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Abstract

In the localization game on a graph, the goal is to find a fixed but unknown target node v�

with the least number of distance queries possible. In the jth step of the game, the player
queries a single node vj and receives, as an answer to their query, the distance between
the nodes vj and v�. The sequential metric dimension (SMD) is the minimal number of
queries that the player needs to guess the target with absolute certainty, no matter where
the target is.

The term SMD originates from the related notion of metric dimension (MD), which
can be defined the same way as the SMD except that the player’s queries are non-
adaptive. In this work we extend the results of Bollobás, Mitsche, and Prałat [4] on the
MD of Erdős–Rényi graphs to the SMD. We find that, in connected Erdős–Rényi graphs,
the MD and the SMD are a constant factor apart. For the lower bound we present a clean
analysis by combining tools developed for the MD and a novel coupling argument. For
the upper bound we show that a strategy that greedily minimizes the number of can-
didate targets in each step uses asymptotically optimal queries in Erdős–Rényi graphs.
Connections with source localization, binary search on graphs, and the birthday problem
are discussed.

Keywords: Source detection; binary search on graphs; expansion properties of Erdős–
Rényi graphs
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1. Introduction

With the appearance of new applications in network science, the theoretical analysis of
search problems in random graph models is increasingly important. One such application is the
source localization problem, where we assume that a stochastic diffusion process has spread
over a graph starting from a single node, and we seek to find the identity of this node from
limited observations of the diffusion process [21, 23]. If the diffusion models an epidemic
outbreak, then our goal is to find patient zero, which is an important piece of information for
both understanding and controlling the epidemic. The limited information about the diffusion
is often the infection time of a small subset of sensor nodes [21]. Recently, Zejnilović, Gomes,
and Sinopoli [30] connected a deterministic version of the source localization problem with
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the metric dimension, a well-known notion in combinatorics introduced in 1975 by Slater [24]
and a year later by Harary and Melter [10].

Definition 1.1. (MD.) Let G = (V, E) be a simple connected graph, and let d(v, w) ∈N denote
the length of the shortest path between nodes v and w. For R = {w1, . . . , w|R|} ⊆ V , let
d(R, v) ∈N

|R| be the vector whose entries are defined by d(R, v)i = d(wi, v). A subset R ⊆ V is
a resolving set in G if d(R, v1) = d(R, v2) holds only when v1 = v2. The minimal cardinality of
a resolving set is the metric dimension (MD) of G.

A resolving sensor set R enables us to detect any epidemic source v� when we assume that
the observations are the vectors d(R, v�), because every v� generates a different determinis-
tic observation vector. In many applications it is unrealistic to assume that d(R, v�) can be
observed, partially because we are not accounting for the noise in the disease propagation,
but also because we infer d(R, v�) from the time difference between the time the source gets
infected and the time the sensors get infected, and usually we do not have access to the former
information. We can define an analogous problem, where we do not assume that the time the
infection began is known, if we require that all vectors in the set {d(R, v�) + C | v� ∈ V, C ∈ Z}
are different. The number of sensors needed in this scenario is called the double metric dimen-
sion (DMD) [5]. Although the MD and the DMD can be very different in certain deterministic
graph families, they seem to behave similarly in a large class of graphs, including Erdős–Rényi
random graphs [26], which are the focus of this paper. In this work we consider only models
that assume that the time the infection began is known. However, we believe our results can be
extended to the DMD as well.

Previous work suggests that even with the assumption of deterministic distance observa-
tions, the number of sensors required to detect the source can be extremely large on real-world
networks [27]. One idea for mitigating this issue is to enable the sensors to be placed adap-
tively, using the information given by all previous sensors to place the subsequent ones [31]. A
substantial decrease in the number of required sensors in an adaptive version of the DMD com-
pared to the DMD was observed experimentally by Spinelli, Celis, and Thiran [27]. Intuitively,
reducing the number of candidate nodes that could still be the source and focusing only on these
candidate nodes can be very helpful, especially in real-world networks. However, it is not yet
clear what property of the graph determines whether reduction in the number of required sen-
sors is small or large. It is well known that in the BarKochba or twenty questions game (binary
search on a finite set) it does not matter whether the questions (queries) are non-adaptive or
can be based on previous answers: the number of questions needed is �log2 (N)� in both cases.
Source localization with non-adaptive (respectively, adaptive) sensor placement can be seen as
a BarKochba game with non-adaptive (respectively, adaptive) questions, where the questions
are limited (to the nodes) and the answer does not have to be binary. It is the limitation on the
available ‘questions’ that creates a large gap between number of required ‘questions’ in the
adaptive and non-adaptive versions of the source localization problem. Our goal in this paper
is to rigorously quantify this gap in source localization on a random graph model.

For the rigorous analysis, we consider an adaptive version of the MD in connected Erdős–
Rényi random graphs. In the combinatorics literature, this adaptive version of the MD was
introduced in [22] under the name sequential location number. The same notion was later
referred to as the sequential metric dimension (SMD) in [3]. We focus on the Erdős–Rényi
random graph model, because of the previous results on the MD of Erdős–Rényi graphs of
Bollobás, Mitsche, and Prałat [4]. The only other result on the MD of random graphs that we
are aware of is the MD of uniform random trees [18]. We do not consider this model in this
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TABLE 1. Overview of the main tools to prove Theorem 6.1. Each column corresponds to a different
range of parameter c. The c = �(1) columns are split into two sub-columns: in the first, e−c > 1 − e−c,
and in the second, e−c < 1 − e−c. Only the leading terms of the size of the level sets S are shown. The
largest level set is colored red, and the second largest is colored pink. The last level set before one of
the two dominating level sets is colored gray. The bottom half of the table points to the proof of the
upper/lower bound (ub/lb) for each parameter range of Theorem 6.1, both in previous work and in this

paper.

1 � c log
(N

δi

)� c 2 log (N) � c
c(N) c = �(1) c � log

(N
δi

)
c � 2 log (N) c � δ

D i + 2 i + 2 i + 2 i + 2 i + 1
|SG(v, i − 1)| δi−1 δi−1 δi−1 δi−1 δi−1

|SG(v, i)| δi δi δi δi δi

|SG(v, i + 1)| (1 − e−c)N (1 − e−c)N (1 − e−c)N
(
1 − δi

N

)
N

(
1 − δi

N

)
N

|SG(v, i + 2)| e−cN e−cN e−cN e−cN 0
MD ub [4] T3.1 case 1 T3.1 case 2.1 T3.1 case 2.2
MD lb [4] T4.2 T4.2, T4.4 case 1 T4.4 case 2 T4.3
SMD ub Similar to the SQC ub Use MD ub
SMD lb Coupling and an analysis similar to the DQC lb

paper, but it is safe to expect that the SMD would be significantly lower in this model than the
MD.

Some of the techniques used in this paper build directly on the techniques of [4]. The most
important example is that of the expansion properties of connected Erdős–Rényi graphs, the
main technique developed in [4]. According to this property, the observations d(wi, v) are
dominated by one or two values from the set {D, D − 1}, where D is the diameter of G (see
Figure 4 and Table 1). Hence the information acquired in each step is essentially binary. Kim
et al. [14] assumed a very similar model to ours, except that the queries are of the form (v,r),
and the answers are binary depending on whether the target is in the ball around node v with
radius r. Clearly, in Erdős–Rényi graphs, where distance queries happen to have essentially
binary answers, the two models are very similar. Indeed, Kim et al. [14] independently recov-
ered many of the results of [4]. They also introduced the adaptive version of the problem,
which is very similar to the SMD, but they did not have any results on the adaptive version
of the problem in Erdős–Rényi graphs. Since in the SMD we assume that we can use strictly
more information than the binary model, our lower bounds are readily applicable to the binary
model. The upper bounds are not readily applicable, but they could be extended with minimal
modifications to the proof.

The binary nature of the answers to distance queries in Erdős–Rényi graphs suggests that
our setup has close connections with generalized binary search [19]. In a sense, our problem
setup can be seen as the dual version of graph binary search introduced by Emamjomeh-
Zadeh, Kempe, and Singhal [8], where the observations reveal the first edge in the shortest
path instead of its length. Although the two models share some similarities, we must point
out that while Emamjomeh-Zadeh et al. [8] focused on an algorithm for general graphs (with
noisy but adaptive observations), our work provides asymptotically almost sure results on the
sample complexity of an algorithm and a matching lower bound for all possible algorithms
on Erdős–Rényi graphs (with noiseless observations); thus they were aiming for different
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goals. In terms of goals, the work most similar to ours is perhaps that of Dudek, Frieze, and
Pegden [7]. They considered a version of the Cop and Robber game on Erdős–Rényi graphs of
diameter two: the target can ‘move’ between turns, and in order to locate this moving target,
it is not the number of turns but the number of sensors that the player selects in each turn that
we want to minimize. Recently, the results of [7] were extended by Dudek et al. [6] to Erdős–
Rényi graphs with diameter larger than two, and they found that in that range, the number of
sensors needed in the Cop and Robber game is strictly less than the SMD. Like our proofs, the
proofs in [6] make use of the expansion properties developed in [4]. Finally, we also mention
the recent work of Lecomte, Ódor, and Thiran [16], who studied a noisy version of the SMD
in path graphs.

The methods in this paper connect several different ideas developed in different communi-
ties; these ideas have not been connected before. In Section 3 we abstract out one of the key
ideas of [4] and connect it with the birthday problem. In Section 4 we connect the SMD with
generalized binary search [19]. In Section 5 we introduce the expansion properties of G(N, p)
random graphs. In Section 6 we combine the ideas of Sections 4 and 5 and present the main
result of this paper. Finally we conclude the paper with a discussion in Section 7, and we place
some of the proofs in Appendix A for better readability.

2. Problem statement and summary of results

2.1. Problem statement

Although we have explained our problem via the source localization problem, in the rest of
the paper we adopt the vocabulary of binary search. Let v� ∈ V be the target node. The target
node is unknown to us, but for a set of queries R ⊆ V the distance d(R, v�) is known.

Definition 2.1. (Candidate targets.) Given a set of queries R, the set of candidate targets for
the graph G is

TR(G) = {v ∈ V | d(R, v) = d(R, v�)}.
Our goal is to detect v�, which means we would like a set R with TR(G) = {v�}, or equiva-

lently |TR(G)| = 1 (as v� ∈ TR(G) must always hold). Recall that for a resolving set R we have
|TR(G)| = 1 for every v� ∈ V . In contrast, in the adaptive case, a (potentially) different R is
constructed for every v�; in the jth step we select query wj based on the distance information

revealed by Rj−1 =⋃j−1
k=1 wk, and we still aim for |TRj(G)| = 1.

Definition 2.2. (SMD.) Let ALG(G) be the set of functions

g : {(G, R, d(R, v�)) | R ⊆ V, v� ∈ V} → V .

The sequential metric dimension (SMD) of G is the minimum r ∈N such that there is
a query selection algorithm g ∈ ALG(G), for which, if we let R0 = ∅ and Rj+1 = Rj ∪
g(G, Rj, d(Rj, v�)), then |TRr (G)| = 1 for any v� ∈ V .

The set ALG(G) might contain functions that are not computable in polynomial time, hence
we define a slightly stricter notion of SMD where the next query has to be polynomial-time
computable (SMDP).

Definition 2.3. (SMDP.) Let PALG(G) be the subset of ALG(G) with polynomial-time com-
plexity. Then SMDP(G) is the minimum r ∈N such that there is a query selection algorithm
g ∈ PALG(G), for which, if we let R0 = ∅ and Rj+1 = Rj ∪ g(G, Rj, d(Rj, v�)), then |TRr (G)| =
1 for any v� ∈ V .
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FIGURE 1. An example of how the SMD can be interpreted as a two-player game. In the jth round, Player
1 creates the set Rj by adding a sensor node wj (marked in red) to Rj−1. The sensor wj partitions the
current candidate target set TRj−1 (G) based on distances (marked in blue). In turn, Player 2 must provide
a distance from wj to a feasible but not necessarily predetermined source node, which is equivalent to
selecting one of the blue sets. Player 1 tries to reduce and Player 2 tries to increase the total number of
rounds until the end of the game, which happens when TRj(G) shrinks to a single element. In this example
the game ends in three rounds if both players play optimally. Hence the SMD of this ‘comb graph’ of size
18 is also 3. In fact, the SMD of the ‘comb graph’ of any size n ≥ 9 is still 3, in sharp contrast to the MD

of the same graph, which is n/3.

The definition of SMD and SMDP is intrinsically algorithmic. It is useful to think of them
as two-player games. In each step, Player 1 selects a query and tries to reduce the candidate
set to a single element as fast as possible. Player 2 must then provide an observation that is
consistent with at least one of the target nodes. If there are multiple such observations, Player
2 can choose one to try to make the game as long as possible. In this setting Player 2 does
not decide on the source v� in advance, but must always be consistent with the observations
that have been revealed so far (i.e. TRj(G) can never be empty). Since every predetermined
source v� can be found in this way by Player 1, and since for every set of answers provided by
Player 2 there is a node that could have been the source, the SMD can be seen as the number
of steps the game takes if both players play optimally, and SMDP is the same if Player 1 must
compute their next move in polynomial time in each step. See Figure 1 for an example of how
the two-player game corresponding to the SMD is played.

Clearly 1 ≤ SMD ≤ SMDP ≤ MD ≤ N, as being able to adaptively select the queries only
gives Player 1 more power. Before we proceed to compute the difference between Erdős–Rényi
graphs, we first introduce two easier problems defined on matrices as warmups and we address
the problem on graphs in Section 6.

