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Su± cient conditions are obtained for a ring R, faithfully graded by a bisimple inverse
semigroup S , to be (a) prime and (b) right primitive, these conditions being on the
subring RG consisting of all elements of R with support contained in G, a maximal
subgroup of S. Earlier results on semigroup rings arise as special cases.

1. Introduction

Let R be a ring and S a semigroup. Then R is said to be S-graded (equivalently,
graded by S) if and only if (i) its additive group is expressible as a direct sum of
subgroups Rx (x 2 S) and (ii) the multiplication in R is such that, for all x, y 2 S,
RxRy ³ Rxy. Such a ring R is said to be faithful (equivalently, faithful ly graded
by S) if and only if, for all x, y 2 S and each non-zero a 2 Rx, aRy 6= 0 and
Rya 6= 0. For a subgroup G of S, the subring ©x 2 GRx of R is denoted by RG. An
important example of an S-graded ring R is the semigroup ring A[S] of S over a
given ring A: here Rx = Ax (x 2 S). Clearly, if A is non-trivial with a unity, then
R is faithful; also, if G is a subgroup of S, then RG is the group ring A[G].

We shall be concerned with the case in which S is an inverse semigroup; that is,
a semigroup in which to each element x there corresponds a unique element x 1

such that xx 1x = x and x 1xx 1 = x 1. For a discussion of this important type
of semigroup, see, for example [2, ch. V]. In a recent paper [3], Kelarev showed
that if R is a ring that is faithfully graded by an inverse semigroup S, and if RG

is semiprimitive for all maximal subgroups G of S, then R is semiprimitive. This
generalizes a well-known theorem of Domanov [1, theorem 1] on semigroup rings. It
is also shown in [3] that the corresponding result holds if `semiprimitive’ is replaced
above by `semiprime’. In turn, this generalizes [7, theorem 4.2].

An inverse semigroup S is said to be bisimple if and only if, for all idempotents
e and f in S, there exists x 2 S such that e = xx 1 and f = x 1x. (This condition
on the idempotents of S is readily seen to be equivalent to the condition that
S consists of a single D-class.) If such a semigroup is not itself a group, then it
contains in­ nitely many idempotents [2, ch. V, x 6] and, moreover, all its maximal
subgroups are isomorphic [2, II.3.7]. The purpose of the present paper is to show
that if R is a ring faithfully graded by a bisimple inverse semigroup S, and if, for
some maximal subgroup G of S, RG is prime (respectively, right primitive with the
additional property that a 2 aRG for all a 2 RG), then R is prime (respectively,
right primitive). These results generalize [7, theorems 4.4, 4.5], the latter also being
a consequence of the proof of theorem 1 in [1].
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2. Preliminaries

Let S be a semigroup and let R = ©x 2 SRx be an S-graded ring, where each Rx is
a subgroup of (R; +) and, for all x, y 2 S, RxRy ³ Rxy. For any non-empty subset
X of S, we write RX for ©x 2 XRx. Thus for all non-empty subsets X and Y of S,
RXRY ³ RXY . In particular, if X is a subsemigroup of S, then RX is a subring of
R. For a 2 R, we denote the Rx-component of a by ax (x 2 S) and we de­ ne the
support of a, supp(a), by

supp(a) := fx 2 S : ax 6= 0g:

Observe that supp(a) is a ­ nite set and is empty if and only if a = 0. Now consider
a subset X of S. Let T := X \ supp(a). Then we write

aX :=

8
<

:

X

x 2 T

ax if T 6= ;;

0 if T = ;:

In particular, a; = 0.
For an idempotent e in a semigroup S, eSe is a subsemigroup of S with identity

e. As is customary, the right unit subsemigroup of eSe is denoted by Pe and the
maximal subgroup of S with identity e by He; thus

Pe = fx 2 eSe : xy = e for some y 2 eSeg

and He(³ Pe) is the group of units of eSe. (We avoid here the notation Re for
the R-class of S containing e, since it would con®ict with that already introduced
for an S-graded ring R.) The set-di¬erence fx 2 X : x 62 Y g of sets X and Y is
denoted by XnY .

We note for later use the following elementary result [7, lemma 1.1].

