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Fulling Non-uniqueness and the Unruh
Effect: A Primer on Some Aspects of

Quantum Field Theory*

Aristidis Arageorgis, John Earman, Laura Ruetsche†‡

We discuss the intertwined topics of Fulling non-uniqueness and the Unruh effect. The
Fulling quantization, which is in some sense the natural one for an observer uniformly
accelerated through Minkowski spacetime to adopt, is often heralded as a quantization
of the Klein-Gordon field which is both physically relevant and unitarily inequivalent
to the standard Minkowski quantization. We argue that the Fulling and Minkowski
quantizations do not constitute a satisfactory example of physically relevant, unitarily
inequivalent quantizations, and indicate what it would take to settle the open question
of whether a satisfactory example exists. A popular gloss on the Unruh effect has it
that an observer uniformly accelerated through the Minkowski vacuum experiences a
thermal flux of Rindler quanta. Taking the Unruh effect, so glossed, to establish that
the notion of particle must be relativized to a reference frame, some would use it to
demote the particle concept from fundamental status. We explain why technical results
do not support the popular gloss and why the attempted demotion of the particle con-
cept is both unsuccessful and unnecessary. Fulling non-uniqueness and the Unruh effect
merit attention despite these negative verdicts because they provide excellent vehicles
for illustrating key concepts of quantum field theory and for probing foundational
issues of considerable philosophical interest.
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1. Introduction. We propose here to explicate and assess the intertwined
topics of Fulling non-uniqueness and the Unruh effect. There are good
reasons to do so. The topics illustrate some important and problematic
features of relativistic quantum field theory (QFT) on flat spacetime, fea-
tures which are not present in ordinary quantum mechanics (QM) of sys-
tems with finitely many degrees of freedom. They lay the foundation for
understanding features of QFT on curved spacetime—in particular, the
Hawking effect and black hole evaporation. And they have been supposed
to have negative implications for the particle concept.

QFT is also known as particle physics. Yet a variety of considerations
suggest that the particle notion is not fundamental to QFT. One assault
on the particle notion musters what’s known as the Unruh effect. In this
effect, or so the story goes, an observer uniformly accelerated through
Minkowski spacetime in its quantum field theoretic vacuum state—a state
in which there are no particles to detect, a state in which inertial observers
detect no particles—nevertheless detects a thermal flux of particles! Hold-
ing that “we can’t talk meaningfully about whether such-and-such a state
contains particles except in the context of a specified particle detector mea-
surement” (1984, 69), Davies invokes the Unruh effect to claim that there
is no context-independent answer to questions about the particle content
of quantum field theoretic states. The Unruh effect is supposed to sanction
this claim by showing that detectors in different states of motion give
different answers, among which there is nothing to choose. Davies’ pro-
vocative conclusion is that “particles do not exist.”

Wald also appeals to the democracy of observers who parse particle
contents differently:

How can an accelerating observer assert that “particles” are present
. . . when any inertial observer would assert that, “in reality”, all of
Minkowski spacetime is devoid of particles? Which of these two ob-
servers is “correct” in his assertion? The answer is, of course, that
both observers are correct. . . . (1994, 116)

Though less dramatically stated than Davies’ moral, Wald’s moral also
demotes the particle concept.

It simply happens that the natural notion of “particles” defined by
accelerating observers . . . differs from the natural notion of particles
defined by inertial observers. . . . No paradox arises when one views
quantum field theory as, fundamentally, being a theory of local field
observables, with the notion of “particles” merely being introduced
as a convenient way of labeling states in certain situations. (ibid )

We agree wholeheartedly that the particle notion should be demoted in
QFT from fundamental to derivative status. And we join the authors just
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discussed in supposing that such demotion must be accompanied by an
account of how the particle notion nevertheless gets the purchase it does
in the application of the theory. But we do not think that the demotion
of the particle concept is supported in any straightforward and unprob-
lematic way by the Unruh effect and the related phenomenon of Fulling
non-uniqueness. Nor do we think that the demotion has to be based on
these phenomena. In what follows, we attempt to justify these judgments.

So that we might frame an informal sketch of the remainder of this
paper, let us cast the demotions in question as follows:

(A1) If the particle notion were fundamental to QFT, there would be
a matter of fact about the particle content of quantum field theoretic
states.

(A2) The accelerating and inertial observers differ in their attributions
of particle content to quantum field theoretic states.

(A3) Nothing privileges one observer’s attributions over the other’s.
(C4) Therefore, there is no matter of fact about the particle content of

quantum field theoretic states. (from (A2) and (A3))
(C5) Therefore, the particle notion is not fundamental. (from (A1) and

(C4))
Thus presented, the inference to (C4) appears weak. The accelerating

and inertial observers’ assessments of particle content could after all differ
in the way Mary’s and Martha’s assessments of the temperature of a vat
of liquid differ, when Mary uses a Celsius and Martha uses a Fahrenheit
thermometer. Or their assessments of particle content could differ in the
way Mary’s and Martha’s assessments of the strengths of the electric and
magnetic fields at a point differ, when Mary and Martha are moving rela-
tive to one another. In both the Mary and Martha cases, the translations
between Mary’s assessment and Martha’s are so direct and straightfor-
ward that one needn’t react to their divergence by denying the existence
of the matters of fact they purport to assess. One might instead recognize
that those matters of fact have a structure sufficient to account for the
divergent assessments: temperature is measured on a scale whose grada-
tion is a matter of conventional choice; E and B field strengths are trac-
tably relative to observers’ states of motion, and so on.

Sections 2-5 develop the technical apparatus for characterizing the re-
lation between the inertial and accelerating observers’ assessments of par-
ticle content. These sections lay the groundwork for a case that the dif-
ference between these assessments is more profound than the differences
between Mary’s and Martha’s assessments, and so perhaps profound
enough, given (A3), to sanction the move to (C4). The crux of this case is
that the QFT construction associated with the accelerating observer’s par-
ticle notion is unitarily inequivalent to the QFT construction associated
with the inertial observer’s particle notion.
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1. Technical niceties do matter here. For a system with a finite number of degrees of
freedom, the Stone-von Neumann theorem assures uniqueness, up to unitary equiva-
lence, only for irreducible strongly continuous representations of the Weyl form of the
CCRs; see Cavallero et al. (1999).

The existence of unitarily inequivalent representations of the canonical
commutation relations (CCRs) is a characteristic feature of QFT, and one
that separates it from ordinary QM. Leaving aside the technical niceties,
ordinary QM quantizes systems with finitely many degrees of freedom; in
such cases, the representation of the CCRs is unique up to unitary equiv-
alence.1 An isomorphism U of Hilbert space identifies density matrices
(states) in one representation with density matrices in the other; U likewise
identifies self-adjoint operators (observables) on one representation with
self-adjoint operators on the other. When representations are unitarily
equivalent, this isomorphism U translates any attribution of physical con-
tent one can make in terms of one representation into an attribution of
physical content one can make in terms of the other. Roughly speaking,
the lesson of the Stone-von Neumann uniqueness theorem is that such
translations will in general be available between representations quantiz-
ing a system with finitely many degrees of freedom.

When, as in QFT, an infinite number of degrees of freedom are in play,
however, there are uncountably many unitarily inequivalent representa-
tions. Between such representations there are no isomorphisms U. Thus
particle content attributions offered in terms of one representation lack
translations mediated by such isomorphisms to particle content attribu-
tions offered in terms of unitarily inequivalent representations. If the ac-
celerated and inertial observers subscribe to particle notions associated
with unitarily inequivalent representations, this unitary inequivalence
could secure the inference from (A2) via (A3) to (C4), above, from the
deflationary evocation of Mary and Martha scenarios.

But perhaps such inequivalent representations exist merely as mathe-
matical possibilities. If so, it is not evident that cognizance must be taken
of them either in the practice or philosophical interpretation of physics—
certainly they are not mentioned in many standard physics texts on QFT
(e.g. Peskin and Schroeder (1995)), and they play only a passing role in
Teller’s (1995) interpretation of QFT. The supposed significance of Fulling
non-uniqueness is that it provides a concrete example of (at least) two
physically relevant ways to quantize the scalar Klein-Gordon field that
turn out to be not only unitarily inequivalent but inequivalent in a much
stronger sense to be made precise below. Moreover, one quantization, the
standard Minkowski quantization, is in some sense the natural quantization
for inertial observers to adopt, whereas the other, the Fulling quantization,
is the natural quantization for some family of accelerating observers to
adopt. Thus, on its standard interpretation, Fulling non-uniqueness sug-
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Fig. 1. Right Rindler wedge.

gests that the particle notions of inertial and accelerated observers are both
physically relevant and profoundly different.

What makes the inequivalent constructions available is the fact that a
portion of Minkowski spacetime, the right Rindler wedge (see Fig. 1),
maintains two different timelike Killing fields (which are generators of
symmetries of the spacetime metric), the trajectories of one corresponding
to inertial motion, the trajectories of the other to uniformly accelerated
motion. These different timelike isometries define different senses of “posi-
tive frequency” modes of the field and, hence, different vacuum states—
the standard Minkowski vacuum state and the Rindler vacuum state. QFT
associates with the right Rindler wedge an algebra of local observables,
generated from the CCRs governing the field in that region. The Min-
kowski and Rindler vacuum states determine representations of this wedge
algebra which are disjoint—not only do the representations fail to be un-
itarily equivalent, but also no state expressible as a density matrix on one
is expressible as a density matrix on the other.
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To explicate Fulling non-uniqueness in more detail, Section 2 intro-
duces the reader to Rindler coordinates, the Rindler frame, and Rindler
spacetime. Section 3 describes a method for quantizing the Klein-Gordon
field using a static frame on a globally hyperbolic spacetime. Rindler
spacetime is a globally hyperbolic spacetime for which the Rindler frame
is static. Thus this method of quantization applies, and yields the Fulling
quantization. Section 4 sketches the algebraic formulation of QFT and a
technique which, given a stationary frame of a certain kind, produces a
vacuum state for the Klein-Gordon field. The algebraic formalism is used
in Section 5 to characterize some results about the inequivalence of the
Minkowski and Fulling representations.

But in order to wrest a demotion of the particle notion from this ine-
quivalence, a premise (e.g., (A3)) is required to the effect that the irrec-
oncilable particle notions associated with the Minkowski and Fulling
quantizations have equal claim to physical significance. Section 6 ques-
tions this premise by questioning the physical realizability of the Rindler
vacuum state. Concluding that Fulling non-uniqueness fails to constitute
a satisfactory example of particle notions allied with physically relevant
but unitarily inequivalent quantizations, Section 7 characterizes the con-
ditions under which such an example would exist, and observes that these
conditions have not been shown to be met.

