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Abstract

A number of spectrum constructions have been devised to extract topological spaces from
algebraic data. Prominent examples include the Zariski spectrum of a commutative ring, the
Stone spectrum of a bounded distributive lattice, the Gelfand spectrum of a commutative
unital C*-algebra and the Hofmann—Lawson spectrum of a continuous frame.

Inspired by the examples above, we define a spectrum for localic semirings. We use argu-
ments in the symmetric monoidal category of suplattices to prove that, under conditions
satisfied by the aforementioned examples, the spectrum can be constructed as the frame of
overt weakly closed radical ideals and that it reduces to the usual constructions in those
cases. Our proofs are constructive.

Our approach actually gives ‘quantalic’ spectrum from which the more familiar localic
spectrum can then be derived. For a discrete ring this yields the quantale of ideals and in
general should contain additional ‘differential’ information about the semiring.

2020 Mathematics Subject Classification: 54B35, 06D22, 54H13, 13]99, 54B30,
13A15, 06F07, 03F65

0. Introduction

A spectrum constructions is a way to assign topological spaces to certain algebraic struc-
tures. The original example is Stone’s spectrum of a Boolean algebra [19] or general
(bounded) distributive lattice [20]. Other important spectra include the so-called Zariski
spectrum of a commutative ring (essentially introduced by Jacobson in [8]), Gelfand’s spec-
trum of a commutative unital C*-algebra [4] and Hofmann and Lawson’s spectrum of a
distributive continuous lattice [7].

The above spectra have a number of striking similarities. In particular, the points of the
Stone and Zariski spectra both correspond to prime ideals of the semirings in question.
The points of the Gelfand and Hofmann-Lawson spectra might at first appear to be slightly
different: in the former case they are usually described as the maximal ideals and in the
latter case as the prime elements. However, in these cases the semirings come equipped with
a natural topology which we should not ignore. The maximal ideals of a C*-algebra coincide
with the closed prime ideals with respect to the norm topology and the prime elements of
a continuous distributive lattice correspond to closed prime ideals with respect to the Scott
topology. Furthermore, for all of these cases, the topology on the spectrum is given by the
“hull-kernel topology” and the opens are in bijection with the closed radical ideals.

© The Author(s), 2022. Published by Cambridge University Press on behalf of Cambridge Philosophical Society.

https://doi.org/10.1017/S0305004122000068 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004122000068
https://doi.org/10.1017/S0305004122000068

648 G. MANUELL

Further evidence for the depth of these relationships is that remain true when we work
constructively. In this setting it is better use locales instead of topological spaces. The alge-
braic structures in all of our examples can be considered to be localic semirings. While the
points of the Zariski spectrum are now prime anti-ideals instead of prime ideals, their com-
plementary sublocales are closed prime ideals as before. In summary we obtain the following

table.

Class of semiring Spectrum Opens Points
Commutative rings Zariski Radical ideals Prime anti-ideals
Distributive lattices Stone Ideals Prime filters
Comm. C*-algebras  Gelfand Overt weakly closed ideals [5]  Closed prime ideals
Continuous frames Hofmann—  Scott-closed ideals Scott-open prime

Lawson filters

In each case the opens correspond to ‘overt weakly closed radical ideals’ and the points
are given by closed prime ideals (or equivalently open prime anti-ideals). We will define
a general notion of spectrum of a localic semiring as a classifying locale for closed prime
ideals and the frame of overt weakly closed radical ideals and prove that these coincide
under assumptions satisfied by our examples.

The intuition behind considering the closed prime ideals is that when viewing the semiring
as consisting of functions on a putative spectrum, the closed prime ideals correspond to the
places where these functions are zero — at least if we require that being nonzero is an open
condition.

Our approach will make use of the quantale of (overt, weakly closed) ideals. We use this
to construct the frame of radical ideals, but it is also of interest in its own right. At least
in the discrete case, this quantale contains additional ‘differential’ information, which can
capture some of the ideas around ‘repeated roots’ and singularities in algebraic geometry.

A number of the results of this paper, further intuition and a significant amount of
additional background material can be found in my PhD thesis [11].

Outline

After covering some background material, we will define a generalised notion of presen-
tation of a frame. This will allow us to extend the usual presentation of the Zariski spectrum
to general localic semirings. However, the frame defined by such a generalised presentation
might not exist in general. It will be useful to ensure it exists under certain conditions and to
provide an explicit construction in this case.

In fact, we define a more general kind of spectrum, giving a quantale instead of just a
frame. This generalises the quantale of ideals of a ring and can be used to recover the localic
spectrum above.

Before tackling the semiring spectrum, we consider the simpler case of the spectrum of
a commutative localic monoid. We define the notions of saturated opens and overt weakly
closed monoid ideals and prove that under certain assumptions they form dual objects in the
monoidal category of suplattices. We can use this result to prove that quantale of monoid
ideals is the quantic monoid spectrum.

We then modify this monoid result to solve the semiring case. We make use of the dual-
ity between saturated opens and monoid ideals, but need to modify the additive structure
to make it compatible with these. We show that the quantic spectrum is the quantale of
overt weakly closed (semiring) ideals and the localic spectrum is the frame of radical ideals.
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Finally, we show that all of our core examples are special cases of our main result. We con-
clude with some unusual examples and suggest how we might prove the spectrum does not
always exist.

1. Background

The arguments in this paper are constructive in the sense that they hold internal to any
elementary topos with natural numbers object.

Recall that a semiring (or rig) is a set equipped with an ‘additive’ commutative monoid
structure and a ‘multiplicative’ monoid structure such that the multiplication is bilinear with
respect to the additive structure. All semirings in this paper are assumed to be commutative.

1-1. Suplattices, quantales and frames

A suplattice is a poset admitting arbitrary joins. We write O for the least element of a
suplattice and T for the largest element. As objects, suplattices are the same as complete
lattices, but morphisms of suplattices need only preserve joins. We denote the category of
suplattice by Sup.

The category of suplattices is symmetric monoidal closed with the tensor product of
suplattices defined similarly to abelian groups as the codomain of the the initial bilinear
map L x M — L ® M. The unit is given by the lattice of truth values 2. The internal hom
is the suplattice hom (L, M) of suplattice homomorphisms from L to M with the pointwise
order. In this paper hom (—, —) will always refer to the internal hom in Sup.

A quantale is a monoid in Sup. In this paper we adopt the convention that every quantale
is commutative. We write Quant for the category of (commutative) quantales.

Finite coproducts in Quant are given by tensor products of their underlying suplat-
tices and the obvious multiplication. The suplattice €2 becomes the initial quantale with
the multiplication given by the isomorphism A: Q ® Q2 5Q sending p ® g to p A q. The
unique quantale map !: 2 — Q induces a ‘quantale module’ structure on Q giving a scalar
multiplication p - ¢ =1(p) - ¢ = \/{g | p}.

