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The Normal and Gamma distributions are the most popular models for analyzing
symmetric and skewed data, respectively. In this article, a new multimodal
distribution is introduced that contains the Normal and Gamma distributions as
particular cases and thus could be a better model for both symmetric and skewed
data. Various structural properties of this distribution are derived, including its
moment-generating function, characteristic function, moments, entropy, asymptotic
distribution of the extreme order statistics, method of moment estimates, maximum
likelihood estimates, Fisher information matrix, and simulation issues. The
superiority of the new distribution is illustrated by means of two real datasets.

1. INTRODUCTION

The statistics literature is filled with hundreds of continuous univariate distributions.
Johnson, Kotz, and Balakrishnan [5,6] provide excellent accounts of the known dis-
tributions. Undoubtedly, the most popular distributions for symmetric and skewed
data are the Normal and Gamma distributions, respectively. It seems, however, that
there are no distributions which contain the Normal and Gamma as particular cases
(except, of course, for a mixture distribution of the two). Such distributions will be
important because they will lead to better models for both symmetric and skewed
data.

In this article, we introduce a new multimodal distribution that contains the
Normal, Gamma, and the Rayleigh distributions as particular cases (Section 2). We
derive various structural properties of this new distribution, including its moment-
generating function (Section 3), characteristic function (Section 3), moments
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(Section 4), entropy (Section 5), asymptotic distribution of the extreme order statistics
(Section 6), estimation issues (Section 7), and simulation issues (Section 8). The
applicability of the new distribution is illustrated by means of two real datasets
(Section 9).

The calculations in this article involve several special functions, including the
complementary error function defined by

erfcðxÞ ¼ 1� 2ffiffiffiffi
p
p

ðx

0
expð�t2Þ dt,

the modified Bessel function of the third kind defined by

KnðxÞ ¼
xnGð1=2Þ

2nGðnþ 1=2Þ

ð1

1
expð�xtÞðt2 � 1Þn�1=2 dt,

the parabolic cylinder function defined by

DpðxÞ ¼
expð�x2=4Þ

Gð�pÞ

ð1

0
exp{� ðtxþ t2=2Þ}t�ðpþ1Þ dt,

the Kummer function defined by

Cða,b; xÞ ¼ 1
GðaÞ

ð1

0
expð�xtÞta�1ð1þ tÞb�a�1 dt,

and the confluent hypergeometric function defined by

1F1ða; c; xÞ ¼
X1
k¼0

ðaÞk
ðcÞk

xk

k!
,

where (e)k¼e (eþ1) ... (eþk21) denotes the ascending factorial. The properties of
these special functions can be found in Prudnikov, Brychkov, and Marichev [8]
and Gradshteyn and Ryzhik [3].

2. PROBABILITY DENSITY FUNCTION

The new distribution is taken to have a probability density function (p.d.f.) that is pro-
portional to the product of Normal and Gamma p.d.f.s; that is,

f ðxÞ ¼ Cxa�1 expð�px2 � qxÞ (1)

for 0 , x , 1, a . 0, p � 0, and 21 , q , 1, where C denotes the normalizing
constant. Note that if p ¼ 0, then one must have q . 0. Application of Eq. (2.3.15.3)
in Prudnikov et al. [8, Vol. 1] shows that the normalizing constant is given by

1
C
¼ GðaÞð2pÞ�a=2 exp

q2

8p

� �
D�a

qffiffiffiffiffi
2p
p
� �

: (2)
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By special properties of the parabolic cylinder function, (2) can be reduced to

1
C
¼ 1

2

ffiffiffiffi
p

p

r
exp

q2

4p

� �
erfc

q

2
ffiffiffi
p
p

� �

if a¼1, to

1
C
¼ 1

2

ffiffiffi
q

p

r
exp

q2

8p

� �
K1=4

q2

8p

� �

if a¼1/2, and to

1
C
¼ 1

8
q

p

� �3=2

exp
q2

8p

� �
K3=4

q2

8p

� �
� K1=4

q2

8p

� �� �

if a ¼ 3/2. The new distribution given by (1) is very flexible and it contains several of
the standard distributions as particular cases. The half-Normal distribution is the par-
ticular case for a ¼ 1; the Gamma distribution is the particular case for p ¼ 0; and the
Rayleigh distribution is the particular case for q ¼ 0. Let us now consider the shape
of (1). The first and second derivatives of log f are

d log f

dx
¼ a� 1

x
� 2px� q

and

d2 log f

dx2
¼ �a� 1

x2
� 2p:

