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1. Introduction

Ax [1] proved a version of Schanuel’s famous conjecture in transcendental number theory,

with numbers replaced by power series. Ax’s theorem has been influential in model

theory, particularly in work of Zilber [29] and of the second author [14]. Our work here

is motivated by an application of Ax’s theorem to definability in the real exponential

field, Rexp, due to Bianconi [4]. Using Ax’s theorem in conjunction with Wilkie’s model
completeness result for Rexp [25] (and part of the method of proof), Bianconi showed that

no restriction of the sine function to an open interval is definable in Rexp. It is natural

to ask a somewhat analogous question about definability with Weierstrass ℘-functions.

These are doubly periodic complex meromorphic functions, in many ways similar to

complex exponentiation. Suppose that ℘1, . . . , ℘N+1 are such functions. When is some

restriction of (the real and imaginary parts of) ℘N+1 definable in the real field expanded

by suitable restrictions of (the real and imaginary parts of) ℘1, . . . , ℘N ?

In general, it is not sensible to consider the definability of ℘-functions in their entirety,

since these functions are periodic with respect to a lattice in C, and hence any expansion

of the real field R̄ in which a ℘-function is definable will interpret second-order arithmetic.

Instead, we consider local definability of a function f , which means definability of the
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restriction of f to some neighbourhood of each point of its domain. Given a set F of

analytic functions, there is a smallest expansion of R̄ in which all the functions in F are

locally definable, which we denote RPR(F). Precise definitions are given in § 2 below.

In this context, we answer the above question completely, and also allow the exponential

function to be included.

Theorem 1.1. Let F = {exp, f1, . . . , fN }, where each of the fi is a Weierstrass ℘-function

and exp is the exponential function. Let g be another Weierstrass ℘-function. Then g is

locally definable in RPR(F) (with parameters) if and only if it can be obtained from one of

f1, . . . , fN by isogeny and Schwarz reflection. If we omit exp from F , then the exponential

function is not locally definable in RPR(F).

Ax’s theorem has been extended to include ℘-functions by the second author [12, 13]

following work of Ax himself [2], and so one might attempt to adapt Bianconi’s method

to prove our theorem. This might be possible, but our efforts in this direction ran into

technical difficulties due to the nature of the differential equations satisfied by the real

and imaginary parts of ℘-functions.

Instead, we follow the method of predimensions introduced by Hrushovski [9] in his

construction of new strongly minimal sets. As far as we are aware, this is the first

application of these ideas to definability in expansions of the real field. The connection

between predimensions and Schanuel conditions was made by Zilber, as part of his work

on the model theory of complex exponentiation.

For the proof, we first recall a pregeometry introduced by Wilkie [28] which arises

from real definability with complex functions, and we give Wilkie’s characterization of

this pregeometry in terms of derivations. We then introduce a predimension function and

use it to show that certain derivations can be extended, following a method from [14].

It is here that an Ax-type result first enters the picture, in an incarnation due to the

second author [13]. A second use of that paper together with the results on extending

derivations allows us to characterize the dimension associated to the pregeometry in

terms of the predimension. The theorem then follows from some computations with this

predimension. In fact, our method leads naturally to a stronger result than the theorem

above (Theorem 7.2). It is somewhat technical, so we do not state it here, but when

combined with some o-minimal analysis it leads to the following.

Theorem 1.2. Let F1 consist of complex exponentiation and some Weierstrass

℘-functions, and let F2 consist of Weierstrass ℘-functions. Suppose that none of the

functions in F2 is isogenous to any ℘-function from F1, or isogenous to the Schwarz

reflection of a ℘-function in F1. Then any subset of Rn which is definable (with

parameters) both in RPR(F1) and in RPR(F2) is semialgebraic; that is, it is definable (with

parameters) in R̄.

We do not see how this sort of general result could be obtained from Bianconi’s method.

Ax-style functional transcendence results have recently been shown to be very useful in

applications of o-minimality to number theory, for example by Pila [21]. Our results could

be thought of as saying that certain functions are not only algebraically independent but

in fact are independent with respect to definability in a certain expansion of the real
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field. In the short final section we give an example showing how this sort of independence

could be applied to counting certain points on certain analytic curves.

2. Local definability

In this brief section, we explain the notion of local definability. Except where otherwise

stated (such as in the statements of our main theorems), definable means definable without

parameters.

