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In Balaji and Mahmoud [1], the authors introduced a distance-based Gini index for rooted
trees. In this paper, we introduce a degree-based Gini index (or just simply degree Gini
index) for graphs. The latter index is a topological measure on a graph capturing the
proximity to regular graphs. When applied across the random members of a class of
graphs, we can identify an average measure of regularity for the class. Whence, we can
compare the classes of graphs from the vantage point of closeness to regularity.

We develop a simplified computational formula for the degree Gini index and study
its extreme values. We show that the degree Gini index falls in the interval [0, 1). The main
focus in our study is the degree Gini index for the class of binary trees. Via a left-packing
transformation, we show that, for an arbitrary sequence of binary trees, the Gini index
has inferior and superior limits in the interval [0, 1/4]. We also show, via the degree Gini
index, that uniform rooted binary trees are more regular than binary search trees grown
from random permutations.

Keywords: chemical tree, combinatorial probability, Gini index, random tree, topological index,
wiener index

1. INTRODUCTION

A topological index of a graph quantifies it by turning its structure into a number. The
idea behind capturing structures in numbers is to be able to compare graphs according to
certain criteria. Particular values of a topological index may be desirable. For example, the
height of a rooted tree, that is, the length of the longest root-to-node path, is a topological
index. When the trees are used for data storage, among trees storing the same amount of
data, trees of smaller height are preferred for fast data retrieval.

No single topological index adequately describes all the facets of a graph. That is
why there is always a need to introduce new indices, hoping that combinations of these
indices portray a more accurate picture. Examples for indices that have been introduced
for trees include a (distance-based) Gini index [1], Zagreb index [7], Randič index [8], and
Wiener index [17], among others. Topological indices of more general graphs appear in [6],
which discusses the clustering coefficient of scale-free random graphs, with machine learning
applications in [14]. The source [22] deals with the total weight of a random Apollonian
network. These are only instances, to name a few in a huge literature on a variety of
different families of graphs and indices therein. Many more molecular indices are compiled
in [20].

c© Cambridge University Press 2019 0269-9648/19 $25.00 157

https://doi.org/10.1017/S0269964819000044 Published online by Cambridge University Press

file:carlydomicolo@gwu.edu
file:hosam@gwu.edu
https://doi.org/10.1017/S0269964819000044


158 C. Domicolo and H. Mahmoud

Figure 1. The Gini index as it relates to Lornez curve.

In [1], the authors introduced a distance-based Gini index for rooted trees. The quest
for more topological indices is our motivation to propose one more degree-based Gini index.
The distance-based Gini index can be a measure to capture the balance within a tree
and compare the overall balance of a random class of trees. The degree-based Gini index
we propose in this paper is for graphs, not only trees, and serves a similar purpose, but
characterizes a different property, namely how close a graph is to “regularity.”1

2. OVERVIEW OF THE STANDARD GINI INDEX

The Gini index (or coefficient) is a measure of inequality of a distribution, ranging on a scale
of 0–1 and relying on the Lorenz curve. The Lorenz curve is an economics plot that rep-
resents income or wealth inequality as the cumulative distribution of the income or wealth
(or some other economics criterion of interest) of a nation. Viewed as a function F (x), for
x ∈ [0, 1], the Lorenz curve is the proportion F (x) in the population in a nation of individ-
uals possessing proportion at most x of the total wealth of that nation. As a cumulative
distribution function, it is graphed as the cumulative percentage of the total income of a
nation against the cumulative percentage of the population of the nation possessing this
percentage of the wealth, on an increasing scale; see Figure 1. The Gini index is a ratio,
with the numerator measuring the area between the Lorenz curve, the actual distribution of
wealth in a nation, and the uniform distribution (the 45◦ line), considered in socialist eco-
nomics as a perfect distribution (all individuals have the same share of the wealth); see the
shaded area in Figure 1. The denominator is the area under the uniform distribution line.