Most of our quantales will be two-sided — that is, the unit 1 coincides with the largest
element T, or equivalently, xy < x, y for all x,y. The category Quant of two-sided quantales
is reflective and coreflective in Quant, with the reflection of a quantale given by its largest
two-sided quotient. This quotient can be obtained as the fixed points of the closure operator
ar> aT. This closure operator is an example of a nucleus, which can be used to describe
quotient quantales more generally.

A frame is precisely a two-sided quantale with idempotent multiplication. In this case, the
multiplication is given by meet. The category of frames is denoted Frm and is both reflective
and coreflective in Quant. This reflection is called the localic reflection and the unit is a
quotient map as above.

For more background on suplattices and quantales see [10, 17].

1-2. Frames and locales

Frames can be understood as generalised lattices of open sets and are more amenable to
a constructive treatment than topological spaces. A continuous map of topological spaces
induces a morphism between the frames of open sets in the opposite direction and so when

"Here {g | p} is a subsingleton which contains the element g if and only if p holds.
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we wish to emphasise the spatial intuition, we will work with the category Loc = Frm°P.
To avoid any confusion between these categories, we will explicitly write OX for the frame
corresponding to a locale X and f* for the frame homomorphism corresponding to a locale
map f.

We say a locale corresponding to a topological space is spatial. In good cases this space
may be recovered from the locale with its points being given by the locale maps from the
terminal locale 1. The free frame on one generator is spatial and its corresponding topologi-
cal space is given by the set of truth values 2 equipped with the topology generated by the
subbasic open {T}. This is the Sierpiriski space S and should not be confused with the ter-
minal locale, which has 2 as its frame of opens. A discrete locale is a locale corresponding
to a discrete topological space X. Its opens are given by the subsets of X.

The pointfree analogue of subspaces are called sublocales and correspond to quotient
frames. Elements of a frame give rise to open sublocales. Unlike subsets in construc-
tive mathematics, open sublocales always have complements, which are called closed
sublocales.

The category of frames is order-enriched with the obvious pointwise order on morphisms
and this induces a similar enrichment on Loc. This is related to the specialisation preorder
of topological spaces.

We now describe some particular aspects of pointfree topology which will be of use to us.
For more information see [14] and [9, part C].

A localic monoid is a monoid object in the category of locales or equivalently, a comonoid
object in the monoidal category of frames where the tensor product is given by the coprod-
uct. If M is a localic monoid, we call the corresponding comultiplication map px : OM —
OM & OM and the counit map &1 : OM — Q. Localic monoids can be thought of as being
like topological monoids, with the points corresponding to the ‘elements of the monoid’,
but as is always the case with pointfree topology, the points do not tell the whole story.
On the other hand, note that the opens do not have the structure of a monoid, but of a
comonoid.

A localic semiring is a semiring object in Loc. Given a localic semiring R, we
write &g, e1: OR — Q for the frame homomorphisms corresponding to the additive and
multiplicative unit respectively. We write 4, by : OR — OR @ OR for the frame homo-
morphisms corresponding to addition and multiplication. The category of localic semirings
will be called LocCRig.

In a constructive setting, it is more useful to know that a set is inhabited (i.e. it contains an
element), instead of simply nonempty. Similarly, there is a stronger version of nontriviality
for frames.

Definition 1-1. An element a of a frame L is said to be positive if whenever \/ I > a then
I is inhabited. We say L is positive if 1 € L is positive.

This leads to a concept which is invisible in the classical setting.

Definition 1-2. We say a frame is overt® or locally positive if it has a base of positive
elements.

2Some sources call such frames open, but this leads to ambiguity when discussing sublocales.
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Under the assumption of excluded middle, every locale is overt. More generally, overtness
has strong links to openness.

LEMMA 1-3. A locale X is overt if and only if the unique locale map !: X — 1 is open if
and only if the product projection 1 : Y X X — Y is open for all Y.

In this case, the frame homomorphism !: Q — OX has a left adjoint 3: OX — Q such
that 3(a) =T if and only if a is positive. The left adjoint (11)1 of the coproduct injection
11: OY = OY & OX is given by OY ® 3 (up to composition with OY @ Q — OY).

We denote the full subcategories of overt frames and overt locales by OFrm and OLoc
respectively. It can be shown that every spatial locale is overt and the category of overt
locales is closed under finite products in Loc. In particular, this implies that overt localic
monoids or semirings coincide with monoids or semirings in OLoc.

Overt locales should be thought of as locales that we can ‘existentially quantify’ over.
For example, if we consider a € OX as a proposition, the map 3: OX — Q tells us whether
‘there is something’ satisfying a. In fact, this intuition can be made precise. There is an obvi-
ous functor OLoc°? — Frm — DLat, where DLat is the category of distributive lattices.
This is a coherent hyperdoctrine without equality which yields an internal logic for manipu-
lating open propositions on overt locales, admitting disjunction, conjunction and existential
quantification. (See [15] for details about logic in coherent hyperdoctrines.)

Finally, in constructive mathematics, the notion of closedness bifurcates to give closed
sublocales and weakly closed (or fibrewise closed) sublocales. The overt weakly closed
sublocales of X are in bijection with the suplattice homomorphisms from OX to Q (see
[2] for details). Given an overt sublocale V of X, we can ask if an open a € OX restricts
to a positive open in V. In this case, we say V meets a and write V () a. This defines a
suplattice homomorphism from OX into €2, from which the weak closure of V may be
recovered. The overt weakly closed sublocales of a discrete locale are precisely the opens
(i.e. the subsets) and here we recover the notation S {§ T for subsets S and T having inhabited
intersection.

If f: X — Y is a locale map, then hom (f*, Q) induces a map from overt weakly closed
sublocales of X to overt weakly closed sublocales of ¥ which can be interpreted as taking
the weak closure of the image. More generally, if V is an overt sublocale of X, the image V’
of Visovertand V' ja <= V () f*(a).

1-3. Dcpos

Recall that a poset D is called directed if every finitely-indexed subset F C D has an upper
bound in D. A dcpo is a poset which admits joins of its directed subsets. A map of dcpos
is a monotone function which preserves these directed joins and we denote the category of
dcpos by DCPO.

A dcpo comes with a natural topology, the Scott topology, consisting of the upsets U
satisfying \/ D € U = D () U for all directed sets D. Morphisms of dcpos are continuous
with respect to this topology.

Another important class of subsets is given by the Scott-closed sets, which are downsets
closed under directed joins. These are not simply the complements of Scott-open sets; we
will explain their relationship to the Scott topology in Proposition 5-4.
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The way-below relation on a dcpo P is defined so that a < b if whenever D C P is directed
and b < \/ D then there exists some d € D such that a <d. We write |b for the set {a € P |
a < b} and ta for the set {b € P | a < b}.