Definition 2.1. Let U ⊆ Rn be an open subset and f : U → R a function. We say that

f is locally definable with respect to an expansion R of R̄ if for every a ∈ U there is a

neighbourhood Ua of a such that f �Ua is definable.

More generally, if M is a definable manifold (we will only need the cases where M is

affine space or projective space), then a map f : U → M is locally definable if for each

a ∈ U there is a neighbourhood Ua of a, an open set W ⊆ M containing f (Ua), and a

definable chart φ : W → Rm such that each of the components of the composite φ ◦ f �Ua

is definable.

In particular, identifying C with R2, a complex function is locally definable if and only

if its real and imaginary parts are locally definable.

Definition 2.2. Let U ⊆ Rn be an open subset and f : U → R a function. A proper

restriction of f is a restriction f �1, where 1 = (r1, s1)× · · ·× (rn, sn) is an open

rectangular box with rational corners such that the closure 1̄ of 1 is contained within

U . If a ∈ 1, we say that f �1 is a proper restriction of f around a.

Given a set F of functions, each defined on an open subset of some Rn , we write PR(F)
for the set of all proper restrictions of functions in F , and RPR(F) for the expansion of

the real field R̄ by the graphs of all of the functions in PR(F).

We can consider Ran to be the expansion of R̄ by all the proper restrictions of all

real-analytic functions. Usually it is defined as the expansion by all restrictions to the

closed unit cube of functions which are analytic on an open neighbourhood of the cube.

However, the two definitions are equivalent in the sense of giving the same definable sets.

We now establish that RPR(F) is indeed the smallest expansion of R̄ in which all

functions from F are locally definable.

Lemma 2.3. A function f : U → R is locally definable in an expansion R of R̄ if and

only if all of its proper restrictions are definable in R.

Proof. First, suppose that all the proper restrictions of f are definable and that a ∈ U .

Then there is a rational box 1 around a whose closure is contained in U , so we can take

Ua = 1. For the converse, let 1 be a rational box whose closure 1̄ is contained in U .

Then {Ua ∩ 1̄ | a ∈ 1̄} is an open cover of a topologically compact set, so there is a finite

subcover, and since 1 is definable, we see that the graph of f �1 is definable.

Wilkie [28] uses definability of all proper restrictions as his definition of local

definability.
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3. The holomorphic closure

In the case where F consists of real-analytic functions, RPR(F) is a reduct of Ran, and

hence it is o-minimal. In any o-minimal expansion of R̄, in particular in the structures

RPR(F), the definable closure dclF is a pregeometry on R. See for example [16, § 2.2] for

this fact and an exposition of pregeometries, including dimensions and generic points.

The definable closure pregeometry on RPR(F) is characterized by b ∈ dclF (A) if and

only if there is a function f definable in RPR(F) and a tuple a from A such that f (a) = b.

Since the structures RPR(F) have analytic cell decomposition (this follows easily from

Gabrielov’s theorem [8]; see also Lemma 8.2 for a more general result) and we can assume

that a is generic in the sense of dclF , we can take the function f to be real-analytic and

defined on some open subset U of Rn , for some n ∈ N. Wilkie made an analogous definition

in the complex case.

Definition 3.1. Given F and a subset A ⊆ C, we define the holomorphic closure hclF (A)
of A by b ∈ hclF (A) if and only if there is n ∈ N, an open subset U ⊆ Cn , a definable

holomorphic function f : U → C, and a tuple a ∈ An
∩U such that b = f (a).

Fact 3.2. The operator hclF is a pregeometry on C. Furthermore, if F is countable, then

the holomorphic closure of a countable set is countable.

Proof. The first part is from Theorem 1.10 of [28]. The observation about countability

is immediate.

Obviously, if a holomorphic function f : U → C is locally definable in RPR(F), then we

have f (a) ∈ hclF (a) for each a ∈ U . The converse is partly true.

Proposition 3.3. Let F be a countable set of holomorphic functions. Suppose that U is

an open subset of Cn and that f : U → C is a holomorphic function such that for all

a ∈ U we have f (a) ∈ hclF (a). Then f is locally definable almost everywhere in U . More

precisely, there is an open subset U ′ of U such that U rU ′ has measure zero and f �U ′ is

locally definable with respect to RPR(F). Furthermore, if n = 1, then U ′ can be taken such

that U rU ′ is a countable set.