Corrado Gini presented this index in 1912 in his book “Variabilità e Mutabilità” [2,11].
Organizations such as the World Bank and the United Nations use the Gini index to study
countries and determine the amount of aid to provide to these areas, which can be found
in the records on their websites at

https://data.worldbank.org/indicator/SI.POV.GINI
http://hdr.undp.org/en/content/income-gini-coefficient

1 A graph is said to be d-regular, if all its vertices are of degree d.
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A statistical estimator of Gini index is defined as follows [10]. Suppose X1, . . . , Xn are
the observations of a sample of size n ≥ 1 independent, identically distributed (i.i.d.) random
variables from a common distribution of known mean μ > 0. The Gini index is estimated by

Gn =

∑
1≤i≤j≤n |Xj − Xi|

n2μ
. (1)

If μ is not known, it is replaced by an estimator of it.

3. A DEGREE-BASED GINI INDEX FOR GRAPHS

Suppose we have a graph H = (V,E), where V and E are its sets of vertices and edges,
respectively. In this paper, we use |E| to indicate the cardinality of the set |E|. Let the
vertices be arbitrarily labeled with distinct elements of the set {1, 2, . . . , |V |}. Let Dv(H)
be the degree of node v ∈ V in H. Often, we shall refer to |V | as n. Toward simpler notation,
we shall occasionally refer to Dv(H) as Dv.

3.1. A degree-based Gini index as a toplogical measure of a graph

We define a degree-based Gini index as a toplogical measure of a graph. Given a nonempty
graph H = (V,E), with |V | = n vertices, let D∗(H) be the degree of a random (uniformly
chosen) node in it. Let the average node degree in H be E[D∗(H)]. That is, we have

E[D∗(H)] =
1
n

n∑
i=1

Di(H).

We now define the degree-based Gini index of H as

G(H) =

∑
1≤i<j≤n |Dj(H) − Di(H)|

n2 E[D∗(H)]
. (2)

In what follows, we simply call this measure the degree Gini index of the graph. We
arrived at this definition by replacing Xi in (1) by Di and replacing μ by an average node
degree in the graph.

Example 3.1: Consider the graph H of Figure 2. In this graph, we have

D1 = 2, D2 = 2, D3 = 3, D4 = 7.

The average degree in this graph is

E[D∗(H)] =
2 + 2 + 3 + 7

4
=

7
2
,

yielding the degree Gini index

G(H) =
|2 − 2| + |3 − 2| + |7 − 2| + |3 − 2| + |7 − 2| + |7 − 3|

42 × 7
2

=
16
56

≈ 0.2857.
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Figure 2. A graph with degree Gini index 16/56.

3.2. A degree-based Gini index for a random class of graphs

Suppose we have a class H of random graphs.2 We define a relative degree-based Gini index
for a random graph H ∈ H. The relative degree Gini index of H ∈ H is intended to mimic
the standard Gini index. It is like the topological degree Gini index, but measures the sum
of the absolute degree differences in H against an average size and an average node degree
in the class, instead of comparing these differences with the parameters of H. This relative
measure is achieved by replacing the Xi’s in (1) with Di(H)’s, the node degrees of H. In
general, the degrees in a random class are not i.i.d. random variables. Therefore, we need to
adapt the definition to work for random graphs. There is no general n if the class considered
comprises graphs of different sizes. However, we have an average size that we can use as a
replacement for n. We replace n with E|V |.

We need a replacement for μ, too, as each graph H ∈ H has its own average node
degree. There is an overall average degree over the entire class, which we propose for the
replacement. That is, we consider the degree of a randomly chosen node in a random graph
in the class. There is double randomness that can be viewed as a hierarchical model: First
generate a graph H from the class H, according to its relative frequency (probability) in H,
then choose a node of H uniformly at random. Let D∗

H be the degree of a randomly chosen
node in a random graph H according to the hierarchical model.