Setting the first derivative to zero, one obtains the quadratic equation
a2122px22qx ¼ 0 with the solutions x ¼ d1 or x ¼ d2, where

d1 ¼
�q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 8pð1� aÞ

p
4p

and

d2 ¼
�qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 8pð1� aÞ

p
4p

:

Routines calculations show that the following shapes are possible:

† If eithera � 1 and q � 0 or a , 1, q , 0, and 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� aÞ

p
þ q � 0, then f is

monotonically decreasing.
† If a ¼ 1 and q , 0, then f attains a maximum at x¼2¼q/(2p) before decreas-

ing for all x . 2q/(2p).
† If a . 1, then f attains a maximum at x ¼ d2 before decreasing for all x . d2.
† If a , 1, q , 0, and 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1� aÞ

p
þ q , 0, then f has a minimum at x ¼ d1

and a maximum at x ¼ d2 before decreasing for all x . d2.
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Some of the possible shapes are illustrated in Figure 1 for selected values of
a, p, and q.

3. CHARACTERISTIC FUNCTION

Here, we derive the moment-generating and the characteristic functions of a random
variable X with p.d.f. (1). The moment-generating function (m.g.f.) is defined by
M(t) ¼ E(exp(tX)). It can be calculated easily as

MðtÞ ¼ C

ð1

0
xa�1 exp{� px2 � ðq� tÞx} dx

¼ CGðaÞð2pÞ�a=2 exp
ðq� tÞ2

8p

( )
D�a

q� tffiffiffiffiffi
2p
p

� �
,

where we have applied Eq. (2.3.15.3) in Prudnikov et al. [8, Vol. 1]. Thus, the charac-
teristic function of X defined by f(t) ¼ E(exp(itX)) takes the form

fðtÞ ¼ CGðaÞð2pÞ�a=2 exp
ðq� itÞ2

8p

( )
D�a

q� itffiffiffiffiffi
2p
p

� �
,

where i ¼
ffiffiffiffiffiffiffi
�1
p

is the complex number.

FIGURE 1. Plots of the p.d.f. (1) for selected values of a, p, and q.
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4. MOMENTS

The nth moment of a random variable X with p.d.f. (1) can be calculated easily as

EðXnÞ ¼ C

ð1

0
xnþa�1 expð�px2 � qxÞdx

¼ CGðnþ aÞð2pÞ�ðnþaÞ=2 exp
q2

8p

� �
D�ðnþaÞ

qffiffiffiffiffi
2p
p
� �

,

(3)

where we have applied Eq. (2.3.15.3) in Prudnikov et al. [8, Vol. 1]. If a þ n � 1 is an
integer, then (3) can be reduced to

EðXnÞ ¼ C
ð�1Þaþn ffiffiffiffi

p
p

2
ffiffiffi
p
p

@aþn

@qaþn
exp

q2

4p

� �
erfc

q

2
ffiffiffi
p
p

� �� �

by special properties of the parabolic cylinder function.

5. RÉNYI ENTROPY

An entropy of a random variable X is a measure of variation of the uncertainty. The
Rényi entropy is defined by

J RðgÞ ¼
1

1� g
log

ð
f gðxÞ dx

� �
,

where g . 0 and g = 1 [9]. It follows easily by the application of Eq. (2.3.15.3) in
Prudnikov et al. [8, Vol. 1] thatð1

0
f gðxÞ dx ¼ Cg

ð1

0
xag�g expð�pgx2 � qgxÞ dx

¼ CgGðag� gþ 1Þð2pÞ�ðag�gþ1Þ=2 exp
q2g

8p

� �
D�ðag�gþ1Þ

q
ffiffiffi
g
pffiffiffiffiffi
2p
p
� �

:

Thus, the Rényi entropy for (1) is given by

J RðgÞ ¼
1

1� g

�
g log C þ log Gðag� gþ 1Þ

� ag� gþ 1
2

logð2pÞ þ q2g

8p
þ log D�ðag�gþ1Þ

q
ffiffiffi
g
pffiffiffiffiffi
2p
p
� ��

:

