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Critical shear rate and torque stability condition
for a particle resting on a surface in a fluid flow
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(Received 11 March 2016; revised 12 August 2016; accepted 5 October 2016;
first published online 2 November 2016)

We advance a quantitative description of the critical shear rate γ̇c needed to dislodge
a spherical particle resting on a surface with a model asperity in laminar and
turbulent fluid flows. We have built a cone-plane experimental apparatus which
enables measurement of γ̇c over a wide range of particle Reynolds number Rep from
10−3 to 1.5 × 103. The condition to dislodge the particle is found to be consistent
with the torque balance condition after including the torque component due to drag
about the particle centre. The data for Rep< 0.5 are in good agreement with analytical
calculations of the drag and lift coefficients in the Rep → 0 limit. For higher Rep,
where analytical results are unavailable, the hydrodynamic coefficients are found
to approach a constant for Rep > 1000. We show that a linear combination of the
hydrodynamic coefficients found in the viscous and inertial limits can describe the
observed γ̇c as a function of the particle and fluid properties.
Key words: granular media, particle/fluid flow, sediment transport

1. Introduction
The threshold condition needed to dislodge particles, which are initially at rest

on a surface, due to a fluid flow is important in a wide range of physical systems
and industries. Examples include wind-blown dynamics of sand dunes, erosion
of sediments and rocks on river beds and ocean floors, deposition of proppants
in hydraulic fracturing of shales, and drug delivery via inhalation. In spite of a
long-standing interest in such problems (see Shields 1936; Buffington & Montgomery
1997), the conditions under which particles are dislodged by a fluid flow are not well
established quantitatively. The Shields number, given by the ratio of the hydrodynamic
drag and gravitational force acting on the particles at the surface, is often used to
characterize the physical conditions at the threshold of motion (see Shields 1936;
Wiberg & Smith 1987; Buffington & Montgomery 1997). When this number exceeds
a value corresponding to an effective friction, the fluid is considered to dislodge
the particles. This appears to imply that the condition to dislodge a particle can be
characterized by considering the mean forces acting on the particle alone (see Phillips
1980; Wiberg & Smith 1987). Accordingly, the recorded Shields number at the
threshold of motion has been reported over a wide range of Reynolds numbers
estimated at the particle scale and shows broad trends with considerable scatter
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(see Buffington & Montgomery 1997) that depend on bed preparation, particle size
and degree of exposure to the fluid flow (see Charru, Mouilleron & Eiff 2004; Charru
et al. 2007; Ouriemi et al. 2007; Hong, Tao & Kudrolli 2015; Clark et al. 2015).

A spherical particle resting on a rough surface in a linear sheared fluid flow is
an important model to understand the threshold of motion of a particle exposed to
a fluid flow. A recent analysis of this model by Lee & Balachandar (2012) appears
to suggest that torques, and not just the forces, can be important in determining the
onset of particle motion in sheared fluid flow. In the case of sufficiently low Reynolds
numbers, the net hydrodynamic force and torque acting on a sphere attached to a
smooth wall in a linear shear flow has been analytically calculated by O’Neill (1968)
and Leighton & Acrivos (1985). At moderate and higher Reynolds number, where
fluid inertia is important, analytical results do not exist. However, numerical results
have been obtained by Zeng et al. (2009) for the drag and lift coefficients acting on
a particle attached to a surface at moderate Reynolds numbers. These results indicate
that both the lift and moment coefficients about the particle centre decrease relative
to the drag coefficient with increasing Reynolds numbers. Thus, there is a need for
further investigations to quantitatively test the relative contribution of forces and
torques acting on a particle as a function of Reynolds numbers in order to clarify the
conditions needed to dislodge particles in sheared fluid flows.

Here, we discuss a new experimental system that enables us to quantitatively
measure the threshold of motion of a particle in a linearly sheared fluid where the
fluid flow and particle motion are visualized to understand its characteristics. Model
asperities with well-defined pivot points are used to investigate its importance in
determining the onset of motion. We demonstrate that the torque balance condition
is important in determining the threshold in laminar as well as turbulent sheared
flows. Further, we quantitatively describe the critical shear rate required to dislodge a
particle as a function of its physical properties using an interpolation of hydrodynamic
drag and lift coefficients obtained in the viscous and inertial limits.

