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Abstract. Decaying electron magnetohydrodynamic (EMHD) turbulence in three
dimensions is studied via high-resolution numerical simulations. The resulting en-
ergy spectra asymptotically approach a k−2 law with increasingRB , the ratio of the
nonlinear to linear time scales in the governing equation, consistent with theoretical
predictions. No evidence is found of a dissipative cutoff, consistent with non-local
spectral energy transfer and recent studies of 2D EMHD turbulence. Dissipative
cutoffs found in previous studies are explained as artificial effects of hyperdiffusiv-
ity. In another similarity to 2D EMHD turbulence, relatively stationary structures
are found to develop in time, rather than the variability found in ordinary or MHD
turbulence. Further, cascades of energy in 3D EMHD turbulence are found to be
suppressed in all directions under the influence of a uniform background field.
Energy transfer is further reduced in the direction parallel to the field, displaying
scale-dependent anisotropy. Finally, the governing equation is found to yield a weak
inverse cascade, at least partially transferring magnetic energy from small to large
scales.

1. Introduction

Turbulence plays a crucial role in a wide variety of geophysical and astrophysical
fluid flows. In this paper we present results on a specific variety of plasma turbulence
in which the flow consists entirely of electrons, moving through a static background
of ions. The equation governing the electrons’ self-induced magnetic field is then

∂B
∂t

= −∇ × [J× B] + R−1
B ∇2B, (1.1)

where J = ∇ ×B and RB = σB0/nec, with σ the conductivity, B0 a measure of the
field strength, n the electron number density, e the electron charge and c the speed of
light. See for example Goldreich and Reisenegger (1992), who derived this equation
in the context of magnetic fields in the crusts of neutron stars. More generally
though, it is applicable in many weakly collisional, strongly magnetic plasmas, so
other applications could include the Sun’s corona or the Earth’s magnetosphere.
Turbulence governed by (1.1) is known as electron MHD (EMHD), Hall MHD

or whistler turbulence. Based on its (at least superficial) similarity to the vorticity
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equation governing ordinary, non-magnetic turbulence,

∂w
∂t

= ∇ × [u× w] + Re−1∇2w, (1.2)

where now w = ∇ × u, Goldreich and Reisenegger (1992) argued that (1.1) would
initiate a turbulent cascade to small length scales, thereby accelerating neutron
stars’ magnetic field decay beyond what ohmic decay acting on large length scales
could achieve. They suggested in particular that the turbulent spectrum would scale
as k−2 , with a dissipative cutoff occurring at k ∼ RB .
However, recent work has highlighted the fundamental differences between (1.1)

and (1.2) (Wareing and Hollerbach 2009, henceforth referred to as WH09). In
(1.2) the dissipative term contains more derivatives than the nonlinear term, so
on sufficiently short length scales the dissipative term will always dominate and
hence there is a dissipative cutoff. In contrast, in (1.1) the two terms both contain
two derivatives, so it is conceivable that the nonlinear term will always dominate,
even on arbitrarily short length scales. WH09 found precisely this effect in decaying
two-dimensional (2D) EMHD turbulence.
In this paper we present high-resolution numerical simulations of (1.1) in a

three-dimensional (3D) periodic box geometry, designed specifically to address such
questions as to whether there is a dissipative cutoff or not, and whether the coupling
is local or not. In contrast to previous 3D simulations (Biskamp et al. 1999; Biskamp
and Müller 1999; Cho and Lazarian 2004), we do not employ hyperdiffusivity,
which disrupts the feature that the two terms in (1.1) have the same number of
derivatives, and hence introduces an artificial dissipative cutoff (WH09). These
previous simulations found no difference between 2D and 3D turbulent spectra,
with both having a k−7/3 scaling. In our recent study of the governing equation
in two dimensions with normal diffusivity (WH09), we found no evidence for a
dissipative cutoff, and the turbulent spectrum scaled as k−5/2 , broadly consistent
with previous results. We now consider whether 3D EMHD turbulence displays the
same scaling characteristics. Finally, we also consider the question of whether (1.1)
is capable of yielding an inverse cascade in 3D (we use hyperdiffusivity for this set
of runs).