6. ASYMPTOTICS

If X1, . . . , Xn is a random sample from (1) and if X̄¼(X1þ...þXn)/n denotes the
sample mean, then by the usual central limit theorem,

ffiffiffi
n
p
ð �X� EðXÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞ

p

NEW MODEL FOR SYMMETRIC AND SKEWED DATA 265

https://doi.org/10.1017/S0269964808000156 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000156


approaches the standard Normal distribution as n!1. Sometimes one would be
interested in the asymptotics of the extreme values Mn ¼ max (X1, . . . , Xn) and
mn ¼ min (X1, . . . , Xn). Note from (1) that f (t) � Cta21 exp(2pt22qt) as t!1

and f (t) � Cta21 as t! 0. Thus, it follows by using L’Hospital’s rule that

1� Fðt þ x=tÞ
1� FðtÞ �! expð�2pxÞ

as t!1 and

FðxtÞ
FðtÞ �! xa

as t! 0. Hence, it follows from Theorem 1.6.2 in Leadbetter, Lindgren, and Rootzén [7]
that there must be norming constants an . 0, bn, cn . 0, and dn such that

Pr{anðMn � bnÞ � x} �! exp{� expð�2pxÞ}

and

Pr{cnðmn � dnÞ � x} �! 1� expð�xaÞ

as n!1. The form of the norming constants can also be determined. For instance, using
Corollary 1.6.3 in Leadbetter et al. [7], one can see that an ¼ bn ¼ F21 (121/n), where F
(.) is the cumulative distribution function corresponding to (1).

7. ESTIMATION

Here, we consider estimation by the method of moments and the method of maximum
likelihood when X1, . . . ,Xn is a random sample from (1) and we provide expressions
for the associated Fisher information matrix. It is clear from (3) that the method of
moments estimates are the simultaneous solutions of the equations

CGð1þ aÞð2pÞ�ð1þaÞ=2 exp
q2

8p

� �
D�ð1þaÞ

qffiffiffiffiffi
2p
p
� �

¼ 1
n

Xn

j¼1

Xj,

CGð2þ aÞð2pÞ�ð2þaÞ=2 exp
q2

8p

� �
D�ð2þaÞ

qffiffiffiffiffi
2p
p
� �

¼ 1
n

Xn

j¼1

X2
j ,

and

CGð3þ aÞð2pÞ�ð3þaÞ=2 exp
q2

8p

� �
D�ð3þaÞ

qffiffiffiffiffi
2p
p
� �

¼ 1
n

Xn

j¼1

X3
j

The log-likelihood is

log Lða,p,qÞ ¼ n log C þ ða� 1Þ
Xn

j¼1

log Xj � p
Xn

j¼1

X2
j � q

Xn

j¼1

Xj:
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The first derivatives with respect to the three parameters are

@ log L

@a
¼
Xn

j¼1

log Xj þ
n

C

@C

@a
,

@ log L

@p
¼ �

Xn

j¼1

X2
j þ

n

C

@C

@p
,

and

@ log L

@q
¼
Xn

j¼1

Xj þ
n

C

@C

@q
:

Thus, the maximum likelihood estimates are the simultaneous solutions of the
equations

n

C

@C

@a
¼ �

Xn

j¼1

log Xj, (4)

n

C

@C

@p
¼
Xn

j¼1

X2
j ; (5)

and

n

C

@C

@q
¼
Xn

j¼1

Xj: (6)

The partial derivatives in (4)–(6) can be computed by using the facts

DnðzÞ ¼ 2n=2 exp � z2

4

� �
C � n

2
,
1
2

;
z2

2

� �
,

Cða; c; zÞ ¼ Gð1� cÞ
Gð1þ a� cÞ 1F1ða; c; zÞ

þ Gðc� 1Þ
GðaÞ 1F1ð1þ a� c; 2� c; zÞ;

@

@a 1F1ða; c; zÞ ¼
X1
k¼0

ðaÞkcðaþ kÞzk

ðcÞkk!
� cðaÞ1F1ða; c; zÞ,

and

@

@z 1F1ða; c; zÞ ¼ a

c 1F1ðaþ 1; cþ 1; zÞ,

where c(x)¼d log G(x)/dx is the digamma function. Calculation of the associated
Fisher information matrix requires second-order derivatives of log L. All of the
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second-order derivatives take the form