2.2 Summary of results

To ease notation in this short summary, we express our main results on the SMD in terms
of the MD. The precise formulation and the proof of our main theorem is in Section 6. In its
crudest form, our main result says that the ratio of the SMD and the MD is between 1 and 1

2
a.a.s. From this statement and the results of [4], it is already possible to infer the asymptotic
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(a) (b) (c)

FIGURE 2. The red and blue dots show the approximated value of the MD and the SMD of simulated
Erdős–Rényi graphs computed by the toolbox [20] averaged over 100 iterations (confidence intervals are
too small to be plotted). The slope of the red and blue lines is computed by Theorem 6.1 and the intercept
is chosen to fit the last few data points. On (semi-log) plots (a) and (c) we have (Np)i = �(N) for i = 0
and i = 1 respectively. For such parameters the MD and the SMD are both logarithmic and there is a
constant factor difference between them. In contrast, on (log-log) plot (b) we have (Np)i = �(N) for all
i ∈N. For such parameters the MD and the SMD grow as a power of N, and there is a gap between the

theoretical upper and lower bounds, which are shown by dashed curves.

behavior of the SMD. In [4] it was found that MD(G(N, Nx−1)) = N1−�1/x�x+o(1), which means
that the MD is a (non-monotonically changing, ‘zig-zag’ shaped) power of N, unless 1/x is an
integer, in which case the MD is a constant times log (N). In this paper we prove that the
same is true for the SMD, hence the crude asymptotic behavior of the SMD is completely
characterized.

Our results enable us to make a more precise statement on the ratio of the SMD and the
MD. For the values of p where the MD is logarithmic, we are able to determine the leading
constant of the ratio exactly. Since the dependence of this leading constant on p and N is
rather complicated, we simply denote it by Fγ (p, N) in Theorem 2.1, and we defer the precise
definition of Fγ (p, N) to Remark 6.3. It is shown in Remark 6.3 that Fγ (p, N) can take any
value in the interval ( 1

2 , 1), which implies that there are values of p for which the SMD is
strictly smaller than the MD.

For the values of p where the MD is a power of N, we have a lower bound on the ratio
of the SMD and the MD, which in general does not match the trivial upper bound given by
the observation SMD ≤ MD. In Theorem 2.1 we denote our lower bound by Fη(p, N), the
definition of which we again defer to Remark 6.3, but we mention that Fη(p, N) takes values in
the interval ( 1

2 , 1), which means that there is a non-zero 1 − Fη(p, N) gap between our upper
and lower bounds for these values of p. We conjecture that this gap is due to the use of the
first moment method in our proofs, and that the lower bound can be improved to 1 with more
sophisticated techniques.

Theorem 2.1. Let N ∈N and p ∈ [0, 1] such that log5 (N)/N � p and 1/
√

N � 1 − p. Let G
be a realization of a G(N, p) random graph. Then

1 ≥ SMD(G)

MD(G)
= Fγ (p, N) + o(1) ≥ 1

2
+ o(1) if (Np)i = �(N) for i ∈N,

1 ≥ SMD(G)

MD(G)
≥ Fη(p, N) + o(1) ≥ 1

2
+ o(1) otherwise,

hold a.a.s., where Fγ and Fη are functions of p, N that are explicitly expressed in Remark 6.3.

See Figure 2 for simulation results confirming Theorem 2.1, and its more precise version,
Theorem 6.1.
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In Theorem 2.1 we were able to state our main results succinctly in terms of the MD, but
in our proofs we cannot take such shortcuts. Instead of directly using the results of [4] on the
MD, we use some of their techniques, and we complement them with new techniques of our
own. For instance, in the SMD upper bound we need to analyze an interactive game of possibly
N steps instead of selecting the queries in a single round. In particular, the order in which we
reveal the edges of the random graph is completely different in our analysis compared to [4].
For the SMD lower bound we could have split our proof into several cases, and for some of
them we could have used the results of [4] directly. Instead we introduce a coupling argument,
which succeeds without considering several cases, and gives a clean alternative proof of the
MD lower bound as well.

3. Warmup1: Random Bernoulli matrices with pairwise different columns

In this section we consider an M × N random matrix A, with entries drawn independently
from a Bernoulli distribution, and we are interested in the minimal M for which A still has pair-
wise different columns with high probability. This M can be viewed as the query complexity
of binary search with random Bernoulli queries, where the ith query can distinguish between
targets j and k if Aij = Aik.

For notation, let us consider the binary matrix A with row indices R= [M] and column
indices C = [N]. For R ⊆R and W ⊆ C, let AR,W be the submatrix of A restricted to rows R and
columns W.

Theorem 3.1. Let N ∈N, let 0 < q(N) ≤ 1
2 and M(N) ∈N be functions possibly depending on

N, and let us define the random matrix A ∈ Ber (q)M×N. Let A be the property that A has
pairwise different columns. Then

M̂(N) = log (N)

log
(
1/
√

q2 + (1 − q)2
)

is the threshold function for A. That is, for any 0 < q(N) ≤ 1
2 and 1 � ε(N) � 1/log (N),

(i) if M ≥ (1 + ε(N))M̂, then limN→∞ P(A ∈A) = 1,

(ii) if M ≤ (1 − ε(N))M̂, then limN→∞ P(A ∈A) = 0.

We could not find this particular theorem stated in this way in the literature, but there exist
many related results. Computing the probability that an N × N random Bernoulli matrix is
singular is a famous problem first proposed by Komlós in 1967 [15]. Clearly, if the matrix has
two identical columns then it is also singular, and hence we obtain the lower bound

P(A ∈A) ≤ P(A is singular).

Most of the research on the singularity of random Bernoulli matrices has been on the upper
bound [12, 29], with the exception of Arratia and DeSalvo [1], who lower-bounded P(A ∈A)
by using an inclusion–exclusion-type argument. However, this bound is too loose in our case,
as we are interested in P(A ∈A) of an M × N matrix, where M is close to the threshold. Our
analysis in this paper could potentially be applied to tighten some of the bounds in [1], although
the improvement would appear only in a high (fifth) order term of the bound.

Another well-studied problem related to P(A ∈A) is the birthday problem (BP). Indeed,
when q = 1

2 , we obtain the standard formulation of the BP with N people and 2M days. For
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0 < q < 1
2 , the columns (birthdays) are no longer equiprobable, so we obtain BP with hetero-

geneous birthday probabilities. The non-coincidence probability of two birthdays in this case
has been computed exactly using a recursive formula by Mase [17]. Rigorous closed-form
approximations for constant q were given by Arratia, Goldstein, and Gordon [2]. Intuitively,
the events that two birthdays coincide are rare and almost independent, so the number of coin-
cidences can be approximated by a Poisson random variable. However, Poisson approximation
can work only as long as the number of pairwise collisions dominates the number of multi-
collisions (i.e. collisions of ≥ 3 columns), which happens only for q that do not decrease
too fast with N. For fast-decaying q, we need to use a different technique: we upper-bound
P(A ∈A) by the probability that A does not contain two identically zero columns. Indeed, the
event that all columns are different implies that no two identically zero columns can exist,
hence it must have a smaller probability.

Theorem 3.1 can also be viewed as a simplified version of [4], which will become clear
in Section 6. Our proofs also follow [4]: we choose to use a combination of the first moment
method and Suen’s inequality [11, 28], instead of Poisson approximation.

3.1. Proof of Theorem 3.1 (i)

Proof. Let

M = (1 + ε(N)) log (N)

log
(
1/
√

q2 + (1 − q)2
) ,

with ε(N) � 1/log (N), and let X be the number of pairs of columns in C which are identical
(i.e. colliding). Let Xxy be the indicator of AR,x = AR,y for x = y ∈ C, and let Pk be the marginal
that k fixed columns all collide. By the identity

αM̂ = α

log (N)

log
(

1/

√
q2+(1−q)2

)
= N

− 2 log (α)
log (q2+(1−q)2) (3.1)

for all α ∈R, by taking α = (q2 + (1 − q)2) we have

E[X] =E

[ ∑
x=y∈C

Xxy

]

=
∑

x=y∈C
P2

=
(

N

2

)(
q2 + (1 − q)2)(1+ε(N))M̂

= N(N − 1)

2
N−2(1+ε(N))

<
1

2
N−2ε(N)

→ 0

as N → ∞. By the first moment method, as N → ∞, it follows that

P(A ∈A) = P(X > 0) ≤E[X] → 0,

completing the proof. �
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3.2. Proof of Theorem 3.1 (ii)

The lower bound will be more involved. We are going to split our argument into two cases:
case 1, q > ε; case 2, q ≤ ε. In case 1 we will use Suen’s inequality, and in case 2 we will
bound the probability that A does not contain two identically zero columns.

Proof of Theorem 3.1 (ii): case 1, q > ε. To be able to apply Suen’s inequality we will need
to show that pairwise collisions dominate three-way collisions. For this we must estimate P2

and P3. Using (3.1), with α = (q2 + (1 − q)2
)(1−ε)

,

P2 = (q2 + (1 − q)2)(1−ε)M̂ = N−2(1−ε), (3.2)

and with α = (q3 + (1 − q)3)(1−ε),

P3 = (q3 + (1 − q)3)(1−ε)M̂ = N
−2(1−ε) log (q3+(1−q)3)

log (q2+(1−q)2) ≤ N−(1−ε)(3+ 3
2 q), (3.3)

because one can check that for 0 ≤ q ≤ 1
2

log (q3 + (1 − q)3)

log (q2 + (1 − q)2)
≥ 3

2
+ 3q

4
.

Now we apply Suen’s inequality [11, 28] to our setting. Let us define the index set I =
{{x, y} | x = y ∈ C}, which allows us to index Xxy as Xα for α ∈ I. For each α ∈ I we define the
‘neighborhood of dependence’ Bα = {β ∈ I | β ∩ α = ∅}. Indeed, Xα is independent of Xβ if
β ∈ Bα. Then Suen’s inequality implies

P(A ∈A) = P(X = 0) ≤ exp ( − λ + �e2δ), (3.4)

where, using |I| = (N2), |Bα| = (2N − 3), and (3.2) and (3.3),

λ =
∑
α∈I

E[Xα] =
(

N

2

)
P2 >

1

4
N2ε,

� =
∑
α∈I

∑
α =β∈Bα

1

2
E[XαXβ ] =

(
N

2

)
(2N − 4)

1

2
P3 ≤ N3−(1−ε)(3+ 3

2 q),

δ = max
α∈I

∑
α =β∈Bα

E[Xβ] = (2N − 4)P2 < 2N−1+2ε .

We note that as N → ∞ we have 1 < e2δ < e4N−1+2ε → 1. Hence, for N large enough, we
have

−λ + �e2δ < −λ + 2� < −1

4
N2ε + 2N3−(1−ε)(3+ 3

2 q) = N2ε

(
−1

4
+ 2Nε− 3

2 q(1−ε)
)

→ −∞,

(3.5)
because when q > ε and 3(1 − ε)/2 > 1 we have Nε− 3

2 q(1−ε) → 0. By equation (3.4) we can
conclude that P(A ∈A) → 0.

We see that for smaller q such a Suen’s inequality type analysis cannot work because the
number of colliding triples (�) starts dominating the number of colliding pairs (λ). �

Proof of Theorem 3.1 (ii): case 2, q ≤ ε. We would like to upper-bound the probability that
all columns are distinct by the probability that at most one column is identically 0. If we denote
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the number of identically 0 columns by Z, we want to show that P(Z < 2) → 0. We start by
proving E[Z] → ∞.

One can check that for 0 ≤ q ≤ 1
4 (which we may assume as q ≤ ε → 0),

log (1 − q)

log
(√

q2 + (1 − q)2
) ≤ 1 + 9

10
q. (3.6)

Then, first using (3.1) with M = (1 − ε)M̂ and α = 1 − q, and next applying inequality (3.6)
and the assumptions q ≤ ε and ε � 1/log (N), we have

E[Z] = N(1 − q)M

= N
1+(1−ε) log (1−q)

log
(

1/

√
q2+(1−q)2

)
≥ N1−(1−ε)(1+ 9

10 q)

= Nε− 9
10 q(1−ε)

≥ Nε− 9
10 ε

→ ∞.

We are going to use a standard concentration bound to finish this proof.

Lemma 3.1. (Chernoff bound.) Let X be a binomial random variable. Then for 0 < τ < 1 we
have

P(|X −E[X]| ≥ τE[X]) ≤ 2 exp

(
−τ 2

E[X]

3

)
.

By Lemma 3.1, and since for N large enough we have E[Z] > 2,

P(A ∈A) ≤ P(Z < 2)

= P(Z −E[Z] < 2 −E[Z])

≤ P

(
|Z −E[Z]| ≥

(
1 − 2

E[Z]

)
E[Z]

)

≤ 2 exp

(
−1

3

(
1 − 2

E[Z]

)2

E[Z]

)

≤ 2 exp

(
−1

3

(
1 − 4

E[Z]

)
E[Z]

)

= 2e
4
3 exp

(
−E[Z]

3

)
→ 0, (3.7)

thus completing the proof. �

4. Warmup2: Identifying codes or binary search with randomly restricted queries

In the previous section we treated binary search with completely random entries. In this
section the queries will be selected by us, but we may only choose from a random subset of all
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queries (of size N). We start by adapting the definitions in Section 2 to the matrix setup used
in Section 3.

Definition 4.1. (QC.) Let A ∈ {0, 1}N×N be a binary matrix. Let the query complexity (QC) of
A be the minimum |R| such that AR,C has pairwise different columns.

If the submatrix AR,C has pairwise different columns, the set R is also called an identifying
code [13] of the graph which has adjacency matrix A (we must also allow self-edges to have
equivalence, which is usually not part of the definition). Identifying codes are closely related
to resolving sets. If the graph has diameter two, the only difference between the two notions
is that in the case of resolving sets we may receive three kinds of measurements (0, 1, and 2),
not just two. However, we receive the 0 measurement only if we accidentally query the target,
which can be ignored in many cases, hence the information we get is essentially binary for
resolving sets as well.

