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(Received 20 June 2019; accepted 11 July 2019; first published online 15 August 2019)

Abstract

In this note we examine Littlewood’s proof of the prime number theorem. We show that this can
be extended to provide an equivalence between the prime number theorem and the nonvanishing of
Riemann’s zeta-function on the one-line. Our approach goes through the theory of almost periodic
functions and is self-contained.

2010 Mathematics subject classification: primary 11N05; secondary 42A75.

Keywords and phrases: prime number theorem, almost periodic function.

1. Introduction

The prime number theorem (PNT) is considered one of the most important theorems in
mathematics. It states that π(x) ∼ x/ log x, where π(x) counts prime numbers less than
or equal to x, and is equivalent to ψ(x) ∼ x, where ψ(x) =

∑
pr≤x log p is the Chebyshev

function (see [5, Section I.4]).
Apart from the Selberg and Erdős elementary approach to the PNT, the essential

part in all known proofs consists of knowing the zero-free region of the Riemann zeta-
function ζ(s). Denote by ρ = β + iγ the nontrivial zeros of ζ(s), where 0 ≤ β ≤ 1 and
γ ∈ R. A not-very-well-known proof of the PNT was given by Littlewood in [7], where
he demonstrated that it is equivalent to

lim
x↓0

∑
ρ

x1−ρΓ(ρ) = 0. (1.1)

Here Γ(z) is the gamma function. The series in (1.1) is uniformly convergent and
this allows us to apply the limit inside the sum. (The uniform convergence follows
simply from the fact that Γ(x + iy) � e−|y|, valid uniformly for x ≤ 2 and |y| ≥ 1,
and N(T + 1) − N(T ) = O(log T ), where N(T ) is the number of those zeros ρ with
0 < γ ≤ T (see [9, Theorem 9.2]).)

Observe that β , 1 implies (1.1) and consequently the PNT. The converse statement
is well known.
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Theorem 1.1. The prime number theorem implies that β , 1.

The common proof of Theorem 1.1 goes through the formula

−
ζ′

ζ
(s) −

s
s − 1

=

∫ ∞

1

ψ(x) − x
xs+1 dx,

which is valid for <{s} > 1 (see [5, page 37]). While this idea is independent of any
approach to the PNT, it is also very tempting to use (1.1) in the opposite direction and
thus ‘complete’ Littlewood’s proof.

The main purpose of this note is twofold: to sketch Littlewood’s proof in the hope
of making it more popular and to provide a proof of Theorem 1.1 using identity (1.1).
Our approach goes through the theory of almost periodic functions (Definition 3.1).
We should mention that this idea is not new. In [6, pages 261–262], it was used to
establish equivalence of the PNT and β , 1 for functions in the Selberg class. This
proof is considerably more difficult than ours and uses properties of almost periodic
functions, such as the uniqueness theorem, which are not so trivial as they might
appear. We show that it is possible to provide all necessary details in a concise way
while avoiding the concept of the Fourier series of an almost periodic function, thus
making this exposition accessible also to nonspecialists.

The outline of our proof is as follows. Assume the existence of zeros ρ = 1 + iγ
and denote the ordinates of such zeros in the upper half-plane by 0 < γ1 ≤ γ2 ≤ · · · .
By symmetry, γ− j := −γ j, j > 0, are the other zeros. Let S ⊆ Z \ {0} be the set of
all indices of γ (could be finite or infinite) and let {an}n∈S be a sequence of complex
numbers such that the corresponding series converges absolutely and, if γi = γ j, then
ai = a j. By the identity principle, the set {γn}n∈S does not have accumulation points.
Define the function

F(x; an) :=
∑
n∈S

aneiγn x.

Then the PNT is equivalent to

lim
x→∞

F(x; Γ(1 + iγn)) = 0. (1.2)

In Section 3 we will show that F(x; an) is an almost periodic function and in Section 4
that limx→∞ F(x; an) = 0 implies that F ≡ 0 (see Lemma 4.1) and furthermore that this
implies that an = 0 for every n ∈S . In view of (1.2), this would be a contradiction
and the proof of Theorem 1.1 will be complete.

2. Littlewood’s proof of the PNT

Most proofs of the PNT consist of two main parts called ‘Tauberian’ and ‘analytic’.
A Tauberian theorem deals with the question of whether it is possible to obtain a
(partial) converse of an Abelian theorem. As an example, consider the statement that,
for an ≥ 0,

lim
x↓0

x
∞∑

n=1

ane−nx = 1 ⇐⇒ lim
m→∞

1
m

m∑
n=1

an = 1
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holds. The left implication is similar to the classical theorem due to Abel on the
continuity of a power series at a point on the boundary of its convergence disc.
The main strength lies with the right implication and this can be obtained from the
celebrated Hardy–Littlewood theorem from 1914. In 1930 Karamata found a much
simpler two-page proof which uses the Weierstrass approximation theorem as the only
advanced tool (see [8, pages 226–229]). If we take an = Λ(n), where Λ is the von
Mangoldt function, then the PNT is equivalent to

lim
x↓0

x
∞∑

n=1

Λ(n)e−nx = 1. (2.1)

We would like to mention here that one year earlier Ramanujan in his third letter to
Hardy studied the function

φ(x) := φ1(x) − φ2(x) :=
∞∑

n=1

Λ(n)e−nx − log 2
∞∑

n=1

2ne−2n x.

