € S). Clearly, if A is non-trivial with a unity, then
R is faithful; also, if G is a subgroup of S, then R¢ is the group ring A[G].

We shall be concerned with the case in which S is an inverse semigroup; that is,
a semigroup in which to each element z there corresponds a unique element x~!
such that zz7'2 = z and 27 'z2™! = 27 1. For a discussion of this important type
of semigroup, see, for example [2, ch. V]. In a recent paper [3], Kelarev showed
that if R is a ring that is faithfully graded by an inverse semigroup S, and if Rg
is semiprimitive for all maximal subgroups G of S, then R is semiprimitive. This
generalizes a well-known theorem of Domanov [1, theorem 1] on semigroup rings. It
is also shown in [3] that the corresponding result holds if ‘semiprimitive’ is replaced
above by ‘semiprime’. In turn, this generalizes [7, theorem 4.2].

An inverse semigroup S is said to be bisimple if and only if, for all idempotents
e and f in S, there exists € S such that e = x2~! and f = 2~ 'z. (This condition
on the idempotents of S is readily seen to be equivalent to the condition that
S consists of a single D-class.) If such a semigroup is not itself a group, then it
contains infinitely many idempotents [2, ch. V, §6] and, moreover, all its maximal
subgroups are isomorphic [2, I1.3.7]. The purpose of the present paper is to show
that if R is a ring faithfully graded by a bisimple inverse semigroup S, and if, for
some maximal subgroup G of S, R is prime (respectively, right primitive with the
additional property that a € aRg for all a € Rg), then R is prime (respectively,
right primitive). These results generalize [7, theorems 4.4, 4.5], the latter also being
a consequence of the proof of theorem 1 in [1].
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2. Preliminaries

Let S be a semigroup and let R = @5 R, be an S-graded ring, where each R, is
a subgroup of (R, +) and, for all z, y € S, R;R, C R,,. For any non-empty subset
X of S, we write Ry for ®,cxR,. Thus for all non-empty subsets X and Y of .S,
Rx Ry € Rxy. In particular, if X is a subsemigroup of S, then Ry is a subring of
R. For a € R, we denote the R, -component of a by a, (z € S) and we define the
support of a, supp(a), by

supp(a) :={z € S : a, # 0}.

Observe that supp(a) is a finite set and is empty if and only if a = 0. Now consider
a subset X of S. Let T := X Nsupp(a). Then we write

D a. T #0,
ax =\ zeT
0 it T = 0.

In particular, ay = 0.

For an idempotent e in a semigroup S, eSe is a subsemigroup of S with identity
e. As is customary, the right unit subsemigroup of eSe is denoted by P, and the
maximal subgroup of S with identity e by H,; thus

P, = {z € eSe: xzy = e for some y € eSe}

and H.(C P.) is the group of units of eSe. (We avoid here the notation R, for
the R-class of S containing e, since it would conflict with that already introduced
for an S-graded ring R.) The set-difference {x € X : ¢ Y} of sets X and Y is
denoted by X\Y.

We note for later use the following elementary result [7, lemma 1.1].

LEMMA 2.1. Let S be a semigroup and let e = e®> € S. Write G := H,, Q := ¢S,
T :=eSe\P,. Then

(i) TS C Q\G,
(i) G(Q\G) € Q\G,
(iii) GT C T.
It is easily checked that, in lemma 2.1, if S is a bisimple inverse semigroup that
is not a group, then T # @ and Q\G # 0.
The starting-point of our discussion is [3, lemma 2], stated below as lemma 2.2.

This is a direct generalization of a result on semigroup algebras [6, lemma 6].
(See also [7, lemma 4.1].)

LEMMA 2.2 (Kelarev). Let S be an inverse semigroup, let R be a faithful S-graded
ring and let A be a non-zero ideal of R. Then there exist e = ¢> € S and a € A
such that

e € supp(a) C H. U (eSe\Pe.).
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As in [7, lemma 3.1], by specializing to the case where S is bisimple, we can
improve the result by allowing e to be chosen arbitrarily. This constitutes the next
lemma, which, in turn, provides the key to the results in § 3.

LEMMA 2.3. Let S be a bisimple inverse semigroup, let R be a faithful S-graded
ring and let A be a non-zero ideal of R. Then, for all e = €2 € S, there exists a € A
such that

e € supp(a) C H. U (eSe\Pe.).
Proof. By lemma 2.2, there exist f = f2 € S and b € A such that

f €supp(b) C Hp U (fSf\Py).

Let e = €2 € S. Since S is bisimple, there exists z € S such that e = zz™! and
f = a7 'z. Since by # 0 and R is faithful, there exists ¢ € R, such that cby # 0.
Then, since cby € Ry Ry C Ryy = R, and R is faithful, there exists d € R,-1 such
that cbyd # 0. Note also that cbyd € RyRy~1 € Ryp—1 = Re.

Now write a := c¢bd. Then a € A. We show that

e € supp(a) C H. U (eSe\Pe.).