Proof. Suppose that we have f (a) ∈ hclF (a) for each a ∈ U . Enumerate all the pairs

(Ui , gi )i∈N such that Ui is a definable connected open subset of U and gi : Ui → C is a

definable holomorphic function. For each a ∈ U there is i(a) ∈ N such that a ∈ Ui(a) and

gi(a)(a) = f (a). Let U ′ be the subset of U consisting of those a such that we can choose

i(a) with gi = f �Ui . Then U ′ is open in U , and f �U ′ is locally definable.

Now, let J = {i ∈ N | gi 6= f �Ui }. For each i ∈ J , let Vi = {a ∈ Ui rU ′ | gi (a) = f (a)}.
Then Vi is a proper closed subset of Ui rU ′, and furthermore, since it is locally the

zero set of the holomorphic function gi − f , it is an analytic set and has a well-defined

complex dimension. Since gi − f does not vanish in the neighbourhood of any point, this

dimension is strictly less than n, and hence Vi has measure zero in U . Thus
⋃

i∈J Vi has

measure zero, and we note that U ′ = U r
⋃

i∈J Vi .

If n = 1, then the complex dimension of each Vi must be 0, so it must be a countable

set. Hence U rU ′ is countable.
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It seems not to be possible to strengthen the conclusion to get f actually locally

definable everywhere in U . While we do not have a counterexample, we do have an

idea of how to produce one. Let f : C→ C be a holomorphic function which is suitably

generic, for example a Liouville function as defined by Wilkie [26]. Let F = { f }, let

b ∈ C, set U = Cr {b}, and let g = f �U . Let h : C→ C be the constant function with

value f (b), and let G = {g, h}. Then, for every a ∈ C, we have f (a) ∈ hclG(a). However,

there is no obvious way to define f in a neighbourhood of b, and indeed we believe that

if f and its derivatives satisfy the transcendence property given in [30] for a generic

function with derivatives then the predimension method used in this paper could be used

to demonstrate that f is not definable around b in RG . In this case, the point b is not

generic in RG . However, by making a more careful choice of functions f and h, it seems

likely we could get the same behaviour at a point b which is generic in RG .

4. Derivations

Let A be a subfield of C, and let M be an A-vector space. Let F be a set of holomorphic

functions f : U → C, where U is an open subset of C which may depend on f .

Definition 4.1. A derivation from A to M is a function A
∂
−→ M such that, for each

a, b ∈ A, we have the following.

(i) ∂(a+ b) = ∂a+ ∂b.

(ii) ∂(ab) = a∂b+ b∂a.

It is an F-derivation if and only if also for each f ∈ F and each a ∈ A∩ dom f such that

f (a) ∈ A and f ′(a) ∈ A we have ∂ f (a) = f ′(a)∂a.

(Wilkie gives the definition also when F can contain functions of several variables. We

only need the 1-variable case.)

Given a subset C ⊆ A, there is an F-derivation from A which is universal amongst all

F-derivations from A which vanish on C , written

A
d
−→ �F (A/C).

�F (A/C) is constructed as the A-vector space generated by symbols {da | a ∈ A} subject

to the relations which force d to be an F-derivation. In the case where F = ∅, this is just

the usual universal derivation A
d
−→ �(A/C) to the module of Kähler differentials. See,

for example, [7, Chapter 16] for more details.

We write DerF (A) for the A-vector space of all F-derivations from A to A, and

DerF (A/C) for the subspace of all F-derivations which vanish on C .

The connection between F-derivations and the holomorphic closure with respect to F
comes from the following result.

Fact 4.2. Let C ⊆ C and b ∈ C. Then b ∈ hclF (C) if and only if for every ∂ ∈ DerF (C/C)
we have ∂b = 0.
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Furthermore, b1, . . . , bn ∈ C form an hclF -independent set over C if and only if there

are ∂1, . . . , ∂n ∈ DerF (C/C) such that

∂i b j =

1 if i = j

0 if i 6= j.

Proof. Wilkie [28, Theorem 1.10] states that the holomorphic closure (which he denotes

by LD) is a pregeometry on C and is identical to another operator D̃. Theorem 3.4 of the

same paper states that D̃ is identical to an operator DD which is defined exactly by the

condition in the right-hand side of our statement. The ‘furthermore’ statement follows

immediately.