2. Numerics

We solve (1.1) by treating the z-independent parts of B as before (WH09). For
the z-dependent parts we expand Bx and By in triple Fourier series in x, y and
z, with Bz then given by ∇ · B = 0. Time integration is achieved through a
second-order Runge–Kutta method, with the diffusive term treated exactly. We
employ standard pseudospectral techniques for the evaluation of the nonlinear
terms, with dealiasing according to the 2/3 rule. The code employs the MPI library
(http://www.mcs.anl.gov/mpi/) and the FFTW library (Frigo and Johnson 2005)
to achieve massive parallelisation on a suitable supercomputer. We performed a
variety of runs, typically employing 64 processors, with the highest extending to
k = 170 in Fourier space, corresponding to N = 512 collocation points in real
configuration space. Due to the two derivatives in the nonlinear term, the required
time steps are unfortunately very small, roughly proportional to 1/N 2 . Values as
small as ∼1 × 10−6 were used, requiring O(2 × 105) time steps to reach t = 0.2.
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2.1. Initial conditions

Since our interest is in freely decaying, rather than forced, turbulence, we need
to carefully consider the nature of our chosen initial conditions. We will present
results for three different sets of runs.
First, to study homogeneous forward cascades, we start off with random O(1)

energies in all Fourier modes up to k = (k2
x + k2

y )1/2 = 5, making sure that the
energy is evenly distributed between the three components. After initialisation the
overall amplitude of the field is rescaled to ensure that the rms value of |B| is 1
at t = 0.
Second, to study non-homogeneous forward cascades, we start off with the same

initialisation as above, but now add a uniform field C êx , where C = 1, 2, 4 or 8.
This field is simply added to the Bx component directly, resulting in a suitably
modified equation (1.1).
Third, to explore the possibility of inverse cascades, we return to the C = 0 case

without any large-scale magnetic field and now inject energy into modes in the
range 10 � k � 20. The question then is how much of this initial energy moves to
k < 10, and how much moves to k > 20.
Finally, for all three sets of results, each individual run was repeated with a

number of different random initial conditions, to ensure that the results presented
here are indeed representative.

2.2. Ideal invariants

Equation (1.1) has some useful associated diagnostics, corresponding to quantities
that are conserved in the ideal, R−1

B → 0, limit. Specifically, in three dimensions we
have equations for the energy,

d

dt

1
2

∫
B2 dV = −R−1

B

∫
J2 dV, (2.1)

and the magnetic helicity,

d

dt

1
2

∫
A · B dV = −R−1

B

∫
B · J dV, (2.2)

where A is the vector potential, defined by B = ∇ × A. Note though that in the
presence of a uniform background field, helicity is not even defined (Berger 1997),
let alone conserved.
Whereas in two dimensions, we also had the additional quantity of the mean

squared magnetic potential or anastrophy, this is not conserved in three dimensions.
This quantity is particularly important for the inverse cascade in 2D EMHD, where
such a cascade is thought to be driven by a forward cascade of energy and an
inverse cascade of anastrophy (Shaikh and Zank 2005). It is unclear, then, whether
an inverse cascade will occur in 3D.
In addition to the physical insight that these various integrated quantities yield

into the nature of the Hall nonlinearity, they also offer useful diagnostic checks of
the code. Reassuringly, we found that both of them (except helicity in a uniform
field) were satisfied to within 0.25% or better by all of our runs.
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Figure 1. Energy spectra of homogeneous 3D EMHD turbulence at t = 0.2. On the left are
shown spectra for RB = 10, 30, 100 and 300. On the right, compensated spectra k2Ek for
the same range of RB .