By [5,lemma1],0 : fSf — eSedefined by y0 = xyz~1(y € fSf)is an isomorphism.
In particular, this implies that

[H; U (fSF\P)J0 = H. U (eSe\P,). (2.1)

Let supp(b) = {y1,¥y2, ..., Yn}, where y; # y; if i # j. Then, since supp(b) C fSf
and a = ¢(by, + by, + -+ -+ by, )d, we see from (2.1) that

supp(a) C zsupp(b)z ™! = (supp(b))d C H. U (eSe\P.).

Without loss of generality, let f = y;. Then, since cbsd € R.\0 and

1

e=axyx ' #£xyxt fori>1,

we have that e € supp(a). O

3. The main results

In this section we give sufficient conditions for a ring R, faithfully graded by a
bisimple inverse semigroup S, to be (a) prime and (b) right primitive. In each case,
the sufficient condition involves a property of the subring Rg of R, where G is a
maximal subgroup of S. It should be noted, in passing, that while any two maximal
subgroups G and H of S are necessarily isomorphic, examples can be constructed
to show that this need not be true for the corresponding subrings Rg and Ry of
R.

THEOREM 3.1. Let S be a bisimple inverse semigroup, let R be a faithful S-graded
ring and let Rg be prime for some mazimal subgroup G of S. Then R is prime.
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Proof. We may assume that G # S. Let e be the identity of G. Consider non-zero
ideals A and B of R. By lemma 2.3, there exist a € A and b € B such that

e € supp(a) CGUT, e € supp(b) CGUT,

where G denotes H, and T denotes eSe\P,. Thus a = ag + ar and b = bg + br,
where ag # 0 (since a. # 0) and bg # 0 (since be # 0). Now the right ideal agRg
of R¢ is non-zero; for otherwise, if I denotes the principal ideal of Rg generated
by ag, then I? = 0—contrary to the hypothesis that R is prime. Similarly, bgRg
is non-zero. Hence, since R¢ is prime, (agRa)(baRag) # 0 and so there exist u and
v in Rg such that

acgubgv # 0. (3.1)

Clearly,

aubv = agubgv + agubrv + arubv. (3.2)
As before, let @@ denote eS. Now

arubv, byv € RpR C Rrs C Ro\a»
by lemma 2.1 (i). Also, since agu € Rg and brv € R\, we have that

agubrv € RgRo\a¢ € Ra\a) € Ro\a»
by lemma 2.1 (ii). But agubgv € R¢. Hence, from (3.2) and (3.1),
(aubv)g = agubgv # 0

and so aubv # 0. Since au € A and bv € B, this shows that AB # 0. Thus R is
prime. O

We now consider right primitivity. For a right ideal A of a ring R we denote the
two-sided ideal {r € R: Rr C A} by (A : R). In the proof of theorem 3.2, we use
the fact that R is right primitive if and only if it contains a modular maximal right
ideal A with (A : R) =0 [4, theorem 5.34].

It is convenient to make a further definition. A ring R is right inclusive if and only
if, for all @ € R, a € aR. Clearly, every ring with a (right) unity is right inclusive.
We are concerned below with right primitive right inclusive rings. As an example
of such a ring with no right unity, we cite the ring of all linear transformations
of finite rank (written as right operators) of an infinite-dimensional vector space
over a field. (Note also that a right primitive ring need not be right inclusive, as
is illustrated by the semigroup ring F[S] of a free semigroup S of rank 2 over a
field F.)

THEOREM 3.2. Let S be a bisimple inverse semigroup, let R be a faithful S-graded
ring and let Rg be right primitive and right inclusive for some mazimal subgroup
G of S. Then R is right primitive.

Proof. We may again assume that G # S. Since R is right primitive, it contains a
modular maximal right ideal B such that (B : Rg) = 0. Since B is modular, there
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exists ¢ € Rg such that cw —w € B for all w € Rg. Suppose that ¢ € B. Then,
for each w € R, we have that w = cw — (cw —w) € B. Hence B = R¢, which
contradicts the definition of B. Thus ¢ ¢ B.

Let e denote the identity of G and, as in lemma 2.1, put Q := ¢S and T := eSe\ P..
Write M := {cw —w : w € R}, where c is as above, and take

I:=B+BR+ Rr+ RrR+ M.

Since M is a right ideal of R, so also is I. We show that ¢ & I.
Suppose that, on the contrary, ¢ € I. Then

c=u+v+ (cw—w)
for some u € B+ BR, v € Rt + RrR and w € R. Thus, since G C Q,
c=u+v+cwg + cwg\g + Wg\Q — Wa — Wo\g — W\ Q- (3.3)

Since the left-hand side of (3.3) and all terms on the right-hand side preceding the
last lie in Rg, we have that wg\o = 0. Also,

=1

for some positive integer n, some elements b and b; of B and some elements r; of
R (i=1,2,...,n). Let i € {1,2,...,n}. Since R¢ is right inclusive, there exists
u; € Rg such that b; = b;u;. Then u;r; € RgR € Rgs = Rg. Hence there exist
p; € Rg and q; € RQ\G such that u;r; = pi + ;. Thus b;r; = bu;r; = bzpz + bzqz
Consequently, from (3.3),

c= (b + Z b;p; + cwg — wc;) + (Z biqi +v + cwg\g — wQ\G) . (3.4)
i=1 i=1
Now, since Ry C Rg\¢ and R R C Rrg € R\, by lemma 2.1 (i), it follows that
v € Ro\q- Further, cwg\ac € ReRo\c € Rao\a) € Ro\as by lemma 2.1 (ii), and,
similarly, b;q; € Rg\g for each i. Hence the second bracketed expression on the
right-hand side of (3.4) lies in Rg\¢. But ¢ and the first bracketed expression on
the right-hand side lie in Rg. Hence

c:bJeripiJrcwc;—wc;.
i=1
However, cwg —wg € B and so ¢ € B, which is false. Thus ¢ & I.