@2 log L

@ui@uj
¼ � n

C2

@C

@ui

@C

@uj
þ n

C

@2C

@ui@uj
:

Hence, the elements of the Fisher information matrix all take the form

E � @
2 log L

@ui @uj

� �
¼ � n

C2

@C

@ui

@C

@uj
� n

C

@2C

@ui@uj
: (7)

The second-order partial derivatives in (7) can be computed by using the facts

@2

@a2 1F1ða; c; zÞ ¼
X1
k¼0

Gðaþ kÞc 0ðaþ kÞ þ G0ðaþ kÞcðaþ kÞ
�Gðaþ kÞcðaþ kÞcðaÞ

� �
zk

GðaÞðcÞkk!

� cðaÞ @
@a 1F1ða; c; zÞ � c0ðaÞ1F1ða; c; zÞ,

@2

@a@z 1F1ða; c; zÞ ¼
X1
k¼0

ðaÞkcðaþ kÞkzk�1

ðcÞkk!
� acðaÞ

c 1F1ðaþ 1; cþ 1; zÞ,

and

@2

@z2 1F1ða; c; zÞ ¼ aðaþ 1Þ
cðcþ 1Þ 1F1ðaþ 2; cþ 2; zÞ,

where c 0(.) denotes the derivative of the digamma function.

8. SIMULATION

The rejection sampling can be used to simulate from (1) with a gamma p.d.f. chosen
as the envelope. The following scheme can be used:

1. Generate a gamma random variable Y that has the p.d.f. qaya21 exp(2qy)/
G(a).

2. Generate a uniform [0, 1] random variable U independently of Y.
3. If U , exp(2pY2), accept Y as a realization from (1).
4 If U � exp(2pY2), return to step 1.

Note that there are standard routines for generating gamma random variables.

9. APPLICATION

Here, we illustrate the superiority of the new distribution given by (1) as compared to
the Normal and Gamma distributions. We consider two biological datasets from Fry
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[2]: One is a symmetric dataset and the other is skewed. We fitted the following three
models to each of the datasets:

Model 1: Equation (1) with a ¼ 1 corresponding to the half-normal model.

Model 2: Equation (1) with p ¼ 0 corresponding to the Gamma model.

Model 3: Equation (1) with no restrictions on the parameters.

The fitting of (1) was performed by the method of maximum likelihood; see Section 7.
The quasi-Newton algorithm nlm in the R software package [1,4,10] was used to
solve the likelihood equations (4)–(6). The results for the two datasets are described
as follows:

Dataset 1. This is a symmetric dataset (see Fig. 2). Model 1 gave the estimates
p̂ ¼ 6.778�1027 and q̂ ¼ 1.221 with 2log L ¼ 365.2. Model 2 gave the esti-
mates â ¼ 5.786 and q̂ ¼ 1.835 with 2log L ¼ 163.0. Model 3 gave the esti-
mates â ¼ 0.408, p̂ ¼ 0.479, and q̂ ¼ 23.247 with 2log L ¼ 148.5. Thus, it
follows by the standard likelihood ratio test [11] that Model 3 should be pre-
ferred. This is supported by Figure 2, where the fitted p.d.f.s for the three
models and the histogram of the data are shown.

Dataset 2. This is a skewed dataset (see Fig. 3). Model 1 gave the estimates p̂ ¼
1.338�1026 and q̂ ¼ 1.663 with 2log L ¼ 733.9. Model 2 gave the estimates

FIGURE 2. The three fitted p.d.f.s and the histogram for dataset 1.
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â ¼ 77.061 and q̂ ¼ 16.331 with 2log L ¼ 79.4. Model 3 gave the estimates
â ¼ 2.468�1026, p̂ ¼ 1.693, and q̂ ¼ 216.283 with 2log L ¼ 77.2. Thus, it
follows again by the standard likelihood ratio test [11] that Model 3 should be
preferred. This is supported by Figure 3, where the fitted p.d.f.s for the three
models and the histogram of the data are shown.

The fittings of the above exercise were repeated to several other biological data-
sets exhibiting a variety of skewness structures; the conclusions for each dataset were
the same.
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