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Abstract

The analysis of stable isotopes of carbon and nitrogen has been used as a fingerprint for
understanding the trophic interactions of organisms. Most of these studies have been applied
to free-living organisms, while parasites have largely been neglected. Studies dealing with
parasites so far have assessed the carbon and nitrogen signatures in endoparasites or ecto-
parasites of different hosts, without showing general trends concerning the nutritional rela-
tionships within host–parasite associations. Moreover, in most cases such systems involved
a single host and parasite species. The present study is therefore the first to detail the trophic
interactions of a freshwater monogenean–host model using δ13C and δ15N, where a single
monogenean species infects two distinctly different hosts. Host fishes, Labeobarbus aeneus
and Labeobarbus kimberleyensis from the Vaal Dam, South Africa, were assessed for the
monogenean parasite Paradiplozoon ichthyoxanthon, individuals of which were removed
from the gills of the hosts. The parasites and host muscle samples were analysed for signatures
of δ13C and δ15N using an elemental analyser connected to an isotope ratio mass spectro-
meter. Host fish appear to use partly different food sources, with L. aeneus having slightly
elevated δ13C signatures compared to L. kimberleyensis, and showed only small differences
with regard to their nitrogen signatures, suggesting that both species range on the same
trophic level. Carbon and nitrogen signatures in P. ichthyoxanthon showed that the parasites
mirrored the small differences in dietary carbon sources of the host but, according to δ15N
signatures, the parasite ranged on a higher trophic level than the hosts. This relationship
resembles predator–prey relationships and therefore suggests that P. ichthyoxanthon might
act as a micropredator, similar to blood-sucking arthropods such as mites and fleas.

Introduction

Stable-isotope signatures of carbon (δ13C) and nitrogen (δ15N) are increasingly used to study
food-web architecture. In ecology, the isotopic discrimination values of δ13C and δ15N are
applied as unique fingerprints, which allow for a determination of food sources and trophic
interactions between organisms, respectively (Fry, 2006; Wada, 2009). For example, investiga-
tions of stable isotopes of nitrogen have shown that consumers are enriched in the heavy nitro-
gen isotope (15N) with an average Δδ15N of 3.4‰ per trophic level, and therefore it can be used
to determine the position of an organism within food webs (Minagawa & Wada, 1984; Vander
Zanden et al., 1997). Carbon stable-isotope composition can deliver information about the
food source, such as insect larvae, molluscs, algae, vegetation and detritus (Post et al.,
2000). Accordingly, application of stable-isotope analyses (SIA) might also be helpful to elu-
cidate trophic relationships between a parasite and its associated host (Sabadel et al., 2016;
Nachev et al., 2017; Yohannes et al., 2017).

The number of studies dealing with the stable-isotope composition of carbon and nitrogen in
hosts and their parasites remains scarce, with investigations on some of the major parasite taxa,
such asmonogeneans, even being absent. So far, SIA of host–parasite associations has shown dif-
ferent patterns. Endoparasite species, such as cestodes and acanthocephalans, were found to be
depleted in the heavier nitrogen isotope in comparison to the tissues of their hosts, instead of
being enriched as expected for predators (Boag et al., 1998; Ikken et al., 2001; Pinnegar et al.,
2001; Deudero et al., 2002; Power & Klein, 2004; Persson et al., 2007; Behrmann-Godel &
Yohannes, 2013;Navarro et al., 2014;Nachev et al., 2017). Also, studies on digeneans (sporocysts)
provided similar results (Dubois et al., 2009; Doi et al., 2010). In contrast, ectoparasites, such as
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different parasitic arthropods (Boag et al., 1998; Deucett et al., 1999;
Voigt &Kelm, 2006; Schmidt et al., 2011), were 15N-enriched, simi-
lar to predators that feed on their prey.