Definition 1-4. A dcpo P is continuous if for all b € P, the set |b is directed and has b as
its supremum.

LEMMA 1-5. In a continuous dcpo, the sets of the form %a form a base for the Scott
topology.

LEMMA 1-6. The Scott-closure of a downset S in a continuous dcpo is given by the set of
directed joins of elements of S. (That is, the closure is obtained in a single step.)

Alocale X is exponentiable if and only if OX is continuous as a dcpo. We say such a locale
is locally compact. In this case, S¥ is a spatial locale whose corresponding topological space
is OX with the Scott topology.

1-4. Dualisable suplattices

An object A in a monoidal category € is (left) dualisable if it is a (left) adjoint when 6
is viewed as a one-object bicategory. Its right adjoint is called the (right) dual of A and is
written A*.

Explicitly, A has a (right) dual A* if there exist maps n: I > A* @A ande: AQA* — [
such that the following diagrams commute.

AQA @A) — (A A)® A (A" @A) @ A* = A" @ (A A%)
A®n e®A ne A* A*®c¢
ARl A" TwA TQA = 4 Al

Here I is the unit of the monoidal category and the unnamed isomorphisms are the
associator (or its inverse) and the left and right unitors as appropriate.

These conditions can be expressed more evocatively in the language of string diagrams
(see [12, 18]), which we lay out vertically from bottom to top.

A A A* A*

A A A* A*

So the maps ¢ and 5 allow us to ‘turn corners’ in string diagrams and the identities can be
thought of as saying we can ‘pull the wires straight’. We will usually suppress the dots and
labels for ¢ and 5 in these situations as they can be readily understood from context.

In a symmetric monoidal category left and right dualisability are equivalent and so we
simply call such an object dualisable.

If the category € is monoidal closed, then A ® (—)1hom (A, —). So by unique-
ness of adjoints, A* ® (—) =hom (A4, —) whenever A* exists. In particular, A* =A* Q[ =
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hom (A, I). Moreover, if we take A* =hom (A, I), the counit £: A ® A* — [ is given by the
(flipped) evaluation map A ® hom (A, I) — .
In Sup the dualisable objects are related to the notion of a dual basis.

Definition 1-7. Let L be a suplattice. We say that a family (y),ex of elements of L and a
family (oy)xex of elements of hom (L, 2) form a dual basis for L if a =\/ _y ox(a) - ry for
allae L.

xeX

The following modification of continuity is also of interest.

Definition 1-8. We define the totally below relation on a suplattice by setting a << b
if whenever \/ S > b then there exists some s € S such that s > a. We say a suplattice is
supercontinuous if every element is the join of the elements totally below it.

We now have the following lemma (see [11, Section 1-6]).

LEMMA 1-9. Let L be a suplattice. The following conditions are equivalent:
(1) L admits a dual basis,
(i1) L is dualisable;

(ii1) L is supercontinuous.

Assuming the axiom of choice, these are precisely the completely distributive lattices, so
dualisable suplattices are also called constructively completely distributive [3]. In particular,
such a suplattice is always a frame. Moreover, since 0 << a precisely when a is positive, it
is not hard to show such a supercontinuous frame is always overt.

1-5. The Zariski spectrum

The Zariski spectrum of a (discrete) ring R is the classifying locale of the geometric
theory of the prime anti-ideals of R. Each element f € R gives a proposition f on the prime
anti-ideals of R. We interpret f holding for a prime anti-ideal as meaning that f lies in it. The
definition of a prime anti-ideal is then given by the following axioms.

0F L
fte F fve
TkH1
feA-fArg
More geometrically, we can imagine the elements of R as functions defined on the spectrum
where f is cozero (that is, nonzero in a positive sense) at a point if and only if it lies in the
corresponding anti-ideal.

Explicitly, the frame obtained from this propositional theory has the following presenta-
tion.

(f:feR|0=0,f+g<fVE l=1,fs=fAg).

This can be shown to correspond to the lattice Rad(R) of radical ideals of R.
A similar presentation of two-sided quantales

(f:feR|0=0,f+g<fvg 1=1,fg=f 8
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gives the suplattice Idl(R) of ideals of R with a quantale operation given by multiplication
of ideals. Then applying the reflection of two-sided quantales into frames gives the frame of
radical ideals described above.

For the quantale IdI(R), the generators corresponding to f and f2 are different.
Geometrically, this can be thought of as arising from the fact that while f and f? vanish
in the same locations, if f vanishes to first order, then f2 will vanish to second order — that
is, both f and its first derivatives will be zero.

2. Spectra from generalised presentations

We could perhaps define the spectrum of a localic semiring directly in terms of overt
weakly closed radical ideals, but this might not be completely convincing. It would be better
to define the spectrum by a universal property. We will take the presentation of the Zariski
spectrum as our starting point.

We wish to generalise the presentation of the Zariski spectrum from discrete rings to
localic semirings. No modifications are necessary to handle the case of discrete semirings,
but the non-discrete case requires some more care. In the presentation of the Zariski spec-
trum of R, the generators are given by points of R, but this is obviously not appropriate for a
non-spatial localic semiring. We require a generalised notion of presentation that allows the
generators and relations to be locales.

A usual presentation of a frame L can be viewed as expressing the frame as the coequaliser
of maps between free frames (R) = (G) — L, where G is the set of generators and R indexes
the relations. From the localic perspective, the free frame on G corresponds to the Gth power
of Sierpiriski space S and so the presentation corresponds to an equaliser L < S¢ = SR
(where we reuse the variable L for the corresponding locale).

We now reinterpret G and R as discrete locales and the powers of S as exponentials. This
allows us to replace R and G with any exponentiable locales. However, since our localic
semirings might not be locally compact, this is not yet sufficiently general for our purposes.

We can circumvent the nonexistence of exponentials by passing temporarily to the
presheaf category Setl <™ and performing the calculation there. In this category, the expo-
nential SC is given by Hompec((—) x G,S). We now consider the equaliser of a pair
of natural transformations F <> Hompec((—) X G, S) = Hompec((—) x R, S). The resulting
functor is not always representable, but when it is, we say the representing object L is pre-
sented by the generalised presentation. Observe that when the exponentials do exist, this
coincides with the less general kind of presentation mentioned above.

It is shown in [21] that natural transformations from Homye.((—) x G,S) to
Hompoe((—) x R, S) are in bijection with dcpo morphisms from OG to OR (by taking the
component of each natural transformation at 1). Thus, a generalised presentation may be
described by a locale G of generators and a pair of dcpo morphisms from G into another
locale R describing the relations.