Identifying codes of Erdős–Rényi graphs were studied by Frieze et al. [9]. In fact [9] already
featured some of the ideas that led to characterizing the MD of Erdős–Rényi graphs in [4].
Part of the main theorem in this section (on the QC of Bernoulli random matrices, Theorem
4.1) has also appeared in [9] for a limited range of parameters, which we extend using the
tools of [4]. Our proof of the QC of Bernoulli random matrices does not feature any new
ideas; we only include it for the sake of completeness. We also define the adaptive version
of the problem, the sequential query complexity (SQC), which will be similar to the SMD.
The upper bound on the SQC will be algorithmic and will be quite different from the tools
in [9] and [4].

Definition 4.2. (Candidate targets.) Given a set of queries R and target v�, the set of candidate
targets for the matrix A is

TR(A) = {v ∈ [N] | AR,{v} = AR,{v�}}.
Definition 4.3. (SQC and SQCP.) Let ALG(G) (respectively, ALGP(G)) be the set of functions
(respectively, polynomial-time computable functions)

g : {(A, R, AR,{v�}) | R ⊆R, v� ∈ C} →R.

The sequential query complexity SQC(G) (respectively, SQCP(G)) is the minimum r ∈N such
that there is a query selection algorithm g ∈ ALG(G) (respectively, g ∈ ALGP(G)), for which,
if we let R0 = ∅ and Rj+1 = Rj ∪ g(G, Rj, ARj−1,{v�})), then |TRr (A)| = 1 for any v� ∈ C.

We show the difference between the QC and SQC on an example in Figure 3. The advantage
of studying the QC and SQC before the MD and SMD is that we have simpler results without
the small dependences that always arise in the graph setting.

Theorem 4.1. Let N ∈N, let 0 < q < 1, and let A ∈ Ber(q)N×N and γsqc = max (q, 1 − q). Then
a.a.s. we have the following.

(i) If 1 ≥ 1 − γsqc � log (N)/N, then with η = 1 + logN (log (1/γsqc)) we have

SQC(A) ≥ (η − o(1))
log (N)

log (1/γsqc)
,

SQCP(A) ≤ (1 + o(1))
log (N)

log (1/γsqc)
.
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FIGURE 3. The process of non-adaptive and adaptive binary search with restricted queries with target
v� = 3. The queries are marked in green and the observations are marked in blue.

(ii) If log (N)/N � 1 − γsqc, then SQC(A) is undefined.

The results for QC(A) are of the same form, except that instead of γsqc we have γqc =√
q2 + (1 − q)2.

Remark 4.1. If 1 − γsqc = o(1) (which is equivalent to 1 − γqc = o(1)), we have

1

log (1/γqc)
= (1 + o(1))

1

log (1/γsqc)
= (1 + o(1))

1

1 − γsqc
, (4.1)

In this case SQC(A) = (1 + o(1))QC(A) = ω(log (N)), so the SQC and the QC have the same
asymptotic behavior.

Remark 4.2. If 1 − γsqc = �(1), then η → 1, so the upper and lower bounds match in part (i)
up to a multiplicative factor tending to one. In this case SQC(A) = �(log (N)) and QC(A) =
�(log (N)).

4.1. Connection between Theorems 3.1 and 4.1

The main difference between the two theorems is that in Theorem 3.1 we sample M queries
and use all of them, whereas in Theorem 4.1 we sample N queries and select (adaptively or
non-adaptively) only a subset of them. The subset we select is of size SQC(A) or QC(A). Of
course, if γsqc is so close to one that even all of the N queries are not sufficient to locate the
target, then it is impossible to find the target in the adaptive and the non-adaptive case as well.
This intuition is made more precise in the following remark.

Remark 4.3. If log (N)/N � 1 − γsqc, the lower bound in part (i) would give SQC > N, which
is a contradiction, hence part (ii) can also be viewed as a special case of part (i). Moreover, part
(ii) is also implied by Theorem 3.1. Indeed, suppose log (N)/N � 1 − γsqc. After reordering,

N � log (N)

1 − γsqc
= (1 + o(1))

log (N)

log (1/γqc)

because of (4.1). Then, by Theorem 3.1 with q′ = 1 − γsqc ∈ (0, 1
2 ], we know that A′ =

Ber(q′)N×N has two identical columns a.a.s. This implies that A = Ber(q)N×N has two identical
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columns, and thus SQC(A) and QC(A) are undefined a.a.s. Similarly, if log (N)/N � 1 − γsqc,
then A does not have two identical columns, which implies that SQC(A) and QC(A) are
well-defined.

The proofs of Theorems 3.1 and 4.1 are quite similar, except for the SQC upper bound.
However, while in Theorem 3.1 we have matching upper and lower bounds, in Theorem 4.1
there is a 1 − η gap between them. It is an open question whether this gap can be closed, and
we conjecture that the constant in front of the lower bound can be improved from η to 1.

Let us also give intuition about the new notation. On the range q ∈ (0, 1
2 ], the variable 1 −

γsqc is just q, and it serves essentially the same purpose. The reason for introducing a new
variable is that we can highlight the symmetry of the adaptive and non-adaptive cases here
and later in the text. The other new variable is η, which is monotonically decreasing in γsqc.
We note that since γsqc ≥ 1

2 , we always have η < 1, hence the upper and lower bounds never
contradict one another. However, η can be an arbitrarily small negative number, in which case
the lower bound becomes meaningless. For such cases we can impose the trivial lower bound
log2 (N).

In the remainder of this section we sketch the proof of Theorem 4.1. The main focus of
this paper is on the adaptive setting, but for the sake of completeness we also include the
non-adaptive version.

4.2. Proof of the QC upper bound of Theorem 4.1

Proof. This is a direct application of Theorem 3.1. �

4.3. Proof of the QC lower bound of Theorem 4.1

Proof. Here we only consider the 1 − γqc = �(1) case when η = 1. By Remark 4.1, the
1 − γqc = o(1) case will follow from the SQC lower bound. Let

r ≤ (1 − ε)
log (N)

log (1/γqc)
and ε � log log (N)

log (N)

with ε → 0. Let Y be the number of subsets W ⊂R with |W| ≤ r for which AW,C has no
repeated columns. For the lower bound to hold we must show that Y = 0 a.a.s.

Let us now select a set R ⊂R of r rows in advance, and when A is revealed, let AR be the
event that AR,C has no repeated columns. Then

P(Y > 0) ≤E[Y] ≤ Nr
P(A ∈AR). (4.2)

Using our result in (3.4) and (3.5) and because 1 − γqc = �(1) implies ε � q(1 − ε), for N
large enough

P(A ∈AR) ≤ exp ( − λ + �e2δ) < exp

(
N2ε

(
−1

4
+ 2Nε− 3

2 q(1−ε)
))

< exp

(
−1

8
N2ε

)
.

Then

E[Y] ≤ Nr exp

(
−1

8
N2ε

)
≤ exp

(
(1 − ε)

log2 (N)

log (1/γqc)
− 1

8
N2ε

)
→ 0, (4.3)

since by assumption
1 − ε

log (1/γqc)
= �(1),

https://doi.org/10.1017/jpr.2021.16 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.16


922 G. ÓDOR AND P. THIRAN

and since

ε � log log (N)

log (N)

implies log2 (N) � N2ε . Finally, by (4.2) and (4.3), we have Y = 0 a.a.s. �

4.4. Proof of the SQC upper bound of Theorem 4.1

In order to prove this upper bound we analyze the performance of a greedy query selection
algorithm called MAX-GAIN.

Definition 4.4. (k-reducer.) For a query w ∈R and an observation l ∈ {0, 1}, let the targets
agreeing with the pair (w, l) be denoted as

SA(w, l) = {v ∈ C | Aw,v = l}.
Given an integer k and the triple (A, Rj, ARj,{v�}), a row w is called a k-reducer if, after adding
w to Rj, the worst-case cardinality of Rj+1 is upper-bounded by k, that is,

max
l∈{0,1} |TRj ∩ SA(w, l)| ≤ k.

Definition 4.5. (MAX-GAIN.) The MAX-GAIN algorithm finds the target by iteratively select-
ing as a query the k-reducer with the smallest k. That is,

MAXGAIN(A, Rj, ARj,{v�}) = arg min
w∈V\Rj

max
l∈{0,1} |TRj ∩ SA(w, l)|.

Note that if log (N)/N � 1 − γsqc, there are a.a.s. no two identical columns in A by Remark
4.3, in which case the MAX-GAIN algorithm always finds the target in at most N steps.
Moreover, if we can always find better reducers, the number of steps decreases dramatically.
Since each node is connected to a γsqc > 1

2 fraction of the nodes, it is reasonable to expect that
we can find k-reducers with k ≈ |TRj |γsqc. The existence of such reducers would already imply
the result we need.

Lemma 4.1. If MAX-GAIN can select a (|TRj |γsqc + f (|TRj |))-reducer in the (j + 1)th step of
the algorithm with f (n) = o(n/log (n)) for any j ∈N for which the candidate set size is

|TRj | = �

(
log (N)

log (1/γsqc)

)
,

then the algorithm finds the source in

(1 + o(1))
log (N)

log (1/γsqc)

steps.

The proof of Lemma 4.1 is included in Section A.1. For the SQC upper bound we will
be able to prove the existence of a (|TRj |γsqc + f (|TRj |))-reducer for any candidate size, hence
this condition of Lemma 4.1 may be ignored for the moment. The condition on the minimum
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candidate set size for which there exists a (|TRj |γsqc + f (|TRj |))-reducer will be important in
Section 6.2.

Now we need to show the existence of such reducers. This will be a structural result on the
matrix A which holds independently of the state of our algorithm, so we find it useful to define
another notion quite similar to k-reducers.

Definition 4.6. (f-separator.) Let f (n) ∈N→R
+ be a function, and γsqc as defined in

Theorem 4.1. A set of columns W ⊆ C, |W| = n has an f-separator if there is a row w ∈R
such that

max
l∈{0,1} |W ∩ SA(w, l)| ≤ nγsqc + f (n).

Remark 4.4. An f -separator w for TRj is an (|TRj |γsqc + f (|TRj |))-reducer for the triple
(A, Rj, ARj,{v�}). The difference between the two terms is that the term f -separator refers to
a property of A and W, whereas the term k-reducer refers to a property of the state of an algo-
rithm. The role of these two terms is also quite different. A k-reducer with a small k makes
MAX-GAIN more efficient, whereas an f -separator with a small f is a typical separator, and
its existence makes the analysis of this upper bound easier.

Proof of the SQC upper bound of Theorem 4.1. To use Lemma 4.1 we have to show that
for every W ⊆ C we have an f -separator with f (n) = o(n/log (n)). Let Xw = |W ∩ SA(w, 1)| and
note that E[Xw] = nq. It is clear that if Xw is close to its expected value then v must be an
f -separator. Indeed, |Xw − nq| ≤ f (n) implies

Xw − nq ≤ f (n) ⇒ Xw ≤ nq + f (n) ≤ nγsqc + f (n) (4.4)

and
−(Xw − nq) − n + n ≤ f (n) ⇒ n − Xw ≤ n(1 − q) + f (n) ≤ nγsqc + f (n), (4.5)

hence w is an f -separator. We first show that for any v ∈R we have |Xw − nq| ≤ f (n) with
constant probability. Using Lemma 3.1 and substituting f (n) = √

3n, we get

P(|Xw − nq| ≥ f (n)) = P

(
|Xw −E[Xw]| ≥ f (n)

nq
nq

)

≤ 2 exp

(
−2

3
nq

f (n)2

n2q2

)

= 2 exp

(
− 6

3q

)
< e−1, (4.6)

because q ≤ 1. Since the random variables Xw are mutually independent, the probability that
none of the rows are f -separators for W is upper-bounded by e−N . Let Y be the number of
subsets W that do not have a

√
3n-separator. Then

E[Y] <
∑
W⊆C

e−N ≤ 2Ne−N → 0.

By the first moment method we can conclude that every W ⊆ C has a
√

3n-separator a.a.s.
By Lemma 4.1 this concludes the proof. �
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4.5. Proof of the SQC lower bound of Theorem 4.1

For this lower bound, we look for columns with identical elements similarly to case 2 of
the proof of Theorem 3.1 (ii). We have seen in Remark 4.3 that if log (N)/N � 1 − γsqc then
A a.a.s. does not have two identical columns. However, any r × N of its submatrices will have
two rows with identically 0 or 1 elements if

r ≤ (η − ε)
log (N)

log (1/γsqc)
with ε � log log (N)

log (N)
,

no matter how we select the rows (queries). Of course, two columns that are identical based
on our query selection can change. Recall that at the end of Section 2 we modeled the SMD as
the number of steps in a two-player game if both players play optimally. In this proof we are
essentially analyzing a strategy for Player 2, who does not decide the target in advance, and
always provides observation 0 if q ≤ 1

2 and 1 if q > 1
2 . By showing that with high probability

any r × N submatrix of A has at least two columns with identically 0 or 1 elements, we ensure
that Player 2 can follow this simple strategy, and the size of the candidate set will be at least
two after r queries, independently of the strategy of Player 1.

Proof of the SQC lower bound of Theorem 4.1. Similarly to Section 4.3, let Y be the number
of subsets W ⊂R with |W| ≤ r for which AW,C has at most one column with identically 0 (if
q ≤ 1

2 ) or 1 (if q > 1
2 ) elements. For the lower bound to hold we must show Y = 0 a.a.s. Let us

now select an R ⊂R of size r in advance, and when A is revealed let AR be the event that AR,C
has at most one column with identical elements. Then

P(Y > 0) ≤E[Y] ≤ Nr
P(A ∈AR). (4.7)

Let ZR be the number of identically 0 (or 1 if q > 1
2 ) columns in AR,C . By equation (3.7),

P(A ∈AR) ≤ 2e
4
3 exp

(
−E[ZR]

3

)
.