As no information is available on stable-isotope signatures in
monogeneans, the aim of the present study was to provide the
first data on stable-isotope ratios of carbon and nitrogen in amono-
genean with respect to its fish host. As a host–parasite system, the
parasite Paradiplozoon ichthyoxanthon Avenant-Oldewage (in
Avenant-Oldewage et al., 2014) was selected as it occurs on the
gills of two different fish species: the largemouth yellowfish,
Labeobarbus kimberleyensis (Gilchrist & Thompson, 1913) and
the smallmouth yellowfish, Labeobarbus aeneus (Burchell, 1822).
The fish species differ in their habitat preferences and diet but
both occur in the Orange-Vaal River system in South Africa. The
largemouth yellowfish prefers flowing water but may also occur in
dams. It is a predatory species, initially feeding on insects and
small crustaceans but becoming piscivorous above a fork length
of 300 mm (Skelton, 2001), and it can even prey on small L. aeneus.
The smallmouth yellowfish frequents clear, flowing water with
sandy and rocky river beds. Larvae feed on microscopic organisms
but larger fish are omnivorous and may feed on benthic inverte-
brates, including bivalve molluscs, algae, vegetation and detritus
(Skelton, 2001). Using these host–parasite systems, we provide the
first information about the trophic interaction between amonogen-
ean and its hosts. Moreover, as the parasite species occurs on hosts
having different feeding regimes, the study attempted to understand
whether the difference in biology of the fish host is reflected in the
stable-isotope signatures of the hosts and eventually influences the
stable-isotope composition in the monogenean.

Materials and methods

Fish and parasite sampling

During a single survey of the Vaal Dam, South Africa, in summer
(January 2016), L. aeneus specimens (n = 7) were collected by
means of gill nets (mesh size: 45–190 mm) around UJ Island
(26°52′33.62′′S; 28°10′25.76′′E) (fig. 1). Incidentally, L. kimber-
leyensis (n = 7) that died in the nets were removed from the
nets and afterwards used for sampling, whereas live specimens
were released in accordance with permits from the Gauteng
Department of Agriculture for collection of fish. Live and dead
fish were transported back to a field laboratory on the island,
and live fish were maintained in aerated plastic containers con-
taining dam water. Thereafter, fish were euthanized by severing
the spinal cord posterior to the head. The weight and the total
length of each fish were determined and Fulton’s fish condition
factor (K) was calculated to estimate differences in nutritional
status between individuals or species of fish, according to
Heincke (1908) (see also Nash et al., 2006):

K = 100× SW/TL3

where SW = fish weight and TL = fish total length. Subsequently,
the gills were excised and assessed for P. ichthyoxanthon. The
parasites were removed and frozen (−20°C) before being returned
to the laboratory.

Stable-isotope analyses

For SIA, seven specimens of L. aeneus and four specimens of L.
kimberleyensis were considered, as only these fish harboured

sufficient parasite material for analyses. Furthermore, low parasite
intensities on L. kimberleyensis necessitated pooling of monoge-
neans to a total of two samples. Muscle tissue from infected fishes
was removed during dissection and frozen at −20°C. Thereafter,
muscle samples and parasites were freeze dried to weight consist-
ency at −77°C under negative pressure (−80 kPa). For SIA, tripli-
cates of each sample in the range of 200–700 μg (dry weight; DW)
were weighed in 4 × 6 mm tin-foil capsules for solids (IVA
Analysentechnik, Meerbusch, Germany). Samples were analysed
using a vario PYRO Cube elemental analyser (EA) system
(Elementar Analysensysteme, Langenselbold, Germany) in C/N
mode. The EA was coupled to an IsoPrime 100 isotope ratio
mass spectrometer (IRMS; Elementar Analysensysteme). The
EA-IRMS results were obtained following the principle of identi-
cal treatment and the experimental procedures described by
Werner & Brand (2001) and Nachev et al. (2017). All isotope
ratios were reported in the δ-notation as differences of the isotope
ratio of the sample and isotope ratio of an international reference
substance by equation (1).

dhEs,ref =
R hE/lE
( )

s

R hE/lE
( )

ref

− 1 (1)

where R(hE/lE)ref denotes the ratio of the heavy and light isotope
(here 13C/12C as well as 15N/14N) in the reference material, and R
(hE/lE)s the ratio in the sample. As reference materials for normal-
ization of the laboratory working standard, acetanilide, to the
international scale, the USGS40 and USGS41 reference materials
were used.