2. Experimental system

A schematic of the experimental apparatus is shown in figure 1(a). It consists of
a stationary transparent cylindrical container with a flat bottom, filled with a fluid
with a dynamic viscosity µ and density ρf , prepared using water and glycerol mixture
ratios reported by Cheng (2008). Because glycerol–water mixtures are sensitive to
temperature, we performed all experiments in a room controlled to within 0.5◦ C and
with viscosity variation within ±2 %. This estimate is based on the errors due to
the variation in the room temperature and the measurement of fluid volumes used
to prepare the glycerol and water mixture. In test experiments, we did not observe
any systematic errors due to evaporation or hygroscopy in the onsets (to within the
fluctuations noted) for over three hours after the fluids were mixed. Therefore, to avoid
any such effects, the experiments were all performed well within this time after the
fluids were prepared. An inverted cone-shaped top plate, with an apex that coincides
with the bottom of the container and radius R = 95 mm, is rotated about its axis at
a prescribed frequency f , similar to a conical rheometer. The flows in this geometry
have been studied extensively (see for example Sdougos et al. 1984), with the primary
flow being concentric with the axis of rotation and increasing linearly from the bottom
to the top plate. The corresponding shear rate is given by γ̇ = 2πf / tan β, where β
is the angle complementary to the cone apex angle. A weak radial secondary flow
also occurs, which is inward near the flat surface and outward near the cone surface,
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Fluid

Vertical light sheet

f(a)

(b) (c)

(d)

FIGURE 1. (Colour online) (a) A schematic diagram of the apparatus. The conical top
plate spins about its vertical central axis with a prescribed frequency f , resulting in a
uniform shear rate γ̇ = 2πf / tan β. A vertical light sheet through the particle is used for
visualization. (b) Cross-sectional and top view of a spherical particle lodged against a rod
which is bent into a U-shaped pocket. The line joining the centre of the sphere and the
point of contact with the asperity makes an angle φ with respect to the vertical axis.
(c) Cross-sectional and top view of a spherical particle lodged inside a circular pocket.
(d) Flow field, observed using particle image velocimetry (PIV), corresponding to Rep=0.1
superimposed on a sample image.

that increases with the flow Reynolds number given by Re= ρf γ̇R2 tan β/2µ, which
corresponds to the fluid velocity at the midpoint between the top plate and the bed
surface.

In order to test the relative effects of gravity, inertia and viscosity, we use spherical
particles composed of Delrin, polytetrafluoroethylene (PTFE), glass, aluminium,
ceramic, titanium and stainless steel with densities ρs = 1400, 2170, 2500, 2700,
3875, 4512 and 7960 kg m−3, respectively. Although a range of particle diameters
were probed, we discuss the data only for d = 3.175 ± 0.005 mm for simplicity of
presentation. The Reynolds number at the particle scale Rep is defined by using the
velocity v = γ̇ d/2 corresponding to the centre of the particle. Then,

Rep = ρf γ̇ d2

2µ
= ρf πfd2

µ tan β
. (2.1)

Two kinds of model asperities were used, including a rod bent into a U-shaped
pocket, illustrated in figure 1(b), and a circular pocket using a flat ring, illustrated
in figure 1(c). The angle φ subtended by the line joining the particle centre and the
pivot point from the vertical characterizes the barrier size relative to the particle size
in both cases. The U shape allows the particle to be fully exposed to the fluid flow
while also allowing it to move freely in the pocket. This causes the particle to rattle
inside the pocket when the flow becomes time-dependent at higher Rep, as shown in
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FIGURE 2. (Colour online) The measured critical shear rate γ̇c as a function of fluid
height h/d required to dislodge a PTFE particle. We observe that γ̇c is essentially constant
for h/d& 2 in the case of both low- and high-viscosity fluids used in the experiments. The
horizontal dashed lines are guides to the eye.

supplementary movie 1 available at https://doi.org/10.1017/jfm.2016.655. In contrast,
the circular pocket geometry causes the particle to be confined in all directions inside
the pocket and it is observed to be stationary at both high and low Rep before getting
dislodged, as shown in movie 2. Because the bottom of the sphere is shielded by
the ring, the particle is partially exposed to the fluid flow as in a granular bed. This
leads to an approximate 10 % and 7 % lowering of the drag coefficients Cd and Co,
respectively, for a circular pocket with φ = 38◦ compared to a fully exposed particle,
using estimates obtained by Pozrikidis (1997) for low-Rep flows.