We can now define the relative degree Gini index of the graph H = (V,E) within the
class H to be

GH(H) =

∑
1≤i≤j≤|V | |Dj(H) − Di(H)|

E2|V |E[D∗
H]

.

We take G∗
H = E[GH(H)] as the degree-based Gini index of the class H.

Note that if the class H has only one graph in it (occurring with probability 1), the
degree Gini index for the class is then reduced to the topological degree Gini index of that
one graph. We illustrate these concepts by an example.

Example 3.2: Consider a family H of the two random graphs in Figure 3, with corresponding
probabilities 1/3 for the graph on the left, and 2/3 for the graph on the right. The graph
on the left is that of Example 3.1.

2 One can define many probability measures on a measurable space. In the sequel, we specify the measure
as needed.
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Figure 3. A class of two random graphs. The top row of numbers gives the probabilities
of these graphs.

The graph on the right has average degree 8/3. The average degree across this class of
graphs is

E[D∗
H] =

7
2
× 1

3
+

8
3
× 2

3
=

53
18

.

The average size of a graph in this class is

E|V | = 4 × 1
3

+ 3 × 2
3

=
10
3

.

The graph on the left has relative degree Gini index 16/(10/3)2 × 53/18 = 648/1325, while
that of the one on the right has relative index 2/(10/3)2 × 53/18 = 81/1325. The degree
Gini index of the class is

G∗
H = E[GH] =

16 × 1/3 + 2 × 2/3
(10/3)2 × 53/18

=
54
265

≈ 0.20377.

Comparing the degree Gini index of the two classes in Examples 3.1 and 3.2, we find
that the second class is closer to regularity than the first. The reason is that when we created
the random class in Example 3.2, we added to the graph in Example 3.1 a graph that is
closer to regularity and assigned to it a higher probability.

3.3. A simplified computational formula

We shall find it convenient in many cases to label the nodes distinctly with elements of the set
{1, . . . , |V |} in a manner such that Di(H) appear in non-decreasing order, for i = 1, . . . , |V |.
For a graph of size |V | = n, the raw form of the index in (2) requires the computation of(
n
2

)
differences in O(n2) time, and the calculation in the denominator requires only Θ(n)

time,3 with an overall O(n2) computing cost.
By the convention of labeling the nodes in nondecreasing order according to their

degrees, we have

D1 ≤ D2 ≤ D3 ≤ · · · ≤ Dn;

the nodes in the graphs of Figure 2 are labeled in this canonical order. This yields a simplified
degree Gini index formula, as in Thon’s axiomatization of the standard Gini index [19].

3 A function f(n) is said to be Θ(g(n), if there exist two positive real constants c1 and c2 and a positive
integer n0, such that c1|g(n)| ≤ |f(n)| ≤ c2|g(n)|, for all n ≥ n0.
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Lemma 3.1: For a graph H of size n with nodes canonically labeled 1, 2, . . . , n and node
degrees Di, for i = 1, 2, . . . , n, the degree Gini index is

G(H) =
∑n

i=1(2i − n − 1)Di(H)
n

∑n
i=1 Di(H)

.

Proof: In view of the canonical labeling, we can remove the unwieldy absolute value signs,
by taking the differences Dj − Di, with j > i. The numerator becomes

∑
1≤i≤j≤n

|Dj − Di| =
∑

1≤i≤j≤n

(Dj − Di)

=
n∑

j=1

j∑
i=1

Dj −
n∑

i=1

n∑
j=i

Di

=
n∑

j=1

jDj −
n∑

i=1

(n − i + 1)Di

=
n∑

i=1

(2i − n − 1)Di.

It follows that

G(H) =
∑n

i=1(2i − n − 1)Di(H)
n2

(
1
n

∑n
i=1 Di(H)

) ,

which simplifies to the stated formula. �

By Lemma 3.1, we have an expression for the degree Gini index computable in O(n)
time.