Immediately from the universal property of �F (A/C) we see that DerF (A/C) is the

dual vector space of �F (A/C). If f ∈ F and a, f (a), f ′(a) ∈ A, then there is a differential

form ω = f ′(a)da− d f (a) ∈ �(A/C). Letting W be the span of all such ω, we see that

�F (A/C) is the quotient of �(A/C) by W , and that DerF (A/C) is the annihilator of W
as a subspace of Der(F/C).

So to understand hclF it is enough to understand the linear relations between the

differential forms associated with functions f ∈ F . This amounts to understanding the

transcendence theory of the functions f . In the case of the exponential function and the

Weierstrass ℘-functions, Ax’s theorem and its analogues give us sufficient understanding

to obtain our main results. For general holomorphic functions we do not know so much.

5. Weierstrass ℘-functions

Basic properties

We give the definition of Weierstrass ℘-functions and the basic properties we need

following Silverman [23, pp. 165–171].

Given ω1, ω2 ∈ C which are R-linearly independent, we form the lattice 3 = {mω1+

nω2 |m, n ∈ Z}. We let 3′ = 3r {0}, and define the Weierstrass ℘-function associated

with 3 to be the meromorphic function ℘3(z) = 1
z2 +

∑
λ∈3′

(
1

(z−λ)2 −
1
λ2

)
. The poles

of ℘3 are precisely the elements of 3, so there is a bijective correspondence between

℘-functions and lattices. It can be shown that ℘3(z) satisfies the differential equation

℘′3(z)
2
= 4℘3(z)3− g2℘3(z)− g3,

where g2 = 60
∑
λ∈3′ λ

−4 and g3 = 140
∑
λ∈3′ λ

−6.

Let E(C) ⊆ P2(C) be the complex elliptic curve given by the equation

Y 2 Z = 4X3
− g2 X Z2

− g3 Z3.

Then the map expE : C→ E(C) given by z 7→ [℘3(z) : ℘′3(z) : 1] is a homomorphism of

complex Lie groups with kernel 3, and indeed is the universal covering map of E(C).
The multiplicative stabilizer of a lattice 3 is the set of complex numbers a such that

a3 ⊆ 3. It is always either Z or Z[τ ] for some imaginary quadratic τ , and is isomorphic

to the ring of algebraic endomorphisms of the corresponding elliptic curve. We write k3
or kE for the field of fractions of the multiplicative stabilizer. When kE 6= Q, then E is

said to have complex multiplication.
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Use of the group structure

Now, we consider collections of functions F in which each f ∈ F is either a Weierstrass

℘-function or the complex exponential function. Recall that RPR(F) is the expansion of

R̄ by all proper restrictions of each function in F .

The function ℘3 has poles exactly at the lattice points, so it is holomorphic on Cr3,

and thus the open boxes we consider for proper restrictions are those whose closure does

not meet 3. However, if ℘ ∈ F , then its derivative, ℘′, is locally definable in RPR(F) by

standard ε–δ arguments, and hence the map expE is definable on some open rectangle 1

(with corners in Q(i), the Gaussian rationals) whose closure does not meet 3. Let a ∈ 1
be a Gaussian rational, and let n ∈ N. Then 1′ := {n(z− a) | z ∈ 1} is a rectangle about

the origin, as large as we like by choosing suitable n. Then, for z = n(b− a) ∈ 1′, we

have expE (z) = n · (expE (b)− expE (a)), where the operations on the right-hand side are

the group operations in E , and hence expE (and hence ℘ and ℘′) are locally definable as

analytic functions on all points in C including their poles.

Likewise, if the restriction of the complex exponential function to any open subset of

C is definable, then exp is locally definable on all of C.

Isogeny and Schwarz reflection

Next, we define an equivalence relation on the set of ℘-functions, and show that if ℘

is locally definable in some R then every function in the same equivalence class is also

locally definable in R.

Complex conjugation z 7→ z is definable, so, for any (locally) definable holomorphic f ,

its Schwarz reflection f SR given by f SR(z) = f (z) is a (locally) definable holomorphic

function. The Schwarz reflection of ℘3 is easily seen to be ℘3.