Statistical analyses

In order to calculate the trophic level difference (ΔTL) between
the monogeneans and their hosts, the following equation was
applied:

DTL( ) = d15Nparasite − d15Nhost)/TEF (2)

with TEF, the trophic enrichment factor, ranging between 1.3 and
5.3‰.

The Spearman rank correlation was applied to evaluate a pos-
sible relationship between the isotopic composition and fish
morphometry (length, weight, condition factor). The Wilcoxon
matched pair test was used for comparisons between the isotope
signatures of host tissues and parasites.

Results

The monogenean was enriched by approximately 2‰ in the heav-
ier nitrogen isotope with respect to both fish hosts, suggesting that
the monogeneans range on a 0.4–1.8 higher trophic level than the
host (based on equation 2; see table 1 and fig. 2). Statistical ana-
lyses performed for the L. aeneus–P. ichthyoxanthon system (n =
7) revealed significantly higher nitrogen signatures in parasites
(Wilcoxon matched pair test, Z = 2.366; P < 0.05). Due to the
low number of P. ichthyoxanthon samples (n = 2), no statistical
analysis could be performed for the L. kimberleyensis–P. ichthyox-
anthon system. The carbon signatures of both parasite and host
tissues showed similar values, as can be expected for a parasite
that feeds on its host tissues. The low differences observed in
the carbon signatures suggest that the fish species use largely over-
lapping food sources, with only small nutritional variations. These
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trends are mirrored in the stable-isotope signatures of the mono-
geneans collected from the respective fish species. No significant
relationships between the stable-isotope composition of the fish
host and monogeneans, nor between the fish morphometric para-
meters and isotope composition of parasites, were found.

Discussion

In the present study, signatures of stable isotopes for carbon and
nitrogen for a monogenean–host system are presented for the first
time. Regarding nitrogen, the monogenean P. ichthyoxanthon was
enriched by approximately 2‰ with respect to both of its host
species. This difference corresponds to an average isotope frac-
tionation of one trophic level, as consumers are δ15N enriched
in the range from 1.3 to 5.3‰ with respect to their diet
(Minagawa & Wada, 1984). Other flatworms, such as adult

cestodes, have shown contrasting patterns, in being depleted in
the heavier nitrogen isotope compared to the host (Boag et al.,
1998; Ikken et al., 2001; Pinnegar et al., 2001; Deudero et al.,
2002; Power & Klein, 2004; Persson et al., 2007;
Behrmann-Godel & Yohannes, 2013; Navarro et al., 2014;
McGrew et al., 2015). However, studies on adult digeneans and
other monogeneans are currently lacking and therefore it is not
possible to provide any pattern for the Platyhelminthes. A reason-
able explanation for the different stable-isotope signatures
between P. ichthyoxanthon and its host species could be its nutri-
tional mode. Diplozoids feed on blood, similar to a predator feed-
ing on its prey. Interestingly, other parasite taxa, such as
nematodes, that feed on host tissues are also enriched in the heav-
ier nitrogen isotope (Boag et al., 1998; Neilson et al., 2005;
O’Grady & Dearing, 2006; Nachev et al., 2017). More specifically,
our results corroborate isotope fractionation in other blood-

Fig. 1. Map of the Vaal Dam and feeder rivers, showing the position of UJ Island (A) within the map of South Africa (B) The black block in (B) indicates the location
of (A).

Table 1. Data on fish morphometry and stable-isotope composition of carbon and nitrogen in selected host–parasite systems.