Now mimicking the Zariski spectrum, we define the spectrum of a localic semiring R by
a generalised presentation where R is the locale of generators. In the Zariski case we have
one relation involving 0, one involving 1, an (R x R)-indexed family involving addition and
an (R x R)-indexed family involving multiplication, so the relations are indexed by the set
1U1UR x RUR x R. Similarly, in our case the relations are indexed by the locale given
by the frame Q x Q x (OR ® OR) x (OR @ OR). The relations are described by a parallel
pair of dcpo morphisms, which decompose into four pairs of dcpo morphisms OR = €,
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OR=Q, OR=OR® OR and OR = OR® OR. The first pair is g9 and the constant
function 0. The second pair is €] and the constant function 1. The third is puy V(1 Vi
and (1 V 1, where ¢12: R — R @ R are the coproduct injections. The fourth pair is ;« and
t1 A t2. (Note that the third pair is setting i V ¢ V 12 equal to ¢1 V i3, which is the same as
requiring (4 to be less than or equal to ¢] V 13.)

The resulting equaliser for this generalised presentation can be explicitly described as a
functor OPAIg: Loc®? — Set whose action on objects is given by

OPAIg: X —> {ue OX & OR| (OX @ o)) =0, (OX d e)(w) = 1,
(OX @ pu)w) < (OX @ 1)) v (OX & 12)(u),
(OX @ px)w) = (OX ® 1)) A (OX ® 12)(w)}

where we use elements of the frame OX & OR in place of locale maps X x R— S. If
f: Y — X is a map of locales, then OPAIR(f) sends u € OPAIR(X) to (f* & OR)(u). We call
this OPALI since it gives the open prime anti-ideals (or equivalently the closed prime ideals)
of R ‘fibred over X’. In particular, note that OPAIg(1) is the set of open prime anti-ideals
of R.

We call the representing object of OPAlg the (localic) spectrum of R, when it
exists. Note that OPAlg is also functorial in R and so we obtain a partial (ana)functor
Spec: LocCRig®? — Loc by parametrised representability.

This definition is easily extended from locales to two-sided quantales resulting in a functor
OPAIg: Quant; — Set given by

OPAlg: Q+— {uc Q® ORI (Q® e0)(w) =0, (Q D e1)(u) =1,
Q@ p)w) <(Q @ u)u) Vv (QD i) (u),
(Q & 1)) = (Q & t)(w) - (Q B 1)w)}.

When it exists, the representing object of OPAly is called the quantic spectrum of R. In this
case, the localic spectrum is obtained as the localic reflection of the quantic spectrum.

In the following sections we will give conditions on R for this spectrum to exist and
describe its form under these assumptions.

3. Monoid ideals and saturated elements

Before we try to construct the spectrum of a localic semiring, let us consider the simpler
case of the spectrum of a commutative localic monoid M.
We start by defining a variant of OPAI which only involves the multiplicative relations.

Definition 3-1. The functor OPMAI,, : Quant+ — Set is defined on objects by

OPMAIy: Q+— {uc Q@ OM | (Q @ e))w) =1,
Q& 1)) = (Q & 11)(w) - (Q ® 12)(w)]

and acts on morphisms in the obvious way.

Recall that a monoid ideal I in a commutative monoid M is a subset of M for which
xel,ye M = xy e l. The above functor gives the (quantic) ‘open’ prime monoid anti-
ideals of M.
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In the discrete case, the quantic monoid spectrum is given by the quantale of monoid
ideals on M, which we denote by Jl M. This is isomorphic to the free two-sided quantale on
the monoid M, explicitly (f:feM |1=1, fge=f-3).

The unit map of this free—forgetful adjunction sends f € M to the generator f € JL M,
which corresponds to the monoid ideal fM. Note that this map is not injective in general
and so we may gain some further understanding by replacing the generating set with the
relevant quotient of M.

The order structure on J( M induces an preorder on M which is the opposite of the usual
divisibility preorder: fM C gM < fegM < Jke M. f =gk < g|f. The equiva-
lence relation induced by this preorder is a monoid congruence and so we may quotient M
by it to obtain a monoid which is partially ordered by (the reverse of) divisibility. Such a
monoid is sometimes said to be naturally partially ordered or a holoid.

We can express this holoid quotient M/~ as the following coinserter in the 2-category of
posets.

US|

M x M M

M/~

Hx

For a commutative localic monoid M, we can then take the same coinserter in Loc
obtaining the following inserter in Frm.
K h
SM —— OM —= OM & OM
Hx
The resulting frame S M consists of what we call the saturated opens of M. These are the
elements s € OM for which 11, (s) <t1(s) — or equivalently, for which xy € sk, , x € s in
the internal logic. For a discrete ring, these are precisely the saturated sets of commutative
algebra.

LEMMA 3-2. Comonoid homomorphisms in Frm preserve saturated opens.

Proof. Suppose f: OM — OM’ is a morphism of cocommutative comonoids and s is a satu-

rated element in OM. Then u'«f(s) = (f ® )i x(s) < (f i} (s) = Lllw/f(s) and hence f(s)
is saturated, as required.

COROLLARY 3-3. We obtain a functor § : CComon(Frm)—Frm faking a cocommuta-
tive comonoid in Frm to its subframe of saturated elements. The inclusion k gives a natural
transformation from 8§ to the forgetful functor from CComon(Frm) fo Frm.

We can say more about SM when M is overt. In that case ¢; has a left adjoint so that
mx($) < t1(8) = (LD (s) <.

LEMMA 3-4. Let M be an overt commutative localic monoid. Then (11)\jLx is a closure
operator whose fixed points are the saturated elements.

Proof. 1t is clearly monotone. To show it is inflationary we need a < (¢1)14 x (a), which in the
internal logic means x € al-, Jy: M. xy € a. But this holds for y = 1 (the unit of the monoid),
since x - 1 =4 x by the unit axiom.

To prove idempotence we require (11)iptx(tihix(a) < (1 hux(a). Let us translate
this into the internal logic. The open (¢1)iux(a) can be described by the formula
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3y’. X'y € a in the context x": M. Then 1« (¢1)1ux(a) corresponds to substituting xz for x’
to give the formula 3y’. (xz)y’ € a in the context x: M, z: M. Finally, (t{)1ptx(t1)1i1x(a) is
obtained by existentially quantifying over z to give the formula 3z. 3y'. (xz)y’ € a. Thus, we
must prove the sequent 3z. 3y’. (xz)y’ € a b, Jy. xy € a. This is proved by taking y = zy" and
using associativity.

The fixed points are the elements such that (1)t «(a) < a. But these are precisely the
saturated elements.

Note that this implies that for overt M the inclusion « has a left adjoint, which we write
as k) and obtain from (¢1)1 x by restricting its codomain to its image.

COROLLARY 3-5. Under these assumptions, the inserter

A1
SM —2— OM — OM ® OM

fix

is an absolute weighted limit in Sup.

Proof. Simply note that § M is obtained by splitting the idempotent (¢1)1/4x -

LEMMA 3-6. If M is an overt commutative localic monoid, then 8 M is a sub-comonoid

of OM.