He claimed without proof that limx↓0 xφ2(x) = 1 and limx↓0 xφ(x) = 0, which would
consequently imply (2.1). But, in [3, page 39], Hardy used a clever argument to show
that the first limit is not only wrong but it cannot even exist, thus implying that the
second limit is also wrong. On the same page Hardy wrote: ‘I should like to say that
“rigour apart, he found the Hardy–Littlewood proof”, but I cannot’. The interested
reader may find in this treatise some other examples of incorrect claims in analytic
number theory by Ramanujan.

The Λ-function satisfies the important relation −ζ′(s)/ζ(s) =
∑∞

n=1 Λ(n)n−s for
<{s} > 1. The analytical part of the proof begins with this equation together with
the Mellin integral (see [9, Section 2.15]) for e−x to get

x
∞∑

n=1

Λ(n)e−nx = −
1

2πi
lim
t→∞

∫ 2+it

2−it
Γ(s)

ζ′

ζ
(s)x1−s ds,

where x > 0. Now the idea is to take a contour integral along the rectangle RT with
vertices −1/2 ± iT and 2 ± iT , where the horizontal segments do not pass through the
zeros of the zeta-function. (Littlewood took −1 instead of −1/2 in the contour, but this
is not a good choice because the gamma function has a pole at −1. We choose −1/2
but any number in the interval (−1, 0) would suffice.) By the calculus of residues,

−
1

2πi

∫
RT

Γ(s)
ζ′

ζ
(s)x1−s ds = −

∑
|={ρ}|<T

x1−ρΓ(ρ) + 1 − x
ζ′

ζ
(0).

The first part clearly comes from the zeros of ζ(s) within the contour, while the second
and third parts come from simple poles of ζ′(s)/ζ(s) and Γ(s) at 1 and 0, respectively.
We need a result which asserts that there is an increasing and unbounded sequence
{T j}

∞
j=1 of positive numbers such that ζ′(σ ± iT j)/ζ(σ ± iT j) = O(T j), uniformly for

−1/2 ≤ σ ≤ 2, and this could be deduced from an approximate formula for ζ′(s)/ζ(s)
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(see [9, Theorem 9.6(A)], and [5, Theorem 26] for a complete proof of a much better
result). We also need an estimate ζ′(−1/2 + it)/ζ(−1/2 + it)� |t| + 1, which follows
from the logarithmic derivative version of the functional equation for ζ(s). With these
estimates in hand, together with the observation that Γ(−1/2 + iy)� e−|y| is still valid
for y ∈ R, we can show that

−
1

2πi

∫
RT j

Γ(s)
ζ′

ζ
(s)x1−s ds = −

1
2πi

∫ 2+iT j

2−iT j

Γ(s)
ζ′

ζ
(s)x1−s ds

+ O
(
x
√

x + e−T j

(
x2 √x(1 − log x) − 1

2x log x
T j − x

√
x
))
.

Taking j→∞ in the above formula,

x
∞∑

n=1

Λ(n)e−nx = −
∑
ρ

x1−ρΓ(ρ) + 1 − x
ζ′

ζ
(0) + O(x

√
x),

which finally gives

lim
x↓0

(
x
∞∑

n=1

Λ(n)e−nx +
∑
ρ

x1−ρΓ(ρ)
)

= 1. (2.2)

Equation (2.2) was already announced in Hardy and Littlewood’s influential paper [4],
but used for different purposes. It is clear now that the combination of (2.1) and (2.2)
produces (1.1).

3. Almost periodic functions

The theory of almost periodic functions was initiated by H. Bohr in 1925 and
turned out to be very useful in the study of differential equations and Fourier analysis
(see [1, 2]). The space of such functions has remarkable properties. It includes
the space of periodic functions and is a vector space. Moreover, the limit of every
uniformly convergent sequence of almost periodic functions is also almost periodic
(see Theorem 3.2 below). The following definition is due to Bochner.

Definition 3.1. Let f (x) be a continuous function on R with complex values. We say
that f (x) is (uniformly) almost periodic if for every sequence {xn}

∞
n=1 ⊂ R there exists

a subsequence {x1,n}
∞
n=1 such that f (x + x1,n) converges uniformly.

We denote the space of all such functions by P. While the next theorem is
fundamental, the common proof is somewhat longer than our proof (see [1, pages
1–5]). The reason is that we use Bochner’s definition instead of Bohr’s original one.