TL (cm) W (g) K δ13C (‰) δ15N (‰)

L. aeneus 38.3 (±3.5) 587.2 (±164.0) 1.1 (±0.1) −21.10 (±0.32) 16.06 (±0.45)

P. ichthyoxanthon − − − −21.19 (±0.46) 18.11 (±0.44)

ΔhE (host–parasite) − − − −0.09 −2.05

L. kimberleyensis 35.8 (±6.7) 432.5 (±204.6) 1.0 (±0.2) −20.61 (±0.28) 16.42 (±0.32)

P. ichthyoxanthon − − − −20.83 (±0.35) 18.73 (±0.18)

ΔhE (host–parasite) − − − −0.22 −2.31

TL, total length; W, weight; K, Fulton’s condition factor.
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sucking ectoparasites, such as parasitic insects and ticks (Boag
et al., 1998; Voigt & Kelm, 2006; Schmidt et al., 2011), where
the parasites act as micropredators. The active feeding mode com-
bined with the ectoparasitic lifestyle determines the isotopic frac-
tionation of monogeneans and other parasites with a similar
nutrition strategy. In contrast, parasites such as cestodes and
acanthocephalans have no digestive system and synthesize no
digestive enzymes. They are unable to catabolize macromolecules,
such as lipids and proteins, or to synthesize several macro-
molecules, such as fatty acids, nucleic acids, amino acids and
many others. They therefore rely entirely on an appropriate sup-
ply from their hosts (Barrett, 1981). Accordingly, they assimilate
metabolically reprocessed molecules derived from the host,
which are depleted in 15N and therefore show opposite patterns
to those found for monogeneans, which feed directly on their
hosts. Regarding nutritional relationships, monogeneans therefore
have more similarities to ectoparasitic arthropods than to other
endoparasitic flatworms.

Comparing the fish species, the difference in carbon isotope
signatures was rather low, with a Δδ13C of 0.5‰. This corrobo-
rates the suggestion that the diet of the species largely overlaps,
with probably a small preference for an omnivorous feeding strat-
egy in L. aeneus versus a predatory lifestyle in L. kimberleyensis
(Skelton, 2001). However, these principal nutritional differences
do not lead to differences in the trophic level of the fishes, as
their Δδ15N was found to be 0.4‰. This probably indicates that
in both fish species a large proportion of the diet consists of
macroinvertebrates. Given their different habitat preferences the
specific macroinvertebrate species they prey on are likely to be dif-
ferent. Moreover, L. aeneus also feeds on detritus and algae,
whereas the diet of L. kimberleyensis includes fish, which may
occasionally be L. aeneus. The partly overlapping diet might be
due to the size of the fish. The piscivorous mode of nutrition
develops fully in L. kimberleyensis when it grows bigger than
300 mm (Skelton, 2001). Given the fact that the average size of
L. kimberleyensis was even smaller than the average size of L.
aeneus in our study indicates that piscivority in L. kimberleyensis
was not fully developed.

The difference between the fish species can be explained by
differences in their diet and habitat preferences. Although the dif-
ference is rather small, it seems to be sufficient to influence the
carbon stable-isotope composition of the parasite, as the carbon

signatures of the parasites mirror those of their fish hosts. This
can be explained by the micropredatory way of feeding of P.
ichthyoxanthon. When fish feed on different food sources the
associated differences in carbon isotopes will be present in the
blood that carries nutrients. As the monogeneans feed on their
host’s blood, they are therefore provided with these differences
in carbon isotopes. Given the overlap in the hosts’ diet, the result-
ing difference concerning the nitrogen isotopes is Δδ15N of 0.6‰,
which is higher than that of the host species. This specifically
stresses the fact that the same parasite species may display differ-
ent stable-isotope signatures depending on its particular host spe-
cies. Therefore, the trophic position of a parasite with a broad
species specificity may change, depending on the trophic position
of its hosts. Although most monogeneans are known to be strictly
species specific (Rohde, 1993), diplozoons display varying
stenospecificity (Le Brun et al., 1988), with P. ichthyoxanthon
occurring in two species of the genus Labeobarbus (Avenant-
Oldewage & Milne, 2014).

In conclusion, our data clearly show that the stable-isotope sig-
natures of micropredatory parasites mirror the feeding strategy of
their hosts. Care should be taken in future studies to consider the
feeding regime of the hosts when interpreting stable-isotope data.
This may even refer to a host species changing diet due to migra-
tion, seasonal changes or availability of food.
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