Lemma 2.1. Let S be a semigroup and let e = e2 2 S. Write G := He, Q := eS,
T := eSenPe. Then

(i) T S ³ QnG,

(ii) G(QnG) ³ QnG,

(iii) GT ³ T .

It is easily checked that, in lemma 2.1, if S is a bisimple inverse semigroup that
is not a group, then T 6= ; and QnG 6= ;.

The starting-point of our discussion is [3, lemma 2], stated below as lemma 2.2.
This is a direct generalization of a result on semigroup algebras [6, lemma 6].
(See also [7, lemma 4.1].)

Lemma 2.2 (Kelarev). Let S be an inverse semigroup, let R be a faithful S-graded
ring and let A be a non-zero ideal of R. Then there exist e = e2 2 S and a 2 A
such that

e 2 supp(a) ³ He [ (eSenPe):
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As in [7, lemma 3.1], by specializing to the case where S is bisimple, we can
improve the result by allowing e to be chosen arbitrarily. This constitutes the next
lemma, which, in turn, provides the key to the results in x 3.

Lemma 2.3. Let S be a bisimple inverse semigroup, let R be a faithful S-graded
ring and let A be a non-zero ideal of R. Then, for all e = e2 2 S, there exists a 2 A
such that

e 2 supp(a) ³ He [ (eSenPe):

Proof. By lemma 2.2, there exist f = f 2 2 S and b 2 A such that

f 2 supp(b) ³ Hf [ (fSfnPf ):

Let e = e2 2 S. Since S is bisimple, there exists x 2 S such that e = xx 1 and
f = x 1x. Since bf 6= 0 and R is faithful, there exists c 2 Rx such that cbf 6= 0.
Then, since cbf 2 RxRf ³ Rxf = Rx and R is faithful, there exists d 2 Rx 1 such
that cbf d 6= 0. Note also that cbfd 2 RxRx 1 ³ Rxx 1 = Re.

Now write a := cbd. Then a 2 A. We show that

e 2 supp(a) ³ He [ (eSenPe):

By [5, lemma 1], ³ : fSf ! eSe de­ ned by y³ = xyx 1(y 2 fSf ) is an isomorphism.
In particular, this implies that

[Hf [ (fSfnPf )]³ = He [ (eSenPe): (2.1)

Let supp(b) = fy1; y2; : : : ; yng, where yi 6= yj if i 6= j. Then, since supp(b) ³ fSf
and a = c(by1 + by2 + ¢ ¢ ¢ + byn )d, we see from (2.1) that

supp(a) ³ x supp(b)x 1 = (supp(b)) ³ ³ He [ (eSenPe):

Without loss of generality, let f = y1. Then, since cbf d 2 Ren0 and

e = xy1x 1 6= xyix
1 for i > 1;

we have that e 2 supp(a).

3. The main results

In this section we give su¯ cient conditions for a ring R, faithfully graded by a
bisimple inverse semigroup S, to be (a) prime and (b) right primitive. In each case,
the su¯ cient condition involves a property of the subring RG of R, where G is a
maximal subgroup of S. It should be noted, in passing, that while any two maximal
subgroups G and H of S are necessarily isomorphic, examples can be constructed
to show that this need not be true for the corresponding subrings RG and RH of
R.

Theorem 3.1. Let S be a bisimple inverse semigroup, let R be a faithful S-graded
ring and let RG be prime for some maximal subgroup G of S. Then R is prime.
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Proof. We may assume that G 6= S. Let e be the identity of G. Consider non-zero
ideals A and B of R. By lemma 2.3, there exist a 2 A and b 2 B such that

e 2 supp(a) ³ G [ T; e 2 supp(b) ³ G [ T;

where G denotes He and T denotes eSenPe. Thus a = aG + aT and b = bG + bT ,
where aG 6= 0 (since ae 6= 0) and bG 6= 0 (since be 6= 0). Now the right ideal aGRG

of RG is non-zero; for otherwise, if I denotes the principal ideal of RG generated
by aG, then I2 = 0|contrary to the hypothesis that RG is prime. Similarly, bGRG

is non-zero. Hence, since RG is prime, (aGRG)(bGRG) 6= 0 and so there exist u and
v in RG such that

aGubGv 6= 0: (3.1)

Clearly,

aubv = aGubGv + aGubT v + aT ubv: (3.2)

As before, let Q denote eS. Now

aT ubv; bT v 2 RT R ³ RT S ³ RQnG;

by lemma 2.1 (i). Also, since aGu 2 RG and bT v 2 RQnG, we have that

aGubT v 2 RGRQnG ³ RG(QnG) ³ RQnG;

by lemma 2.1 (ii). But aGubGv 2 RG. Hence, from (3.2) and (3.1),

(aubv)G = aGubGv 6= 0

and so aubv 6= 0. Since au 2 A and bv 2 B, this shows that AB 6= 0. Thus R is
prime.