4. EXTREMAL DEGREE GINI VALUES

The standard Gini index falls in the interval [0,1]. The extremes are attainable. Suppose we
have a population of size n ≥ 1. The smallest index value 0 corresponds to a population of
equal attributes (in the context of economics, all members of the population have the same
income, a totally uniform society, ideal socialism). The largest index value 1 corresponds to
a population in which one person has all the wealth of the nation, while all others possess
nothing, an absolute oligarchy. The degree Gini index has a similar range, as we demonstrate
next.

Theorem 4.1: Let Hn be a graph of size n ≥ 1. We then have

0 ≤ G(Hn) ≤ 1 − 1
n

,

and the bounds are attainable.
Letting H be the class of all graphs of size n ≥ 1, and H̃ be a graph in the class, we

have

0 ≤ G(H̃) < 1.
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Proof: Within the class of graphs of size n, any regular graph has degree Gini index 0,
establishing an attainable lower bound.

On the other hand, the computational formula in Lemma 3.1 provides us with an upper
bound. Let Hn be a graph of size n. We then have

G(Hn) =
∑n

i=1(2i − n − 1)Di(Hn)
n

∑n
i=1 Di(Hn)

≤
∑n

i=1(2n − n − 1)Di(Hn)
n

∑n
i=1 Di(Hn)

= 1 − 1
n

. (3)

A quick computation shows that the upper bound 1 − 1/n (for graphs of size n) is
attained by a graph of size n, with n − 1 isolated nodes (of degree 0 each), and one node
with at least one loop on it.4

We see from (3) that the degree Gini index of any graph falls in the interval [0, 1), and
there exist graphs of degree Gini index arbitrarily close to 1. �

5. BINARY TREES

As an illustration of the utility of the degree Gini index, we use it to compare two classes of
binary trees. A binary tree is a structure of a finite number of nodes and edges. One special
node is recognized as the root. The tree is either empty or has nodes, each having at most
two children.

In a binary tree, level � can hold at most 2� nodes. We say level � is full, if the tree has
all 2� nodes on level �. The tree is said to be complete, if all levels are full, except possibly
the highest. Otherwise, the tree is said to be incomplete. Note that level � cannot be full,
unless all the lower levels (levels 0, 1, . . . , � − 1) are full, too.

5.1. Intensity of left packing in a complete binary tree

The arrangement of the nodes on the highest level of a complete tree plays a role in deter-
mining extremal degree Gini index values. We introduce the concept of the intensity of left
packing to help us navigate through some proofs.

Let hn be the height of a complete binary tree of size n, and xn be the number of leaves
on the highest level. Number the 2hn possible insertion positions on the highest level with
{1, 2, . . . , 2hn} from right to left. We can now describe the arrangement of the positions of
the xn nodes (from right to left on level hn) with a sequence of increasing numbers from the
set {1, 2, . . . , 2hn} specifying the positions of the xn nodes; we call that descriptor the left-
packing intensity of the complete tree. When more of the xn nodes appear further to the left,
we consider this more left packing. So, left packing can be described by viewing the intensity
of left packing of the xn nodes on level hn lexicographically; the higher (lexicographically)
the intensity, the larger the left packing we have. For example, in a complete tree of size 10,
we have h10 = 3, and three nodes appear on level 3 (i.e., x10 = 3). If they appear in rightmost
positions, the left-packing intensity is (3, 2, 1), and if they appear in leftmost positions, the
left-packing intensity is (8, 7, 6).

4 In a graph (V, E), an edge is called a loop, if its two end vertices are the same.
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Figure 4. (a) A complete binary tree; (b) Its left-packed counterpart.

We call a complete binary tree leftmost packed, when all the leaves on the highest
level appear at the leftmost positions, that is, when the tree has the highest left-packing
intensity–the tuple (2hn , 2hn − 1, . . . , 2hn − xn + 1). Figure 4 shows a complete binary tree
(a) with left-packing intensity (8, 4, 2) and a leftmost-packed complete binary tree (b) of
the same size with left-packing intensity (8, 7, 6).