If α ∈ Cr {0}, then an easy calculation shows that ℘α3(z) = 1
α2℘3(z/α), where α3 =

{αλ | λ ∈ 3}. Thus if ℘3 is locally definable then ℘α3 is locally definable using the

parameter α.

More generally, suppose that we have lattices 31 and 32, with 31 ⊆ α32. Then we

get a homomorphism between the corresponding elliptic curves φα : E1 → E2 given by

φα = expE2
◦α ◦ exp−1

E1
, which is surjective and has finite kernel. Such a homomorphism

is called an isogeny. All isogenies are rational homomorphisms, and hence are definable

in R̄. Thus expE2
= φα ◦ expE1

◦α−1, so expE2
is locally definable from expE1

, and ℘32 is

locally definable from ℘31 . In general, the parameter α is needed.

When there is a surjective isogeny E1 → E2, we say that E1 is isogenous to E2. Isogeny

is an equivalence relation on elliptic curves. It gives rise to an equivalence relation on

lattices with 31 equivalent to 32 if and only if there is α ∈ C× such that 31 ⊆ α32. We

call this equivalence relation isogeny of lattices.

We define two Weierstrass ℘-functions associated with lattices 31 and 32 to be

ISR-equivalent (isogeny–Schwarz reflection equivalent) if 31 is isogenous to either 32
or its complex conjugate. This is also an equivalence relation. We extend our equivalence

relation to the usual exponential function by saying that it forms an ISR-class of

its own.

We have shown the following, which is one direction of Theorem 1.1.
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Proposition 5.1. If ℘3 is locally definable in an expansion R of R̄ and ℘3′ can be

obtained from ℘3 by isogeny and Schwarz reflection, then ℘3′ is also locally definable

(with parameters) in R.

For later proofs, we will need the well-known classification of the connected algebraic

subgroups of products of elliptic curves.

Fact 5.2. Let E1, . . . , EN be pairwise non-isogenous elliptic curves, let Gm be the

multiplicative group, let G be the algebraic group G = Gn0
m ×

∏N
i=1 Eni

i , for some natural

numbers ni , and let H be a connected algebraic subgroup of G. Then the following hold.

(1) H is of the form
∏N

i=0 Hi , where H0 is a subgroup of Gn0
m and, for n = 1, . . . , N , Hi

is a subgroup of Eni
i .

(2) For each i = 0, . . . , N , there is a subgroup H∗i of Ei defined by a system of linear

equations (in the sense of the group, but here written additively) of the form∑ni
j=1 ai, j x j = 0, where the ai, j lie in Z, or in Z[τ ] in the case where Ei is an

elliptic curve with complex multiplication by τ , such that Hi is a subgroup of H∗i of

finite index.

Proof. Since the Ei are pairwise non-isogenous, (1) follows from [20, Lemma 7]. For the

multiplicative case, part (2) is stated on page 12 of [18] in a stronger form with H∗i = Hi .

We give a sketch of a proof of part (2) in the elliptic case, and we drop the subscript

i for ease of notation. So, suppose that E is an elliptic curve, that G = En , and that

H is a connected algebraic subgroup of G. The quotient G/H is an abelian variety, and

hence by Poincaré’s complete reducibility theorem [19, Corollary 1, p. 174] this quotient

is isogenous to a product of simple abelian varieties. These simple factors must all be

isogenous to E , and hence G/H is isogenous to Er , where r = n− dim H . Composing the

quotient map and the isogeny, we obtain a homomorphism θ : En
→ Er . Any algebraic

homomorphism En
→ Er can be written as x 7→ Mx , where M is an r × n matrix with

coefficients from Z or Z[τ ] as appropriate. Take H∗ to be the kernel of θ , given by

Mx = 0, a system of linear equations as desired. By construction, H is in the kernel of θ ,

and hence is a subgroup of H∗, and by dimension considerations it is of finite index.

6. Predimension and strong extensions

In this section, we fix F = { f1, . . . , fN }, where the fi are ℘-functions or exp, and are

from distinct ISR-classes. If fi = ℘, we write Ei for the elliptic curve corresponding to

fi and expi : C→ Ei (C) for its exponential map given by expi (z) = [℘(z) : ℘
′(z) : 1]. If

fi = exp, define Ei = Gm and expi = exp. Here, Gm is the multiplicative group, so for any

field F we have Gm(F) = 〈F×, ·〉. Similarly, Ga(F) = 〈F,+〉 is the additive group.