3. Results

3.1. Large-scale initial conditions

A characteristic statistical quantity of a turbulent system is the energy spectrum.
Three-dimensional hydrodynamic turbulence exhibits the spectrum Ek ∝ k−5/3 ,
the famous Kolmogorov law (Kolmogorov 1941). In MHD turbulence, the energy
transfer is altered by the Alfvén effect (Iroshnikov 1964; Kraichnan 1965), leading
to a flatter energy spectrum Ek ∝ k−3/2 . Recent studies of 2D EMHD turbulence
have found, via methods which all employ hyperdiffusivity, a 5/3 Kolmogorov
spectrum for small scales kde > 1, equivalent to k > O(RB ), and a steeper 7/3
spectrum for longer wavelengths (Biskamp et al. 1996, 1999; Cho and Lazarian
2004; Dastgeer et al. 2000; Dastgeer and Zank 2003; Shaikh and Zank 2005). Of the
studies which considered 3D EMHD turbulence, Biskamp et al. (1999) numerically
found a scaling of 7/3 for kde < 1 consistent with a local spectral energy transfer
independent of the linear wave properties. However, the authors of that paper noted
the scaling in 3D was only marginally verified, since the short extent of the inertial
spectral range was dominated by the bottleneck effect, causing local enhancement
of the spectrum above the inertial range power law at the point of transition from
the inertial range to the dissipation range. The more abrupt the transition (or the
higher the degree of hyperdiffusivity), the more pronounced the effect.
In the left-hand plot of Fig. 1, we show the energy spectra of our solutions for

RB = 10, 30, 100 and 300, evolved to a time t = 0.2. The energy spectra have
been stationary since approximately t = 0.16 and time averaging between 0.16
and 0.2 reveals an identical spectrum and no further information. We interpret
this to mean that our simulations are resolved and evolved to a suitable time for
inspection of the now quasi-stationary cascade. It is worth noting at this point
that 3D EMHD turbulence takes a longer time to reach quasi-stationarity than 2D
EMHD turbulence, which achieves such a phase by t ≈ 0.1.
The energy spectra all start out much the same at low k, peak around k = 3

and then lower-RB spectra smoothly drop off with increasing k whilst higher-RB

spectra maintain a linear gradient in the log–log plot. Transfer of energy to higher
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k is then more efficient at higher RB , with RB = 300 having a scaling of ∼ k−5/2 .
The spectra are asymptotically approaching an energy spectrum Ek ∝ k−ν , where
we propose that ν ∼ 2. In the right-hand plot of Fig. 1, we show compensated
energy spectra to show this approach to k2Ek = 1 with increasing RB . Our value
of ν is the same as that predicted by Goldreich and Reisenegger (1992) for 3D
EMHD turbulence. Their prediction was calculated using a phenomenology based
on Kraichnan’s arguments (the whistler effect) and is reproduced in Biskamp et al.
(1996). Biskamp et al. (1996) also considered a theoretical prediction neglecting
the whistler effect and derived a scaling of 7/3. Simulations have shown that the
whistler effect has little effect on the energy spectrum of 2D EMHD turbulence,
but it would seem that it may have a considerable effect on 3D EMHD turbulence.
Regarding the bottleneck effect, we see no evidence for it in the spectra. This

is not a great surprise as we see no sign of a dissipative cutoff, which causes the
effect. By definition, the dissipation scale should occur when the local value of RB

is O(1) in (1.1). It is unclear though when this occurs, since the definition of RB

does not involve length scales. If the coupling is purely local in wavenumber, then
this definition does involve length scales after all, since the B0 that should be used
is the field at that wavenumber only, rather than the total field. That is, according
to the definition of Hollerbach and Rüdiger (2002) where this argument was first
developed, we have

R′
B = RB (B′/B), (3.1)

where the primed quantities are the small-scale local values and the unprimed the
large-scale global values. If we now suppose a k−2 energy spectrum, then B′/B ∼
k−1 and so R′

B is reduced to O(1) when k ∼ RB . So, at RB = 100 we would see
a dissipative cutoff at k ∼ 100, which we do not. It is possible to reconcile the
situation by realising that this argument crucially depends on the coupling being
local in Fourier space: if this does not hold, then R′