Although the qualms developed in Sections 6-7 need to be taken seri-
ously, they are waived for purposes of subsequent discussion. In Section
8 we underscore the obvious but neglected point that there is no need to
use Fulling non-uniqueness and the Unruh effect to beat up on the par-
ticle concept in QFT. Indeed, what is needed is an explanation of how a
theory which is couched in terms of local field observables can explain
particle-like behavior. But supposing that one did want to use Fulling
non-uniqueness and the Unruh effect to demote the particle concept in
QFT to second class status, one needs an argument to support the claim
that an observer uniformly accelerating through the Minkowski vacuum
really does experience a thermal flux of Rindler quanta (cf. premise (A2)
above). Sections 9-11 urge that the prospects for such an argument are
dimmer than popular presentations of the Unruh effect might lead one to
expect. Section 9 uses the algebraic approach to explicate a precise sense
in which the restriction of the Minkowski vacuum state to the right Rindler
wedge is a thermal state. But, owing precisely nothing to the Fulling rep-
resentation, this sense does not justify assigning a Rindler particle content
to the thermal state. Section 10 considers a standard attempt to express
this thermal state in terms of Rindler modes. Ignoring the lessons of Sec-
tions 2-5, about just how different Fulling and Minkowski representations
are, this attempt falls short of the mark. Finally, Section 11 offers a skep-
tical review of attempts to invest the thermal state with Rindler particle
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2. Thus, there is a good precedent for speaking of Einstein-Rosen coordinates instead
of Rindler coordinates. To avoid confusion, however, we will stick with the standard
terminology.

content by citing this investment as the best explanation of the behavior
of particle detectors. Our conclusions are presented in Section 12. The
Appendix outlines relevant concepts and results from algebraic QFT.

2. Rindler Coordinates and Rindler Spacetime. Consider the spacetime line
element

ds d dy dz d2 2 2 2 2 2= + + −ξ ξ η (1)

where the velocity of light has been set to unity. At n � 0 the determinant
of the metric components gij vanishes, so that the contravariant metric
components gij are singular there. However, it is easily seen that this sin-
gularity is merely a coordinate artifact. A computation shows that the
Riemann curvature tensor of the metric for (1) vanishes. This suggests
that the line element (1) represents the Minkowski metric for a portion of
Minkowski spacetime. That this is indeed the case is revealed by the co-
ordinate transformation

x y y z z t= = = =ξ η ξ ηcosh , , , sinh (2)

In the new coordinate system the line element assumes the familiar Min-
kowski form

ds dx dy dz dt2 2 2 2 2= + + − (3)

The apparent singularity at n � 0 is due to the fact that the Rindler coor-
dinates (n,y,z,g) are only valid for the right Rindler wedge R: x � |t| of
Minkowski spacetime. On the boundary x � |t| these coordinates “go bad”;
in particular, g � tanh�1(t/x) so that x � t is assigned the value g � ��
and x � �t is assigned the value g � ��.

Rindler (1969) introduced these coordinates to motivate the idea that
the r � 2M singularity of the Schwarzschild solution to Einstein’s gravi-
tational field equations is a coordinate artifact that can be removed by the
Kruskal extension of the exterior Schwarzschild solution (see also Wald
(1984)). Ironically, the very same coordinate system had been used by
Einstein and Rosen (1935) for the purpose of illuminating what they took
to be a genuine physical singularity at r � 2M (see Earman and Eisen-
staedt (1999)).2

The right Rindler wedge, considered as a spacetime in its own right
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3. For a definition of global hyperbolicity, see Wald (1984). For our purposes, the key
fact about such a spacetime is that it can be foliated by Cauchy surfaces, that is, space-
like hypersurfaces that intersect every maximally extended timelike curve exactly once.

(aka Rindler spacetime), is globally hyperbolic with Cauchy surfaces g �
const.3 The orthogonal trajectories of these hypersurfaces are the hyper-
bolas n2 � x2�t2 � const (see Fig. 1). An observer whose world line is
one of these hyperbolas undergoes constant proper acceleration of mag-
nitude a � n�1. These hyperbolas are also the orbits of isometries, namely
Lorentz boosts; in particular, a translation in Rindler time g0� g0 � g is
a Lorentz boost in the x-direction of Minkowski spacetime with speed
tanh g.

The smooth congruence of timelike curves given by the Rindler hyper-
bolas specifies a reference frame for Rindler spacetime. Alternatively, a
reference frame can be specified by a smooth non-vanishing timelike vector
field Va, with the world lines of the frame being the integral curves of the
vector field. Va is said to define a stationary frame for the spacetime M,
gab just in case Va is a Killing field, i.e. 	(aVb) � 0, where 	a is the derivative
operator determined by the metric gab. This is the necessary and sufficient
condition that there exists (at least locally) a coordinate system xi, i � 1,
2, 3, 4, which is adapted to the frame in the sense that the integral curves
of Va are given by x� � const, � � 1, 2, 3, and Va � (
/
x4) (after re-
scaling). In such a frame, the metric components gij are independent of
the time coordinate x4. If V[a	bVc] � 0, the frame is non-rotating and the
integral curves of Va are hypersurface orthogonal. In a non-rotating frame,
the coordinate system can be chosen (at least locally) so that the g�4 com-
ponents vanish. A frame that is both stationary and non-rotating is said
to be static. The Rindler frame is in fact static.

In the next section we describe a procedure which associates with a
static frame for a globally hyperbolic spacetime a quantization of the
Klein-Gordon field. Since Rindler spacetime is globally hyperbolic and
since the Rindler frame is a static frame for this spacetime, the procedure
in question produces a quantization, first explicitly described by Fulling
(1972, 1973). It turns out that this Fulling quantization is physically dis-
tinct, in the strongest possible way, from the quantization associated with
any inertial frame of Minkowski spacetime.

3. Fulling Quantization. Consider a globally hyperbolic spacetimeM, gab,
and let R(t) : t � const be a one-parameter family of Cauchy surfaces that
foliate the spacetime. Define the timelike vector field Va by the condition
Va	at � �1. If Va defines a static frame, then there is a procedure for
quantizing the Klein-Gordon field on the spacetime by using the t-time to
pick out the positive frequency solutions. The basic idea is straightfor-
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ward, but the details are tedious. We will review enough of them to convey
a sense of what is going on.

In generally covariant form the Klein-Gordon equation reads

g mab
a b∇ ∇ − =φ φ2 0 (4)

where m is the mass of the field. In coordinates adapted to the static frame,
(4) becomes

−∂
∂

=
−

∂ − ∂( ) −












≡ =
2

2 44
21

1 2 3
φ φ φ φ αβα

αβ
βt

g
g

g g m K , , , , (5)

Since the differential operator K contains only spatial derivatives, (2) can
be solved by separation of variables

φ ψ χ( , ) ( ) ( )x xt t= (6)

to give

d t

dt
t

2

2
2 0

χ ω χ( )
( )+ = (7a)

Kψ ω ψ( ) ( )x x= 2 (7b)

Equation (7a) is the familiar equation for the harmonic oscillator; its so-
lutions are linear combinations of the exponentials exp(�ixt).

The operator K is formally symmetric and positive on the Hilbert space
L2(R, qd 3x) of complex valued square integrable functions on a Cauchy
surface R, with the inner product given by

f g f g d x, : ( ) ( ) ( )= ∫ x x xρ 3

Σ
(8)

(here q � �g44 −g ). Independent of the choice of R from the family R(t),
this inner product is not indexed with R. From the fact that K is positive
and symmetric, it follows that K has a unique self-adjoint extension and,
further, that the square root of this extension is a positive linear operator.
This square root serves as the single particle Hamiltonian relative to the
time t.

The next step is to diagonalize K, that is, to find a measure space ( , dl),R̃
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a unitary map U : L2(R, qd 3x) r L2( , dl) : f � , and a function r˜˜ ˜R f R
�� : k r x such that2

k

UKU f k f kk
−( ) =1 2� �( ) ( )ω (9)

(9) expresses the requirement that under the isomorphism U, the operator
K corresponds to multiplication by x . One can then choose an ortho-2

k

normal basis {wk} for L2(R, qd 3x) consisting of solutions to

K k k kψ ω ψ= 2 (10)

The functions uk(x, t) � (2x )�1/2wk(x)exp(�ixkt), together with their2
k

complex conjugates ūk, constitute a complete set of mode solutions to (5).
The uk and ūk are called respectively the positive and negative frequency
modes, as the heuristic identification of i
/
t as the energy operator sug-
gests. And so, the general solution to (5) can be written in the form

φ ψ ω ψ ω µ
ω

( , ) ( ) exp( ) ( ) exp( )
( )

x x xt a i t a i t
d k

k k k k k k

k

= − + ∫ †

2�Σ
(11)

where the ak and a are arbitrary complex coefficients.†
k

Functions of the form

Φ
Σ

( , ) : ( ) exp( )
( )

x xt a i t
d k

k k k

k

= −∫ ψ ω µ
ω2�

(12)

make up the positive frequency (with respect to t) solutions K�. Applied
to such solutions the bilinear form

Φ Φ Φ Φ Φ Φ Σ
Σ

1 2 1 2 2 1, : ( )= ∇ − ∇∫i n da a
a

(13)

(where na is the unit normal to R) constitutes an inner product, which is
independent of the choice of R. The completion ofK� in this inner product
gives the “one-particle” Hilbert space H for the field.

The state space for the field is constructed as the symmetric Fock space
F over H. That is, F is the completed direct sum ⊕

=

∞

i 0
(S[⊗

i
H]), where S[⊗

n
H]

denotes the symmetrized n-fold tensor product of H and ⊗
0
H is stipulated

to be �. The objects ak and a act as operators on F (and thus will be†
k

hatted), and are identified respectively as the annihilation and creation
operators. The vacuum state |0� � F is defined by the condition that
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4. Talk of the Minkowski vacuum state is justified since the results of applying the
procedure to any two inertial frames are unitarily equivalent representations of the
canonical communication relations.

âk|0� � 0 for all k. ˆ : ( ) ˆ ˆN d k a ak k= ∫ µ †

�Σ
has a natural interpretation as the

total particle number operator. |0�, âk, â , and N̂, thus understood, affiliate†
k

a particle notion with this QFT construction.
Of course, the procedure outlined above applies to an inertial frame in

Minkowski spacetime, and leads to the Minkowski Fock space FM and its
vacuum state |0M�.4 The procedure also applies to the Rindler frame on
Rindler spacetime, leading to the Rindler Fock space FR and its vacuum
state |0R� (Fulling (1972, 1973)). It is conventional to call the particles (or
better, quanta) associated with this representation Rindler particles (or
better, Rindler quanta), and the state |0R� from which they are absent the
Rindler vacuum. In order to avoid confusion we will observe convention
in what follows, even though the construction of FR owes everything to
Fulling and nothing to Rindler.