Let ki be Q if Ei is Gm or is an elliptic curve without complex multiplication, and Q(τ )
if Ei is an elliptic curve with complex multiplication by τ . Then the graph 0i (C) of expi
is a subgroup of (Ga× Ei )(C), and it is in fact a ki -vector space. Furthermore, if A is any

subfield of C over which all the Ei are defined, then 0i (A) := 0i (C)∩ (Ga× Ei )(A) is a

ki -subspace of 0i (C).
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Definition 6.1. Suppose that A ⊆ B ⊆ C are subfields. For each i = 1, . . . , N , we define

the fi -group rank grki (B/A) to be the ki -linear dimension of 0i (B)/0i (A), and we define

the F-group rank to be grkF (B/A) =
∑N

i=1 grki (B/A).

Definition 6.2. Let A ⊆ B ⊆ C be subfields such that td(B/A), the transcendence degree

of B over A, is finite. The F-predimension of B over A is defined as

δF (B/A) = td(B/A)− grkF (B/A)

when grkF (B/A) is finite, and −∞ otherwise.

Definition 6.3. Let A ⊆ B ⊆ C be subfields. Then we say that A is F-strong in B,

written A�F B, if and only if, for all K with A ⊆ K ⊆ B and td(K/A) finite, we have

δF (K/A) > 0.

It is not clear from the definition that F-strong proper subfields of C exist, but later

in Proposition 6.8 we will show that they do: in fact, every subfield which is closed in

the sense of the pregeometry hclF is F-strong. Note that, since F is finite, there are

hclF -closed proper subfields of C; indeed, hclF (∅) is countable.

In fact, there are many more F-strong subfields than hclF -closed subfields.

Lemma 6.4. Let A�F B �F C be F-strong subfields. Then there are an ordinal λ and a

chain of subfields (Aα)α6λ such that A0 = A and Aλ = B, and

(i) for each α < λ, either td(Aα+1/Aα) = 1 and δ(Aα+1/Aα) = 1 or td(Aα+1/Aα) is

finite and δ(Aα+1/Aα) = 0;

(ii) if α is a limit then Aα =
⋃
β<α Aβ ;

(iii) if 0 6 α 6 β 6 λ then Aα �F Aβ .

Proof. Enumerate B as (bα)α<λ for some limit ordinal λ. Assume inductively that we

have Aβ for β < α satisfying conditions (i)–(iii) and such that Aβ �F B and bγ ∈ Aβ
whenever γ < β. If α is a limit, take Aα =

⋃
β<α Aβ .

Now, suppose that α is a successor, say α = γ + 1. If there is a finite transcendence

degree extension F of Aγ containing bγ such that δ(F/Aγ ) = 0, then choose Aα to be some

such F . Otherwise, take Aα to be the algebraic closure of Aγ ∪ {bγ }. Then δ(Aα/Aγ ) =
td(Aα/Aγ ) = 1. Conditions (i) and (ii) are immediate, (iii) is straightforward to verify,

and B = Aλ by construction.

Extending derivations

Proposition 6.5. Suppose that A�F B are subfields of C with td(B/A) finite and

δF (B/A) = 0, and let ∂ ∈ DerF (A). Then ∂ extends uniquely to a derivation ∂ ′ ∈

DerF (B).

Proof. Let ∂ ∈ DerF (A). Let �(B/∂) be the quotient of �(B/∅) by the relations∑
ai dbi = 0 for those ai , bi ∈ A such that

∑
ai∂bi = 0. Then we have quotient maps

of B-vector spaces

�(B/∅) // // �(B/∂) // // �(B/A) .
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Let Der(B/∂) = {η ∈ Der(B) | (∃λ ∈ B)[η�A= λ∂]}. Then Der(B/∂) is a B-vector

subspace of Der(B) that is easily seen to be the dual space of �(B/∂). Thus we have

a sequence of inclusions

Der(B/A) �
� // Der(B/∂) �

� // Der(B)

that is dual to the sequence above.