Then, using the equation E[ZR] = Nγ r
sqc and the definitions of r and η,

E[Y] ≤ Nr2e
4
3 exp

(
−E[ZR]

3

)

= 2e
4
3 exp

(
r log (N) − 1

3
Nγ r

sqc

)

≤ 2e
4
3 exp

(
r log (N) − 1

3
Nγ

(η−ε) log (N)
log (1/γsqc)

sqc

)

= 2e
4
3 exp

(
r log (N) − 1

3
N1−(η−ε)

)

≤ 2e
4
3 exp

(
(η − ε) log2 (N)

log (1/γsqc)
− 1

3
N1−(1+logN log (1/γsqc))+ε

)

≤ 2e
4
3 exp

(
log2 (N) − 1

3 Nε

log (1/γsqc)

)
→ 0 (4.8)
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(a) (b)

FIGURE 4. The arcs in the figures represent the level sets SG(v, l) of G(N, p) for different ranges of c.
The layers containing a constant fraction of the nodes marked red. In the c = �(1) case (a) there are two
such layers, whereas in the c → ∞ case (b) there is only one. In this latter case the (i + 2)th layer is in

parenthesis because that layer may or may not exist depending on c.

since 1/log (1/γsqc) > 1 and log2 (N) − 1
3 Nε → −∞ as long as

ε � log log (N)

log (N)
.

Finally, by (4.7) and (4.8) we have Y = 0 a.a.s. �

5. Expansion properties of G(N, p)

Before we proceed to our main results, we must establish some properties about the expo-
nential growth of Erdős–Rényi graphs in the sizes of the level sets SG(v, l) defined below.
This exponential growth is depicted in Figure 4. Most statements in this section have already
appeared in [4] with a different notation, or can be easily derived from the results therein.

Definition 5.1. (Level sets.) For a graph G = (V, E) and a node v ∈ V , let the level set of v be
defined as SG(v, l) = {w ∈ V | d(v, w) = l} for every l ∈ {0, . . . , |V|}. The level sets from a set
of nodes V ′ ⊆ V is defined as SG(V ′, l) =⋃v∈V ′ SG(v, l).

We also define three functions δ, i, and c (all depending on the parameters of an Erdős–
Rényi graph G(N, p)), which will be useful throughout the rest of this paper.

Definition 5.2. (Parameters δ, i, and c of the expansion properties.) Let δ = Np, let i ≥ 0 be
the largest integer such that δi = o(N), and finally let c = δi+1/N = δip.

In this paper we only consider connected Erdős–Rényi graphs with δ = Np � log (N). We
defer the interpretation of these definitions and introduce the main technical lemma that estab-
lishes the exponential growth of the level sets. This lemma also appeared in Lemma 2.1 of [4]
(we replaced their O(1/

√
ω) + O(di/n) term with O(ζ ) for simplicity), with an extra condition

which we removed (proof in Appendix A).

Lemma 5.1. (Expansion property.) With parameters i,c and δ � log (N) as defined in
Definition 5.1, let ζ = ζ (N) be a function tending slowly to zero with N such that

ζ ≥ max

(√
log (N)

δ
,
δi

N

)
. (5.1)
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For a node v ∈ V, let E(v, j) be the event that for every l ≤ j

|SG(v, l)| = (1 + O(ζ ))δl, (5.2)

and for two nodes v = u ∈ V, let E2(u, v, j) be the event that for every l ≤ j

|SG({u, v}, l)| = 2(1 + O(ζ ))δl. (5.3)

For a subset V ′ ⊂ V, let E(V ′, j) =⋂v∈V ′ E(v, j) be the event that expansion properties
hold for all nodes in V ′, and let E(j) be a shorthand for E(V, j). Similarly, let E2(j) =⋂

u =v∈V E2(u, v, j). Then, for G sampled from G(N, p), the event E(i) ∩ E2(i) holds a.a.s.

Corollary 5.1. For every v ∈ V we have
∑i

l=1 |SG(v, l)| = (1 + O(ζ ))δi = o(N) a.a.s.

Proof. By Lemma 5.1, by taking l ≤ i since ζ � 1/δ and

i∑
l=1

|SG(v, l)| =
i∑

l=1

(1 + O(ζ ))δl = (1 + O(ζ ))δi = o(N). �

Parameter δ is essentially the expected degree of each node in G ∼ G(N, p). We require
δ ≥ log (N)/ζ 2 � log (N), so the graph is a.a.s. connected. The function ζ serves as the error
term. Note that (5.1) implies that ζ ≥ p for i > 0. Parameters i and c are both derived from
1/ logN (δ); parameter c is δ raised to one minus the fractional part of δ, and parameter i
is the integer part of 1/ logN (δ), or more precisely the ceiling minus one. Qualitatively, the
level set structure of G(N, p) has periodic behavior as we tune p. As p decreases, in each
such ‘period’ the outermost layer gains ever more nodes until it is fully saturated and another
layer appears. Roughly speaking, parameter i indicates the ‘period’, and parameter c pro-
vides a fine-grain tuning of p within a ‘period’. However, the ‘periods’ and the appearance
of new level sets are not exactly aligned. The next lemma tells us how the diameter depends on
δ and N.

Lemma 5.2. ([4, Lemma 4.1].) Suppose that δ = pN � log (N), and that for some integer
D ≥ 1

δD−1

N
− 2 log (N) → −∞ and

δD

N
− 2 log (N) → ∞.

Then the diameter of G sampled from G(N, p) is equal to D a.a.s.

Corollary 5.2. Let D be the event that the diameter of G sampled from G(N, p) is either i + 1
or i + 2 with all parameters, including i, given by Definition 5.2, and as always δ � log (N).
Then D holds a.a.s.

Proof. We distinguish three cases.

1. If δi/N − 2 log (N) → −∞ and δi+1/N − 2 log (N) → ∞, then taking D = i + 1 in
Lemma 5.2 implies that the diameter is i + 1 a.a.s.

2. If δi+1/N − 2 log (N) → −∞ and δi+2/N − 2 log (N) → ∞, then taking D = i + 2 in
Lemma 5.2 implies that the diameter is i + 2 a.a.s.

3. If δi+1/N − 2 log (N) = �(1), then let us consider G1 = G(N, pω) and G2 = G(N, p/ω)
with ω → ∞ very slowly. Using Lemma 5.2, for ω growing slowly enough, the graphs
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G1 and G2 have diameter i + 1 and i + 2 respectively a.a.s. Since having diame-
ter at least D is a monotone graph property, G must also have diameter i + 1 or
i + 2 a.a.s.

There are no other cases than the three outlined above because the equations

δi

N
− 2 log (N) → −∞

and
δi+2

N
− 2 log (N) = cδ − 2 log (N) ≥

(
c

ζ 2 − 2

)
log (N) → ∞

must always hold by Definition 5.2 and the assumption δ � log (N). �

The previous results show that most of the nodes are either distance i + 1 or i + 2 away
from any arbitrary node v ∈ V . We now extend Lemma 5.1 to these level sets too.

Lemma 5.3. For every v ∈ V, let E(v, i + 1) be the intersection of E(v, i) and of the event

|SG(v, i + 1)| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 + O

(√
log (N)

N

))
Np if i = 0,

(
1 −

(
e−c + δi

N

)
+ O

(
ζ

(
e−c + δi

N

)
+
√

log2 (N)

N

))
N if i > 0.

(5.4)

For a subset V ′ ⊂ V, let E(V ′, i + 1) =⋂v∈V ′ E(v, i + 1) be the event that expansion prop-
erties hold for all nodes in V ′, and let E(i + 1) be a shorthand for E(V, i + 1). Then event
E(i + 1) holds a.a.s.

Proof. For a fixed node v ∈ V , let us expose all of its edges (i.e. sample the edges of
G(N, p) adjacent to v in any order and reveal them), and do the same for each of its neigh-
bors recursively until depth i. This way of exposing edges also exposes all nodes in W =⋃

l≤i SG(v, l).
After exposing these edges, we have for both i = 0 and i > 0 that

|SG(v, i + 1)| = Binom(|V \ W|, 1 − (1 − p)|SG(v,i)|),

because SG(v, i + 1) = {w ∈ V \ W | ∃v′ ∈ SG(v, i) s.t. d(v′, w) = 1}.
In the i > 0 case, let us condition on the event E({v}, i). By Corollary 5.1, the set V \ W has

N − (1 + O(ζ ))δi nodes. Then we have

E[|SG(v, i + 1)| | E({v}, i)] = (N − (1 + O(ζ ))δi)(1 − (1 − p)|SG(v,i)|)
(5.2)= (N − (1 + O(ζ ))δi)(1 − e−(p+O(p2))δi(1+O(ζ )))

= (N − δi)(1 − e−c(1 + O(ζ ))) + O(δiζ )

= N

((
1 − δi

N

)
(1 − e−c) + O

(
ζ e−c + δi

N
ζ

))

= N

(
1 − (1 + O(ζ ))

(
e−c + δi

N

))
. (5.5)
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Let us denote μ =E[|SG(v, i + 1)| | E({v}, i)]. Then, by Lemma 3.1 with τ = √
6 log (N)/μ,

we have

P(||SG(v, i + 1)| − μ| > τμ | E({v}, i)) < exp

(
−6 log (N)

3

)
= 1

N2
. (5.6)

Since (5.5) implies N/ log (N) � μ, we have τ <

√
6 log2 (N)/N. This together with (5.6)

implies that for any v ∈ V , with probability at least 1 − 1/N2, we have

|SG(v, i + 1)| =
(

1 + O

(√
log2 (N)

N

))
N

(
1 − (1 + O(ζ ))

(
e−c + δi

N

))

=
(

1 −
(

e−c + δi

N

)
+ O

(
ζ

(
e−c + δi

N

)
+
√

log2 (N)

N

))
N.

The desired result is implied by a union bound.
For i = 0 we have E[SG(v, i + 1)] = (N − 1)p. In this case, by Lemma 3.1 with τ =√

6 log (N)/N, with probability at least 1 − 1/N2 we have

|SG(v, 1)| =
(

1 + O

(√
log (N)

N

))
Np.

The desired result is again implied by a union bound. �

In Lemma 5.3 we were quite precise about the error terms. A much weaker formulation of
the same idea can be useful for interpreting Theorem 6.1.

Corollary 5.3. In the same setting as in Lemma 5.1, the expected fraction of nodes in the level
set with the largest expected size (conditioning on the expansion properties E({v}, i)) is⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1 + o(1))p if i = 0 and (1 + o(1))p ≥ 1 − p,

1 − (1 + o(1))p if i = 0 and p < 1 − p,

(1 + o(1)) e−c if i > 0 and e−c ≥ 1 −
(

e−c + δi

N

)
,

1 − (1 + o(1))

(
e−c + δi

N

)
if i > 0 and e−c < 1 −

(
e−c + δi

N

)
.

Proof. The case i = 0 is obvious. The case i > 0 is a corollary of (5.5). Indeed, the level
set with the largest expected size as N tends to infinity is SG(v, i + 2) if and only if e−c ≥
1 − (e−c + δi/N), in which case it contains a fraction

1 −
(

1 − (1 + o(1))

(
e−c + δi

N

))
− o(1) = (1 + o(1)) e−c

of all nodes by Lemma 5.2 and (5.5). Otherwise, the level set with the largest expected size as
N tends to infinity is SG(v, i + 1), and its expected size is computed in (5.5). �

The results in this section are summarized in the first five rows of Table 1.
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6. Main results

We are ready to state our main theorem.

Theorem 6.1. Let N ∈N and p ∈ [0, 1] such that log5 (N)/N � p and 1/
√

N � 1 − p. With
the parameters given in Definition 5.2, let

γsmd =
⎧⎨
⎩

max (p, 1 − p) if i = 0 (i.e. p = �(1)),

max

(
e−c, 1 − e−c − δi

N

)
if i > 0 (i.e. p = o(1)),

(6.1)

and let
η = 1 + logN (log (1/γsmd)). (6.2)

Finally, let G = (V, E) be a realization of a G(N, p) random graph. Then the following
assertion holds a.a.s.:

SMD(G) ≥ (η + o(1))
log (N)

log (1/γsmd)
,

SMDP(G) ≤ (1 + o(1))
log (N)

log (1/γsmd)
.

Remark 6.1. In the case of c → ∞ we have

1

log (1/γsmd)
= (1 + o(1))

1

1 − γsmd
= (1 + o(1))

(
e−c + δi

N

)−1

. (6.3)

Remark 6.2. The results for the MD of G(N, p) are of the same form (see Theorem 1.1 of [4]),
but for the MD, instead of γsmd, we have

γmd =

⎧⎪⎨
⎪⎩
√

p2 + (1 − p)2 if i = 0,√
(e−c)2 +

(
1 − e−c − δi

N

)2

if i > 0.
(6.4)

Again, in the case of c → ∞ we have

1

log (1/γmd)
= (1 + o(1))

(
e−c + δi

N

)−1

= (1 + o(1))
1

log (1/γsmd)
.

Remark 6.3. The terms Fγ and Fη from Theorem 2.1 can now be expressed based on
Theorem 6.1 and Remark 6.2. With the definitions in (6.1), (6.2), and (6.4), taking the ratio
of the appropriate lower and upper bounds, we can write

SMD(G)

MD(G)
= (1 + o(1))

log (1/γmd)

log (1/γsmd)
if i = 0,

SMD(G)

MD(G)
≥ (η + o(1)) if i > 0,

hence we have

Fγ = log (γmd)

log (γsmd)
,

Fη = η.
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Finally, we note that since p ∈ (0, 1) and e−c ∈ (0, 1), elementary analysis can show that Fγ is
a continuous function in p taking every value in the interval ( 1

2 , 1). A discussion of the value
of η is included in Section 6.1.