Further, because the fluid velocity has to match the velocity of the spinning top
boundary, the proximity of the top boundary can lead to a greater drag coefficient, at
least at low Reynolds numbers, compared to unbounded flows (see Happel & Brenner
1973). We varied the distance rb between the particle and the axis of rotation to
understand the effect of the top boundary for high- and low-viscosity fluids used in
our experiments. Because of the slope of the top surface, this results in a gap height
h= rb tan β between the top boundary and the container bottom. The measured γ̇c as
a function of h is shown in figure 2. Indeed, we observe that γ̇c is lower for z/d< 2,
but remains essentially constant for z/d & 2 for both low- and high-viscosity fluids
used in the experiments. Accordingly, we have confined our discussion to h = 2d,
which corresponds to the particle being placed at a distance rb = 7 cm from the axis
of rotation, where the direct effect of the top surface can be expected to be small.

3. Flow visualization

In order to characterize the nature of the flow, we performed experiments with tracer
particles added to a glycerol–water mixture, corresponding to ρf = 1100 kg m−3 and
µ= 3 mPa s, in which the tracers are neutrally buoyant. The fluid was illuminated with
a light sheet which transects the particle in a vertical plane through its centre. In the
case of sufficiently slow flows, we use particle image velocimetry (PIV) to obtain the
fluid flow with a sequence of images acquired at 2 frames per second, and analyse
the images using the shareware computer program OpenPIV (http://www.openpiv.net/).
An example of which is shown in figure 1(d) for low Rep. The fluid velocity shown
by the length of the arrows can be noted to be symmetric about the vertical axis
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 3. The fluid flow observed around a spherical particle glued to the substrate
visualized with tracer particles. The exposure time is 1.0 s. (a) f = 0.01 Hz, Re= 30 and
Rep= 0.7, (b) f = 0.03 Hz, Re= 91 and Rep= 2.2, (c) f = 0.1 Hz, Re= 304 and Rep= 7.3,
(d) f = 0.3 Hz, Re = 916 and Rep = 22, (e) f = 1.0 Hz, Re = 3041 and Rep = 73, and
( f ) f = 3.0 Hz, Re= 9160 and Rep = 220. The flow is symmetric at low Rep and vortices
develop as Rep is increased, with a vortex clearly developing in the wake at Rep ∼ 20.
The flow in the wake clearly becomes time-dependent at Rep = 220. A smaller vortex in
front of the sphere is observed for Rep > 22. (See supplementary movies.)

and increase linearly in regions away from the sphere. The measured shear rate from
PIV is found to be within 5.5 % of that calculated using the rotation rate of the
top plate.

The flow structure at higher Rep can be deduced by examining the streaks made
by the tracers over one second in figure 3 and the corresponding supplementary
movie 3. One can observe that the flow is essentially symmetric for Rep ∼ 1, but
grows asymmetric as Rep is increased. A vortex can clearly be observed at Rep ∼ 20,
and the wake grows and becomes time-dependent for Rep ∼ 220. Further, one also
observes the development of a smaller vortex for Rep > 22 in the front of the sphere
near the substrate (see movie 3). In all cases, the flow well in front of the particle
appears to be laminar, and the eddies generated by the flow around the particle have
decayed by the time the fluid flow returns after going around the circular track over
the range of Rep visualized.