5.2. Gini index of binary trees

Suppose Tn is a binary tree on n nodes that has n1 nodes of degree 1 (i.e., leaves), n2 nodes
of degree 2, and n3 nodes of degree 3, with n1 + n2 + n3 = n. The degree Gini index of Tn

is

G(Tn) =
n1n2 + n2n3 + 2n1n3

n2 × (n1 + 2n2 + 3n3)/n
. (4)

Lemma 5.1: The leftmost-packed complete binary tree has Gini index that is at least that of
any other complete binary tree of the same size.

Proof: Let Tn be a complete binary tree with ni nodes of degree i, for i = 1, 2, 3. Suppose
that the leaves at the highest level are not leftmost packed. There is at least one node x
on the highest level with a “gap” to its left, that is, there is a node v on the penultimate
level to the left of x with degree 1 or 2 with a vacant insertion position under it. Depending
on the degree of v, we move a node or two on the highest level to the left to be a child or
children of v.

Let y be the parent of x in Tn. Suppose the degrees of v and y are respectively Dv ∈
{1, 2} and Dy ∈ {2, 3}. As we shall see, the same or higher left-packing intensity will be
obtained depending on the pair (Dv,Dy) in Tn. Let us call the new complete tree T ′

n.
Suppose T ′

n has n′
i nodes of degree i, for i = 1, 2, 3.

In the two cases when the pair (Dv,Dy) is (1, 2) or (1, 3), we transfer all the children
(one or two) of y in Tn to become children of v in T ′

n. In these two cases the transformation
from Tn into T ′

n does not change the node counts, and we have n′
i = ni nodes of degree i,

for i = 1, 2, 3. Thus, the trees Tn and T ′
n have the same degree Gini index.

When the degree pair (Dv,Dy) is (2, 3), the case is similar, we transfer only x to become
a second child of v, inducing the same node counts n′

i = ni nodes of degree i, for i = 1, 2, 3,
and, the trees Tn and T ′

n have the same degree Gini index.
Next, consider the only remaining case, when (Dv,Dy) = (2, 2). Note that n2 ≥ 2. The

node y has degree 2 in Tn and is now only a leaf of degree 1 in T ′
n, inducing the change

n′
1 = n1 + 1. Two nodes of degree 2 in Tn are now of different degrees, and n′

2 = n2 − 2,
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n′
3 = n3 + 1. We compute

G(T ′
n) =

n′
1n

′
2 + n′

2n
′
3 + 2n′

1n
′
3

n(n′
1 + 2n′

2 + 3n′
3)

=
(n1 + 1)(n2 − 2) + (n2 − 2)(n3 + 1) + 2(n1 + 1)(n3 + 1)

n((n1 + 1) + 2(n2 − 2) + 3(n3 + 1))

=
(n1n2 + n2n3 + 2n1n3) + 2(n2 − 1)

n(n1 + 2n2 + 3n3)

= G(Tn) +
2(n2 − 1)

n(n1 + 2n2 + 3n3)

> G(Tn).

In all four possible pair degree cases of (Dv,Dy), we have a possible transformation from a
complete binary tree Tn into a complete binary tree T ′

n with a higher left-packing intensity
and a degree Gini index for T ′

n that is at least as large as that of Tn.
If T ′

n is not the leftmost-packed tree, perform another similar transformation on T ′
n to

obtain complete binary trees T ′′
n of higher left-packing intensity and of the same or higher

degree Gini index. Keep making these transformations until it is no longer possible. At this
point, the complete tree has �xn/2� nodes at positions 2hn , . . . , 2hn − 2�xn/2� + 1, and if
xn is odd, one additional node appears at either position 2hn − xn + 1 or 2hn − xn. If the
position of that lone node is 2hn − xn, the node is a right child of its parent; we make it a
left child. We have reached the leftmost-packed tree and left-packing moves are no longer
possible. This leftmost-packed tree has the highest Gini index among all trees of the same
size. �

Theorem 5.1: Within the class of binary trees of size n, the tree with the least degree
Gini index is a path5 and the tree with the largest degree Gini index is the leftmost-packed
complete tree.