Proof. The coproduct OM & OM has a natural comonoid structure and the saturation closure
operator is given by (1] ® ¢1)i(Ux @ x) = (1)1 @ (D) (x @ x) = (t)iix @ (L1)iix =
kK1 kk) = (k ® k)(k ® k). Therefore, k Hx: SM B SM — OM & OM is isomorphic to
the inclusion of the frame of saturated opens of OM & OM.

Now since M is commutative, the comultiplication map uy: OM — OM & OM is a
comonoid homomorphism and hence preserves saturated elements by Lemma 3-2. Thus,

WL Testricts to give a map /L‘§ = 8§ i« shown in the diagram below.

1
OM —— OM & OM

SM SM e SM

Hox

The (co)associativity of M§ follows from that of s, and the fact that «®3 is monic. The
counit of OM gives a counit for §M in the obvious way and we see that « is a comonoid
homomorphism.

COROLLARY 3-7. The functor S on the category of overt cocommutative comonoids
in Frm lifts to a functor § from CComon(OFrm) to itself and k becomes a natural
transformation from § to the identity functor.
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Definition 3-8. We say a commutative localic monoid M is deflationary if px <tg.

We call such a localic monoid deflationary, since it gives a pointfree description of the
condition that for all x € M, the map (—) - x is deflationary with respect to the specialisation
order. Note that in a deflationary localic monoid all opens are saturated.

PROPOSITION 3-9. Overt deflationary comonoids in Frm form a coreflective subcategory
of overt cocommutative comonoids where § is the coreflector and k is the counit.

Proof. We first show that SM is indeed deflationary. To see this, observe that
(k ® K)pL§ =uUxk <1k =(k ® K)LISM. But « @ « is an injective frame homomorphism and
thus reflects order, so that ,uf;g( < L§M as required.
From this we see that S k is always the identity. But kp is also the identity for deflationary

localic monoids D. These give the two triangle identities and so the result follows.

We observed above that the holoid quotient of a discrete monoid M can be used to present
the spectrum of M. We can now show a similar result for any overt commutative localic
monoid.

PROPOSITION 3-10. If M is an overt commutative localic monoid, then OPMAly =
OPMAIg -

Proof. The inclusion « : SM — OM induces a natural transformation from OPMAIg,, to
OPMAI}; sending u € OPMAI(Q) to (Q @ «)(u). Since the inserter defining S M is pre-
served by O @ (—), the map Q & « represents the inclusion into Q & OM of the elements
u satisfying (Q @ i )(u) < (Q & t1)(u). But every u € OPMAI(Q) satisfies (Q @ ) (u) =
Q@ t1)W) - (Q D 2)(u) <(Q @ t1)(u) and hence this inclusion is the identity.

We can use this to show the localic spectrum exists in a large number of cases. The
following result applies in particular whenever M is overt and locally compact.

COROLLARY 3:11. Let M be an overt commutative localic monoid. Then the localic
monoid spectrum of M exists whenever 8 M is locally compact.

Proof. By Proposition 3-10 we may replace M with S M and the exponentials used in the
generalised presentation for the spectrum of § M exist.

On the other hand, we cannot ensure the gquantic spectrum exists unless § M is exponen-
tiable in Quant®? — that is, if it is dualisable (see [13]). We would also like to gain a better
understanding of the precise form of the spectrum.

Recall that in the discrete case, the representing object of OPMAIy, is given by the
quantale of monoid ideals. We now describe how this quantale might be defined more
generally.

If M is a localic monoid, then the set of overt weakly closed sublocales of M has a
natural quantale structure, since hom (O(—), Q): Loc — Sup is a lax monoidal functor. In
the discrete case, this corresponds to the elementwise multiplication of subsets. Explicitly,
the unit is given by &g and the product of f, g: OM — Q is given by A(f ® g)ux, where
A:Q®Q> Qis the codiagonal map.
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Definition 3-12. We call an overt weakly closed sublocale I of a commutative localic
monoid M a monoid ideal if I =1T.

In the discrete case this recovers the usual definition: a subset / suchthatxe l,ye M —
xy € I. More generally, these are precisely the fixed points of the nucleus Wi+ WT asso-
ciated to the two-sided reflection of hom (OM, Q). We call this two-sided reflection the
quantale of monoid ideals and denote it by M.

The following proposition gives a link between (M and S M.

PROPOSITION 3-13. If M is an overt commutative localic monoid, then we have MM =
hom (SM, Q).

Proof. If M is overt, SM can be obtained by splitting the idempotent (¢1);uux in Sup.
Applying the functor hom (—, 2), we find that hom (S M, Q) is given by splitting the idem-
potent hom ((¢1)114x, €2). This maps sends f to f(t1) i x = A(f @ )« . But this is just the
nucleus W — WT expressed in terms of suplattice homomorphisms.

COROLLARY 3-14. If SM is dualisable, then M M is its dual.

Note that the isomorphism 4 M = hom (S M, 2) preserves the quantale structure, since
the comonoid structure on 8§ M inherited as a subobject of OM and the quantale structure on
JU M inherited as a quotient of hom (OM, ) are both unique.

When 8 M is dualisable, we can visualise the multiplicative structure on (S M)* = MM
using string diagrams. We will assume M is deflationary for simplicity so that SM = OM.
Then the monoid structure on (OM)* can be expressed as follows. (We will suppress the O
in string diagrams to avoid clutter and since it is clear we are working in Sup.)

M~
M*

M* M~

We are now in a position to prove our main result about the monoid spectrum.

THEOREM 3-15. Let M be an overt commutative localic monoid and suppose SM is a
dualisable suplattice. Then OPMAIyy is representable with representing object (S M)* =
MM and universal element (MM & «)n(T), where 1 is the unit of the duality between S M
and M.

Proof. By Proposition 3-10 we may assume M is deflationary so that SM = OM. By
duality and the universal property of €2, we have that Q ® OM = Homgyp(2, 0 ® OM) =
Homgyp(2, OM ® Q) = Homgyup(22 @ OM*, Q) = Homgyup(OM*, Q). Moreover, the iden-
tity map idoy+ € Homgup(OM*, OM*) corresponds to n(T) under this bijection. So to
prove the desired result it is enough to show that if (Q, m, e) is a two-sided quan-
tale, the elements u of Q ® OM satisfying (Q ® ux)u) =(Q ® 1)) - (Q ® 12)(u) and
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(O ® €1)(u) = 1 correspond to the suplattice homomorphisms from OM* to Q which respect
the multiplicative structure.

Consider a suplattice map f: OM* — Q. The corresponding map f* € Hom(R2, Q ® OM)
is shown in the following string diagram.

Q M

S

Now we have (O ® sl)fﬁ("l—) =1if

I
ce——QO

These are the same two diagrams and hence the two conditions are clearly equivalent.