We also tested the effect of the secondary flows that can arise in this system at high
Re. In particular, we examined the departure angle of the particles from the azimuthal
direction when they are dislodged over a U-shaped barrier, by visualizing the system
through the transparent bottom of the container. By measuring the departure angle
for all the particles used in our study, we find angles from the azimuthal direction
to vary between −1.5◦ and 7.5◦ when Rep is varied between 40 and 243. Such a
variation would lead to a less than 2 % underestimation of the shear rate at onset,
which is within the experimental error. Therefore, we conclude that secondary flows
are negligible in determining the main trends observed in the study.
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4. Measured critical shear rate
With this characterization of the flow, we now discuss the measured critical shear

rate γ̇c as a function of the experimental control parameters. Figure 5(a) shows γ̇c
as a function of µ, corresponding to a U-shaped pocket with φ = 44◦. Each data
point corresponds to three independent measurements, and the error is less than
5 %. The data were obtained by linearly increasing the rotation frequency of the top
plate to a prescribed value f , then holding it constant for a fixed waiting time of
100 s. The threshold is reached if the particle is observed to roll out over the barrier
during this waiting time interval. The particle was observed to move and dislodge
immediately after the threshold was reached at low Rep. However, the particle was
observed to rattle inside the pocket and dislodge after a few seconds in the case of
the U-shaped pocket when Rep & 10. In the case of a circular pocket, no such rattling
was observed, and the particle dislodged right after first moving. We also found that
using a longer waiting time did not lead to a systematic change in the measured
threshold. However, decreasing the waiting time increased the threshold somewhat.
Because we are interested in the long-time behaviour, we have used a waiting time
of 100 s for consistency.

We observe that γ̇c decreases systematically because the drag can be expected
to increase with µ. Further, γ̇c is observed to be systematically higher for PTFE
because it has a higher density than Delrin. To further probe the trends with respect
to the density of the particle, we plot γ̇c as a function of ρs/ρf − 1 in figure 5(b),
corresponding to µ = 5.2 mPa s, and where the data correspond to Rep > 10. From
the log–log plot in the corresponding inset, we observe that γ̇c increases consistent
with a square root function. We have also plotted data corresponding to a barrier
with a circular pocket, and we observe similar trends. Finally, we have plotted γ̇c
in figure 5(c) for various φ, and find higher γ̇c for higher φ. Thus, γ̇c increases
systematically with greater barrier height.

5. Conditions to dislodge particle
To explain these observations, we next discuss the gravitational and hydrodynamic

forces and torques acting on the particle, which are used to determine the condition
for stability. The gravitational force acting on the particle, including the effect of
buoyancy, is given by Fg = (1/6)π(ρs − ρf )gd3, where g is the acceleration due to
gravity, and the corresponding torque due to gravity about the pivot point on the
barrier is given by Tg = Fg(d/2) sin φ. The net drag force acting on a sphere can
be written as Fd = (1/8)Cdρfv

2πd2, where Cd is the drag coefficient which depends
on Rep. The torque due to drag about the centre of the particle can be written as To=
(1/16)Coρfv

2πd3, where Co is a drag coefficient which also depends on Rep. Then, the
torque due to drag Td about the pivot point can be written as the sum of the torque
about the centre and the net force times the projected distance from the centre to the
pivot point, i.e. Td=To+Fd(d/2) cosφ. The lift due to the difference of flow velocity
above and below the particle centre can be written as Fl= (1/8)Clρfv

2πd2, where Cl
is the lift coefficient, and the corresponding torque due to the lift Tl = Fl(d/2) sin φ.
Because of the fore/aft asymmetry that develops in the flow, as shown in figure 3,
one can further expect the effective point where the lift and drag act to shift from
the vertical axis of symmetry. However, we are unaware of any previous work which
discusses this effect, and we assume that the lift acts at the centre for simplicity.
Further, the particle also experiences normal reaction and tangential friction forces at
contact points with the substrate and the barrier. One may expect these contact forces
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N

(a) (b)

FIGURE 4. (Colour online) (a) A schematic diagram representing the forces acting on
the particle resting against an asperity with a circular cross-section. Contact forces can be
considered to be absent at the point of contact between the particle and the substrate at
onset. (b) A schematic diagram representing the forces as well as the torque To that act
about the centre of the particle. The contact forces acting at the pivot point are not drawn
for clarity (see text).

to approach zero at the point of contact between the particle and the bottom substrate,
just when the particle is about to be dislodged. However, a reaction force N and a
friction force Fµ can be expected to be present at the point of contact between the
particle and the barrier even as the particle is dislodged.