Proof: Suppose Tn is a binary tree of size n, with a node v of degree 3 in it. Cut the edge
leading to the right child r of v and move the entire subtree rooted at r to be a subtree of
one of the leaves, say x, of Tn.6 This transformation produces a binary tree T ′

n. Figure 5
shows the transformation from Tn to a tree T ′

n with a lower degree Gini index. A second
transformation on T ′

n produces T ′′
n , which is a path.

We next show that G(Tn) > G(T ′
n). All the nodes of Tn preserve their degrees in T ′

n,
except v and x: The degree of v is reduced by 1; that of x is increased by 1. The new tree
T ′

n thus has n′
1 = n1 − 1 nodes of degree 1, n′

2 = n2 + 2 nodes of degree 2, and n′
3 = n3 − 1

nodes of degree 3. Using (4), we find the new degree Gini index to be

G(T ′
n) =

n′
1n

′
2 + n′

2n
′
3 + 2n′

1n
′
3

n(n′
1 + 2n′

2 + 3n′
3)

=
(n1 − 1)(n2 + 2) + (n2 + 2)(n3 − 1) + 2(n1 − 1)(n3 − 1)

n((n1 − 1) + 2(n2 + 2) + 3(n3 − 1))

=
(n1n2 + n2n3 + 2n1n3) − 2(n2 + 1)

n(n1 + 2n2 + 3n3)

5 In this context, we mean when the tree is viewed as unrooted, it is a path.
6 It does not matter whether we make the moved subtree a left or a right subtree of x.
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Figure 5. Transformations that lower the degree Gini index.

= G(Tn) − 2(n2 + 1)
n(n1 + 2n2 + 3n3)

< G(Tn).

The degree Gini index is reduced by the transformation of Tn into T ′
n. If T ′

n still has
nodes of degree 3, we transform it in the same way to get yet another tree with lower degree
Gini index. We keep going through a series of transformations, each lowering the degree
Gini index, till it is no longer possible, that is, when there are no nodes left of degree 3.
The only possible such tree is a binary tree in the form of a path.

At the other end of the extreme, we obtain trees with higher degree Gini index by
compressing them via an inverse transformation: If there is any internal node with degree
2, we remove (one of) the highest leaves and adjoin it as a child of that node, producing a
tree of a higher degree Gini index. We continue these transformations until it is no longer
possible to transfer nodes to lower levels. The resulting tree is complete. We then go through
a series of left-packing moves obtaining trees of the same or higher Gini index. When it is no
longer possible to proceed with left packing, we have a leftmost-packed tree of the highest
Gini index among all trees of size n. �

Theorem 5.2: Let {Tn}∞n=1 be a sequence of binary trees, and Tn has n vertices. We then
have

0 ≤ lim inf
n→∞ G(Tn) ≤ lim sup

n→∞
G(Tn) ≤ 1

4
,

and the bounds are attainable by certain such sequences.

Proof: By Theorem 5.1, a path on n nodes, Pn, is a binary graph with the least possible
degree Gini index value among all trees of size n. Such a path has degree Gini value

G(Pn) =
2(n − 2)

n(2 + 2(n − 2))
=

n − 2
n(n − 1)

→ 0, as n → ∞.

The degree Gini index of leftmost-packed complete trees of size 1 and 2 is 0.
To compute the highest degree Gini index for trees of size n ≥ 3, we need to dissect the

leftmost-packed complete binary tree on n nodes. Assume n ≥ 3. The degree Gini index of
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such a leftmost-packed complete binary tree Cn, can be computed from some basic elements
in the tree. Let xn be the number of nodes at the highest level of Cn. If xn is even, all the
parents of these nodes on the highest level are of degree 3, otherwise, one of them is of
degree 2. Let In be an indicator that assumes the value 1 if xn is odd, otherwise the
indicator is 0. The only other node of degree 2 is the root. We thus have

n2 = 1 + In.