Now consider the condition (Q ® Mx)fﬁ(T) =0® L])f’j(—l—) -(0® Lz)fj(T). Let us start
with the right-hand side. It can be rewritten as (m @ OM ® OM)(Q ® com,o ® OM)(f '®
F5(T) where oomp: OM ® Q=0 ® OM is the symmetry map. This is depicted in the
first string diagram below. This can then be manipulated to give the second diagram and we
obtain the third diagram using the commutativity of m.

Q M M Q M M
Q MM

m

Il

Il
~
~

Combining this with the left-hand side, we have that the condition can be represented as
follows.
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Q M M

Q M M
f m
W | @

On the other hand, the map f preserves the multiplication if

Q
Q
f L _ m
f f
M* M*

M* M*

These two equalities can be turned into each other by ‘bending the wires’ and using
the duality identities to ‘pull them straight’. These are inverse operations and so the two
conditions are equivalent, as required.

4. Semiring spectra

We would like to prove an extension of Theorem 3-15 for localic semirings. Some com-
plications arise, because the inserter k : S R — OR need not respect the additive structure of
a semiring R. However, S R does have an additive counital comagma structure in Sup given
by i+ = (k1 ® K1)k and €y = gokc. This will be sufficient to carry the construction through
in Theorem 4-3.

Let us start by defining a quantale of (overt, weakly closed) ideals of a localic semiring R
so as to give a candidate representing object of OPAIg. Similarly to the multiplication, the
addition on R also induces a quantale structure on hom (OR, 2), whose binary operation we
write as + and whose unit we denote by 0.

Definition 4-1. We call an overt weakly closed sublocale / of a localic semiring R an ideal
if it is a monoid ideal, 0y <land I+ 1 <1.

These are the largest elements of the congruence classes of the quantale congruence
on hom (OR, ) (with its multiplicative structure) obtained by setting 1 =T, 0. =0 and
a+ b <a v b. The resulting quotient is called the quantale of ideals 1d1(R).

The quantale IdI(R) is two-sided and so its defining quotient factors through (R to give
a quotient map s: MR — IdI(R). It will be useful to have a description of this quotient in
terms of operations on /4 R.

Dualising the modified additive structure on S R described above yields a bilinear opera-
tion on JL R given by I ¥ J = (I +J)T with unit 6+ = 04T = 04. We then easily obtain the
following lemma.
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LEMMA 4-2. The kernel congruence of s: MR — 1dI(R) is generated by setting 6+ =0
and1¥J<IVJ.

We can now prove our main result.

THEOREM 4-3. Let R be an overt commutative localic semiring and suppose SR is
a dualisable suplattice. Then OPAly is representable with representing object 1dl(R) and
universal element (s ® «)n(T), where 1 is the unit of the duality between S R and M R.

Proof. Theorem 3-15 gives an isomorphism HomqQuant, (/ R, —) = OPMAIg. We have that
OPAIR(Q) is a subset of OPMAIg(Q) and we wish to find which of the homomorphisms in
Homquant, (MR, Q) correspond to this subset.

Let f: LR — Q be a homomorphism of two-sided quantales. For the corresponding
(quantic) open prime monoid anti-ideal (Q ® k)f*(T) € Q ® OR to be a semiring anti-ideal,
we require (Q ® £ox)f*(T) =0 and (Q ® p1)f*(T) < (Q ® 11K )f*(T) V (Q ® 1ok )f*(T).

Similarly to the condition on the multiplicative unit in Theorem 3-15, we find the first of
these is equivalent to f(6+) =0. For the second condition, observe that (Q ® 11x)f*(T) v
(Q® KA (T)=(Q®Kk ®K) ((Q®1)f*(T)V(Q®w)f*T)). Using the adjunction then
yields the equivalent condition (Q ® ;’Z+)fn(T) < (0 Q1 )fﬂ(T) vVO® Lz)fn(T), which is
depicted in the following string diagrams in Sup.

Q SR SR Q SR SR Q SR SR
Het G L2
= v

Now bending the wires gives the equivalent condition:

Q Q Q
| m | W | W
Ht = gt \Y L2

MR MR MR MR MR MR

The left-hand diagram is a map sending j ® k to f(j F k). For the right-hand side, viewing
MR as Hom(S R, 2) we observe that the mate of t;: SR — SR® SR sends j ® k to the map
x> (G ® k)1 (x) = j(x) - 3(k), where 3(k) = k(T). Thus, this means f(a F b) <f(a) - I(b) Vv
f®)-3(a. 5

This implies f(a+ b) <f(a) Vv f(b). Now multiplying this by I(a)-3(b), we have
f@Fb)y=f@Fb)-Ia-3Ib) < (f@ VFb)- 3@ - 3Ib) =f(@)-3Ib) Vf(b)-I(a), since
a=a - 3(a). Thus, these two conditions are equivalent.

In summary, the elements of OPAIR(Q) correspond to quantale homomorphisms
f: MLR— Q satisfying f(6+) =0 and f(a ¥ b) <f(a) Vf(b), but these are in turn in
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bijection with quantale homomorphisms out of the quotient IdI(R) by Lemma 4-2, as
required.

Setting Rad(R) to be the localic reflection of Idl(R), we obtain the following corollary.

COROLLARY 4-4. Let R be an overt commutative localic semiring and suppose SR is a
dualisable suplattice. Then OPAlg : Loc®? — Set is representable with representing object
Rad(R) and universal element (ps @ k)n(T), where p: IdI(R) — Rad(R) is the unit of the
localic reflection.

We can also prove an analogue of Corollary 3-11.

THEOREM 4-5. Let R be an overt commutative localic semiring and suppose SR is
locally compact. Then OPAlg: Loc? — Set is representable.

Proof. We use a presentation of the localic spectrum in terms of SR as in Corollary 3-11.
The additive relations are given by the modified operations as in Theorem 4-3.

Note that while Theorem 4-5 is more general than Corollary 4-4, it does not tell us the
precise form of the spectrum. Whether the spectrum in Theorem 4-5 is still given by the
frame of radical ideals is a possible topic for further research.

In future it could also be interesting to consider hom (OR, ) (and hence IdI(R)) as a
localic suplattice as in [16] instead of simply a suplattice. However, this would require the
development of a theory of quotients of localic suplattices.

5. Special cases

In this section we will show that our construction reduces to the known ones in each of
our original cases and describe some unusual examples. Let us start with a lemma that will
be helpful for showing when the conditions of Theorem 4-3 hold.

LEMMA 5-1. Let R be an overt localic semiring. The following conditions are equivalent:

(i) SR is adualisable suplattice;

(ii) There is a family (ro)xex of elements of OR and a family (Wy)xex of overt
weakly closed sublocales of R such that s = \/Wsz ry for all saturated elements
s€ OR;

(iii) u < \/VQu (V) for all u € OR, where (V) = \{t saturated | V () 1}.
If R satisfies these equivalent conditions we say it is approximable.