B = RB and there is simply no
definite dissipation scale.
In agreement then with our 2D study of EMHD turbulence, the nonlinear term

is able to dominate at all length scales and the coupling is therefore non-local
in Fourier space. Again, hyperdiffusivity has previously masked the effect of the
nonlinear term at high k. It has also introduced the bottleneck effect, which has
disguised the true scaling of the energy spectra. With normal diffusivity, we believe
that we have performed the first true simulations of 3D EMHD turbulence.
In Fourier space, then, EMHD turbulence continues to bear a strong resemblance

to ordinary MHD turbulence. We would like to know if this resemblance carries over
into real configuration space. In Fig. 2, we show slices through the three component
field datacubes at t = 0.1. Across the top row, we show a slice of the Bx field at
x = 0.5 on the left, a slice at y = 0.5 in the middle and a slice at z = 0.5 on
the right. Across the middle row we show the same slices for By and across the
bottom row for Bz . Large numbers of small, independent vortices dominate the
fields, characteristic of fully developed turbulence.
In Fig. 3, we show the same fields at t = 0.2. It is clear that the fields resemble

those at t = 0.1, implying that 3D EMHD turbulence is much more structured
than classical and MHD turbulence, where a fully developed turbulent field would
bear no resemblance to the initial field. This appears to be a unique characteristic
of decaying EMHD turbulence, in both two and three dimensions.
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Figure 2. Plots of the RB = 300 solution in real configuration space at t = 0.1. For full
details of the slices through the datacubes, see the text (a colour version of this figure is
available online at www.journals.cambridge.org/pla).

We would also like to address the energy decay of the field, with particular
respect to any dependency of the decay rate on the value of RB . Biskamp and
Müller (1999) reported that the energy dissipation rate is independent of the value
of the dissipation coefficient, represented by RB here. In contrast, WH09 found
that the energy decay is strongly dependent on the RB parameter, with the decay
rate proportional to R−1

B . We find the same behaviour here, as shown in Fig. 4.

3.2. Large-scale initial conditions in the presence of a background field

Three-dimensional EMHD turbulence, like 2D EMHD and classical and MHD tur-
bulence, is isotropic when allowed to freely decay. In the presence of a background
flow, classical turbulence remains isotropic. Small-scale structures are advected
along by any large-scale flow, whether or not that has a uniform background
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Figure 3. Plots of the RB = 300 solution in real configuration space at t = 0.2. For full
details of the slices through the datacubes, see the text (a colour version of this figure is
available online at www.journals.cambridge.org/pla).

contribution. This effect has been attributed to local coupling in phase space.
Numerical simulations of MHD turbulence have found it to be strongly anisotropic
in the presence of a background field (Shebalin et al. 1983; Oughton et al. 1998).
This has been attributed to the excitation of Alfvén waves which preferentially
propagate parallel to the external magnetic field and hinder the cascade process
perpendicular to the external field.
In 2D EMHD turbulence, recent numerical studies employing hyperdiffusivity

(Dastgeer et al. 2000; Dastgeer and Zank 2003) have revealed anisotropic behaviour
with the cascade strongly inhibited parallel to the background field. This can only
be the result of asymmetry in the nonlinear spectral transfer process relative to the
external magnetic field. In the context of local energy coupling in Fourier space,
mediation by whistler waves has been proposed as the only way this asymmetry
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Figure 4. A plot of energy against time for RB = 10, 30, 100 and 300, increasing from
left to right.

could be achieved (Dastgeer et al. 2000), by the mechanism detailed by Galtier
(2006). Most recently, the numerical study of WH09 has confirmed the anisotropy
of 2D EMHD with normal diffusivity. The spectrum of 2D anisotropic EMHD
turbulence has also been shown to exhibit a linear relationship with an external
magnetic field (Dastgeer and Zank 2003, WH09).
In order to understand how hyperdiffusivity has affected previous studies, we