It is well known that a complete binary tree on n nodes has height hn = �log2 n�;
see [13], p. 400. There are hn − 1 full levels containing 1 + 2 + · · · + 2hn−1 = 2hn − 1 nodes.
Therefore, we have

xn = n − 2hn + 1.

Each of the nodes on levels 1, 2, . . . , hn−2, has degree 3, and only �xn/2� nodes on level
hn − 1 are of degree 3, too, yielding the count

n3 = 2 + 22 + · · · + 2hn−2 +
⌊xn

2

⌋
= 2hn−1 − 2 +

⌊xn

2

⌋

= 2	log2 n
−1 − 2 +
⌊

n − 2	log2 n
 + 1
2

⌋
.

The degree Gini index of the complete tree on n nodes can now be computed via the formula

G(Cn) =
n1n2 + n2n3 + 2n3n1

n(n1 + 2n2 + 3n3)
.

To assess this degree Gini index, we note that the denominator is of the order Θ(n), and

n2 = O(1), n3 =
n

2
+ O(1), n1 = n − n2 − n3 =

n

2
+ O(1).

So, we have

G(Cn) =
n1n2

n(n1 + 2n2 + 3n3)
+

n2n3

n(n1 + 2n2 + 3n3)
+

2n3n1

n(n1 + 2n2 + 3n3)

= O

(
1
n

)
+ O

(
1
n

)
+

2(n/2 + O(1))2

n((n/2 + O(1)) + O(1) + 3(n/2 + O(1)))

→ 1
4
, as n → ∞.

The claimed attainability has been established.
For any general binary tree Tn, Theorem 5.1 tells us that

G(Pn) ≤ G(Tn) ≤ G(Cn).

The stated bounds follow. �

Remark 5.1: Note that the remainder O(1) functions are oscillating, creating rather turbu-
lent but damped oscillations in the degree Gini index of leftmost-packed complete binary
trees. The oscillations are pronounced for small n, but die out for large n. Figure 6 shows
the fluctuations in the Gini index for the leftmost-packed complete binary trees of sizes
30, 31, . . . , 50. The plot indicates that the limit is approached from above.
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Figure 6. Oscillations in the Gini index of leftmost-packed complete binary trees.

6. COMPARING THE REGULARITY OF TWO CLASSES OF BINARY TREES

Many probability measures can be assigned to the space of binary trees of size n. Two
popular measures are the uniform and the one induced by random permutations, giving rise
to binary search trees.

6.1. Uniform binary trees

Under a uniform model, all binary trees of order n are taken to be equally likely. The model
is sometimes called Catalan trees, and is deemed relevant to compilers. It is sometimes
thought of as the tree model representing the parsing of random arithmetic expressions
that appear in computer algebra systems [12].

For i = 1, 2, 3, let Ni be the number of nodes of degree i in a uniformly random
binary tree Tn. These numbers are random variables, dependent (of course) in view of the
constraint

N1 + N2 + N3 = n.

The components of the row vector (N1, N2, N3) have a known joint exact distribution;
see [15] and the more explicit results in[18]. The source [15] gives a multivariate normal
limit distribution and weak limit laws. Pertinent to the current investigation is the weak
laws

N1

n

P−→ 1
4
,

N2

n

P−→ 1
2
,

N3

n

P−→ 1
4
.

https://doi.org/10.1017/S0269964819000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000044


DEGREE-BASED GINI INDEX FOR GRAPHS 169

Figure 7. Binary search trees of order 3 arising from permutations of {1, 2, 3}. Below each
tree are the permutations associated with it, and above each is its probability.