5.1. Sliding contact
We first consider the force components perpendicular to the line joining the particle
centre and the contact point between the particle and the barrier, as shown in
figure 4(a), assuming that the particle is dislodged by sliding over the barrier
in the direction opposite to Fµ. Then, the force equation for equilibrium gives
Fd cosφ+Fl sinφ−Fµ=Fg sinφ, where Fµ is the friction force at the point of contact.
By rearranging terms, one sees that (Fd cos φ + Fl sin φ)/Fg sin φ = 1 + Fµ/Fg sin φ.
Because of the presence of the fluid, and because it is difficult to determine the
degree to which the particle rolls versus slides at the point of contact, Fµ is difficult
to estimate with certainty. Nonetheless, the second term on the right-hand side can
be assumed to be positive if not zero in the case where Fµ goes to zero. Thus,

(Fd cos φ + Fl sin φ)/Fg sin φ > 1. (5.1)

5.2. Rolling contact
However, from supplementary movies 4 and 5, one notes that the particle appears
to roll rather than slide when it is dislodged by the flow. Therefore, it appears that
the sliding friction causes the particle to pivot about the point of contact. Then, the
condition for torque balance about the pivot point is given by

Td + Tl = Tg, (5.2)

where both Td and Tl can be seen to act clockwise in figure 4(b) to dislodge the
particle, while Tg acts in the counterclockwise direction and keeps the particle from
being dislodged. Because the contact forces act at the pivot point, they do not appear
in (5.2). We substitute Td, Tl and Tg with their expressions in terms of Cd, Co, Cl, ρs
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FIGURE 5. (Colour online) (a) The critical shear rate γ̇c is observed to decrease with
viscosity (φ = 44◦). The fluid viscosity is obtained by using the glycerol–water mixture
ratios reported by Cheng (2008). The error bars are of the order of the symbol size. (b) γ̇c
increases nonlinearly, irrespective of the shape of the asperity. Inset: same plot on a log–
log scale with a slope 1/2 line to guide the eye. γ̇c increases consistent with

√
ρs/ρf − 1

for both kinds of barrier. (c) γ̇c is systematically greater for higher φ. The dashed
lines in the plots correspond to γ̇c calculated using (5.3) and (5.5) with α0 = 0.45 and
αd = 0.65.
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Quadratic model

Linear drag and lift

Linear drag, no lift

Zeng et al. (2009)
102
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100

10–1

10–110–3 103101

300 60 90
0.5

1.0
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FIGURE 6. (Colour online) The net hydrodynamic coefficient Ch obtained from the
experiment as a function of Rep for φ = 43.5◦ compared with various models. Here,
the curve labelled as the quadratic model includes the quadratic drag contribution in
calculating Ch (see (5.5)). The curves corresponding to linear drag use O’Neill’s form
for Cd, and the lift is obtained using Leighton and Acrivos’s form for Cl (see text). Ch
is observed to approach a constant at the highest Rep (α0 = 0.45 and αd = 0.65). The
coefficients used to generate the curve by Zeng et al. (2009) are predicted up to Rep∼200.
However, systematic deviations are observed above Rep∼ 10. Inset: Ch decrease somewhat
for higher φ (Rep ∼ 1000). The line corresponds to (5.4) with Rep = 1000.

and ρf in (5.2) for torque balance. Then, introducing a net hydrodynamic coefficient
Ch = Co + Cd cos φ + Cl sin φ and recalling that v = γ̇cd/2, we obtain the shear rate
required to dislodge a particle as

γ̇c =
√

16(ρs − ρf )g sin φ
3ρf Chd

. (5.3)

Thus, for a given particle, fluid and surface roughness, γ̇c can be evaluated provided
Ch is known for that Rep. Alternately, Ch can be determined by rewriting (5.3) as