6.1. Connection between Theorems 4.1 and 6.1

Clearly there is a great deal of similarity between the MD/SMD in G(N, p) and the QC/SQC
in Ber(q)N×N . The final expression can always be written in the form

(1 + o(1))
log (n)

log (1/γ�)
,

where γ� is a root mean square in the non-adaptive case and a maximum in the adaptive case.
The main difference is that in binary search with randomly restricted queries, γ� depends on
parameter q via a simple direct relation, whereas in random graph binary search the dependence
of γ� on p is more complicated (see (6.1)).

We can understand the mapping from p to γ� if we understand how we can map p to the
parameter q in Theorem 4.1, which we can do based on our results in Section 5. When p =
�(1), the mapping is just p = q. Indeed, since the diameter is 2 a.a.s., the vector d(R,v) for
v ∈ R is essentially Ber(p) + 1. When p = o(1), the size of either one or two level sets dominates
the size of the others (see Figure 4), hence the information we get is still basically a random
Bernoulli vector, although here we must be more careful in the analysis. The mapping from p
to q uses exactly the fraction of nodes in the largest level set established in Corollary 5.3.

The η term used in Theorem 6.1 serves the same purpose as in Theorem 4.1, the only differ-
ence being that in this case η cannot be arbitrarily small (similarly to Remark 1.2 in [4]). Note
that i ≥ 1 implies δi/N ≥ (log (N)

√
N)−1, because otherwise δ2i = o(N), which would imply

that i was not the largest integer for which δi = o(N), a contradiction to Definition 5.2. Since
− log (1 − x) ≥ x and for N large enough 1 − γsmd ≥ e−c + δi/N > δi/N ≥ (log (N)

√
N)−1, we

have

η = 1 + logN ( − log (1 − (1 − γsmd)))

≥ 1 + logN (γsmd))

≥ 1 − logN (log (N)
√

N)

= 1

2
− log log (N)

log (N)

→ 1

2
.

Since γsmd ≥ 1
2 implies logN (log (1/γsmd)) < 0, we have the bounds 1 ≥ η ≥ 1

2 . Similarly to
Section 4.1, we conjecture that the 1 − η gap between the upper and lower bounds can be
closed by improving the constant in front of the lower bound from η to 1.

Since different ranges of parameters require different proof techniques both in this paper
and in [4], an overview of the proofs is presented in Table 1 for better clarity.

6.2. Proof of Theorem 6.1 for p = �(1), upper bound

Proof. The p = �(1) case of Theorem 6.1 seems very similar to Theorem 4.1 because entries
of the distance matrix of G ∼ G(N, p) are essentially Ber(p) + 1 random variables. However,
the matrix is always symmetric, which causes some complications in the proof.

We start by providing an analogous definition of an f -separator for graphs.
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Definition 6.1. (f-separator.) Let f (n) ∈N→R
+ be a function. A set of nodes W ⊆ V , |W| = n

has an f-separator if there is a node w ∈ V such that

max
l∈N

|W ∩ SG(w, l)| ≤ nγsmd + f (n).

For the upper bound, the statement that, for any set W ⊆ V , any node w ∈ V can indepen-
dently be an f -separator is no longer true, in contrast to the proof of Theorem 4.1, since the
neighborhoods of the nodes in W are slightly correlated. However, the statement is still true
for nodes w ∈ V \ W. Hence the proof will be given in two steps. In step 1 we prove that V
has a 2

√
n-separator a.a.s., and next in step 2 we prove that any set W of cardinality at most

γsmdN + 2
√

N has an f -separator with f (n) = o(n/log (n)).
For step 1, let us pull aside from V a random subset F ⊂ V of cardinality |F| = log log (N).

By equation (4.6) with q = p and Xw = |V ′ ∪ SG(w, 1)|, each w ∈ F is not a
√

3n-separator of
V ′ = V \ F with probability at most e−1. Since these events are independent, the probability
that no node w ∈ F is a

√
3n-separator of V ′ is then e− log log (N) = log (N)−1 → 0. On the other

hand, a
√

3n-separator of V ′ is also a 2
√

n-separator of V , since
√

3N + log log (N) < 2
√

N for
N large enough.

For step 2 we repeat the calculation in (4.6) with f (n) = √
6/(1 − γsmd). Let Xw = |W ∩

SG(w, 1)|. Then

P(|Xw − np| ≥ f (n)) = P

(
|Xw −E[Xw]| ≥ f (n)

np
np

)

≤ 2 exp

(
−2

3
np

f (n)2

n2p2

)

= 2 exp

(
− 12

3p(1 − γsmd)

)

< exp

(
− 2

1 − γsmd

)
,

because p ≤ 1. Note that by (4.4) and (4.5) with q = p and γsqc = γsmd, the event |Xw − np| ≥
f (n) implies that w is an f -separator for W.

Let Y be the number of subsets W of cardinality at most γsmdN + 2
√

N that do not have a√
6/(1 − γsmd)-separator. Then

P(Y > 0) ≤E[Y]

<
∑

|W |≤γsmdN+2
√

N

exp

(
− 2

1 − γsmd
(N − |W|)

)

≤ 2N exp

(
− 2

1 − γsmd
(N − (γsmdN + 2

√
N))

)

< exp

(
−N + 4

√
N

1 − γsmd

)
→ 0,

as long as 1 − γsmd � 1/
√

N. The existence of a 2
√

n-separator for V (step 1) and a√
6/(1 − γsmd)-separator for all W ⊆ V of cardinality at most γsmdN + 2

√
N (step 2) holds
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together a.a.s. by the union bound. Note that for γsmd → 1

(6.3)

√
6

1 − γsmd
=
√

6(1 + o(1))

log (1/γsmd)

� 1

log (1/γsmd)
(
1 + log

( 1
log (1/γsmd)

))
� log (N)

log (1/γsmd) log log (N)
(
log log (N) − log log log (N) + log

( 1
log (1/γsmd)

))
= n

log (n)
for n = log (N)

log log (N) log (1/γsmd) .

Hence √
6

1 − γsmd
= o

(
n

log (n)

)
for n = �

(
log (N)

log (1/γsmd)

)
,

which is the necessary condition on f (n) to apply Lemma 4.1.
Since we were able to prove the existence of (|TRj |γsqc + f (|TRj |))-reducers for j = 1 (step 1

of the analysis), and for any j > 1 with candidate set size

|TRj | = �

(
log (N)

log (1/γsmd)

)

(step 2 of the analysis), Lemma 4.1 concludes the proof. �

6.3. Proof of Theorem 6.1 for p = �(1), lower bound

Proof. The lower bound will be more straightforward given the SQC lower bound. We prove
that Player 2 can follow the strategy of providing observation 0 if p ≤ 1

2 and 1 if p > 1
2 , because

every r × N submatrix of the distance matrix of G has two columns, none of which has the same
index as the indices of the rows, with entries identically equal to 1 or 2. We essentially sacrifice
the entries that appear twice in the matrix (due to symmetry), for ease of analysis. The entire
derivation in the SQC lower bound follows except that now E[ZR] = (N − r)γ r

smd, as there are
only N − r columns to choose from. Then the rest of the computation is almost identical to
(4.8), that is,

P(Y > 0) ≤E[Y] ≤ Nr2e
4
3 exp

(
−E[ZR]

3

)

= 2e
4
3 exp

(
r log (N) − 1

3
(N − r)γ r

smd

)

≤ 2e
4
3 exp

(
r log (N) − 1

3
(N − r)γ

(η−ε) log (N)
log (1/γsmd )

smd

)

= 2e
4
3 exp

(
r(log (N) + 1

3
N−(η−ε)) − 1

3
N1−(η−ε)

)

≤ 2e
4
3 exp

(
(η − ε) log (N)(log (N) + 1)

log (1/γsmd)
− 1

3
N1−(1+logN log (1/γsmd))+ε

)
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≤ 2e
4
3 exp

(
log3 (N) − 1

3 Nε

log (1/γsmd)

)
→ 0

since 1/log (1/γsmd) > 1 and log3 (N) − 1
3 Nε → −∞ as long as

ε � log log (N)

log (N)
.

In the rest of this section we prove Theorem 6.1 for p = o(1). Both the upper and lower
bounds will share some similarities with the p = �(1) case, but they will be much more
involved. The reason we still include the p = �(1) case is to study how far we can push the
upper bound on p. Finally, our results on the SMD hold up to the bound 1 − p � 1/

√
N. This

is a slightly better bound than

1 − p ≥ 3 log log (N)

log (N)
,

which arose in [4] on the MD. �

6.4. Proof of Theorem 6.1 for p = o(1), lower bound

Proof. This proof is based on a coupling between the graph case and a simple stochastic
process, which we can analyze similarly to the SQC lower bound. We start by upper-bounding
the probability that a random set is a resolving set by the probability that a certain survival
process leaves at least two of the nodes alive. Since this survival process is still too complicated
to analyze, we are going to introduce a second survival process later in the proof, which will
give us the desired bound.

As usual, we first select queries R = {w1, . . . , wr} at random, with

|R| ≤ r = (η − ε)
log (N)

log (1/γsqc)

and ε slowly decaying to zero. In the proof of the SQC lower bound, we had an explicit lower
bound on how slowly ε must tend to zero, but this time we do not provide such guarantees, for
the sake of simplicity.

Let l� be the index of the largest level set in expectation. Using the results of Corollary 5.3,

l� =

⎧⎪⎨
⎪⎩

i + 1 if e−c < 1 − e−c − δi

N
,

i + 2 if e−c ≥ 1 − e−c − δi

N
.

(6.5)

Let RR be the event that the randomly sampled set R of size |R| is a resolving set in G, and
let R be the event that there exists at least one resolving set. Similarly to Section 4.5, we want
to upper-bound P(R) by Nr

P(RR), and P(RR) by the probability of the event that there are at
least two distinct nodes u = v ∈ V with d(R, u) = d(R, v) = l�1.

Since R is uniformly random, we may sample it before any of the edges in G are exposed.
Let us now expose the edges of G similarly to the proof of Lemma 5.3, except this time starting
from the set R instead of a single node. Notice that before any of the graph is exposed, any of
the nodes v ∈ V \ R could possibly have d(R, v) = l�1. Then, as ever more edges are exposed,
many of the nodes lose this property. For instance, the neighbors of the nodes in R cannot have
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d(R, v) = l�1, because l� > i ≥ 1. Hence, focusing on the event RR, this exploration process of
the graph can be seen as a survival process, where at least two nodes must survive.

Definition 6.2. (ESP.) In the exploration survival process (ESP), all nodes v ∈ V \ R start out
alive. In step l < l� we expose all unexposed edges incident to the nodes in SG(wj, l) to expose
SG(wj, l + 1) for all j ∈ {1, . . . , r}. Every node exposed in this way dies. Then if l� = i + 1
we play an extra round, in which we expose all unexposed edges incident to the nodes in
SG(wj, i + 1), and a node that was still alive at the end of round l� − 1 survives this round if it
connects to SG(wj, i) for all j ∈ {1, . . . , r}. If l� = i + 2, there is no extra round.

Note that the ESP always takes i + 1 steps: it is only the nature of the final step that depends
on l�. The event that v survives the ESP is equivalent to d(R, v) = l�1, unless l� = i + 2 and
event D in Corollary 5.2 does not hold (in this case node v surviving the ESP could have
d(wj, v) > l�). Since D holds a.a.s., we can assume it holds (formally, we may intersect all of
our events with D and apply a union bound in the end).

In the first l < l� rounds the probability of survival is ρ
(0)
l = (1 − p)|SG(R,l−1)|, and this prob-

ability is itself a random variable. When l = l� = i + 1, we need each node to connect to each
SG(wj, l − 1), but these sets might have an intersection, so the exact value of the probabil-

ity of survival (which we call ρ
(0)
l� ) is complicated to write down. Fortunately, ρ

(1)
l� can be

lower-bounded by
r∏

j=1

(
1 − (1 − p)|SG(wj,l�−1)|),

since the events of connecting to SG(wj, l − 1) for each j ∈ {1, . . . , r} are positively correlated.
This motivates an alternative but still complicated survival process, which will serve as a bridge
to the simple process we will finally analyze.

Definition 6.3. (CSP.) In the complex survival process (CSP) all nodes v ∈ V \ R start out alive.
In each of the i + 1 rounds, each node survives with probability ρ

(1)
l , where

ρ
(1)
l =

{
(1 − p)|SG(R,l−1)| if l < l�,∏r

j=1 (1 − (1 − p)|SG(wj,l�−1)|) if l = l� and l� = i + 1,
(6.6)

where the sets SG(R, l − 1) are the same as in the ESP.

Let Y0 (respectively, Y1) be the indicator variable that at least two nodes survive the ESP
(respectively, CSP). Then Y0 = 0 is the same event as RR and ρ

(1)
l ≤ ρ

(0)
l , which implies

P(RR) = P(Y0 = 0) ≤ P(Y1 = 0). However, the CSP is still too difficult to analyze even with
the lower bound in (6.6), because each term is itself a random variable depending on earlier
levels. Instead, we study a ‘simple’ survival process.

Corollary 6.1. Let us denote the event E(R, l� − 1) by ER. Then, if ER holds, there exists a
constant C such that

|SG(R, l − 1)| ≤ rδl−1(1 + Cζ ) (6.7)

for all R and l < l�, and when l� = i + 1

|SG(wj, l� − 1)| ≥ δl�−1(1 − Cζ ) (6.8)

for all wj.
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Proof. The existence of such a constant C is implied by (5.2) in Lemma 5.1 (for (6.7), since
we need an upper bound, the intersection of the sets SG(v, l − 1) can be ignored). �
Definition 6.4. (SSP.) In the simple survival process (SSP) all nodes v ∈ V \ R start out alive.
In each of the i + 1 rounds, each node survives with probability ρ

(2)
l , where

ρ
(2)
l =

{
(1 − p)rδl−1(1+Cζ ) if l < l�,

(1 − (1 − p)(1−Cζ ))r if l = l� and l� = i + 1,
(6.9)

and C is the constant in Corollary 6.1.