We can utilize this in the definition of the relative degree Gini index of a random tree Tn

in the class Bn of uniform binary trees, and obtain

GBn
(Tn) =

N1N2 + N2N3 + 2N1N3

n(N1 + 2N2 + 3N3)

=
N1/n × N2/n + N2/n × N3/n + 2N3/n × N1/n

N1/n + 2N2/n + 3N3/n

P−→ 1/4 × 1/2 + 1/2 × 1/4 + 2 × 1/4 × 1/4
1/4 + 2 × 1/2 + 3 × 1/4

=
3
16

.

With the degree Gini index being bounded by 1, this convergence in probability is reflected
in convergence on average. This yields the degree Gini index for the class of uniform binary
search trees of size n as

G∗
Bn

= E[GBn
] → 3

16
= 0.1875.

6.2. Binary search trees

A model of relevance to the use of binary trees as data storage devices is their growth from a
random permutation. Suppose K1, . . . ,Kn are keys sampled from a continuous distribution.
Their ranks then almost surely are a random permutation of {1, . . . , n}. A binary tree is
created for the storage of these keys in the following way. Initially, the key K1 is retained in
a root node, with empty left and right subtrees. When a subsequent key appears, it is guided
to the left or right subtree according to whether it is less than K1 or is at least as large.
With the ranks being the only facet of the data that drives the shape of the resulting tree
and being almost surely a random permutation of {1, . . . , n}, the process can be assimilated
by insertions of the n distinct keys in a random permutation of {1, . . . , n}. The resulting
tree is called a binary search tree (BST). Figure 7 shows the five BST’s of size 3 and the
corresponding permutations. The top row of numbers shows the (nonuniform) probabilities
of these trees.

Let N ′
1 be the number of nodes of degree 1 (i.e., leaves) in a BST Tn on n vertices, N ′

2

be the number of nodes of degree 2 in it, and N ′
3 be the number of nodes of degree 3 in it.
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These random variables follow the constraint

N ′
1 + N ′

2 + N ′
3 = n.

The three components of the row vector (N ′
1, N

′
2, N

′
3) asymptotically have a multivariate

normal distribution, as shown in [4]; see also Section 8 of [16]. These components follow a
weak law:

N ′
1

n

P−→ 1
3
,

N ′
2

n

P−→ 1
3
,

N ′
3

n

P−→ 1
3
.

Using these weak laws in the relative degree Gini index of a random tree Tn in the class
BST (n) of binary search trees of size n, we obtain

GBST (n)(Tn) =
N ′

1N
′
2 + N ′

2N
′
3 + 2N ′

1N
′
3

n(N ′
1 + 2N ′

2 + 3N ′
3)

=
N ′

1/n × N ′
2/n + N ′

2/n × N ′
3/n + 2N ′

3/n × N ′
1/n

N ′
1/n + 2N ′

2/n + 3N ′
3/n

P−→ 1/3 × 1/3 + 1/3 × 1/3 + 2 × 1/3 × 1/3
1/3 + 2 × 1/3 + 3 × 1/3

=
2
9
.

However, the Gini index is bounded by 1. Under this condition, convergence in probability
implies convergence in L1, yielding the degree Gini index for the class of binary search trees:

G∗
BST (n) = E[GB(n)] → 2

9
≈ 0.2222.

Remark 6.1: Tall trees must have long paths, with a dominant number of nodes of degree
2, which increases the regularity, ultimately impacting a reduction in the degree Gini index.
This is manifested in the contrast between the tall and scrawny uniform binary trees when
compared with the short and shrubby binary search trees.

The class Bn of uniform binary trees has degree Gini index 0.1875, whereas that of
the class BST (n) is 0.2222 . . .. The class Bn is more regular than the class BST (n). This
is consistent with the fact that the average height of the former is about 2

√
πn (see [9]),

which is higher than the that of the latter, which is about 4.31107 ln n (see [3,5]). Thus,
the uniform random binary tree is more “spread out” than the random BST of the same
size, rendering the uniform random binary tree closer to a path, and the BST closer to a
complete tree, and the effect of Theorem 5.1 kicks in.
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