4. The Algebraic Approach. The algebraic approach to QFT provides a
framework in which relations among different quantizations can be char-
acterized precisely. We turn to it now. The algebraic approach codes ob-
servables as elements of a C*-algebraA. A state x is a normalized positive
linear map from A to �. The Hilbert space formalism is recovered in the
form of a representation (p, H) of A, where p is a homomorphism from
A into the set B(H) of bounded operators on a separable Hilbert spaceH
(see Appendix A). A fundamental theorem due to Gel’fand, Naimark, and
Segal (GNS) guarantees that for any state x onA there is a representation
(px, Hx) of A and a cyclic vector |Wx� �Hx (i.e. px(A)|Wx� is dense inHx)
such that x(A) � �Wx|px(A)|Wx� for all A � A. That is to say, to any
abstract algebraic state there corresponds a concrete Hilbert space reali-
zation. The GNS representation is, moreover, the unique, upto unitary
equivalence, cyclic representation of A.

Algebraically the distinction between pure and mixed states corre-
sponds to the distinction between states admitting irreducible and reduc-
ible GNS representations. (A representation (p, H) of A is irreducible just
in case the only closed subspaces of H that are invariant under p(A) are
� and H (see Appendix A).) A reason often cited for focussing physical
attention on cyclic representation is that every representation is a direct
sum of cyclic representations. Cyclic representations needn’t be irreduci-
ble. So there can exist representations resolvable as direct sums of other
representations, none of which correspond to pure states. This will become
important presently.

We will be concerned with a special type of C*-algebra, called a Weyl
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5. The constructions in Wald (1994, Ch. 4) and Dimock (1980) differ from each other
and from Kay and Wald (1991) in details but lead to isomorphic global Weyl algebras.

6. We omit the technical definition of quasi-free state (see Wald (1994) for details), but
we mention that for such a state the n-point functions are determined by the two point
functions.

algebra, which is built over a symplectic vector space (S, X), where S is a
topological vector space and X : S � S r � is a non-degenerate, bilinear,
and anti-symmetric form. In our application S will be the vector space of
smooth real solutions to the Klein-Gordon equation (4) having compact
support on some Cauchy surface R (and thus on all Cauchy surfaces) of
a globally hyperbolic spacetimeM, gab. The symplectic form is given by

Ω Σ
Σ

( , ) : ( )φ φ φ φ φ φ1 2 1 2 2 1= ∇ − ∇∫ a a
an d (14)

Because the symplectic current (�1	a�2—�2	a�1) is conserved, X is inde-
pendent of the choice of Cauchy surface. The Weyl algebra A(M) over
this symplectic space encodes an exponentiated version of the CCRs for
the Klein-Gordon field. There are various isomorphic version of A(M),
but for our purposes the most convenient one is the four-smeared field
version constructed in Kay and Wald (1991, 72–73).5 It leads to a net of
C*-algebras {A(O)} where O � M is any open set of compact closure;
A(O) is the Weyl algebra of the globally hyperbolic spacetime O, gab|O,
and if O � O� then A(O) is a subalgebra of A(O�).

Now let Va be any smooth timelike vector field on the globally hyper-
bolic spacetime M, gab, and let R(t) be a foliation of Cauchy surfaces. If
this vector field satisfies

− ≥ ≥ >V V V na
a

a
aε ε ε2 0 for some (15)

on some member R of the foliation R(t) (with na the unit normal to R),
then there is a procedure that associates with R a pure quasi-free state xR

on A(M) (see Chmielowski (1994) and Wald (1994, 4.3)).6 Since the GNS
representation of a quasi-free state has a natural Fock space structure in
which the representing vector is the Fock space vacuum, xR is a candidate
for the vacuum state. If Va is defined by Va	at � �1 and is also a Killing
field, then the state xR is independent of the choice of the member of the
foliation R(t). Indeed, in this case the usual dynamics is recovered in terms
of a strongly continuous group of unitary transformations on a Fock space
representation that leave the vacuum state vector invariant (see Kay
(1978)). If in addition to being stationary, the frame Va associated with
the Cauchy foliation R(t) is also static, then the algebraic quantization
procedure is equivalent to the Hamiltonian diagonalization procedure of
Section 3.
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7. Kay’s (1985) construction can be seen as a rigorous version of Fulling’s (1972, 1973)
somewhat heuristic construction.

8. This results from the following facts. 1) Let O and O� be relatively spacelike open
regions of Minkowski spacetime. If the state x implies correlations between the local
observables belonging to A(O) and A(O�) in the sense that x(OO�) � x(O)x(O�) for
some O � A(O) and O� � A(O) and if [A(O), A(O�)] � 0, then x|A(O) and x|A(O�) are
mixed states. And 2) the Minkowski vacuum state xM implies correlations between the
local observables associated with relatively spacelike regions of Minkowski spacetime.
It will be seen in Section 9 that not only is xM|A(R) a mixed state, it is a thermal state
at finite temperature.

If one applies this algebraic quantization procedure to Minkowski
spacetime, taking the t � const slices to be given by an inertial time co-
ordinate, the result is the standard Minkowski vacuum state xM. One can
properly speak of the Minkowski vacuum state since if another inertial
coordinate t� is chosen, the corresponding vacuum state x is the same�M
as xM. (This follows from a result of Chmielowski (1994) discussed below
in Section 7.)

The algebra at issue in the Rindler case is the right Rindler wedge
algebra A(R), i.e., the Weyl algebra over the symplectic space of solutions
to the Klein-Gordon equation having compact support on the Rindler
time slices of Rindler spacetime. Unfortunately, the rigorous algebraic
quantization procedure just discussed is not guaranteed to work forA(R),
because in the Rindler case, the condition (15) is violated. For in Min-
kowski coordinates, the Rindler frame is defined by Va � const • (x ∂

∂ta �
t ∂

∂xa ). Thus �VaVa � const • (t2 � x2), and near the edges of the Rindler
wedge, the norm of Va becomes arbitrarily small. Nevertheless, with some
extra work it is possible to construct an algebraic state xR on A(R) that
is the counterpart of the Rindler vacuum state |0R� derived by the sepa-
ration of variables procedure set out in Section 3 (see Kay (1985)).7

5. Fulling Non-uniqueness. In this Section we use the algebraic resources
just mustered to describe how the Fulling quantization differs from the
standard Minkowski quantization. The restriction of the Minkowski
vacuum state xM to the right Rindler wedge algebra A(R) defines a state
xM|A(R) on that algebra. xM|A(R) is a mixed state8 whereas xR is a pure state.
It follows trivially that xM|A(R) and xR determine unitarily inequivalent
GNS representations of A(R) since the former representation is reducible
while the latter is irreducible. But the two quantizations are different in a
stronger way; namely, they are disjoint. These representations are never-
theless locally quasi-equivalent (in at least one of the two possible senses
of that term). We now turn to explaining these concepts and their signif-
icance.

The folium �(x) of a state x on a C*-algebra A is the set of all abstract
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9. Roughly, a subrepresentation of a representation px of A is a closed subspace of Hx

which itself admits a representation of A; see Appendix A for the precise definition.

states that can be expressed as density matrices on the Hilbert space of the
GNS representation of A determined by x. The states x1 and x2 (or the
GNS representations determined by them) are said to be quasi-equivalent if
and only if �(x1) � �(x2), whereas they are said to be disjoint iff �(x1) �
�(x2) � �. Additional characterizations of quasi-equivalence are given in
Appendix B.

The following lemma gives some equivalent characterizations of dis-
jointness.

Lemma 1. (from various results of Bratteli and Robinson (1996)). The
following conditions are equivalent:
(1) x1 and x2 are disjoint
(2) no subrepresentation9 of the GNS representation px1

is quasi-
equivalent to any subrepresentation of the GNS representation px2

,
and vice versa
(3) no subrepresentation of the GNS representation px1

is unitarily
equivalent to any subrepresentation of the GNS representation px2

,
and vice versa
(4) the GNS representation px1�x2

determined by x1 � x2 is the direct
sum of the representations px1

and px2
determined by x1 and x2, i.e.

px1�x2
� px1

� px2
,Hx1�x2

�Hx1
�Hx2

and |Wx1�x2
� � |Wx1

� � |Wx2
�,

where as usual (px, Hx, |Wx�) is the GNS triple associated with x
(5) x1 and x2 are orthogonal, i.e. there is a projection operator P̂ �
px1�x2

(A)� such that x1(A) � �Wx1�x2
|P̂px1�x2

(A)|Wx1�x2
� and x2(A) �

�Wx1�x2
|(Î � P̂)px1�x2

(A)|Wx1�x2
� for all A � A.

Every representation is a subrepresentation of itself. But irreducible rep-
resentations have no proper subrepresentations. Thus, if x1 and x2 are
pure, quasi-equivalence reduces to unitary equivalence and disjointness
reduces to non-unitary equivalence. If, on the other hand, either x1 or x2

are mixed, the situation becomes more complicated. x1 and x2 can be
quasi-equivalent without being unitarily equivalent—as when x2 is pure
and quasi-equivalent to every subrepresentation of (mixed and factorial)
x1 (see Appendix B). What’s more, when x1 and x2 are mixed, they can
fail to be either quasi-equivalent or disjoint—as when non-factorial x1 has
disjoint subrepresentations, one of which is unitarily equivalent to x2.
What Lemma 1 helps to make clear is that disjoint representations are
about as different as can be imagined.

Lemma 2. The states xM|A(R) and xR on A(R) are disjoint.
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10. Hadamard states are characterized in Section 6. The brief for restricting attention
to them is that they support an expectation value assignment to the stress-energy tensor.

By singling out xR, Lemma 2 can give a misleading impression. For an
inspection of the proof of Lemma 2 (see Appendix B) shows that the
disjointness of the Fulling and Minkowski representations of A(R) has
nothing to do with the Fulling representation per se. For that proof es-
tablishes xM|A(R) to be disjoint from any pure state h on A(R), not just the
Rindler vacuum. Looking ahead to the putative implications of Fulling
non-uniqueness for the particle concept, we remark that the disjointness
has nothing to do with Rindler particles. What’s more, this disjointness
obtains whether or not ph is unitarily equivalent to a Fock representation.
Thus holding of irreducible representations ofA(R) which sustain no par-
ticle notion, the disjointness seems to have nothing to do with particles at
all. Disjointness follows rather from the fact that for any pure state h on
A(R), the von Neumann algebra associated with ph is Type I (see Ap-
pendix B) while the von Neumann algebra associated with pxM|A(R)

is of
Type III (see Araki (1964)). Thus, the disjointness result owes everything
to the nature of the state xM|A(R). As will be seen below, other features
discussed under the labels of Fulling non-uniqueness and the Unruh ef-
fect are attributable to the nature of xM|A(R) and have little or nothing to
do with xR.