Since A�F B, we have
∑N

i=1 grki (B/A) 6 td(B/A), finite. For each i = 1, . . . , N , let

ni = grki (B/A), and choose (bi, j , expi (bi, j )) for j = 1, . . . , ni , forming a ki -linear basis for

0i (B) over 0i (A). Then, for each i and j , we have differential forms ωi j = f ′i (bi, j )dbi, j −

d fi (bi, j ) ∈ �(B), and their images ω̂i j ∈ �(B/A).
Let G be the algebraic group

∏N
i=1 Eni

i , let n =
∑N

i=1 ni , and let T G = Gn
a ×G. Write b̄

for the tuple of all bi, j , and expG(b̄) ∈ G(B) for the tuple of all expi (bi, j ), so (b̄, expG(b̄)) ∈
T G(B). The bi, j are chosen so that the pairs (bi, j , expi (bi, j )) are ki -linearly independent

in 0i (B) over 0i (A). So, using Fact 5.2, the point (b̄, expG(b̄)) does not lie in any coset

γ ·TH, where H is a proper connected algebraic subgroup of G and γ is defined over A.

Hence, by [13, Proposition 3.7], the differential forms ω̂i j are all B-linearly independent

in �(B/A). It follows that the images of the ωi j in �(B/∂) are B-linearly independent.

Thus their span, say W , has dimension equal to grkF (B/A).
Thus the annihilator Ann(W ) has codimension grkF (B/A) in Der(B/∂) and also in

Der(B/A). Observe that, for η ∈ Der(B/A), we have η ∈ DerF (B/A) if and only if η ∈

Ann(W ). By [7, Theorem 16.14a], dim Der(B/A) = td(B/A), so we have

dim DerF (B/A) = dim Der(B/A)− dim W

= td(B/A)− grkF (B/A)

= δF (B/A) = 0,

and hence DerF (B/A) = {0}.
We define DerF (B/∂) = Der(B/∂)∩DerF (B). If ∂ = 0, then DerF (B/∂) = DerF (B/A),

and hence ∂ only extends to the zero derivative on B. Otherwise, ∂ 6= 0, so we can choose

a ∈ A with ∂a = 1. If we quotient�(B/∂) by the single relation da = 0, we get�(B/A), so

dim�(B/∂) 6 dim�(B/A)+ 1, and dually dim Der(B/∂) 6 dim Der(B/A)+ 1. However,

by [15, Theorem VIII.5.1], the derivation ∂ (and all its scalar multiples) do extend to B,

so in fact

dim Der(B/∂) = dim Der(B/A)+ 1 = td(B/A)+ 1.

Again for η ∈ Der(B/∂) we have η ∈ DerF (B/∂) if and only if η ∈ Ann(W ). So we have

dim DerF (B/∂) = dim Der(B/∂)− dim W

= td(B/A)+ 1− grkF (B/A)

= δF (B/A)+ 1 = 1.

Thus there is η ∈ DerF (B/∂)rDerF (B/A), unique up to scalar multiplication. So η�A=

λ∂ for some λ 6= 0, and thus λ−1η is the unique F-derivation on B which extends ∂, as
required.
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Proposition 6.6. Suppose that A�F B are subfields of C with td(B/A) = δF (B/A) = 1, let

b ∈ B be transcendental over A, and let ∂ ∈ DerF (A). Then, for each c ∈ B, the derivation

∂ extends uniquely to a derivation ∂ ′ ∈ DerF (B) such that ∂ ′b = c. In particular, there is

∂ ′ ∈ DerF (B/A) such that ∂ ′b = 1.

Proof. By [15, Theorem VIII.5.1], the derivation ∂ ∈ DerF (A) extends uniquely to

a field derivation ∂ ′ ∈ Der(B) with ∂ ′b = c. Since td(B/A) = δF (B/A) = 1, we have

grkF (B/A) = 0, so for each i we have 0i (B) = 0i (A), and thus ∂ ′ ∈ DerF (B).

Proposition 6.7. Let A�F C be a subfield, and let ∂ ∈ DerF (A). Then there is ∂ ′ ∈

DerF (C), extending ∂.

Proof. Put together Lemma 6.4 and Propositions 6.5 and 6.6.

Predimension and dimension

Proposition 6.8. Let C ⊆ C be an hclF -closed subfield. Then C �F C.