have introduced a background field into the governing equations as discussed above
and calculated solutions for RB = 100 at a spatial resolution of 2563 points in real
configuration space. We present our results in Fig. 5. From left to right, we show
2D energy spectra for RB = 100 with C = 0, 1, 2, 4 and 8. In the isotropic case
with no background field, i.e. C = 0, energy is evenly distributed between x and y,
as indicated by circular contours. In the case of C = 1 we find that energy transfer
to larger k has been suppressed in the x direction, parallel to the background
field. Three-dimensional decaying EMHD turbulence has become anisotropic in the
presence of a uniform background field with normal diffusivity. The effect becomes
more pronounced for C = 2 and particularly strong for C = 4 and C = 8. It is
at these high values of C that the cascade is almost turned off in the direction
parallel to the field and even strongly suppressed in the perpendicular directions.
In 2D this suppression has been attributed to excitation of whistler waves, which
act to weaken spectral transfer along the direction of propagation (Dastgeer and
Zank 2003). In Fig. 6 we show a slice through the real configuration space field Bx

at z = 0.5. For C = 0, the field is isotropic but, as the value of C is increased,
structures stretch in the x direction corresponding to increasingly inhibited energy
transfer in the x direction but not in y. We find the same for x compared to z. At
C = 8, the structures have remained almost the same as at t = 0, since the cascade
in all directions has been so strongly inhibited.
Cho and Lazarian (2004) performed 3D simulations of EMHD turbulence. They

introduced a uniform background field of strength comparable to that of the fluc-
tuating freely decaying field (i.e. C = 1). The authors employed a hyperdiffusivity
of 3 and found scale-dependent anisotropy. Our simulation at C = 1 supports their
result. Further, our simulations imply that the linear relationship between EMHD
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Figure 5. Two-dimensional Fourier power spectra at t = 0.2 for 3D EMHD turbulence in
the presence of a background field. We show three 2D Fourier power spectra slices of the Bx

datacube, at kx = 1 (top row), ky = 1 (middle row) and kz = 1 (bottom row). Across the
columns we show the power spectra for C = 0, 1, 2, 4 and 8 (a colour version of this figure
is available online at www.journals.cambridge.org/pla).

Figure 6. Slices of real configuration space Bx fields at t = 0.2 for 3D EMHD turbulence
in the presence of a background field. From left to right, we show the fields for C = 0,
1, 2, 4 and 8. In all cases z = 0.5 (a colour version of this figure is available online at
www.journals.cambridge.org/pla).

turbulence and strength of the external magnetic field found by Dastgeer and Zank
(2003) in 2D can be extended to 3D.
Note that (1.1) is scale invariant, i.e. it is possible to apply the equation over the

whole of a system, or just to a small section, with RB unchanged. A very small box
then will see the large-scale field as a background field, and therefore the smallest
scales in the system, for example a neutron star, should be anisotropic.

3.3. Intermediate-scale initial conditions

In 2D classical turbulence, the exchange of energy and enstrophy Ω is coupled in
Fourier space according to

∂E

∂t
= −k2 ∂Ω

∂t
; (3.2)
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hence, energy injected at intermediate scales experiences a transfer to both higher
and lower wavenumbers in order to satisfy this coupling and simultaneously con-
serve energy and enstrophy. This is the inverse cascade of energy to lower k (larger
scales) (Kraichnan 1967). In MHD turbulence, energy and magnetic helicity are
coupled in the same way and an inverse cascade occurs in order to simultaneously
conserve these two quadratic ideal invariants. In driven 2D EMHD turbulence, the
inverse cascade found by Shaikh and Zank (2005) has been proposed to be the result
of simultaneous conservation of energy and mean squared magnetic potential, or
anastrophy. Our recent simulations (WH09) have shown that an inverse cascade
occurs in freely decaying 2D EMHD turbulence. Whilst it has a considerably
different scaling nature to driven 2D EMHD turbulence, we believe that it is also
the result of simultaneous conservation of energy and anastrophy. In 3D, then, the
existence of an inverse cascade is immediately under question, since anastrophy is
no longer conserved. We inject energy over the wavenumber range 10 � k � 20 as
detailed above and evolve the magnetic field to assess what inverse cascade there
is, if any.
In this case, we have found that simulations with normal diffusivity are unable to