A consequence of the disjointness of the Minkowski and Fulling rep-
resentations is worth noting. Correlations between spatially separated re-
gions are a familiar and characteristic feature of quantum physics. The
point is usually illustrated in ordinary QM by the singlet state W(I, II) on
the Hilbert spaceHI �HII of two spin 1/2 particles, which we can imagine
are well separated in space. What the singlet state says about the observ-
ables of HII can be expressed by a density matrix on HII, obtained from
the density matrix forHI �HII by tracing out over the degrees of freedom
for system I. But in the relativistic QFT case, what xM says about the right
Rindler wedge is given by the restriction of xM to A(R), and the disjoint-
ness result shows that the state xM|A(R) on A(R) defined by this restriction
is not expressible as a density matrix in the GNS representation pxR

de-
termined by xR—or for that matter in the GNS representation ph deter-
mined any pure state h on A(R). This expressive incompleteness is not
mysterious. It reflects the fact that the big algebra A(M) for Minkowski
spacetime cannot be written as A� � A(R) for some A�.

This expressive incompleteness vanishes on the local level, at least if
“local” refers to open spacetime regions with compact closure. Suppose
that x1 and x2 are quasi-free Hadamard states10 on the algebra A(M) for
Minkowski spacetime, and that O �M is any open region with compact
closure. Let px|A(O) denote the representation obtained from the GNS
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11. The latter claim is found throughout the physics literature on Rindler quanta, but
we do not know a specific proof of it.

construction for x by restricting to the image under px ofA(O) then com-
pleting in the natural topology of Hx. Verch (1994) shows that

π πω ω1 2
A O A O( ) ( ). is quasi-equivalent to (16)

Since xM is a quasi-free Hadamard state on A(M) while xR is a quasi-free
Hadamard state on A(R),11 it follows that for any open region O � R
with compact closure

π πω ωM R
A O A O( ) ( ) is quasi-equivalent to (17)

This establishes one sense in which xM and xR are locally quasi-
equivalent. pxM

and pxR
are unitarily inequivalent—indeed, disjoint—

representations of A(R). Verch’s result shows that for any quasi-local
algebra A(O) associated with a region O � R of compact closure, the
expectation values assigned any number of observables in A(O) by a
density matrix in pxM

’s folium are exactly reproduced by the expectation
values assigned those same observables by a density matrix in pxR

’s fo-
lium, and vice versa. Consequently, only the measurement of observables
associated with regions of non-compact closure can empirically distin-
guish the Minkowski and Rindler representations (Wald (1994, 97)). This
does not, however, ensure the local equivalence of the Fulling and Min-
kowski particle concepts. Indeed, “the local equivalence of particle con-
cepts” is an incoherent notion: insofar as particle number operators do
not belong to local algebras, the particle concept is a non-local concept
in QFT.

It is worth noting that there is a second sense in which the Minkowski
and Rindler representations may be locally quasi-equivalent; namely, for
any open region O � R with compact closure

π π
ω ωM RA O A O( ) ( )

 is quasi-equivalent to (18)

Compare local quasi-equivalence in the sense of (17): there, the represen-
tations obtained by representing xM and xR, then restricting to concrete
operators in the image under those representations of A(O), are claimed
to be quasi-equivalent; here, the representations obtained by restricting
xM and xR to A(O), then representing the restricted algebra, are claimed
to be quasi-equivalent. It is not known whether the Minkowski and Rin-
dler representations are locally quasi-equivalent in this second sense. But
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we can get close to (18); namely, it can be shown (see Appendix C) that
for any open region O � R with compact closure

π π
ω ω

M RA O
A O

( )
( ) is quasi-equivalent to (19)

It follows that, if the second sense of local quasi-equivalence should fail,
pxM|A(O)

and pxR
|A(O) would fail to be locally quasi-equivalent for some

O � R of compact closure. The physical significance of such a failure
remains to be fathomed.

6. Is the Rindler Vacuum State Physically Realizable? From the very early
days of relativistic QFT, it was known that the CCRs admitted unitarily
inequivalent and, indeed, disjoint representations. Fulling’s simple and
vivid example brought this mathematical possibility to life. But the physi-
cal relevance of Fulling’s example will remain obscure until the issue of
the physical realizability of the Rindler vacuum state is settled. We believe
that there are persuasive reasons to doubt that the Rindler vacuum state
is physically realizable. This Section first states the case for our negative
verdict, and then turns to the defense.

We base our case for a negative verdict on four premises.

(P1) Any candidate spacetimeM, gab for representing the actual uni-
verse must be inextendible (i.e., must not be isometrically embeddable
as a proper subset of another spacetime).

Ontological justifications of this principle involve metaphysics that is con-
troversial, e.g. Leibniz’s principle of plenitude. Perhaps the best justifica-
tion is methodological—without the restriction to inextendible spacetimes,
the usual practice of science is not possible. For example, if spacetime can
be truncated in the past, there is no way to defeat creationism; if spacetime
can have “holes,” determinism cannot be true (see Earman (1995)); etc.

(P2) For an inextendible spacetimeM, gab, a physically realizable state
x on the subalgebra A(O) � A(M), O � M, must be extendible to
a state on the full algebraA(M); moreover, must satisfy whatever˜ ˜x x
criteria govern the selection of physically realizable states on A(M).

The argument for (P2) is straightforward. (P2) is equivalent to the require-
ment that any physically realizable state x on A(O) be of the form |A(O)x̃

for some physically realizable state on A(M). This in turn amounts tox̃
the requirement that, insofar as it makes sense to talk about the state of
a subsystem of a big system, this subsystem state must say neither less nor
more than what some global state says about the local observables of the
subsystem. What the global state says about the local observables of the
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12. In fact, the expected energy density approaches minus infinity (Wald, private com-
munication).

subsystem is given precisely by its restriction to the subalgebra of these
local observables.

(P3) xR cannot be extended to a non-singular, i.e. Hadamard, state
on Minkowski spacetime.

Indeed, xR becomes singular on the edges of the Rindler wedge.

(P4) To be physically realizable, a state on the global algebra for an
inextendible spacetime must satisfy the Hadamard condition.

From (P1)–(P4) it follows that xR is not physically realizable.
To motivate the crucial fourth premise, note that Hadamard states are

states for which � (x) (x�)�x, the expectation value of two point functionsˆ ˆ� �
of the field, exhibits a prescribed singularity structure—a singularity struc-
ture of Hadamard form—as the spacetime points x and x� approach one
another (Wald (1994)). For such states, there exists a “point splitting”
procedure for defining the renormalized expectation value �Tab�x of the
stress-energy tensor

T g mab a b ab c
c: ( )= ∇ ∇ − ∇ ∇ +φ φ φ φ φ1

2
2 2 (20)

for the Klein-Gordon field. In flat spacetime—the case at issue—the ex-
pectation values assigned Tab by this procedure are the unique ones which
satisfy the (generally accepted) axioms by which Wald (1994, Sec. 4.6)
would govern the definition of �Tab�x. In the more general setting of curved
spacetime, Wald’s axioms determine �Tab�x upto “local curvature terms.”

In order to calculate the backreaction effect of quantum fields on the
metric, semi-classical quantum gravity replaces Tab on the right hand side
of Einstein’s gravitational field equations with �Tab�x. Hawking bases his
prediction of black hole radiation and black hole evaporation on just such
semi-classical calculations. In light of the need in these important theo-
retical contexts for �Tab�x, Wald (1994) proposes that states of the quantum
field must be Hadamard to be physically acceptable (see also Kay and
Wald (1991)). The fact that �Tab�xR

diverges as the edges of the Rindler
wedge are approached underscores the unphysical nature of the Rindler
vacuum state.12

If this line of argument succeeds in establishing that xR is physically
unrealizable, it can be extended from the Rindler case to arbitrary globally
hyperbolic spacetimes with bifurcate Killing horizons. Such spacetimes are
characterized by the existence of two null hypersurfaces hA and hB, inter-
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O

hA
hB

Fig. 2. Bifurcate Killing horizons along with the orbit structure of the isometry group.

secting in a two dimensional spacelike hypersurface O, and by a Killing
vector field Va that vanishes on (and only on) O and becomes null on hA

and hB. Provided that there is a Cauchy surface containing O, the horizons
hA � hB divide the spacetime up into four wedges �, P, L, R, as indicated
schematically in Fig. 2. In the Minkowski case, L and R are, of course,
the left and right Rindler wedges. In the case of the Kruskal extension of
the exterior Schwarzschild solution, L and R are the analogues of the left
and right Rindler wedges, and for this case the analogue of the Rindler
vacuum state is called the Boulware vacuum state xB. As the analogy leads
us to expect, �Tab�xB

is singular on hA � hB.
Of the premises (P1)–(P4), only (P3) is invulnerable. However, the con-

sequences of abandoning either (P1) or (P2) strike us as quite unpalatable.
This leaves (P4) which, we readily admit (see Arageorgis, Earman, and
Ruetsche (2002)), can be challenged. Thus, we do not claim to have shown
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conclusively that xR is not a physically realizable state. But we hope to
have given pause to those who have readily assumed the opposite.

7. Are There Examples of Inequivalent Global Quantizations? Setting aside
the Hadamard condition and associated qualms about whether xR is phys-
ically realizable, we next focus on xM|A(R) and its suitability to serve in an
example of genuine non-uniqueness. xM|A(R) is the mixed state that results
when one restricts toA(R) the state xM which quantizes the Klein-Gordon
field on a larger spacetime. Thus the states xM|A(R) and xR do not provide
an example of inequivalent quantizations in the sense of two pure states
that correspond to inequivalent vacua for the same spacetime. As will be
seen in Section 9, xM|A(R) is a thermal state, from which a pure state can
be derived by “cooling it down to temperature 0.” Those pursuing genuine
examples of non-uniqueness might hope that the pure state thus obtained
and xR provide inequivalent quantizations for Rindler spacetime. But
their hope is dashed, since the cooled down state is xR itself!

Of course, in some sense, inequivalent quantizations/particle concepts
are all too easy to find. For any globally hyperbolic spacetimeM, gab there
exist innumerably many pure quasi-free states on the Weyl algebra A(M)
over the symplectic space of real solutions to the Klein-Gordon equation
(see Wald (1994)). Among these states there are pairs whose GNS repre-
sentations are not unitarily equivalent. Since the GNS representation of a
quasi-free state has a natural Fock space structure, such pairs of states
will be candidates for alternative vacuum states, affiliated with alternative
particle concepts. However, a candidate vacuum state for a spacetime will
be of little physical interest if the spacetime does not admit a timelike Killing
field Va under whose associated symmetries the candidate state is invariant.
For, in the absence of such structure, we see little hope for distinguishing
invidiously between “physical” vacuum states and “unphysical” ones.