Let Y2 be the indicator variable that at least two nodes survive the SSP. Equations (6.7) and
(6.8) imply ρ

(1)
l ≥ ρ

(2)
l , so it is in fact easier for nodes to survive the CSP than the SSP (the

words ‘simple’ and ‘complex’ in the names of the terms SSP and CSP refer to the difficulty
of analysis, not the difficulty of survival). Hence we should be able to prove P(Y1 = 0, ER) ≤
P(Y2 = 0, ER), and we will prove it rigorously by coupling (Y1, ER) and (Y2, ER). Recall that a
coupling is a joint distribution ((Ŷ1, ÊR), (Ŷ2, ÊR)) on {0, 1} × {0, 1} with the property that its
first marginal is (Y1, ER) and the second marginal is (Y2, ER).

We define the joint distribution (Ŷ1, Ŷ2, ÊR) by specifying how to sample from it. We will
simultaneously play the ESP, CSP, and SSP, and since all three processes can be simulated
using Bernoulli trials with parameter p, we will use the same outcomes of these trials whenever
possible. More precisely, the probability space of (Ŷ1, Ŷ2, ÊR) is the probability space of N(N −
r)(l� − 1 + r) coin flips where the probability of heads is p. The first N(N − r)(l� − 1 + r) coin
flips are first organized into N − r buckets of size N(l� − 1 + r) indexed by nodes v ∈ V \ R.
Then each of the N − r buckets are further divided into l� − 1 blue and r red sub-buckets, all
of size N. The kth coin flip in the lth blue and respectively the jth red sub-bucket of the bucket
corresponding to node v is called flip(v, ‘b’, l, k) and respectively flip(v, ‘r’, j, k). Figure 5
explains the structure and function of these buckets via an example.

To define Ŷ1, we must explain how to simulate the CSP in Definition 6.3 using the coin
flips in the blue and red sub-buckets. To simulate the CSP we must know the level set sizes
SG(R, l − 1) for l ≤ l�, which requires simulating the ESP at least up to round l� − 1. Note that
in the ESP we only expose edges between one dead and one alive node (if we consider the set
R dead at the start). For each such exposure of an edge between dead node u and alive node v
in round l < l�, we use flip(v, ‘b’, l, k), where k is the lowest index for which flip(v, ‘b’, l, k)
has not been used so far in the ESP. In this way, the exact mapping between edges and coin
flips can change depending on the order in which we sample the edges in each round, but
this will not affect the coupling. Until round l� − 1, we are able to perfectly simulate the ESP,
and fortunately we already have enough information to simulate the CSP. In round l = l�, we
already know enough to finish simulating the CSP and we may ignore the ESP. We simply
define Ŷ1 to be the indicator of the event that there exists VCSP ⊂ V with |VCSP| ≥ 2, such that
for any v ∈ VCSP we have no head in the set

{flip(v, ‘b’, l, k) | 1 ≤ k ≤ CSPdepth(‘b’, l)}

for each positive integer l < l�, where

CSPdepth(‘b’, l) =
∣∣∣∣

r⋃
j=1

SG(wj, l − 1)

∣∣∣∣
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(a) (b)

FIGURE 5. Part (a) of the figure shows a (partial) example sample of the elementary events of the coupled
joint distribution. Here we set N = 11, r = 3, and l� = i + 1 = 3. These parameters might not actually
correspond to any pair of parameters (N,p); we only use them for the example. The colors signify which
survival processes use which coin flips: light blue is for the SSP, yellow is for the CSP, and green is for the
coin flips used by both of them. We should show N − r = 8 buckets in total – one for each node vi ∈ V \ R
– but we only show the bucket for two nodes v1, v2 in the interest of space. Node v1 survives the first
l� − 1 rounds in both processes, but survives the last round only in the CSP. In the SSP it does not survive
because the first red sub-bucket contains no head for this process (the CSP is saved by flip(v1, ‘r’, 1, 3)).
Node v2 dies in the first round of the SSP (because of flip(v2, ‘b’, 1, 4)) and in the second round of
the CSP (because of flip(v2, ‘b’, 2, 2)). Part (b) of the figure shows (a possible realization of) the ESP
corresponding to the coin flips in part (a). The edges incident to nodes v1 and v2 correspond to the green
coin flips in the blue sub-buckets in part (a) of the figure. Only one such edge is present in this realization
of the ESP: the edge between v2 and v6. This edge corresponds to flip(v2, ‘b’, 2, 2), which is indeed the
only green head in the blue sub-buckets in part (a). Part (b) also explains the values of CSPdepth(‘r’, j)
in part (a). Indeed, we can check that |SG(w1, l� − 1)| = 3 and |SG(w2, l� − 1)| = |SG(w3, l� − 1)| = 2.
Similarly, we can check that | ∪r

j=1 SG(wj, 1)| = |{v6, v7, v8}| = 3, which corresponds to the value of
CSPdepth(‘b’, 2) in part (a). Note that only coin flips in the blue sub-buckets can correspond to edges in

the ESP, as in the coupling we only simulate the ESP until round l� − 1.

This set is exactly the ‘used’ nodes of the ESP, since the ESP and the CSP are identical in
rounds l < l�. In addition, if l� = i + 1, we also need there to be at least one head in the set

{flip(v, ‘r’, j, k) | 1 ≤ k ≤ CSPdepth(‘r’, j)}
for each positive integer j ≤ r, where

CSPdepth(‘r’, j) = |SG(wj, l� − 1)|.
It is clear that each bucket has at least as many coin flips as we need in each step, and that
Ŷ1 and Y1 have the same distribution. Note that since we know the cardinality of the level sets
SG(R, l − 1) for all l ≤ l�, we can also determine ÊR.

The random variable Ŷ2 can simply be defined as the indicator of the event that there exists
VSSP ⊂ V with |VSSP| ≥ 2, such that for any v ∈ VSSP we have no head in the set

{flip(v, ‘b’, l, k) | 1 ≤ k ≤ SSPdepth(‘b’, l)}
for each positive integer l < l�, where

SSPdepth(‘b’, l) = rδl−1(1 + Cζ ).
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In addition, if l� = i + 1, we also need there to be at least one head in the set

{flip(v, ‘r’, j, k) | 1 ≤ k ≤ SSPdepth(‘r’)}
for each positive integer j ≤ r, where

SSPdepth(‘r’) = (1 − Cζ )δl�−1

(this depth does not depend on j, but it still needs to hold for r sub-buckets). Clearly Ŷ2 and Y2
have the same distribution.

By (6.7), if the event ÊR holds, each coin flip used by the CSP in rounds {1, . . . , i + 1} is
also used by the SSP. Hence, if a node survives in SSP, it must also survive in the CSP. When
l� = i + 1, the situation is reversed in the (l�)th round. By (6.8), each coin flip used by the SSP
is used by the CSP. However, this time we need heads to survive, so again if a node survives
in SSP it must also survive in CSP. Hence P̂(Ŷ1, ÊR) < P̂(Ŷ2, ÊR). We are now ready to use our
coupling to bound the probability that there exists a resolving set:

P(R) ≤ P(R, E) + P(E)

≤
∑
|R|≤r

P(RR | E) + P(E)

≤
∑
|R|≤r

P(Y1 = 0 | E) + P(E)

≤ Nr P(Y1 = 0, ER)

P(E)
+ P(E)

= Nr P̂(Ŷ1 = 0, ER)

P(E)
+ P(E)

≤ Nr P̂(Ŷ2 = 0, ER)

P(E)
+ P(E)

≤ Nr P̂(Ŷ2 = 0)

P(E)
+ P(E)

= Nr P(Y2 = 0)

P(E)
+ P(E). (6.10)

Now we proceed to upper-boundingP(Y2 = 0). Let Zv be the indicator of the event that node
v ∈ V \ R survives in the SSP. We need to distinguish the two cases e−c ≥ 1 − e−c − δi/N and
e−c < 1 − e−c − δi/N.

In the case e−c < 1 − e−c − δi/N, since by (6.5) we have l� = i + 1,

(6.12)

P(Zv = 1) ≥
(l�−1∏

l=1

(1 − p)rδl−1(1+Cζ )
)

(1 − (1 − p)(1−Cζ )δl�−1))r

≥ e−p(1+o(1))rδi−1
(1 − e−p(1+o(1))δi

)r

≥
(

1 − δi

N

)r(1+o(1))

(1 − e−c(1+o(1)))r

≥
(

1 − δi

N

)r(1+o(1))

(1 − e−c)r(1+o(1))
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≥
(

1 − δi

N
− e−c

)r(1+o(1))

= γ
r(1+o(1))
smd . (6.11)

We used the fact that when h1(N) → 0, we have

(6.1)

1 − e−c(1+h1(N))

1 − e−c → 1,

which implies that there exists h2(N) → 0 with

h2(N) <
1 − e−c(1+h1(N))

1 − e−c
− 1.

Then, taking

h3(N) = log (1 + h2(N))

log (1 − e−c)
→ 0,

we have (
1 − e−c(1+h1(N))

)r
(1 − e−c)r(1+h3(N))

=
(

1 − e−c(1+h1(N))

1 − e−c
(1 − e−c)−h3(N)

)r

>
(

(1 + h2(N))
(
1 − e−c)−h3(N)

)r

= 1. (6.12)

In the case e−c ≥ 1 − e−c − δi/N, since by (6.5) we have l� = i + 2,

P(Zv = 1) =
l�−1∏
l=1

(1 − p)rδl−1(1+Cζ )

≥ e−p(1+o(1))rδi

≥ (e−c)r(1+o(1))

= γ
r(1+o(1))
smd . (6.13)

Combining (6.11) and (6.13), we can deduce that

(6.1)

P(Zv = 1) ≥ γ
r(1+o(1))
smd . (6.14)

Let Z =∑v∈V\R Zv be the number of survivors in the SSP. By (6.14) we have

E[Z] ≥ (N − r)γ r(1+o(1))
smd . (6.15)

We finish with a computation similar to (4.8) in Section 4.5. The o(1) term will be swallowed
by the ε term in r. In particular, we will need the inequality

(1 + o(1))(η − ε) < (η − ε/2), (6.16)
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which holds because η is upper-bounded by one and we can choose an ε that tends to zero
slower than the function hidden in the o(1) term. Then, putting it all together,

(6.10)

(3.7)

(6.15)

(6.16)

(P(R) − P(E))P(E) ≤ Nr
P(Y2 = 0)

≤ Nr2e
4
3 exp

(
−E[Z]

3

)

= 2e
4
3 exp

(
r log (N) − 1

3
(N − r)γ r(1+o(1))

smd

)

= 2e
4
3 exp

(
r log (N) − 1

3
(N − r)γ

(1+o(1))(η−ε) log (N)
log (1/γsmd)

smd

)

≤ 2e
4
3 exp

(
r log (N) − 1

3
(N − r)γ

(η−ε/2) log (N)
log (1/γsmd )

smd

)

= 2e
4
3 exp

(
r

(
log (N) + 1

3
N−(η−ε/2)

)
− 1

3
N1−(η−ε/2)

)

≤ 2e
4
3 exp

(
(η − ε)2 log2 (N)

log (1/γsmd)
− 1

3
N1−(1+logN log (1/γsmd))+ε/2

)

≤ 2e
4
3 exp

(
log2 (N) − 1

3 Nε/2

log (1/γsmd)

)
→ 0,

since 1/log (1/γsmd) > 1 and log2 (N) − 1
3 Nε → −∞ as long as

ε � log log (N)

log (N)
.

Finally, since P(E) → 1, we conclude that there exists no resolving set a.a.s. �

6.5. Proof of Theorem 6.1 for p = o(1), upper bound

If c → ∞, the theorem follows directly by SMD ≤ MD and the results of [4]. For the
remainder of this proof, we assume c = �(1).

It would be ideal to reduce this proof to the SQC proof, similarly to the lower bound.
However, in the case p = �(N−i/(i+1)) with i > 0, the same approach as in Section 4.4 does not
work. The events that two nodes v and w separate a set W are no longer independent and we
cannot show that every set W has an f -separator. Fortunately, we do not need such a powerful
result for Theorem 6.1: it is enough to prove the existence of f -separators for the subsets that
can be candidate sets in MAX-GAIN. In order to know which subsets can be candidate sets,
we expose most of the graph G, except that we reserve a small set F of cγ log2 (N) nodes with
cγ = 2/ log (1/γsmd), which we keep completely unexposed. The advantage of this is twofold.
Now we can have a very good idea about which sets we need to separate, and we still have a
large enough set of unexposed nodes that can independently separate the potential candidate
sets (conditioned on the expansion properties of the exposed graph).

We have to make the claim that we have ‘a very good idea about which sets we need to
separate’ rigorous. Also, we must develop tools that allow us to reason about distances in the
graph even when a small subset of the nodes are kept unexposed. We start by showing that the
unexposed nodes are a.a.s. far from each other.

Lemma 6.1. In G ∼ G(N, p), for a randomly selected F ⊂ V with size |F| = cγ log2 (N) with
cγ = 2/log (1/γsmd), and for any two nodes v, w ∈ F, we have d(v, w) ∈ {i + 1, i + 2} a.a.s.,
with i given in Definition 5.2.
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Proof of Lemma 6.1. We can sample the cγ log2 (N) nodes one by one. Each time we sample
one, let us also expose its i-neighborhood, as done in the proof of Lemma 5.3. When we have
already sampled the first j < log2 (N) nodes, there are at most cγ log2 (N)δi(1 + O(ζ )) nodes
exposed (by Corollary 5.1), so the probability that we select an unexposed node is at least

1 − cγ log2 (N)δi(1 + O(ζ ))

N
.