By Zorn’s lemma, the set of all right ideals of R that contain I and exclude ¢
has a maximal member A, say. Let A’ be a right ideal of R strictly containing A.
Then c € A’. Thus, forallw € R, cw € A" and cw —w € M C I C A’, from which
it follows that w € A’. Hence A’ = R. This shows that A is a maximal right ideal
of R; and, since it contains M, it is modular. Moreover, B C IN Rz C AN Rg and
the right ideal AN Rg of Rg is proper, since it does not contain ¢. Hence, by the
maximality of B,

B=ANRe. (3.5)
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To prove that R is right primitive, it suffices to show that (A : R) = 0. Suppose
that (A : R) # 0. Then, by lemma 2.3, there exists a € (A : R) such that

e € supp(a) CGUT.

Hence a = ag + ar and ag # 0. Let d € Rg. Since Ra C A, we have that
dag + day € A. But day € RgRr € Rgr € Ry, by lemma 2.1 (iii), and so, since
Rr CIC A, dar € A. Thus dag € A. Now dag € Rg and, therefore, from (3.5),
dac € B. This shows that Rgag € B. Hence ag € (B : Rg). But (B: Rg) =0, as
noted earlier. Consequently, ag = 0, which is false. It follows that (A : R) = 0 and
S0, since A is a modular maximal right ideal of R, R is right primitive. O

Note that, since every inverse semigroup S has an involution (namely, the map-
ping x — 27} (z € 9)), the left-right dual of theorem 3.2 also holds. It is not known
whether the conclusion of the theorem remains valid if we delete the hypothesis
that R¢ is right inclusive.

4. Rings graded by 0-bisimple inverse semigroups

To conclude, we observe that the previous results can readily be extended to a class
of rings graded by 0-bisimple inverse semigroups.

Two further definitions are required. As usual, for a semigroup S we write ‘S =
5% to indicate that S has a zero and at least one other element. Given a semigroup
S = SY with zero z and a ring R, we say that R is a restricted S-graded ring if and
only if it is an S-graded ring with the additional property that R, = 0. A modified
definition of faithfulness is appropriate in this context. Such a ring R is termed
faithful if and only if, for all z, y € S\z, a € R,;\0,

zy # 2= aRy # 0,
yr # 2z = Rya # 0.

Clearly, for an arbitrary semigroup T, any (faithful) T-graded ring may be re-
garded as a (faithful) restricted S-graded ring, where S is the semigroup obtained
by adjoining a zero to T' (whether or not one is already present in T'). For a semi-
group S = SY and a ring A, the contracted semigroup ring R = Ag[S] of S over A
is a restricted S-graded ring with R, = Ax for all non-zero z in S; and R is faithful
if, for example, A is non-trivial with a unity.

By analogy with lemma 2.2 (see also [7, lemma 4.1]), it can be shown that if
S = 8% is an inverse semigroup, R a faithful restricted S-graded ring and A a
non-zero ideal of R, then there exist a non-zero idempotent e € S and an element
a € A such that

e € supp(a) C H, U (eSe\P,).

An inverse semigroup S is said to be 0-bisimple if S = S° and, for all non-zero
idempotents e and f in S, there exists z € S such that e = z2™! and f = 27 2.
Every bisimple inverse semigroup with a zero adjoined is 0-bisimple. Examples not
of this type include completely 0-simple inverse semigroups (Brandt semigroups)
with at least two non-zero idempotents [2, ch. III]. Restricted S-graded rings, where
S is a completely 0-simple inverse semigroup, have been studied in [8].
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The proof of lemma 2.3 can be readily adapted to show that if S is a 0-bisimple
inverse semigroup, R a faithful restricted S-graded ring and A a non-zero ideal of
R then, for any non-zero idempotent e in S, there exists a € A such that

e € supp(a) C H. U (eSe\Pe.).

From this result we derive the theorems below. The proofs, which are similar to
those of theorems 3.1 and 3.2, are omitted.

THEOREM 4.1. Let S be a 0-bisimple inverse semigroup, let R be a faithful re-
stricted S-graded ring and let Rg be prime for some non-zero mazximal subgroup G
of S. Then R is prime.

THEOREM 4.2. Let S be a 0-bisimple inverse semigroup, let R be a faithful re-
stricted S-graded ring and let Rg be right primitive and right inclusive for some
non-zero mazximal subgroup G of S. Then R is right primitive.
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