For quantizations that follow the algebraic scheme outlined in Section
4, we can make our demand for genuine non-uniqueness precise. Consider
a globally hyperbolic spacetimeM, gab that admits two different foliations
by Cauchy surfaces R(t): t � const and R�(t�): t� � const. Suppose that
the associated vector fields given respectively by the conditions Va	at �
�1 and V�a	at� � �1 are both Killing fields that satisfy (15). Then, by
the algebraic quantization procedure outlined in Section 4, there are quasi-
free states xVa and xV�a on the Weyl algebra A(M) corresponding to the
two foliations. The GNS representations determined by these states both
have a natural Fock space structure. Hence associated with the frame Va

is a particle concept, Va-particles (or better, a quanta concept, Va-quanta),
and mutatis mutandis for the frame V�a. Now, we would have a physically
relevant example of inequivalent quantizations meeting our demand for
genuine non-uniqueness if the Va-particle and V�a-particle concepts were
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13. We are grateful to Robert Geroch for showing us how such examples are con-
structed.

different. But according to a result of Chmielowski, these particle concepts
coincide if Va and V�a commute:

Theorem (Chmielowski (1994)). If Va and V�a are timelike Killing fields
(as defined above), if they each satisfy (15), and if [Va, V�a] � 0, then
xVa � xV�a.

Chmielowski conjectures that the last conjunct of the antecedent is irrel-
evant:

(Con1) The Theorem continues to hold even if [Va, V�a] � 0.

If (Con 1) holds, any pair of globally defined stationary frames for the
same spacetime to which the algebraic quantization procedure outlined in
Section 4 applies—these will be frames satisfying (15)—will yield equiva-
lent quantizations via that procedure.

We must still investigate the possibility that a globally hyperbolic space-
time admits two globally defined stationary frames, at least one of which
violates condition (15) and so foils the procedure of Section 4. One might
think that imposing the reasonable condition that the spacetime be inex-
tendible precludes this possibility, since (intuitively speaking) the failure
of (15) signals that the spacetime is, like Rindler spacetime, embeddable
in a larger spacetime in such a way that the boundary of its image in the
larger spacetime is a horizon on which the Killing vector field Va becomes
null. However, this intuition is wrong. It is possible to construct examples
where (15) fails in an inextendible spacetime because singularities in the
metric develop as the (missing) horizon is approached.13

It is also possible to construct artificial examples of inextendible, glob-
ally hyperbolic spacetimes that admit two different foliations R(t) and
R�(t�) by Cauchy surfaces such that the associated vector fields defined
respectively by Va	at � �1 and V�a	at� � �1 are Killing fields and at
least one of them violates (15). In cases where both of these frames are
static and both violate (15), it is possible that the separation of variables
procedure of Section 3 will yield inequivalent quantizations when applied
to the two frames. In cases where one frame is static and satisfies (15) and
the other is stationary and violates (15), it is possible that applying the
procedure of Section 3 to the former and the algebraic procedure of Sec-
tion 4 to the latter will yield inequivalent quantizations. But until it is
shown that one of these possibilities can be realized and that the spacetime
on which it is realized is of some physical interest, a genuine example of
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14. Expanding universe models provide, so to speak, the next best thing. Consider, for
example, the quantization of the Klein-Gordon field on a background spacetime given
by a Friedmann-Walker-Robertson model with initial and final static phases. The por-
tion of this spacetime up to some time t1 admits a non-rotating timelike Killing vector
field, while the portion of the spacetime after some t2 � t1 admits another such field.
Associated with each of these Killing fields is a natural vacuum state for the Klein-
Gordon field. But if the expansion of the universe produces “infinite particle creation,”
the two vacuum states correspond to unitarily inequivalent representations of the ca-
nonical commutation relations; see Fulling (1989, Ch. 7). However, the model in ques-
tion will not satisfy Einstein’s gravitational field equations for any physically reasonable
stress-energy tensor.

15. For an argument for the claim that QFT must save the particle concept in a stronger
sense than merely explaining particle-like behavior, see Barrett (2000). We will not
attempt to rebut this claim here.

inequivalent quantizations of the humble scalar field has not, in our opin-
ion, been achieved.14

8. The Particle Concept in QFT. Physicists and philosophers have at-
tempted to draw dire implications for the particle concept from Fulling
non-uniqueness and the Unruh effect. We now turn to a critical exami-
nation of their efforts. Before delving into the details, we feel compelled
to issue a brief sermonette.

In relativistic QFT there is no need to beat up on the particle concept.
Indeed, the need lies in exactly the opposite direction. To repeat the sen-
timent of the Wald passage cited in Section 1, QFT is a theory whose
fundamental concepts include local field observables, n-point functions,
and the like. The concept of “particle” does not appear on the list. True,
most presentations of QFT work with Fock representations, and so with
the particle-friendly apparatus of vacuum states, number operators, and
so on. But what these representations give directly are ways of counting
quanta of excitation of the field. It remains to connect these quanta to a
more robust concept of particle—e.g. something that is localized and en-
dures through time, so as to leave a streak in a cloud chamber. (This is
why we tried above to use the more neutral “quanta” in place of “parti-
cles,” although in some contexts the standard usage requires the latter, as
in “particle creation/annihilation operators.”) Thus, quantum field theo-
rists have their work cut out to show how particle-like behavior, such as
tracks in cloud chambers, can be explained by a theory whose basic as-
sumptions can be formulated without appeal to particles (see Steinmann
(1968) for an attempt at such an explanation within the algebraic frame-
work).15

Here is where the slogan “Particles are what particle detectors detect”
makes sense—not as an endorsement of operationalism but as a reminder
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16. Sciama et al. are correct in using the terminology “Fulling Fock space” rather than
“Rindler Fock space” since it was Fulling and not Rindler who performed the quan-
tization. However, we have bowed to the common usage.

17. The use of “photons” here is not a slip, for as will be seen in Section 11, only for a
massless Klein-Gordon field does a uniformly accelerated DeWitt-Unruh “particle de-
tector” record a thermal spectrum.

that particle-like behavior is characterized in terms of the response of a
detector which is coupled in some appropriate way to the field. We will
return to this point in Section 11 below.

Although a Fock space representation is not sufficient to underwrite
the particle concept in QFT, it is necessary. For this reason, the particle
concept becomes especially problematic when one attempts to do QFT on
curved spacetime. In the first place there may be no timelike Killing field.
For instance, in the expanding universe models used in current cosmology,
such a field does not exist even locally. In these situations there is no
motivated way to pick out a vacuum state. Secondly, in curved spacetimes
one cannot expect the dynamics of the quantum field to be unitarily im-
plementable in a fixed Fock space (see Arageorgis, Earman, and Ruetsche
(2002)). So the folium of the vacuum one starts with may not be closed
under dynamical evolution.

The use of Rindler quanta to beat up on the particle concept is doubly
misguided. First because, as just explained, no such beating is needed.
Second because the proposed beating is based on some dubious assump-
tions and some outright falsehoods. The beating is supposed to go as
follows. Suppose that spacetime is Minkowskian and that the state of the
world is given by the Minkowski vacuum state. Then the universe should
be free of particles. But (the story goes) a uniformly accelerated observer
will detect a thermal bath of Rindler quanta. As Sciama et al. (1981) write:

Unruh’s observation was that the theory that is thereby constructed
[quantizing using the Rindler frame] is not unitarily equivalent to the
usual free field theory on Minkowski spacetime. Of even greater sur-
prise was the subsequently discovered fact that the usual Poincaré
invariant vacuum state appropriate to Minkowski space . . . contains
a thermal distribution with respect to the Fulling Fock space.16

Similarly, DeWitt (1979) writes that “The Minkowski vacuum is full of
Rindler photons, although it is devoid of Minkowski photons” (694).17

One might be tempted to draw the moral that the particle concept has to
be relativized to a frame of reference or state of motion of the observer.

As noted in the Introduction, even if this moral is correct it would not
show that particles are not “real,” any more than the need to relativize
the electric and magnetic fields to a reference frame would show that these
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18. A detailed treatment of KMS states is to be found in Bratteli and Robinson (1979).

fields are not real. But it would undermine the concept of particle inherited
from classical physics and ordinary QM, in so far as that concept does
not tolerate the consequence that the presence or absence of particles is
relative to a reference frame.

In the next three sections we examine the claim on which the overstated
moral is based; namely, that, as experienced by a uniformly accelerated
observer, the Minkowski vacuum contains a thermal bath of Rindler
quanta. From our examination, three conclusions emerge. First, there is
a precise sense in which xM|A(R) is a thermal state. But it is not a sense that
justifies assigning any particle content to xM|A(R) (Section 9). Second, at-
tempts to establish the claim by expressing the xM|A(R) as a density matrix
in the Fulling Fock space are ill-founded (Section 10). Third, the behavior
of the DeWitt-Unruh “particle detector,” which registers a thermal bath
when placed in uniformly accelerated motion through the Minkowski
vacuum, can be explained without any reference to Rindler quanta. Fur-
thermore, there are a number of reasons to be suspicious of the claim that
this device detects particles (Section 11).

9. KMS States. There is a rigorous sense in which an observer uniformly
accelerated through the Minkowski vacuum will detect a thermal state.
To explicate this sense requires the notion of a KMS state, which gener-
alizes the more familiar notion of equilibrium state. Here we give a non-
rigorous introduction, and review some relevant results about KMS
states.18

A Gibbs state at inverse temperature b is written as a density matrix �q̂
exp(�bĤ)/Tr (exp(�bĤ)), where Ĥ is the Hamiltonian operator. (From
here on we neglect the normalization factor in the denominator.) This den-
sity matrix defines an algebraic state on the concrete algebra B(H) of
bounded operators on H by setting x(Â) :� Tr ( Â), Â � B(H). Further,q̂
Ĥ defines a one-parameter group of automorphisms on that algebra by
�t(Â) :� exp(itĤ)Âexp(�itĤ). It is easy to verify that for the state so de-
fined x(Â�ib (B̂)) � x(B̂Â), or equivalently, x(��ib/2(Â)�ib/2(B̂)) � x(B̂Â),
for all Â,B̂ � B(H).

Now consider a case where there may be no density matrix of the ap-
propriate form—say because normalization fails, as will be the case when
Ĥ has a continuous spectrum. Or suppose that we are not working in a
representation but rather with an abstract C*-algebra A. Must we there-
fore abandon the notion of equilibrium state? Not if there exists a one-
parameter group of automorphisms �t : A r A. For then we can char-
acterize an analog of equilibrium in terms of the property just derived. An
algebraic (�t, b)-KMS state, 0 � b � �, onA is defined by the requirement
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that x(A�ib (B)) � x(BA), or equivalently, x(��ib/2(A)�ib/2(B)) � x(BA)
for all A,B � A. There are a number of reasons for taking such KMS
states to generalize the notion of equilibrium given by the standard Gibbs
state. First, in the case that (A,�t) admits a standard Gibbs state at inverse
temperature b, the (�t, b)-KMS state is unique and coincides with the
Gibbs state (Bratelli and Robinson (1997), Ex. 5.3.31). So the KMS cri-
terion coincides with the Gibbs identification of equilibrium in situations
where that identification makes sense. Second, if x is an (�t, b)-KMS state,
for b � 0, then x is a stationary state with respect to �t : x(�t(A)) � x(A)
for all A � A. This is the sort of stability one would expect of an equilib-
rium state. Bratelli and Robinson (1997, §5.3.1) catalog other, more local
stability properties of KMS states, and gloss them by appeal to entropy
maximization. Third, it has been argued, states satisfying the KMS con-
dition at inverse temperature b act like thermal reservoirs, in the sense that
any finite system coupled to a system in such a state reaches thermal equi-
librium at b (Sewell (1986)). Although these considerations are not uni-
versally received as conclusive (Thirring (1980) offers reservations), they
are generally taken to establish the KMS condition as a suitable analysis
of thermal equilibrium.