Theorem 3.2. The following three properties hold:

(1) continuous periodic functions are almost periodic;
(2) if f1, f2 ∈ P and a1, a2 ∈ C, then a1 f1 + a2 f2 ∈ P;
(3) if { fn}∞n=1 ⊂ P and fn → f uniformly, then f ∈ P.
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Proof. We will provide a proof of the first property only. The second property is trivial
and a proof of the third property is straightforward if one exploits Cantor’s diagonal
process.

Let f be a continuous periodic function with period ω > 0. Take an arbitrary
sequence {xn}

∞
n=1 ⊂ R and define a sequence {x′n}

∞
n=1 by

x′n := min{xn − kω ≥ 0: k ∈ Z}.

Then f (x + xn) = f (x + x′n) and {x′n}
∞
n=1 ⊂ [0, ω). It follows that there exists a

subsequence {x1,n}
∞
n=1 of {xn}

∞
n=1 such that {x′1,n}

∞
n=1 converges to some x0 ∈ [0, ω].

Because f is continuous on a compact set [0, 2ω], it is also uniformly continuous
there. This means that for every ε > 0 there exists δ > 0 such that |x′1,n − x0| < δ implies
that | f (x + x′1,n) − f (x + x0)| < ε for every x ∈ [0, ω]. But then for every ε > 0 there
exists N such that | f (x + x1,n) − f (x + x0)| < ε for every n > N and x ∈ R. Therefore,
f (x + x1,n)→ f (x + x0) uniformly and f is thus almost periodic. �

4. Proof of Theorem 1.1

Like a periodic function, an almost periodic function has the property that the
existence of its limit at infinity characterises it completely.

Lemma 4.1. Let f (x) be an almost periodic function. Then f (x) ≡ C ∈ C if and only if
limx→∞ f (x) = C.

Proof. If f (x) ≡ C, then limx→∞ f (x) = C. On the contrary, assume that f (x) is not
a constant function. Then there exist x0 and y0 such that f (x0) , f (y0). Define
m := 1

3 | f (x0) − f (y0)| > 0. Because f ∈ P, there exists a strictly increasing sequence
{hn}

∞
n=1 with hn →∞ such that f (x + hn) converges uniformly. This means that there

exists N such that | f (x + hN) − f (x + hn)| < m for all n > N and x ∈ R. For n > N,
define xn := x0 + hn − hN and yn := y0 + hn − hN , so that xn →∞ and yn →∞. Then

3m = | f (x0) − f (y0)|
≤ | f (x0) − f (xn)| + | f (xn) − f (yn)| + | f (yn) − f (y0)|
< 2m + | f (xn) − f (yn)|;

therefore, | f (xn) − f (yn)| > m. This means that limx→∞ f (x) could not exist. So, if
limx→∞ f (x) = C, then f must be a constant function and it is clear that this constant
is C. �

Proof of Theorem 1.1. All three properties in Theorem 3.2 guarantee that F(x; an)
is an almost periodic function. If limx→∞ F(x; an) = 0, then Lemma 4.1 implies that
F(x; an) = 0 for all x ∈ R. Take some n0 ∈S and let S0 be a subset of S such that
n ∈S0 if and only if γn = γn0 . Then

F(x; an)e−iγn0 x = |S0|an0 +
∑

n∈S \S0

anei(γn−γn0 )x.
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Because we can change the order of summation and integration, the above equation
implies that

I(X) :=
1
X

∫ X

0
F(x; an)e−iγn0 x dx = |S0|an0 +

1
iX

R(X),

where
R(X) :=

∑
n∈S \S0

an

γn − γn0

(ei(γn−γn0 )X − 1).

We also observe that limX→∞ I(X) = |S0|an0 since

|R(X)| ≤
2
d

∑
n∈S

|an| <∞,

where d := minn∈S \S0{|γn − γn0 |} > 0. But then F(x; an) ≡ 0 implies that an = 0 for
all n ∈S . Consequently, the limit (1.2) does not hold and the Riemann zeta-function
does not have zeros with real parts equal to one. �

Finally, we point out that it is possible to construct the theory of almost
periodic functions through trigonometric polynomials T (x) =

∑n
k=1 ckeiλk x, where ck

are complex numbers and λk are real numbers (see [2]). Then we could say that
f (x) is an almost periodic function when for every ε > 0 there exists a trigonometric
polynomial Tε(x) such that | f (x) − Tε(x)| < ε for every x ∈ R. By this definition, our
function F(x; an) is of course almost periodic, but the author could not find a similar
argument as in the proof of Lemma 4.1 by using this definition. It is equivalent to
Bochner’s, but the proof is somehow longer than the proof of Theorem 3.2.
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ALEKSANDER SIMONIČ, School of Science,
The University of New South Wales (Canberra), ACT,
Australia
e-mail: aleks.simonic@gmail.com

https://doi.org/10.1017/S0004972719000881 Published online by Cambridge University Press

https://orcid.org/0000-0003-1298-9031
mailto:aleks.simonic@gmail.com
https://doi.org/10.1017/S0004972719000881

	Introduction
	Littlewood's proof of the PNT
	Almost periodic functions
	Proof of Theorem 1.1
	References