We now consider right primitivity. For a right ideal A of a ring R we denote the
two-sided ideal fr 2 R : Rr ³ Ag by (A : R). In the proof of theorem 3.2, we use
the fact that R is right primitive if and only if it contains a modular maximal right
ideal A with (A : R) = 0 [4, theorem 5.34].

It is convenient to make a further de­ nition. A ring R is right inclusive if and only
if, for all a 2 R, a 2 aR. Clearly, every ring with a (right) unity is right inclusive.
We are concerned below with right primitive right inclusive rings. As an example
of such a ring with no right unity, we cite the ring of all linear transformations
of ­ nite rank (written as right operators) of an in­ nite-dimensional vector space
over a ­ eld. (Note also that a right primitive ring need not be right inclusive, as
is illustrated by the semigroup ring F [S] of a free semigroup S of rank 2 over a
­ eld F .)

Theorem 3.2. Let S be a bisimple inverse semigroup, let R be a faithful S-graded
ring and let RG be right primitive and right inclusive for some maximal subgroup
G of S. Then R is right primitive.

Proof. We may again assume that G 6= S. Since RG is right primitive, it contains a
modular maximal right ideal B such that (B : RG) = 0. Since B is modular, there
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exists c 2 RG such that cw w 2 B for all w 2 RG. Suppose that c 2 B. Then,
for each w 2 RG, we have that w = cw (cw w) 2 B. Hence B = RG, which
contradicts the de­ nition of B. Thus c 62 B.

Let e denote the identity of G and, as in lemma 2.1, put Q := eS and T := eSenPe.
Write M := fcw w : w 2 Rg, where c is as above, and take

I := B + BR + RT + RT R + M:

Since M is a right ideal of R, so also is I. We show that c 62 I.
Suppose that, on the contrary, c 2 I . Then

c = u + v + (cw w)

for some u 2 B + BR, v 2 RT + RT R and w 2 R. Thus, since G » Q,

c = u + v + cwG + cwQnG + cwSnQ wG wQnG wSnQ: (3.3)

Since the left-hand side of (3.3) and all terms on the right-hand side preceding the
last lie in RQ, we have that wSnQ = 0. Also,

u = b +

nX

i = 1

biri

for some positive integer n, some elements b and bi of B and some elements ri of
R (i = 1; 2; : : : ; n). Let i 2 f1; 2; : : : ; ng. Since RG is right inclusive, there exists
ui 2 RG such that bi = biui. Then uiri 2 RGR ³ RGS = RQ. Hence there exist
pi 2 RG and qi 2 RQnG such that uiri = pi + qi. Thus biri = biuiri = bipi + biqi.
Consequently, from (3.3),

c =

³
b +

nX

i = 1

bipi + cwG wG

´
+

³ nX

i = 1

biqi + v + cwQnG wQnG

´
: (3.4)

Now, since RT ³ RQnG and RT R ³ RT S ³ RQnG, by lemma 2.1 (i), it follows that
v 2 RQnG. Further, cwQnG 2 RGRQnG ³ RG(QnG) ³ RQnG, by lemma 2.1 (ii), and,
similarly, biqi 2 RQnG for each i. Hence the second bracketed expression on the
right-hand side of (3.4) lies in RQnG. But c and the ­ rst bracketed expression on
the right-hand side lie in RG. Hence

c = b +

nX

i = 1

bipi + cwG wG:

However, cwG wG 2 B and so c 2 B, which is false. Thus c 62 I .
By Zorn’s lemma, the set of all right ideals of R that contain I and exclude c

has a maximal member A, say. Let A0 be a right ideal of R strictly containing A.
Then c 2 A0. Thus, for all w 2 R, cw 2 A0 and cw w 2 M ³ I ³ A0, from which
it follows that w 2 A0. Hence A0 = R. This shows that A is a maximal right ideal
of R; and, since it contains M , it is modular. Moreover, B ³ I \ RG ³ A \ RG and
the right ideal A \ RG of RG is proper, since it does not contain c. Hence, by the
maximality of B,