We can now state the main results concerning the restriction of Min-
kowski vacuum state xM to various subalgebras of observables.

Lemma 3. (i) Let A(O) be the subalgebra associated with an open
region O of Minkowski spacetime. If O has non-null causal comple-
ment, then the state xM|A(O) obtained by restricting xM to A(O) is a
KMS state at finite temperature with respect to some automorphism
group of A(O). (ii) In the case where O� R, xM|A(R) is a KMS state
at temperature T � 1/2p with respect to the automorphism group �g

generated by the Rindler isometries, where g is Rindler time and units
have been chosen so that � � k � 1.

Part (i) has an easy proof (see Appendix D) but may lack physical signif-
icance. For there is no guarantee that the local automorphism group with
respect to which xM|A(O) is a KMS state is related in any nice way to the
symmetries of Minkowski spacetime or to the motions of accelerated ob-
servers. Part (ii) is highly non-trivial and is based on a deep theorem of
Bisognano-Wichmann (see Sewell (1982) and Kay (1985)). For our pur-
poses, the significance of its derivation is that, making no use whatsoever
of the Fulling representation, it can hardly be taken to impute Rindler
particle content to the Minkowski vacuum. Part (ii) can be generalized, in
a somewhat weakened form, to an arbitrary globally hyperbolic spacetime
with bifurcate Killing horizons: if x is any quasi-free Hadamard state
invariant under the timelike Killing symmetries that generate the bifurcate
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horizons, then its restriction to a “large” subalgebra of the right wedge
algebra is a KMS state at finite temperature (see Kay and Wald (1991)).19

The definition of KMS states can be extended to cover the case of zero
temperature, i.e. b � ��. A (�t, �)-KMS state is called a ground state
(with respect to the automorphism group �t). Such a state is stationary,
and the generator of a unitary representation of �t is positive. Also note-
worthy is a procedure for “cooling down” a quasi-free KMS state at finite
inverse temperature b to a ground state at inverse temperature �� (i.e.
temperature 0) (see Kay and Wald (1991) and Chmielowski (1994)). If this
cooled down ground state exists and if its one-particle Hamiltonian has
no zero modes (i.e., eigenvectors with eigenvalue 0), then it is unique. It
follows that xR is the ground state that results from cooling down the
KMS state xM|A(R). This is what precludes the possibility, discussed in
Section 7, that Fulling non-uniqueness constitutes an example of unitarily
inequivalent quantizations arising from different pure states for the same
spacetime.

Many presentations of part (ii) of Lemma 3 characterize the equilibrium
temperature as T � a/2p, rather than T � 1/2p. Such characterizations
suggest that a uniformly accelerated observer experiences a temperature
proportional to the magnitude a of her proper acceleration. But the char-
acterization is justified only if it is qualified. Suppose that x is a KMS
state at inverse temperature b with respect to the automorphism group �t.

Then if C is a positive constant, x is a KMS state at inverse temperature
b/C with respect to �t�, where t� � t/C. Now if a is the magnitude of
acceleration along a particular Rindler trajectory, the proper time sa along
that trajectory is related to the Rindler time g by sa � g/a. Thus, xM|A(R)

is a KMS state at temperature a/2p with respect to �sa
. The upshot is that

one can say either that there is a KMS state at temperature 1/2p with
respect to the automorphism group �g, or that there is an infinity of KMS
states, one for each value of a � (0, ��), at temperature a/2p with respect
to the automorphism group �sa

.
To render the popular version of the Unruh effect fully rigorous, one

would still need to link the KMS formalism to (idealized) observation
procedures. In particular, one would need an account of measurement
procedures which underwrites the claim that an observer uniformly ac-
celerating through the Minkowski vacuum experiences a temperature pro-
portional to the magnitude of her acceleration. The “particle detector”
approach considered in the Section 11 can be taken to supply at least a
partial answer. But that approach must be considered in light of a warning
we issue before closing this section. We emphasize that nothing in the

19. However, there is no guarantee that such a state exists for an arbitrary globally
hyperbolic spacetime with bifurcate Killing horizons.
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20. It may be worth tracing the source of confusions that lead various authors to assert
the literal correctness of equations (21) and (22). Sciama et al. (1981) say that R and
L taken together contain a global Cauchy surface. This is not strictly true since R �
L leaves out the origin of Minkowski spacetime. This might seem like a minor point;
but two-dimensional Minkowski spacetime with the origin removed is not simply con-
nected, and the change in topology can result in thermal effects (see Dowker (1978)
and Troost and van Dam (1979)). But let this pass. Sciama et al. jump from the existence
of a global Cauchy surface to saying that the quantization for the entire spacetime is
determined by the quantizations for R and L. That is not true. The rigorous definition
of A(R) (A(L)) is in terms of solutions with compact support on a Cauchy surface for
R(L). The definition of A(M) uses solutions with compact support on a global Cauchy
surface, and such solutions may have support on both R and L. See also the criticisms
of Belinskiı̆ et al. (1997, 1999) and Fedetov et al. (1999).

derivation of the result that xM|A(R) is a KMS state at temperature a/2p
with respect to �sa

requires or justifies assigning any particle content to
this state, much less interpreting it as a thermal bath of Rindler quanta.

10. What Does the Minkowski Vacuum State Imply about the Presence of
Rindler Quanta? One strategy for describing the experience of an observer
uniformly accelerated through the Minkowski vacuum is to express the
restriction xM|A(R) of the Minkowski vacuum to A(R) as a density matrix
in the Fulling representation. A number of authors claim to do this and
to find that this density matrix represents a thermal bath of Rindler quanta
at temperature a/2p. For example, Unruh and Wald (1984) write

0
0

M j j j j j
nj

N n a n n
j

= − ⊗










=

∞

∑∏ exp( / ) , ,π ω L R (21)

where Nj � (1 � exp(�2pxj/a))1/2. The product is taken over a complete
set of Fulling modes, and |nj, L� (respectively, |nj, R�) denotes the state
with nj Rindler quanta in mode j in the left Rindler wedge L (respectively,
the right Rindler wedge R). Tracing out over the degrees of freedom in L
produces the reduced density matrix for R:

ˆ exp( / ) , ,/ρ π ωπ2
2 2a j j j j j

nj

N n a n n
j

R R R= − ⊗












∑∏ (22)

Similar expressions are given in Unruh (1976), in Sciama et al. (1981), and
Ginsburg and Frolov (1987). But strictly speaking, this density matrix
expression is meaningless. The disjointness of xM|A(R) and xR means that
xM|A(R) is not in the folium of xR, or of any other pure state on A(R).

Although some authors take the formulas (21) and (22) literally,20 Wald
(1994) acknowledges that they do not make strict mathematical sense. But
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21. A state x on a Weyl algebra over a symplectic space (S, X) is said to be regular if
its GNS representation px is such that for the generators W of the algebra, t� px(W(ty))
is strongly continuous for all y � S. The quasi-free states which carried the burden of
discussion above are regular.

he appeals to Fell’s theorem to justify using such expressions as approxi-
mations. According to that theorem, the expectation values xM|A(R) assigns
to any finite number of observables in A(R) can be approximated to any
desired finite degree of accuracy by a density matrix in the Fulling Fock
space. That is, for any A1, A2, . . . , An � A(R) and any ei � 0, i � 1, 2,
. . . , n, there is a density matrix qF in the Fulling Fock space such that
|xM(Ai) � Tr (qFpxR

(Ai))|� ei for all i.
But this strategy for warranting talk of the quanta-content of the Min-

kowski vacuum is too indiscriminately successful. For the consequence
just stated of Fell’s theorem remains true when any other pure state h on
A(R) is substituted for the Rindler vacuum state xR. If h is a quasi-free
state, it will define an associated particle concept (though, perhaps, not a
“natural” one if h is not appropriately related to the symmetries of Rindler
spacetime). So an appeal to Fell’s theorem cannot by itself justify asser-
tions about the presence of Rindler particles (or quanta) as opposed to h-
particles (or quanta).

It is not obvious how, or whether, to draw from the Minkowski vacuum
state meaningful conclusions about the presence of Rindler quanta. One
way to proceed would be to extend xM|A(R) fromA(R) to the affiliated von
Neumann algebra VpxR

(A(R)), which is the algebra in which Rindler par-
ticle number operators occur. But there are many such extensions. And,
unlike the case of a state in the folium of xR, no one of these can be singled
out as the natural extension. Thus, to prove that xM|A(R) implies a conclu-
sion about the probability of finding Rindler quanta, one must show that
that conclusion holds for every extension of xM|A(R) to VpxR

(A(R)). Pur-
suing this strategy, Clifton and Halvorson (2001) demonstrate that every
such extension gives a probability of 0 of finding exactly n Rindler quanta
for every n � ��. (Such a probability distribution would be impossible if
it were countably additive; however, the extension of xM|A(R) to VpxR
(A(R)) does not give a countably additive state.) It follows from their
result that, for the state xM|A(R), the probability is 1 of finding n � 0 Rindler
quanta for any n � ��. This might be glossed as “With probability 1, the
Minkowski vacuum contains an infinite number of Rindler quanta.” And
if probability 1 signifies truth, the gloss can be shortened to “The Min-
kowski vacuum contains an infinite number of Rindler quanta.”

But, as Clifton and Halvorson (2001) note (and as the reader may have
begun to anticipate), this result has nothing to do with Rindler quanta per
se. For an exactly parallel result holds if for xR is substituted any pure
regular21 state h onA(R) that induces a natural Fock space representation.
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Thus, if the original gloss is sound, then so is “The Minkowski vacuum
contains an infinite number of Rindler quanta, and it also contains an
infinite number of __-quanta,” where any pure regular state h that has a
natural Fock space representation can be substituted for the blank. So one
might accept the gloss and do a modus ponens to conclude that the Min-
kowski vacuum is a very crowded place indeed. Or one might do a modus
tollens and conclude that the gloss is an artifact of the peculiarity of dis-
joint representations, not a guide to the particle contents of the Minkowski
vacuum.