The probability that we always select an unexposed node is at least(
1 − cγ log2 (N)δi(1 + O(ζ ))

N

)cγ log2 (N)

→ 1,

because δ ≥ log5 (N) and cN = δi+1 implies

log2 (N)δi

N
= c log2 (N)

δ
≤ 1

log3 (N)

for N large enough. Since unexposed nodes are always at least i + 1 distance away from all
previous nodes and not more than i + 2 by Corollary 5.2, this completes the proof. �

We now introduce the definitions necessary to discuss distances in G with a small subset of
the nodes F unexposed.

Definition 6.5. (Exposed graph.) Let V ′ = V \ F, and let G′ be the subgraph of G restricted to
nodes V ′. Let N′ = |V ′|, δ2, c′, i′, γ ′

smd, ζ ′ be the parameters defined in Definition 5.2 and (6.1)
for graph G′. Let d′(u, v) be the length of shortest path between nodes v ∈ F and u ∈ V ′. For
v ∈ V ′, SG′(v, l) is defined in Definition 5.1 for graph G′. For v ∈ F let us extend the definition
of SG′(v, l) using the distance function d′ instead of d.

In the rest of the section we will mainly use parameters N′, δ2, c′, i′, γ ′
smd, ζ ′. We must keep

in mind that to prove Theorem 6.1 we must show

SMDP ≤ (1 + o(1)) log (N)/ log (1/γsmd).

Fortunately we can show that γ ′
smd = γ

1+o(1)
smd , which means that proving

SMDP ≤ (1 + o(1)) log (N′)/ log (1/γ ′
smd)

is enough for the theorem to hold. The following lemma will also show that i′ = i (consequently
we will not use the notation i′ after the following lemma).

Lemma 6.2. With the definitions given in Definition 6.5, we have

i′ = i and γsmd
′ = γ

1+o(1)
smd . (6.17)

Proof of Lemma 6.2. First we show that for any constant k ≥ 1 we have

δk = (Np)k ≥ (N − cγ log2 (N))kpk = δk
2 ≥ δk

(
1 − kcγ log2 (N)

N

)
. (6.18)

Only the last inequality is not trivial. For the last inequality we note that since xk is a convex
function for k > 1,

δk − δk
2 = (Np)k − (N − cγ log2 (N))kpk ≤ (cγ log2 (N)kNk−1)pk = δk kcγ log2 (N)

N
.
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Equation (6.18) implies that δi/N = �(1) if and only if δi
2/N′ = �(1), hence i′ = i.

Moreover,

N

N′ c = δi+1

N′ > c′ = δi+1
2

N′ ≥ δi+1

N

(
1 − icγ log2 (N)

N

)
≥ c

(
1 − cγ log3 (N)

N

)
, (6.19)

since i ≤ log (N). Equations (6.19) and (6.1) imply (6.17). �

Definition 6.5 also introduces the distance function d′(v,u) on G′ (and one extra node from
F). This function will be useful for us, first because it does not use any edge incident to F \ {v},
and therefore can be evaluated even if none of the edges incident to F \ {v} are exposed, and
second because we can prove that with high probability it is the same as the true distance. For
the rest of this section, all expectations and probabilities are conditioned on the event that the
expansion properties hold in the exposed graph G′.

Lemma 6.3. In G(N, p), for a randomly selected F ⊂ V with size |F| = cγ log2 (N) with cγ =
2/log (1/γ ′

smd) for any two nodes v ∈ F and u ∈ V ′, we have d′(v, u) = d(v, u) a.a.s.

Proof of Lemma 6.3. Since both d(v,u) and d′(u, v) represent distances, and the only differ-
ence is that the former is the distance in G and latter is the distance in a subgraph of G, we must
have d(v, u) ≤ d′(v, u). Suppose that for some v ∈ F, u ∈ V ′ we have d(v, u) < d′(v, u). This can
happen only if there exists w ∈ F \ {v} for which d(v, w) + d(w, u) < d′(v, u). By Lemma 6.1
we have that d(v, w) ≥ i + 1 a.a.s., and we also know that d(u, w) ≥ 1 since w = u. If we could
also show d′(v, u) ≤ i + 2 a.a.s., the contradiction given by the inequality

1 + (i + 1) ≤ d(v, w) + d(w, u) < d′(v, u) ≤ i + 2

would prove that no such w can exist a.a.s. Unfortunately we cannot simply apply Corollary
5.2 to show d′(v, u) ≤ i + 2 a.a.s., since d′(u, v) could be larger than d(v,u). However, a simple
analysis conditioning on the expansion properties on the set V’ suffices. Indeed,

(5.4)

P(∃v ∈ F, u ∈ V ′ with d′(v, u) > i + 2) ≤
∑
u∈V ′

P(∃v ∈ F with d′(v, u) > i + 2))

=
∑
u∈V ′

(
1 − P

(
∀v ∈ F, v ∈

i+2⋃
l=1

SG′(u, l)

))

=
∑
u∈V ′

(
1 −

(
1 − (1 − p)

∣∣⋃i+1
l=1 SG

′ (u,l)
∣∣)|F|)

= |V ′|
(

1 −
(

1 − e−p
(

1−e−c
′+o(1)

)
δi+1

2

)cγ log2 (N)
)

.

By 1 − x = e−x(1+O(1)) for x = o(1), and pδi+1
2 = c′δ2, we proceed to

P(∃v ∈ F, u ∈ V ′ with d′(v, u) > i + 2) ≤ N

(
1 − e−e

−c
′
δ2

(
1−e−c

′
+o(1)
)

(1+o(1))cγ log2 (N)
)

≤ Ne−c′δ2

(
1−e−c

′+o(1)
)
(1 + o(1))cγ log2 (N)

≤ N1−c′ log3 (N)
(

1−e−c
′+o(1)

)
(1 + o(1))cγ log2 (N)

→ 0,

where in the last inequality we used δ2 = N′p � N′ log5 (N)/N � log4 (N). �
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(a) (b)

FIGURE 6. (a) A small example graph with V ′, F1, and F2. (b) The ‘game plan’ corresponding to the
graph in (a). The jth blue layer (j ≥ 0) shows the potential pseudo-candidate sets we might encounter in
step j. Arrows exiting blue nodes point to the potential of queries Fj (green nodes on the jth level). The red
arrow marks the query we picked. Arrows exiting green nodes correspond to the potential observations
provided by Player 2 in the actual game. Each scenario ends when the potential candidate set has exactly
one element. Tables 2 and 3 show which sets T ′

j,ṽ and Rj,ṽ correspond to each step of this ‘game plan’.

We have proved that we may use d′(u, v) instead of d(v,u), but we still do not know which
sets need to be separated. To determine which sets we need to separate, we will simulate the
game on the exposed graph. In the jth step we assume that we have a candidate set, we expose
a subset of the reserved nodes Fj ⊂ F of size log (N), and we select the best reducer v from
only the nodes Fj (unless the candidate set is small enough to query the whole set). Then we
consider all possible answers we could get if we selected v as a query, and we continue our
simulation for each possible scenario (Figure 6(b)). This analysis is different from the proof in
Section 4.4, where we first proved a structural result for every subset and then proved that the
MAX-GAIN algorithm finds the target. This time the structural argument and the simulation
of the algorithm will be intertwined. We simulate all possible scenarios of MAX-GAIN before
actually taking observations from Player 2, and we construct function g from Definition 2.2 to
form a ‘game plan’ that we can follow later in real time. To implement this analysis we need
to extend our definitions slightly.

From now on we will index our set of queries as Rj,ṽ, since we must prepare for observations
for any target ṽ. We now have the property |Rj,ṽ| = j and Rj,ṽ ⊂ Rj+1,ṽ, for all ṽ ∈ V . We will
also define a new version of candidate targets that are indexed by ṽ, and which in addition
uses the new distance function that we defined above. In this new notion of candidate targets
we assume that the target is in the exposed graph V ′ (the case when the target is in F will be
handled at the end of the proof).

Definition 6.6. Given a graph G = (V, E) with unexposed nodes F and queries Rj,ṽ, the set of
pseudo-candidate targets

T ′
j,ṽ = {v ∈ V ′ | d′(w, v) = d′(w, ṽ) for all w ∈ Rj,ṽ}.
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TABLE 2. The pseudo-candidate sets corresponding to each ṽ and j from the example in Figure 6.

j T ′
j,v1 T ′

j,v2 T ′
j,v3 T ′

j,v4

0 V ′ V ′ V ′ V ′
1 {v1, v2} {v1, v2} {v3, v4} {v3, v4}
2 {v1} {v2} {v3} {v4}

TABLE 3. The query sets corresponding to each ṽ and j from the example in Figure 6.

j Rj,v1 Rj,v2 Rj,v3 Rj,v4

0 ∅ ∅ ∅ ∅
1 {v5} {v5} {v5} {v5}
2 {v5, v7} {v5, v7} {v5, v8} {v5, v8}

Remark 6.4. Notice that ṽ ∈ T ′
j,ṽ always holds. Also, the sets T ′

j,ṽ define a partition on V ′,
that is, for any ṽ ∈ V ′:

• w ∈ T ′
j,ṽ ⇒ T ′

j,ṽ = T ′
j,w,

• w ∈ T ′
j,ṽ ⇒ T ′

j,ṽ ∩ T ′
j,w = ∅.

This can be seen by an inductive argument. For j = 0, all sets T ′
0,ṽ coincide with V’ as R0,ṽ = ∅.

For step j + 1, each equivalence class at step j is partitioned further by the new query.

We must also define an analogous notion to extend Definition 6.1 of f -separators.

Definition 6.7. (f-pseudo-separator.) Let f (n) ∈N→R
+ be a function. A set of nodes W ⊆ V ′,

|W| = n has an f-pseudo-separator if there is a node w ∈ F such that

max
l∈N

|W ∩ SG′(w, l)| ≤ nγ ′
smd + f (n).

Algorithm 1 Simulating all scenarios of MAX-GAIN.

1. We arbitrarily select log (N) disjoint sets Fj ⊂ V of size log (N) and we let F = ∪Fj. We
expose all edges of V ′ = V \ F.

2. In step j ≥ 0 we expose the edges of nodes of Fj. For each T ′
j,ṽ we pick the best reducer

sj,ṽ ∈ Fj (possibly a different reducer for each T ′
j,ṽ) and add sj,ṽ as a query to Rj,ṽ. In the

analysis we prove that there always exists an f -separator (we define f later), so the new
query will also be a (|T ′

j,ṽ|γ ′
smd + f (|T ′

j,ṽ|)-reducer for T ′
j,ṽ. Selecting it produces the

new sets T ′
j+1,ṽ.

3. When a set T ′
j,ṽ reaches size o(log (N)/ log (1/γsmd)), we query the entire set (see the

proof of Lemma 4.1 for the base case).

With these definitions, the simulation of MAX-GAIN is defined in Algorithm 1. We must
show that while constructing our ‘game plan’, it is in fact possible with probability tending to
one to select an f -pseudo-separator sj,ṽ in each step of the algorithm only from the Fj (we define
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f later). Then Lemma 6.3 implies that these f -pseudo-separators for the pseudo-candidate sets
are in fact f -separators for the true candidate sets. This will allow us to use Lemma 4.1.

Lemma 6.4. Let n = |T ′
j,ṽ| be the cardinality of the pseudo-candidate target set in step j of

the game plan for target ṽ. Let v ∈ Fj, let Xvw be the indicator of the event v ∈ SG′ (w, i + 2) for
w ∈ T ′

j,ṽ, and let Xv =∑w∈T ′
j,ṽ

Xvw = |SG′(v, i + 2) ∩ T ′
j,ṽ|. Then

E[Xv] = n

(
e−c′ + O(ζ ′)

)
.

Proof of Lemma 6.4. This is an analogous result to (5.5) in Lemma 5.3, except that now
most of the graph is exposed. Consider w ∈ T ′

j,ṽ. Then

P(Xvw = 1) = (1 − p)

∣∣∣∪i
j=1SG

′ (w,j)

∣∣∣
= e(−p+O(p2))(δi

2(1+O(ζ ′)))

= e−c′ (1 + O(ζ ′)))

= e−c′ + O(ζ ′).

The result on the expectation follows immediately. �
The previous lemma only covered the expectation. Now we will establish a result on

concentration.

Lemma 6.5. Let v, Xv, Xvw, n be defined as in Lemma 6.4, and let ω be a function tending
slowly to infinity. Then

P

(∣∣∣Xv − ne−c′
∣∣∣> n

ω log (n)

)
→ 0

as N → ∞ independently of n.