Ch = 16(ρs − ρf )g sin φ

3ρf γ̇ 2
c d

, (5.4)

where all the quantities on the right-hand side can be measured in our experiments.
The measured Ch using (5.4) is also plotted in figure 6 as a function of Rep over a

wide combination of particle densities and viscosities for a fixed roughness. We find
that the measured Ch decreases linearly for low Rep, before rapidly approaching a
constant value at the highest Rep studied. We have further plotted Ch for Rep ∼ 1000
for the three different φ studied in the inset to figure 6. It can be observed that Ch
becomes relatively independent of Rep, while systematically decreasing with φ.

In the viscous limit, the total drag force and torque acting on a particle attached to
a wall in a linear shear flow has been calculated by O’Neill (1968). Assuming drag to
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be linear with velocity, he found Cd and Co to be C0
d = 24fw/Rep and C0

o = 16bw/Rep,
respectively, where fw = 1.7005 and bw = 0.944 are constants which arise due to the
no-slip boundary condition at the substrate. Further, a lift coefficient C0

l = 6.888fw
has been calculated, corresponding to viscous shear lift for low Rep by Leighton &
Acrivos (1985). We compare Ch using these hydrodynamic coefficients in figure 6 with
those obtained directly from our experimental measurements. We find good agreement
for Rep < 1, whether or not we include lift in the calculations.

Extrapolating the curves into the inertial regime, the two curves deviate system-
atically above or below the data, depending on whether we consider lift or not. In fact,
Zeng et al. (2009) have found Cd = (24fw/Rep)(1+ 0.104Re0.753

p ) based on numerical
simulations for a fixed sphere on an infinite plane which is linearly sheared by a fluid
flow when Rep 6 250. They also found that C0

o can be extended up to Rep = 200.
Further, they postulated that the lift coefficient can be interpolated between the low-
and high-Rep limits as Cl = 3.663(Re2

p + 0.1173)−0.22 for Rep < 200, although it may
be noted that higher lift has been also measured over the same regime by Mollinger
& Nieuwstadt (1996). Accordingly, we have calculated Ch and plotted the result in
figure 6. The corresponding curve appears to capture the overall trend in the data to
Rep ∼ 10 within experimental error. However, systematic deviations can be observed
above this value over the range of validity of those simulations.

In order to describe the data over the entire range of Rep measured, we consider
Cd and Co as a superposition of analytically calculated coefficients in the low-Rep
limit and a term corresponding to quadratic drag which is independent of Rep,
i.e. Cd = C0

d + αd, and, Co = C0
o + αo, where αd and αo depend further on the flow

geometry. The lift acting on a particle attached to a wall at high Rep has been
measured to be 0.242 (see Okamoto 1980), which we round up to be αl = 0.25. We
then interpolate Cl between the viscous shear lift at low Rep and the lift at high Rep
using the function Cl = (C0

l − αl) exp (−Rep)+ αl. Accordingly, we postulate that

Ch=
[

16bw

Rep
+ αo

]
+
[

24fw

Rep
+ αd

]
cos φ+ [(6.888fw− αl) exp (−Rep)+ αl] sin φ, (5.5)

where the first, second and third terms in brackets on the right-hand side correspond
to the interpolated moment, drag and lift acting relative to the particle centre. Then,
we obtain αo = 0.5 ± 0.1 and αd = 0.7 ± 0.1 by fitting (5.4) to the data shown in
the inset to figure 6. The fitted value of αd is much greater than for a sphere in
uniform unbounded flow, but consistent with measurements of a drag coefficient of
Cd ≈ 0.627 reported by Okamoto (1980) for a sphere attached to a surface at high
Rep, obtained by measuring the surface-pressure distribution on the sphere. It may be
noted that Ch is not very sensitive to φ at high Rep. This occurs because the decrease
in drag contribution to torque is compensated by an increase in the lift contribution
as φ is increased.