In any case, even if the modus ponens route is taken, it does not follow
that the Minkowski vacuum is full of Rindler quanta in the sense relevant
to the Unruh effect—namely, that the Minkowski vacuum contains a ther-
mal bath of Rindler quanta. Pronouncements of this sort are precluded by
the fact that xM|A(R) cannot be expressed by a density matrix in the Fulling
Fock space. Nevertheless, it might still prove useful to take on board the
notion that the Minkowski vacuum literally contains an infinity of Rindler
quanta if this notion were to figure in a plausible explanation of the ex-
periences of observers who are uniformly accelerated through the Min-
kowski vacuum. We will take up this matter in the following section.

11. Particle Detectors. Another way to get a handle on what an acceler-
ating observer experiences as she moves through the Minkowski vacuum
is to appeal to “particle detectors.” It is often claimed that such detectors
register a thermal flux of particles. Then one need only consider this claim
in light of Davies’ (1984) slogan that “Particles are what particle detectors
detect” to arrive at the conclusion that particles are “relative to the ref-
erence frame.”

As we noted above, we agree with one way of reading Davies’ slogan:
not as an endorsement of operationalism but as a way of underscoring
the fact that, unlike ordinary QM, QFT does not have the concept of
“particle” among its basic concepts. In QFT, the particle concept must be
constructed from the materials at hand. The construction can be described,
at least in part, in terms of features we would like a “particle detector” to
have. Unruh (1990) details some of the choices one has to make. Does one
want the detector to give only discrete responses, or may it give a contin-
uum of responses? Is the detector to interact locally with the quantum
field, or may it be permitted to interact non-locally with the field? Does
the detector couple instantaneously to the field, or over a finite time in-
terval, or an infinite time interval? Is the detector to be designed so that
in a one-quantum state of the field the probability is strictly 0 that two
detectors, located in two relatively spacelike regions, both give positive
responses? And so on. Different answers to these questions reflect different
kinds of particle detectors—indeed, particle detectors that will behave dif-
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ferently when accelerated through the Minkowski vacuum. Unless it can
be successfully argued that there is only one “right” answer to all of these
questions, the slogan that “Particles are what particle detectors detect”
does not yield a single, fundamental particle notion.

Unruh’s own choices are satisfied by an DeWitt-Unruh box detector,
consisting of a box containing a Schrödinger particle initially in its ground
state. The particle is coupled to the quantum field. A transition of the
detector particle to an excited state counts as the detection of a particle of
the field. The form of the coupling to the Klein-Gordon field chosen for
the DeWitt-Unruh detector implies, in the first-order perturbation ap-
proximation, that when the detector is moving through the Minkowski
vacuum, the probability of transition from an energy Eo to E is propor-
tional to

d d i E E x xo M Mτ τ τ τ φ τ φ τ
−∞

+∞

−∞

+∞

∫ ∫ ′ − − − ′( ) ( )( ) ′( )exp ( )( ) ˆ ˆ ( )0 0 (23)

where x(s) is the world line of the detector parameterized by proper time
(see Birrell and Davies (1989, 48–59)). For a massless Klein-Gordon field
in four-dimensional Minkowski spacetime, a computation of (23) shows
that an DeWitt-Unruh detector which is always in inertial motion will
experience the Minkowski vacuum as devoid of particles (null response)
while an always uniformly accelerated detector will experience the same
state as a thermal (Planck) distribution at temperature T � a/2p.

It is tempting to explain this result by saying that the DeWitt-Unruh
detector gets excited by modes of the field that are positive frequency with
respect to proper time along its world line. Thus if we suppose the Min-
kowski vacuum to be full of particles that are positive frequency with
respect to proper time along a uniformly accelerating observer’s world
line—that is, Rindler particles—then we are on our way to explaining the
predicted response of the DeWitt-Unruh detector. But such an explana-
tion, however tempting, should be resisted. For there are grounds for re-
sisting the suggestion that the uniformly accelerating DeWitt-Unruh de-
tector detects a thermal distribution of particles or even that it detects
particles at all.

For an always uniformly accelerated DeWitt-Unruh detector coupled
to a massive (m � 0) Klein-Gordon field in Minkowski spacetime, the
spectrum registered is not thermal (Planckian), and vanishes as m r �
(Takagi (1986)). Takagi also showed that if the dimension of spacetime is
odd, an always uniformly accelerated DeWitt-Unruh detector will register
a Fermi distribution (Takagi (1986)). Thus, even supposing that the de-
tector detects particles, its behavior is explained by populating the Min-
kowski vacuum with a thermal distribution of Rindler quanta only in the
case of massless fields and spacetimes whose dimension is even.
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22. For some conjectures on this matter, see Chmielowski (1994).

The DeWitt-Unruh detector bears only a distant relationship to any
apparatus that experimental physicists use to detect particles. That is to
say, experimental physicists would answer Unruh’s engineering questions
differently and, hence, would design a different kind of particle detector,
quite possibly one which behaves differently from the DeWitt-Unruh de-
tector when accelerated through the Minkowski vacuum. To take just one
example, the DeWitt-Unruh detector is coupled non-locally to the field—
the transition probability in (23) is from s � �� to s � ��—whereas
actual detectors, and any detectors that experimenters could hope to con-
struct, are “switched on” for only a finite amount of time. Sriramkumar
and Padamanabhan (1996) have analyzed the response behavior of De-
witt-Unruh detectors with different window functions whose width T de-
termines the period for which the detector is coupled to the field. They
find that smooth window functions, such as Gaussians and exponentials,
do not produce divergent detector responses and satisfy the natural con-
straints that the response vanishes for both inertial and uniformly accel-
erated motions when T r 0 whereas the response in the T r � limit for a
uniformly accelerated detector coincides with that of the idealized detector
coupled to the field for all times. But, not surprisingly, a uniformly accel-
erated Dewitt-Unruh switched on for a finite T does not respond as if it
were in a thermal bath of Rindler particles.

Even for idealized DeWitt-Unruh detectors that are switched on for all
time, there is reason to be cautious about saying that a positive response
represents the detection of particles. The integral curves of timelike Killing
fields on Minkowski spacetime include not only inertial and linear motion
with constant proper acceleration (the Rindler case) but also uniformly
rotating motions as well. Since a uniformly rotating frame is stationary
but not static, the procedure of Section 3 for quantizing the Klein-Gordon
field does not apply; nor is the algebraic approach of Section 4 applicable
since the region of spacetime on which the frame is rotating with a velocity
less than that of light is not globally hyperbolic. Nevertheless, Letaw and
Pfautsch (1980, 1981), Padamanabhan (1982), and Sriramkumar and Pa-
damanabhan (2002) have provided a heuristic quantization procedure and
find that the vacuum state associated with the rotating frame is identical
with the Minkowski vacuum. However, these authors also find that a
DeWitt-Unruh detector which is at rest in the rotating frame and which
is switched on for all time detects a non-flat, non-thermal spectrum for
the case of the Minkowski vacuum for the massless Klein-Gordon field.
If their quantization procedure can be given a rigorous footing,22 we would
have a clear case where theoretical considerations dictate that the detector
is not detecting particles. There are, of course, important differences be-
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23. As Padamanabhan puts it: “[O]ne is forced to consider the results based on the
model detector with suspicion—they have to be confirmed by actual quantization cal-
culations” (1982, 262).

tween the Rindler and the rotating frame. In particular, an event horizon
bounds the domain of Minkowski spacetime on which the Rindler frame
is defined, and work is required to maintain an observer at rest in this
frame; but these features are absent for the uniformly rotating frame (Le-
taw and Pfautsch (1981)). But these differences do not seem to justify the
notion that responses of detectors at rest in a static frame are reliable
indicators of particles whereas responses of detectors at rest in stationary
but non-static frames are not to be trusted.23

Finally, the particle explanation of response of the DeWitt-Unruh de-
tector may not square with our best answer to the question of what energy-
momentum of the Klein-Gordon field an observer uniformly accelerated
through the Minkowski vacuum measures. The obvious way to answer
this question is to take the components in the Rindler coordinates of the
renormalized stress-energy tensor’s expectation value in the Minkowski
vacuum state xM. Since �Tab�xM

� 0, a uniformly accelerating observer (or
any observer for that matter) perceives no energy-momentum. Thus, if a
uniformly accelerating observer is detecting particles, the particles she de-
tects have a ghostly existence that does not manifest itself by contributing
to �Tab�, as ordinary particles do.

If the accelerating DeWitt-Unruh detector is not detecting particles,
what then is it detecting? Here is the beginning of one possible answer.
For excitations of amount D � E � Eo, the rate of response I(D) of the
detector per unit proper time along the world line of a stationary frame
in Minkowski spacetime is

I d i x xM M( ) exp( ) ˆ ( ) ˆ ( )∆ ∆= − ( ) ( )
−∞

+∞

∫ τ τ φ τ φ0 0 0 (24)

This expression for I(D) resembles the formula for the power spectrum of
the noise of a stochastic process, suggesting that what an accelerating
detector is detecting is not particles but the noise of the zero-point fluc-
tuations of the Minkowski vacuum (see Sciama et al. (1981)). Notice that
this approach explains the device’s response no matter what its state of
motion.

Whether or not this suggestion stands up to scrutiny, the point remains
that a derivation of the response of a DeWitt-Unruh detector can be done
entirely within the Minkowski representation. Thus, insofar as explana-
tion consists of derivation from first principles, an explanation of the re-
sponse of the detector need not use or refer to Rindler quanta, or any
other non-Minkowski quanta. There is a simple reason why this style of
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explanation is preferable to one involving Rindler or other quanta. When
the DeWitt-Unruh detector is non-uniformly accelerated through the Min-
kowski vacuum, it will register a non-thermal spectrum. But there is no
timelike symmetry of Minkowski spacetime associated with such a motion
and, thus, no natural particle notion associated with the motion, making
unavailable an explanation in terms of particles. If uniformity of expla-
nation for different motions of the detector is a desideratum for good
explanation, then a non-particle explanation is preferred.

The upshot of our discussion is that, unlike the considerations of the
two preceding sections, the approach using a “particle detector” does give
some positive support to the popular notion that an observer accelerating
through the Minkowski vacuum experiences a thermal flux of particles
(or quanta). However, the support is far from perfect and needs to be
qualified and hedged in a number of ways. And those who subscribe to
the uniformity-of-explanation principle announced in the last paragraph
would prefer an alternative account that does not explain the responses
of the detector in terms of particles (or any non-Minkowskian quanta).

12. Conclusion. Fulling non-uniqueness and the Unruh effect are marvel-
ous vehicles for exploring the mysteries of QFT. But the physical signifi-
cance of Fulling non-uniqueness turns on the physical realizability of the
Rindler vacuum state xR, and we have argued that there are reasons to be
dubious of the latter. And apart from the issue of physical realizability,
xR does not team up with the the Minkowski vacuum state xM to give an
interesting example of “alternative vacuum states.” Such an example
would involve a globally hyperbolic spacetime M,gab admitting two in-
dependent timelike Killing fields Va and V�a, together with two pure quasi-
free states xVa and xV �a such that xVa (respectively, xV �a) is invariant under
the symmetries associated with Va (respectively, V�a) and such that the
GNS representations of the Weyl algebra A(M) determined by xVa and
xV �a are unitarily inequivalent. Whether there are physically interesting
examples of this sort remains an open question.