Proof of Lemma 6.5. By Lemma 6.4 and Chebyshev’s inequality,

P

(∣∣∣Xv − ne−c′
∣∣∣> n

ω log (n)

)
≤ P

(∣∣∣Xv − n
(

e−c′ + O(ζ ′)
)∣∣∣> n

2ω log (n)

)

= P

(
|Xv −E[Xv]| > n

2ω log (n)

)

<
4ω2 log2 (n) Var [Xv]

n2 . (6.20)

To compute Var [Xv] we will need

(5.3)

E[XvwXvx] = P(d(v, w) = i + 2 and d(v, x) = i + 2)

= (1 − p)

∣∣∣∪i
j=1SG

′ (w,x,j)

∣∣∣
= e(−p+O(p2))(2δi

2+O(ζ ′))

= e−2c′(1 + O(ζ ′))

= e−2c′ + O(ζ ′).
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Then

Var [Xv] =E[X2
v ] −E

2[Xv]

=
∑

w∈T ′
j,ṽ

(E[X2
vw] −E

2[Xvw]) +
∑
w,x

(E[XvwXvx] −E[Xvw]E[Xvx])

≤E[Xv] + n2(e−2c′ − e−c′ e−c′ + O(ζ ′))

= ne−c′ + n2O(ζ ′). (6.21)

Recall that we assumed c = �(1) at the beginning of the section, and that in equation (6.19)
we proved that c′ = �(1) must hold as well. Consequently we have

δi
2

N′ = �

(
1

δ2

)
= o

(√
log (N′)

δ2

)
,

which implies that we can choose ζ ′ =√log (N′)/δ2 in the version of equation (5.1) where
we replace the parameters ζ, δ, N with the parameters ζ ′, δ2, N′. Then, by the assumption
pN � log5 (N) in the statement of Theorem 6.1, we have

ζ ′ =
√

log (N′)
δ2

= o

(√
N log (N′)
N′ log5 (N)

)
= o

(
1

log2 (N)

)
. (6.22)

Finally, substituting equation (6.21) into (6.20) yields

(6.21)

(6.22)

P

(∣∣∣Xv − ne−c′
∣∣∣> n

ω log (n)

)
<

4ω2 log2 (n) Var [Xv]

n2

= 4ω2 log2 (n)ne−c′

n2 + 4ω2 log2 (n)n2O(ζ ′)
n2

= o(1) + o

(
ω2 log2 (n)

log2 (N)

)
, (6.23)

which proves the desired result since N ≥ n and ω tends to infinity very slowly. �
Lemma 6.6. Let Z be the indicator variable that we cannot select an f-pseudo-separator in
some step of the simulation with f (n) = 2n/(ω log (n)). Then P(Z) → 0.

Proof of Lemma 6.6. Let Zj be the indicator variable that we cannot select an f -pseudo-
separator in the jth step of the simulation. Let us fix j. Let Yj,ṽ be the indicator variable that we
cannot find an f -pseudo-separator for the pseudo-candidate set T ′

j,ṽ. Since by Remark 6.4 the
pseudo-candidate sets partition V’, some (for j = 1 all) of the Yj,ṽ can be identical, but this will
not matter as in the end we will apply a union bound. Similarly to the proof of the SQC upper
bound, finding an f -pseudo-separator is equivalent to finding an Xv close to its expectation.

Indeed, |Xv − n e−c′ | ≤ f (n)/2 implies

Xv ≤ ne−c′ + f (n)

2
≤ nγ ′

smd + f (n)

2
< nγ ′

smd + f (n)

and

n − Xv ≤ n(1 − e−c′) + f (n)

2
≤ nγ ′

smd + n
δi

2

N′ + f (n)

2
< nγ ′

smd + f (n),
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because, as we saw in (6.22), we can choose f (n) so that δi
2/N′ < ζ ′ < 1/ log2 (N) < f (n)/(2n).

Thus v is an f -pseudo-separator. The non-existence of an f -pseudo-separator implies the non-
existence of an Xv close to its expectation, which means

P(Yj,ṽ) ≤ P

(∣∣∣Xv − ne−c′
∣∣∣> f (n)

2
for all v ∈ Fj

)
.

Let us choose N large enough such that, for v ∈ Fj,

P

(∣∣∣Xv − ne−c′
∣∣∣> f (n)

2

)
< e−2

(which can be done for any constant by Lemma 6.5 since f (n)/2 = n/(ω log (n)). Then

P(Yj,ṽ) ≤ e−2|Fj| = N−2.

By the union bound, since in every step we have at most N′ < N pseudo-candidate sets T ′
j,ṽ to

separate,

P(Zj) = P

( ⋃
ṽ∈|V ′|

Yj,ṽ

)
≤ NP(Yj,ṽ) ≤ N−1.

Finally, since we have
2 log N

log (1/γsmd)

sets Fj, another union bound shows that

P(Z) = P

⎛
⎜⎝

2 log N
log (1/γsmd)⋃

j=1

Zj

⎞
⎟⎠≤ 2 log N

N log (1/γsmd)
= o(1).

�

Now we just need to put the pieces together to prove Theorem 6.1.

Proof of Theorem 6.1, upper bound. We perform Algorithm 6.5, with the modification that,
besides F, we also reserve another set F′ with cγ log2 log2 (N) nodes. The modified algorithm
runs in three steps.

1. We run Algorithm 1 on V ′ = V \ (F ∪ F′).
The additional set F′ slightly increases the size of the reserved nodes, but this log2 log2 (N)

term does not affect the analysis. Lemma 6.6 ensures that the algorithm can find an f -pseudo-
separator for all Fj with probability tending to 1. Lemma 6.3 shows that the only candidate
sets we might encounter in the MAX-GAIN algorithm are pseudo-candidate target sets in our
game plan, and the f -pseudo-separators we found for the pseudo-candidate target sets are f -
separators for the corresponding candidate target sets, unless the source was in the reserved
nodes.

Since the f we used in Lemma 6.6 was o(n/ log (n)) we can apply Lemma 4.1, which shows
that in each possible scenario we simulate, we find the source in

(1 + o(1))
log (N′)

log (1/γsmd
′)
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steps. Therefore the number of steps we require is always less than

2 log (N)

log (1/γsmd)
,

the number of sets Fj we can use to find f -separators in Lemma 6.6. Thus, if the target was in

V ′, the algorithm will find it. By Lemma 6.2, γsmd
′ = γ

1+o(1)
smd , hence the number of steps taken

is upper-bounded by the desired

(1 + o(1))
log (N)

log (1/γsmd)

steps.

2. We repeat the argument with candidate set F and reserved nodes F′.

3. Finally we query the entire F′.

In these last two steps, we selected only o(log (N)) extra queries, which does not change
the leading term of our upper bound. We have ensured that no matter whether the source is
in V \ (F ∪ F′), F, or F′, we will be able to find it in the desired number of steps with prob-
ability tending to 1. Recall that in all of our calculations in Lemmas 6.3–6.6 we conditioned
on the event that the expansion properties hold in the exposed graph. Since the expansion
properties also hold with high probability, the upper bound in Theorem 6.1 also holds without
conditioning. �

7. Discussion

In this paper we have proved tight asymptotic results for the SMD in G(N, p). We found
that a.a.s. the ratio between the SMD and the MD is a constant as N tends to infinity, and we
conjecture that this constant is 1 except for (pN)i = �(N) for i ∈N, where the constant term is
found explicitly and is smaller than 1. On the one hand, considering the equivalence of binary
search with adaptive and non-adaptive queries, it is interesting that there is any difference at
all between the SMD and the MD. On the other hand, experimental results suggest that on
other graph models (and especially real-world networks), the SMD is orders of magnitude
smaller than the MD [27]. Hence the Erdős–Rényi graphs are an intermediate regime, where
the restriction on the queries does favor adaptive algorithms, but not by too much.

Several open questions remain. The lower and upper bounds in Theorem 6.1 are a fac-
tor of η apart – the same factor that appeared in the earlier work of [4]. We believe that a
further study of the new notions introduced in this paper, the QC (which is essentially equiv-
alent to the minimum cardinality of an identifying code) and the SQC, may help in removing
this gap.

It would be interesting to study random graph models other than the G(N, p) model, where
we expect the difference between the MD and the SMD to be significantly larger. Adding noise
to the measurements would be another step towards more realistic scenarios, and in this case
too, we expect a larger difference between the MD and the SMD. The noise can come from
faulty observers similarly to [8], or the noise can be proportional to the distances observed,
which would model stochastic disease propagation in source localization [16, 25].
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Appendix A. Additional proofs

A.1. Proof of Lemma 4.1

Let T(n) denote the number of steps in which MAX-GAIN reduces the number of candidates
from n to 1, and let CN be the value (not depending on n) such that for all n ≥ CN > 0 the
condition

T(n) ≤ T(nq + f (n)) + 1 with f (n) = o

(
n

log (n)

)

holds. Then we prove

T(n) < log1/q (n) + log log (n) + Cq,f + CN ,

where Cq,f is a positive constant (it depends only on q and f but not n) computed implicitly at
the end of the proof.

We use proof by induction. Base case: If n < Cq,f + CN then T(n) < Cq,f + CN clearly holds
as we can query each candidate. Induction step: Now let n ≥ Cq,f + CN and we assume that for
M < n the induction hypothesis holds, that is,

T(M) < log1/q (M) + log log (M) + Cq,f + CN . (A.1)

Then
(A.1)

T(n) ≤ T(nq + f (n)) + 1 ≤ log1/q (nq + f (n)) + log (log (nq + f (n))) + Cq,f + CN + 1.
(A.2)

For the induction hypothesis to hold we would like the last expression to be upper-bounded by

log1/q (n) + log (log (n)) + Cq,f + CN .

To compare these two quantities, we would like to transform log1/q (nq + f (n)). Using the fact
that log is a concave function and by linearly approximating it at n,

log1/q (nq + f (n)) = log1/q

(
n + f (n)

q

)
− 1 ≤ log1/q (n) + f (n)

q log (1/q)n
− 1.

Plugging this into (A.2), we get

T(n) ≤ log1/q (n) + f (n)

q log (1/q)n
+ log (log (nq + f (n))) + Cq,f + CN .

For the induction hypothesis to hold we need to show that

log1/q (n) + f (n)

q log (1/q)n
+ log (log (nq + f (n))) + Cq,f + CN

≤ log1/q (n) + log (log (n)) + Cq,f + CN ,

which is equivalent to

f (n)

q log (1/q)n
+ log (log (nq + f (n))) ≤ log (log (n)).
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Again, by the concavity of log (log (n)) we can use a linear approximation

log (log (nq + f (n))) ≤ log (log (n)) + n − (nq + f (n))

n log (n)
.

So it is enough to show that

f (n)

q log (1/q)n
≤ n − (nq + f (n))

n log (n)
,

f (n)

n

(
1

log (1/q)q
+ 1

log (n)

)
≤ 1 − q

log (n)
,

f (n) log (n)

n
≤
(

1 − q

log (1/q)q
+ 1 − q

log (n)

)−1

.

Since the right-hand side is bounded from below (for n > 0) and f (n) = o(n/log (n)), this
last inequality must hold for n ≥ Cq,f , for some constant Cq,f (depending only on q and f but
not n).

To conclude the proof, we show that for all n ∈N

T(n) < log1/q (n) + log log (n) + Cq,f + CN .

This in particular implies

T(N) < log1/q (N) + log log (N) + Cq,f + CN = (1 + o(1)) log1/q (N)

for CN = o(log1/q (N)). �

A.2 Proof of Lemma 5.1

The proof follows the proof of Lemma 2 (i) in [4] until the very last step, the evaluation of
the multiplicative error term. There i = O(log (n)/ log log (n)) and

√
ω ≤ log2 (N) log log (N)

are used to get the asymptotic upper bound

(
1 + O

(
δ

N

)
+ O

(
1√
ω

)) i∏
j=2

(
1 + O

(
δj

N

)
+ O

(
1√

ωdj−1

))

=
(

1 + O

(
δi

N

)
+ O

(
1√
ω

)) i−3∏
j=7

(1 + O(log−3 (N)))

=
(

1 + O

(
δi

N

)
+ O

(
1√
ω

))
(1 + O(log−2 (N)))

=
(

1 + O

(
δi

N

)
+ O

(
1√
ω

))
.
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However, the second upper bound on
√

ω is not necessary. Instead, we can write

(
1 + O

(
δ

N

)
+ O

(
1√
ω

)) i∏
j=2

(
1 + O

(
δj

N

)
+ O

(
1√

ωdj−1

))

=
(

1 + O

(
δi

N

)
+ O

(
1√
ω

)) i−2∏
j=5

(
1 + O

(
1

δ2

))

=
(

1 + O

(
δi

N

)
+ O

(
1√
ω

))(
1 + O

(
1

δ

))

=
(

1 + O

(
δi

N

)
+ O

(
1√
ω

))
,

where the second-to-last inequality holds because i < δ and
(
1 + O

(
1/δ2

))δ = (1 + O(1/δ))
and the last inequality holds because 1/δ = O(δi/N).

The condition
√

ω ≤ log2 (N) log log (N) is not used anywhere else in the proof of Lemma
2 (i) of [4], so we may remove this condition, which gives Lemma 5.1 of this paper. �
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[31] ZEJNILOVIĆ, S., GOMES, J. AND SINOPOLI, B. (2015). Sequential observer selection for source localization.
In 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1220–1224. IEEE.

https://doi.org/10.1017/jpr.2021.16 Published online by Cambridge University Press

https://arxiv.org/abs/https://arxiv.org/abs/2002.07336
https://doi.org/10.1017/jpr.2021.16

	Introduction
	Problem statement and summary of results
	Problem statement
	Summary of results

	Warmup1: Random Bernoulli matrices with pairwise different columns
	Proof of Theorem 3.1 (i)
	Proof of Theorem 3.1 (ii)

	Warmup2: Identifying codes or binary search with randomly restricted queries
	Connection between Theorems 3.1 and 4.1
	Proof of the "026E30F operatornameQC upper bound of Theorem 4.1
	Proof of the "026E30F operatornameQC lower bound of Theorem 4.1
	Proof of the "026E30F operatornameSQC upper bound of Theorem 4.1
	Proof of the "026E30F operatornameSQC lower bound of Theorem 4.1

	Expansion properties of "026E30F mathcalG"026E30F textbf("026E30F textbf"026E30F textitN,"026E30F ,p"026E30F textbf)
	Main results
	Connection between Theorems 4.1 and 6.1
	Proof of Theorem 6 for p="026E30F Theta(1), upper bound
	Proof of Theorem 6.1 for p="026E30F Theta(1), upper bound
	Proof of Theorem 6 for p="026E30F mathrmo(1), lower bound
	Proof of Theorem 6.1 for p="026E30F mathrmo(1), upper bound

	Discussion
	Additional proofs
	Proof of Lemma 4.1
	Proof of Lemma 5.1

	Acknowledgements
	References