We have plotted γ̇c obtained using (5.3) and (5.5) in all three plots in figure 5. We
find that, by including the quadratic drag in the inertial regime and combining it with
the analytical results in the viscous regime, we are able to capture the observed γ̇c
dependence as a function of fluid viscosity, particle density, and surface roughness
characterized by φ. We further tested to see if assuming the forces alone can describe
the data. This corresponds to forcing Co to be zero in our fits, and we are not able
simply to obtain an accurate description of these trends.

In order to summarize the results, we have plotted the ratio of the torques due to
hydrodynamic forces and gravity in figure 7(a) and the ratio of the hydrodynamic
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Quadratic drag
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FIGURE 7. (Colour online) (a) The ratio of the torques associated with hydrodynamic
forces and gravity calculated from the measured γ̇c and using the linear drag model, and
the quadratic drag model in (5.5). The horizontal dashed line corresponds to the torque
balance condition given by (5.2). Good agreement is observed with analytical calculations
in the Rep < 1 regime. Overall good agreement is also observed with the torque balance
condition by using a quadratic model over the entire range of Rep. (b) The ratio of the
force components given by the left-hand side of (5.1) plotted versus Rep. The drag and lift
are obtained using the measured shear rate required to dislodge the particle. The measured
ratio is clearly below the horizontal dashed line, showing that the torque about the particle
needs to be taken into account to describe the onset of motion.

forces and gravity in figure 7(b) as a function of Rep. We find that the threshold
condition is described well by the analytically calculated torques in the viscous limit
for Rep < 0.5 before inertial effects grow, leading to systematic deviations. The form
of drag given by the viscosity and inertia components captures the data relatively well
over the entire range of Rep investigated. By contrast, the data shown in figure 7(b)
fall systematically below a value of one, which is the lower bound given by (5.1)
even if one assumes Fµ = 0. Thus, the critical shear rate remains distinct and well
below the threshold condition obtained by considering the forces alone to dislodge
the particle. Based on this observation, we conclude that the condition when the
particle gets dislodged clearly corresponds to the torque balance condition. This is
further in agreement with the observation that the particle rolls over the barrier when
the corresponding critical shear rate is reached, as illustrated by the supplementary
movies.

In performing this analysis, we have assumed that the shear rate required to
dislodge the particle is given by the critical rotation frequency of the top plate. It is
possible that this method can lead to a systematic overestimation of the hydrodynamic
coefficients when the flow becomes time-dependent at higher Rep. However, this
systematic error is offset by the corresponding lower estimate of shear rates used in
the calculation of torques and forces. Thus, we expect the hydrodynamic forces and
torques used in figure 7 to be robust even at high Rep.

6. Conclusions
In summary, we have shown with experiments that the shear rate at onset of erosion

is determined by the torque balance condition. Further, systematic deviations are
observed if forces alone are considered in determining the instability of the particle.
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The main reason for this discrepancy is that the net hydrodynamic force does not
act at the centre of the particle, but rather some distance above the particle centre
because the mean flow speed increases with distance from the bottom substrate. In
the torque balance condition, this is taken into account by considering the additional
torque about the centre of the particle. Building on this condition, we have then
quantitatively described the observed critical shear rate γ̇c on the particle density, the
fluid viscosity, and the surface roughness over a wide range of particle Reynolds
numbers Rep. We find that a linear combination of the hydrodynamic coefficients
obtained in the viscous and inertial limits can describe the observed γ̇c as a function
of the particle and fluid properties from laminar to turbulent flow conditions.

Further, we show that the data at low Rep < 0.5 are in good agreement with
analytical calculations of the drag and lift coefficients in the Rep → 0 limit, but
differ from numerical results at moderate Rep reported by Zeng et al. (2009) for flow
past a sphere resting on a smooth surface. At higher Rep, where analytical results
are unavailable, the hydrodynamic coefficients are found to approach a constant for
Rep > 1000. It is possible that the differences from the numerical results at moderate
Rep arise because of the presence of physical barriers near the base of the particle
in the experiments which can modify the flow. Further research is required to fully
understand the effect of surface roughness and particle exposure, and thus extend
the implications of our study to the erosion of a granular bed, such as in rivers and
streams.
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