produce an inverse cascade. Since the values of RB available to us are considerably
less than RB = 1000, where decaying 2D EMHD turbulence displays an inverse
cascade, this is not a surprising result. For the runs in this section we therefore
introduce a hyperdiffusivity, so that the large scales see a diffusivity equivalent
to RB > 1000, whereas the small scales are much more strongly damped, so that
the computations can be done at all. As noted above, using a hyperdiffusivity
will of course disrupt features like the precise shape of the spectrum at large k,
including the presence or absence of a dissipative cutoff. However, since here we
are interested in the behaviour at more modest k, in particular the possibility of
transferring energy from intermediate to small wavenumbers, these distortions at
large k probably do not have that much effect on the results.
The precise form of the hyperdiffusivity is simply to raise the power of the

diffusion operator,

∂B
∂t

= −∇ × [J× B] − ε(∇2)2B, (3.3)

where ε is the new diffusion coefficient, the equivalent of R−1
B , but only as seen by

the largest scales.
Figure 7 shows spectra at t = 0, 0.01, 0.02, 0.03 and 0.04. The spectra show that

energy is transferred to k < 10 in a very weak inverse cascade. The spectral peak is
slowly shifting to k < 10 but not maintaining the same amplitude. Some energy has
also been transferred to k > 20. In 3D, then, any inverse cascade is considerably
weaker than in 2D, presumably since anastrophy is no longer conserved.

4. Conclusions

We have investigated the nature of decaying 3D EMHD turbulence with normal
diffusivity and compared it with classical and MHD turbulence and studies of 2D
and 3D EMHD with hyperdiffusivity. We have found that 3D EMHD turbulence
experiences an isotropic forward cascade of energy to higher wavenumbers (smaller
spatial scales) asymptotically approaching Ek ∝ k−2 with increasing RB (inversely
proportional to a dissipation coefficient). This is in agreement with the original
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Figure 7. Time evolution of the Fourier power spectra for ε = 2.5 × 10−6 . Shown are power
spectra at t = 0, 0.01, 0.02, 0.03 and 0.04. No further inverse cascade develops after t = 0.04.

theoretical prediction of Goldreich and Reisenegger (1992), suggesting that freely
decaying 3D EMHD turbulence is mediated by whistler waves. Unlike the theoret-
ical prediction, we have found that there is no dissipative cutoff at the predicted
wavenumber k ∼ RB and argue that this is consistent with non-local coupling
in Fourier space, the most important result of this paper and consistent with our
recent results for 2D EMHD turbulence. Hyperdiffusivity has previously clouded
this issue and introduced an artificial cutoff and the unwanted bottleneck effect.
We have also found that fully developed 3D EMHD turbulence appears to be
strongly structured, retaining a similarity to the initial field at late times, very
much unlike classical or MHD turbulence.
Three-dimensional EMHD turbulence with normal diffusivity has been found

to display scale-dependent anisotropy in the presence of a uniform background
field, in agreement with previous studies employing hyperdiffusivity. Our results
support previous studies which found that the strength of the anisotropy is linearly
related to the external field strength. Further, strong fields effectively halt the
cascade in the parallel direction and considerably inhibit the cascade in all other
directions.
Finally, we have discovered that decaying EMHD turbulence yields a weak in-

verse cascade, at least partially transferring magnetic energy from intermediate to
large length scales. The possibility of inverse cascades may have implications for
the magnetic fields of neutron stars, where the proto-neutron star that emerges
from a supernova explosion may well have a primarily small-scale, disordered field.
A Hall-induced inverse cascade may then be a mechanism whereby it acquires
a large-scale, ordered field. We note though that the electron number density n is
strongly depth dependent in neutron stars, which turns out to interact with the Hall
effect in a highly non-trivial way (Hollerbach and Rüdiger 2004; Vainshtein et al.
2000). It is likely therefore that both forward and inverse cascades will be rather
different in real neutron stars than they are in isotropic, Cartesian box models such
as here. Future work will consider EMHD in more realistic, stratified spherical-shell
models.
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