Proof. The equivalence of (i) and (ii) follows easily from Lemma 1-9 by composing with «
and «; as appropriate.

To see that (ii) implies (iii) observe that \/W gsTx =S implies Wy ()s = ry <s for
all saturated opens s and hence, r, <m(W,). So for saturated ¥ we can immediately
conclude that u= \/W juTx < \/V gu T (V). Now recall that V () (1))ux(t) < VT ()t
It follows that w(V)=m(VT) and u < (1)1 (u) < \/VQ(”)WX(M)JT(V) \/VTQM (V)=
\/VTQM a(VT) < \/VQu 7 (V) for general u, as required.
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Finally, we show (iii) implies (ii). We let W, range over all overt weakly closed sublocales
and set r, = (W,). Then (iii) gives s < \/Wsz 7w (W,), while \/WXQs (W) < s follows for
saturated s by the definition of 7 (W,).

COROLLARY 5-2. If OR is supercontinuous, then S R is a dualisable suplattice.

Proof. By Lemma 1-9, OR has dual basis. This implies condition (ii) above.

5-1. The discrete case

The following proposition exhibits the Zariski spectrum of a discrete ring and the Stone
spectrum of a distributive lattice as a special case of our construction.

PROPOSITION 5-3. Let R be a discrete semiring. Then R is approximable and the quantic
spectrum is given by the usual quantale of (set-theoretic) ideals of R. The localic spectrum
is then the usual pointfree Zariski spectrum of R.

Proof. 1t is well known that discrete locales are supercontinuous and hence SR is dualis-
able by Corollary 5-2. Then Theorem 4-3 implies that the localic spectrum is given by the
quantale of overt weakly closed ideals. But the overt weakly closed sublocales of a discrete
locale are precisely the open sublocales, which in turn correspond to its subsets. It is then
easy to see that the overt weakly closed ideals coincide with the familiar notion of semiring
ideals and the result follows.

5-2. The Hofmann—Lawson spectrum

To obtain the Hofmann—Lawson spectrum, we equip the continuous frame OX in question
with the Scott topology to obtain a spatial localic distributive lattice L. Note that L is a
supercontinuous locale (for instance, by observing that L =S¥ is a regular-injective and
using [1]) and hence its localic spectrum exists. To determine the form of this spectrum, we
will need the following lemma.

PROPOSITION 5-4. Let P be a continuous dcpo. The Scott-closed subsets of P correspond
to overt weakly closed sublocales in the Scott topology.

Proof. Given a Scott-closed set S C P, we can define a suplattice homomorphism &g : OP —
Qbyhs(U)=T < S U.

Conversely, given a suplattice homomorphism #: OP — Q, we define a set S, C P as the
Scott-closure of {x € P | h(1x) = T}. (This set is already downwards closed, but needs to be
closed under directed suprema.)

We now show these are inverse operations. Take x € S. If y < x, then S § 1y and so y €
Shg- But x=\/" | x by continuity and hence x € Sy, by Scott-closedness. Thus, S C Sp,.
Conversely, if S () Tx then x € S by downward closure and hence Spg €S, since S is Scott-
closed.

Suppose i(U) = T. We may write U =_J,;; Tx by Lemma 1-5 and so A(tx) =T for
some x € U. Thus, Sy, (§ U and hence hs,(U) =T. Consequently, i < hg,. On the other hand,
if S, U, then {x € P|h(fx) =T} () U by Lemma 1-6 and the Scott-openness of U. Thus,
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h(1x) =T for some x € U so that #(U) = T. Hence, hs, < h and the assignments are inverse
operations.

COROLLARY 5-5. The localic spectrum of a continuous frame L= OX equipped with
the Scott topology is isomorphic to X and hence coincides with the Hofmann—Lawson
spectrum.

Proof. By Theorem 4-3 the quantic spectrum is given by the quantale of overt weakly closed
ideals. From Proposition 5-4 we find that these correspond to the Scott-closed ideals of L,
which are precisely the principal downsets. We can then see that the quantic spectrum is
given by the frame L = OX. Since this is already a frame, this is also the frame of the localic
spectrum of L.

5-3. The Gelfand spectrum

It remains to show that the Gelfand spectrum is a special case of our construction. For
simplicity, we will show this for the locale of real-valued functions on a compact regular
locale. The complex case is essentially identical. It should also be possible to prove it directly
from the axioms of a commutative localic C*-algebra as given in [6].

PROPOSITION 5-6. Suppose X is a compact regular locale. Then A=RX is an overt
approximable localic ring.

Proof. It is shown in [6] that A is overt and furthermore a localic Banach algebra. By
Lemma 5-1 we must show that u < \/VQM (V) for all u € OA.

Given an overt sublocale F of A and a rational ¢ > 0, we define B.(F) by the expression
{h: A|3f: F.|lh —f] < e} in the internal logic of the coherent hyperdoctrine of open sublo-
cales. By [6], we may express u as u = \/; F; where each F; is a positive open sublocale such
that B, (F;) < u for some rational &; > 0. Furthermore, each F; can then in turn be expressed
as a join of the open sets contained in it of diameter less than &;/ 4’ Thus, we may assume
diam(F;) < &;/4 without loss of generality.

Consider F = F; and ¢ = ¢; for some i, where we omit the subscripts for notational conve-
nience. The idea is to construct an overt sublocale G such that G () B, (F) and every saturated
open ¢ which meets G contains F. If we can do this, we could deduce F < A\{re SA| G () t}
=n(G). And clearly G (u, since G () B;(F) <u. Therefore, F < \/qu (V). The result
would then follow by taking the join over all such F.

We now describe how to construct G. The intuition behind our construction is that we want
to find functions which are sufficiently close to those in F, but which have inflated zero sets.
The absolute value map and the meet and join operations on R induce ‘pointwise’ operations
on A which satisfy AV 0= (h+ |h|)/2 and h A O = (h — |k|)/2 in the internal logic, where 0O
is the constant zero map. Note that the map defined by f +— (f v 0) + (f A 0) in the internal
logic is simply the identity. We define a locale map ¢: F— A by f+— ([f —&/2] v 0) +
(If + €/2]1 A 0) and set G to be the image of F under ¢.

Let us show that G () B.(F). Note that G () B.(F) <= F ((*(B¢(F)), or in the
internal logic, 3If: F. ¢(f) € B,(F). So by the definition of B (F), we must
show 3f: F. If': F. |IE(f)—f'|l <e. A straightforward calculation in the internal

* A sublocale F has diameter less than a positive rational § if ., [|x — y|| < § in the internal logic.
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logic gives () —fll = A/ + /2] = If —e/2HI = A/DI(f +€/2) — (f —&/D)|l =

llell/2 = €/2, where the inequality is from the reverse triangle inequality. (Here the judge-
mental inequality relation can be defined from equality and A in the usual way.) Thus,
1E(f) —f]l <e. Now since F is positive, we have 3f: F. T. Combining these yields
f: F. |IE(f) —f|| < e and the desired result follows.