Attempts to link Fulling non-uniqueness to the Unruh effect require a
stretch that is not supported by the formalism of QFT. What is key to the
phenomena discussed under these labels has little to do with the Rindler
representation and much to do with the peculiar nature of the restriction
xM|A(R) of the Minkowski vacuum state to the right Rindler wedge algebra
A(R). That xM|A(R) and xR give disjoint representations ofA(R) has noth-
ing to do with xR per se since the disjointness holds of any pure state on
A(R). The properly thermal nature of xM|A(R) resides in the fact thatxM|A(R)

is a KMS state at finite temperature with respect to the automorphism
group of A(R) generated by the Rindler isometries. If the “Unruh effect”
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24. Thus, we partly agree and partly disagree with the assertion of Belinskiı̆ et al. (1997,
1999) and Fedetov et al. (1999) that “the Unruh effect does not exist.”

designates this result, and analogous results for the general case of globally
hyperbolic spacetimes with bifurcate Killing horizons, then provably the
Unruh effect does exist. But if the “Unruh effect” means that the Min-
kowski vacuum is full of Rindler quanta, in the sense of containing a
thermal distribution of such quanta, then that effect does not exist—or,
more cautiously, the most straightforward ways to express the effect in
the formalism of QFT do not work.24 Nor can the popular version of the
Unruh effect be founded on attempts to use “particle detectors” to oper-
ationalize the claim that, for a uniformly accelerated observer, the Min-
kowski vacuum contains a thermal flux of particles. For, in our opinion,
the best explanation of the response of such detectors is not that they are
detecting particles but that they are detecting the noise of the Minkowski
vacuum.

The popular—and we believe, dubious—versions of the Unruh effect
were promoted in part as a way of demoting the particle concept in QFT
from fundamental status. But even unassailed by the Unruh effect, the
particle concept is beleaguered, for reasons including those we have re-
hearsed in Sections 7 and 8. The challenge facing interpreters of QFT it
not to free it from a fundamental particle concept, but rather to show how
QFT can explain effects that were previously taken to indicate the presence
of particles.

Although it seems obvious that Fulling non-uniqueness and the Unruh
effect provide crucial test cases for any philosophical interpretation of
QFT, philosophers have been slow to respond; for example, Teller’s (1995)
book on the foundations of QFT and Huggett’s (2000) review article offer
only cursory discussions of the issues, and while Clifton and Halvorson
(2001) provide a rich and illuminating discussion of the Fulling quanti-
zation, they have little to say about the Unruh effect. Without pretending
to offer any overall interpretative stance on QFT, we have staked out a
position on Fulling non-uniqueness and the Unruh effect. This position
can be summarized by the slogan that almost every interesting and correct
assertion that can be made about these phenomena can be derived from
properties of the state xM|A(R) without the need to invoke any sorts of
particle contents or strike any operationalist stances. Whether or not our
position proves to be tenable, we hope to have identified the relevant issues
that must be addressed in any adequate treatment of these phenomena.
And independently of these phenomena, we hope to have illustrated how
QFT poses philosophically challenging interpretational issues that are not
encountered in ordinary QM.
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Appendix

A. Some Basics of C*-Algebras.
A C*-algebra A is an algebra, over the field � of complex numbers,

with an involution * satisfying: (A*)* � A, (A � B)* � A* � B*, (kA)*
� A* and (AB)* � B*A* for all A, B � A and all complex k (where thek̄
overbar denotes the complex conjugate). In addition, a C*-algebra is
equipped with a norm, satisfying �A*A� � �A�2 and �AB� � �A� �B� for
all A, B � A, and is complete in the topology induced by that norm. We
also assume that A contains a unit 1 such that 1A � A1 � A for all A �
A. Observables are identified with self-adjoint elements ofA, i.e. elements
A such that A* � A.

A representation of a C*algebra A is a mapping p : A r B(H) from the
abstract algebra into the concrete algebra B(H) of bounded linear oper-
ators on a Hilbert space H such that p(kA � lB) � kp(A) � lp(B),
p(AB) � p(A)p(B), and p(A*) � p(A)† for all A, B � A and all k,l � �.
A representation is faithful if p(A) � 0 implies A � 0. A representation
(p, H) of A is irreducible just in case the only closed subspaces of H that
are invariant under p(A) are {0} and H. If (p, H) is a representation of A
and K � H is a non-zero closed subspace invariant under p(A), then the
mapping A r B(H) : A� p(A)P̂

K
, where P̂

K
is the orthogonal projection

onto K, is a subrepresentation of p. Two representations (p1, H1) and (p2,
H2) of a C*-algebra A are said to be unitarily equivalent just in case there
is an isomorphism Û: H1 r H2 such that Ûp1(A)Û�1 � p2(A) for all
A � A.

A state on A is a linear functional x that is normed (x(1) � 1)) and
positive (x(A*A) � 0 for all A � A). An algebraic state is said to be pure
(respectively, mixed ) if it cannot (respectively, can) be written as a non-
trivial convex linear combination of other states. A basic result is that the
GNS representation determined by a state x is irreducible just in case x
is pure. (Recall from Section 4 that the GNS representation determined
by a state x is the unique, upto unitary equivalence, cyclic representation.)

If (p, H) is a representation of C*-algebra A, the von Neumann algebra
Vp(A) associated with the representation is [p(A)]� (i.e. the double com-
mutant of p(A)). A von Neumann algebra is said to be Type I if its com-
mutant is abelian. If x is a pure state on A, the von Neumann algebra
associated with the GNS representation of x is of Type I since Vpx (A) �
B(Hx). A state x on A (or the GNS representation (px, Hx) determined
by x) is said to be factorial iff Vpx(A) � Vpx(A)� consists of multiples of
the identity. A state x on A has a canonical extension to a state on thex̃
von Neumann algebra Vpx(A) associated with the GNS representation de-
termined by x. x is said to be normal iff on Vpx(A) is countably additive.x̃
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B. The Disjointness of the Fulling and Minkowski Representations.
The following Lemma contains some characterizations of the concept

of the quasi-equivalence of representations. (Recall from Section 5 that
two representations are quasi-equivalent just in case their folia coincide.)

Lemma 4. (i) If p and p� are non-degenerate representations of a C*-
algebra A, then they are quasi-equivalent iff there is a *-isomorphism
� : Vp(A) r Vp�(A) such that �(p(A)) � p�(A) for all A � A. (ii) p and
p� are quasi-equivalent iff p has no subrepresentation disjoint from
p� and vice versa. (iii) A representation p of a C*-algebraA is factorial
iff every sub-representation of p is quasi-equivalent to p.

That pxR
and pxM|A(R)

are not quasi-equivalent follows from part (i) of
Lemma 4 since they determine non-isomorphic von Neumann algebras—
VpxR

is Type I while VpxM|A(R)
is Type III (see Clifton and Halvorson

(2001)). Although in general a failure of quasi-equivalence does not entail
disjointness, the implication does hold in the present case. xR is a pure
state and, thus, pxR

is irreducible and has no non-trivial subrepresenta-
tions. Also pxM|A(R)

is factorial and, thus, by part (iii) of Lemma 4 is quasi-
equivalent to each of its subrepresentations. So from part (ii) it follows
that pxR

and pxM|A(R)
are not quasi-equivalent iff they are disjoint.

C. The Local Quasi-Equivalence of the Fulling and Minkowski Represen-
tations.

The two senses of local quasi-equivalence for the Minkowski and Rin-
dler vacuum states—(17) and (18)—would coincide if the von Neumann
algebras [pxM

(A(O))]� and [pxR
(A(O))]� were factors for any open region

O � R with compact closure. This follows from (iii) of Lemma 4 and

Lemma 5. Let x be a state on a C*-algebra A, and let B be a C*-
algebra sub-algebra. Then (px|B, Hx|B) and (px|B, H ) are unitarilyB

x

equivalent, where H � Hx stands for the span of px(B).B
x

Thus in general (px|B, Hx|B) is unitarily equivalent to a sub-representation
of (px|B, Hx). But if the span of px(B) � Hx, then (px|B, Hx|B) is unitarily
equivalent to (px|B, Hx). Now pxM|A(O)

is factorial for an open O�R with
compact closure. But is pxR

|A(O) factorial? If so, (17) and (18) are equiv-
alent. Verch (1994) proves the factorial character of pxR

|A(O) only for
special O. If pxR

|A(O) is not factorial, we can still make some progress.
By the Reeh-Schlieder property of the Minkowski vacuum, pxM|A(O)

and
px

M
|A(O) are unitarily equivalent for any open region O � R with com-

pact closure. So we get that pxM|A(O)
is quasi-equivalent to pxR

|A(O) for
any open region O � R with compact closure.
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D. Thermalization by Restrictions.
Let (px, Hx, |Wx�) be the GNS triple determined by the state x on A,

and let be the canonical extension of x to the von Neumann algebrax̃

Vpx(A) associated with px. is said to be faithful iff (P̂) � 0 for any˜ ˜x x
positive P̂ � Vpx (A) implies that P̂ � 0. A vector |w� � H is said to be
separating for a von Neumann algebra V � B(H) iff R̂|w� � 0, R̂ � V,
implies that R̂ � 0.

Lemma 6. (i) is faithful iff the GNS vector |Wx� is separating forx̃
Vpx(A). (ii) |Wx� is separating for Vpx(A) iff |Wx� is cyclic for Vpx(A)�.

Now let O be an open set of Minkowski spacetime with non-empty
spacelike complement. We want to show that M|A(O) is faithful onx̃

VpxM
|
A(O)

(A(O)). Begin by noting that by the Reeh-Schlieder property,
pxM|A(O)

is unitarily equivalent to pxM
|A(O). Thus, the von Neumann al-

gebras VpxM
|
A(O)

(A(O)) and VpxM
(A(O)) are isomorphic, and M|A(O) isx̃

faithful on VpxM
|
A(O)

(A(O)) iff xM is faithful on VpxM
(A(O)). By Lemma 6,

xM is faithful on VpxM
(A(O)) iff VpxM

(A(O))�|Wx� is dense in HxM
. The

right hand side of the last iff is true by the Reeh-Schlieder property. Now
since M|A(O) is normal as well as faithful, it follows from the Tomita-x̃
Takesaki theorem (see Bratteli and Robinson (1979)) that there is a weakly
continuous one-parameter family of modular automorphisms � onx | ( )M A Ot

VpxM
|
A(O)

(A(O)). The modular condition is the KMS condition, so xM|A(O)

is a KMS state with respect to � .x | ( )M A Ot
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