B = A \ RG: (3.5)
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To prove that R is right primitive, it su¯ ces to show that (A : R) = 0. Suppose
that (A : R) 6= 0. Then, by lemma 2.3, there exists a 2 (A : R) such that

e 2 supp(a) ³ G [ T:

Hence a = aG + aT and aG 6= 0. Let d 2 RG. Since Ra ³ A, we have that
daG + daT 2 A. But daT 2 RGRT ³ RGT ³ RT , by lemma 2.1 (iii), and so, since
RT ³ I ³ A, daT 2 A. Thus daG 2 A. Now daG 2 RG and, therefore, from (3.5),
daG 2 B. This shows that RGaG ³ B. Hence aG 2 (B : RG). But (B : RG) = 0, as
noted earlier. Consequently, aG = 0, which is false. It follows that (A : R) = 0 and
so, since A is a modular maximal right ideal of R, R is right primitive.

Note that, since every inverse semigroup S has an involution (namely, the map-
ping x 7! x 1(x 2 S)), the left-right dual of theorem 3.2 also holds. It is not known
whether the conclusion of the theorem remains valid if we delete the hypothesis
that RG is right inclusive.

4. Rings graded by 0-bisimple inverse semigroups

To conclude, we observe that the previous results can readily be extended to a class
of rings graded by 0-bisimple inverse semigroups.

Two further de­ nitions are required. As usual, for a semigroup S we write `S =
S0’ to indicate that S has a zero and at least one other element. Given a semigroup
S = S0 with zero z and a ring R, we say that R is a restricted S-graded ring if and
only if it is an S-graded ring with the additional property that Rz = 0. A modi­ ed
de­ nition of faithfulness is appropriate in this context. Such a ring R is termed
faithful if and only if, for all x, y 2 Snz, a 2 Rxn0,

xy 6= z ) aRy 6= 0;

yx 6= z ) Rya 6= 0:

Clearly, for an arbitrary semigroup T , any (faithful) T -graded ring may be re-
garded as a (faithful) restricted S-graded ring, where S is the semigroup obtained
by adjoining a zero to T (whether or not one is already present in T ). For a semi-
group S = S0 and a ring A, the contracted semigroup ring R = A0[S] of S over A
is a restricted S-graded ring with Rx = Ax for all non-zero x in S; and R is faithful
if, for example, A is non-trivial with a unity.

By analogy with lemma 2.2 (see also [7, lemma 4.1]), it can be shown that if
S = S0 is an inverse semigroup, R a faithful restricted S-graded ring and A a
non-zero ideal of R, then there exist a non-zero idempotent e 2 S and an element
a 2 A such that

e 2 supp(a) ³ He [ (eSenPe):

An inverse semigroup S is said to be 0-bisimple if S = S0 and, for all non-zero
idempotents e and f in S, there exists x 2 S such that e = xx 1 and f = x 1x.
Every bisimple inverse semigroup with a zero adjoined is 0-bisimple. Examples not
of this type include completely 0-simple inverse semigroups (Brandt semigroups)
with at least two non-zero idempotents [2, ch. III]. Restricted S-graded rings, where
S is a completely 0-simple inverse semigroup, have been studied in [8].
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The proof of lemma 2.3 can be readily adapted to show that if S is a 0-bisimple
inverse semigroup, R a faithful restricted S-graded ring and A a non-zero ideal of
R then, for any non-zero idempotent e in S, there exists a 2 A such that

e 2 supp(a) ³ He [ (eSenPe):

From this result we derive the theorems below. The proofs, which are similar to
those of theorems 3.1 and 3.2, are omitted.

Theorem 4.1. Let S be a 0-bisimple inverse semigroup, let R be a faithful re-
stricted S-graded ring and let RG be prime for some non-zero maximal subgroup G
of S. Then R is prime.

Theorem 4.2. Let S be a 0-bisimple inverse semigroup, let R be a faithful re-
stricted S-graded ring and let RG be right primitive and right inclusive for some
non-zero maximal subgroup G of S. Then R is right primitive.
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