Now we show that every saturated open ¢ which meets G, contains F. The plan is
to construct a localic map ¥ : F x F— A such that ¢(f)=h x {(f, h) in the internal
logic.

Given such a map ¢, we can conclude the result as follows. Since G (7, we know
Af: F. ¢(f) et. Now since {(f)=h x ¥ (f,h), we have If: F. h x ¢ (f,h) et for h: F.
But ¢ being saturated means Jy: A. xy € . 4 x € t. Putting these together, we may conclude
Fn. F h €t, which gives F <t as desired.

We define v : F x F — R by specifying its uncurried form ¢*: Fx F x X — R on a
covering pair of opens: W ={(f, h,x): F X F x X | |f(x)| > e/4}and Z={(f, h,x): F x F x
X|[f ()] < &/2).

Note that restricted evaluation map ev(sry, 73)|w factors through R* = (—o0, 0) v (0, 00).
This can be seen using the internal logic: consider a triple (f, &, x): W. Because diam(F) <
€/4, we have ||f — h| < /4. By the definition of the norm, this gives |[f(x) — h(x)| < &/4.
Putting this together with /4 < |f(x)|, we find |f(x) — h(x)| < |f(x)|, or equivalently, 0 <
[F(O = [f (x) — h(x)]. But then 0 < [f(x)| — [f(x) — A(x)| < [f(x) — (f(x) — h(x))| = |A(x)| by
the reverse triangle inequality. We may conclude that ev(h, x) = h(x) lies in R* as required.

We define ¥°|z: (f,h,x)+— 0 and ¥°|w: (f,h x)— (h(x))~! x £(f)(x) in the inter-
nal logic, where (—)~': R* — R* is the reciprocal operation and we implicitly fac-
tor ev(mp,m3)|lw through R*. To see that these agree on the overlap W AZ, we
show that ¢"(y,73) is zero on Z. Recall that ¢(f)=([f —&/2] VvV O0)+ ([f +¢/2] A
0) in the internal logic. Now if (f, h, x) lies in Z, we have (f(x) <e/2) A (f(x)>
—¢&/2). Then f(x) —e/2 <0 and f(x) +¢/2 > 0. We then quickly see that ¢(f)(x) =0, as
required.

Finally, if i is the inclusion of F into A, we show py(imp, ) =¢m. To see this we
uncurry each expression and consider the two restrictions in the internal logic. We must
show 0 = ¢ (f)(x) on Z and h(x) x (h(x)~! x Z(f)(x)) = ¢(f)(x) on W. But we have already
shown the first equality above and the second one follows immediately from associativity of
multiplication and properties of the reciprocal.

PROPOSITION 5-7. If X is a compact regular locale, then the localic spectrum of RX is
isomorphic to X (as in Gelfand duality).

Proof. By the localic Gelfand duality of [6], we know that the localic Gelfand spectrum of
the C*-algebra CX is isomorphic to X and it is shown in [5] that the opens of the Gelfand
spectrum are in turn in bijection with the overt weakly closed ideals of CX. The use of
complex numbers here is not essential and similar results hold for the real algebra RX giving
an order isomorphism IdI(RY) = OX.

Now by Theorem 4-3 and Proposition 5-6 we have that the quantic spectrum of R¥ is
given by IdI(RX). It remains to show that IdI(R¥) is a frame, from which it follows that the
localic spectrum is given by Rad(R¥) = IdI(R¥) = OX.
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The quantale IdI(RX) is a quotient of the quantale of monoid ideals A(RX) and so it is
enough to show the latter is a frame. But A (RX) is a frame if and only if its dual § (RX)
is a localic semilattice and it is not hard to show that this is in turn equivalent to requiring
f €Uty px 3k: RX. 2k € U in the internal logic for all (basic) opens U.

To prove this we can proceed in a very similar manner to the proof of Proposition 5-6.
Consider B.(F) as in that proof and construct ¢ and G in the same way. We then define a
map ¥ : F — RX such that ¢(f) =f2 x ¥(f) by setting ¥ (f)(x) =0 when |f(x)| < &/2 and
Y (f)x) = (f 03~ ! x ¢(f)(x) when |f(x)| > /4. Here ¥ (f) plays the role of the k required
to deduce the result.

5-4. Unusual examples

Let us end with some examples which are rather unlike the ones we have seen.

EXAMPLE 5-8. Consider the locale ﬁzo of nonnegative lower reals — this is given by
the theory of (possibly empty) lower Dedekind cuts on the nonnegative rationals. This is
a localic semiring with the usual notions of addition and multiplication. It is not hard to
show this is overt and approximable and the quantic spectrum is Q2 — a single point. If
a discrete semiring R has a quantic spectrum of Q, then it is a ‘Heyting semi-field” —
that is, a ‘local semiring’ in which an element is not invertible if and only if it is zero.
However, even classically ﬁ)zo is not a semi-field, since it contains the point oo, which has
no inverse. It is, however, the frame of opens of the non-sober topological space obtained
by equipping [0, co) with the topology of lower semicontinuity. This is a ‘paratopological
semi-field’ — that is, the subspace (0, 00) of nonzero elements is a topological monoid under
multiplication for which every element has an inverse.

EXAMPLE 5-9. Consider the Sierpiriski locale S with the reverse of its usual distributive
lattice structure. This is overt and approximable, but its frame of radical ideals is isomorphic
to the trivial frame and so its spectrum is empty, despite the semiring being nontrivial.

This example suggests the possibility of a ‘finer’ spectrum than the one described here.
Indeed, for a spectrum of rings it is natural to consider ideals, but for more general semirings
it does not seem too surprising that this might fail to capture some important information.
This was not a problem for continuous frames with the Scott topology, where the topology,
algebraic and order-theoretic properties work in concert, but perhaps this is less true in the
general case. We do believe that our spectrum still gives some useful information even for
general semirings, but it could be interesting to consider a richer notion of semiring spectrum
in future.

It appears that the spectrum can even sometimes fail to exist at all.

The forgetful functor from Frm to DCPO has a left adjoint, which induces a comonad on
Frm and hence a monad P on Loc. In [21] it is shown that P sends a locale X to the double
exponential SSX, even in the case that X is not exponentiable, so long as the intermediate
exponential is taken in Set'°”  We have shown that if X is an exponentiable locale, then
X = Spec(S¥). This suggests the following conjecture.

CONJECTURE 5-10. There is a natural isomorphism OPAlpxy = Homygc((—) X X, S).
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In particular, this would imply that Spec(IPX) fails to exist whenever X is not locally
compact.

Acknowledgements. 1 would like to thank Peter Faul for discussions we had on the

presentation of this paper.
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