Proof. Let A ⊇ C be a subfield of C, with td(A/C) finite. Suppose that we have xi, j ∈ A
for i = 1, . . . , N , j = 1, . . . , ni , such that, for each i , the pairs (xi, j , expi (xi, j )) lie in 0i (A)
and are ki -linearly independent over 0i (C). Let n =

∑N
i=1 ni , let S =

∏N
i=1 Eni

i , and let

T S = Gn
a × S. Let x be the tuple of all the xi, j , and let y be the tuple of all the expi (xi, j ).

Then, in the notation of [13], we have (x, y) ∈ 0S(A) ⊆ T S(A).
Since the groups Ei are pairwise non-isogenous, every algebraic subgroup of S is of the

form
∏N

i=1 Hi , where Hi is an algebraic subgroup of Eni
i . Thus the ki -linear independence

condition implies that (x, y) does not lie in any coset γ ·TH, where H is a proper algebraic

subgroup of S and γ is a point of TH defined over C .

Thus, by [13, Theorem 3.8] with F = C and 1 = DerF (C/C), we have

td(x, y/C)− rk Jac(x, y) > n.

The quantity rk Jac(x, y) is the rank of a matrix, and hence is non-negative, so we have

td(A/C) > td(x, y/C) > n.

Hence n is bounded above, and we may choose the xi, j to make it maximal. Then n =
grkF (A/C), and we conclude that

δF (A/C) = td(A/C)− grkF (A/C) > 0.

Hence C �F C, as required.

Recall from Fact 3.2 that the holomorphic closure hclF is a pregeometry on C. Thus,

given any subsets C ⊆ A ⊆ C, there is a relative dimension of A over C , which we denote

by dimF (A/C).

Proposition 6.9. Let C be an hclF -closed subfield of C, and let A ⊆ C be an extension of

C with td(A/C) finite. Then the following hold.

(i) dimF (A/C) = min{δF (B/C) | A ⊆ B ⊆ C with td(B/A) finite}.

(ii) If A�F C, then dimF (A/C) = δF (A/C).
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Proof. For (i), since C �F C, the minimum exists and is non-negative. If B witnesses the

minimum, then B �F C, and so it remains to show (ii).

So, suppose that A�F C. From Lemma 6.4, there is a chain

C = A0 �F A1 �F · · ·�F Ar = A

with δF (Ai/Ai−1) = 0 or δF (Ai/Ai−1) = td(Ai/Ai−1) = 1 for each i = 1, . . . , r .

If δF (Ai/Ai−1) = 1, then by Proposition 6.6 we have dim DerF (Ai/Ai−1) = 1. Since

Ai �F C, Proposition 6.7 shows that the derivations in DerF (Ai/Ai−1) all extend to

C, and hence by Fact 4.2 we have dimF (Ai/Ai−1) = 1. If δF (Ai/Ai−1) = 0, then from

Proposition 6.7 it follows that dim DerF (Ai/Ai−1) = 0, and hence dimF (Ai/Ai−1) = 0.

Now δF (A/C) =
∑r

i=1 δF (Ai/Ai−1) and dimF (A/C) =
∑r

i=1 dimF (Ai/Ai−1), so we

have dimF (A/C) = δF (A/C), as required.

7. Definability of other functions

Lemma 7.1. Suppose that C �F C is an F-strong subfield and that A, B are extensions

of C of finite transcendence degree. We write AB to mean the subfield of C generated by

A∪ B. Then the following hold.

(1) grkF (AB/C)+ grkF (A∩ B/C) > grkF (A/C)+ grkF (B/C) (we say grk is upper

semi-modular).

(2) td(AB/C)+ td(A∩ B/C) 6 td(A/C)+ td(B/C) (transcendence degree is lower

semi-modular, or submodular).

(3) δF (AB/C)+ δF (A∩ B/C) 6 δF (A/C)+ δF (B/C) (predimension is submodular).

(4) If A ⊆ B and F1 ⊆ F2 then grkF1
(A/C) 6 grkF2

(B/C) (monotonicity in A and F).

Proof. The proof is straightforward.

Now, we can prove our main technical result.

Theorem 7.2. Let F1 and F2 be sets of Weierstrass ℘-functions, with one or both

possibly also containing complex exponentiation. Let F0 = F1 ∩F2, and suppose that

no ℘-function from F1 rF0 is isogenous to any ℘-function in F2, or to the Schwarz

reflection of a ℘-function in F2.

Suppose that f : U → C is a holomorphic function which is locally definable (with

parameters) with respect to RPR(F1) and with respect to RPR(F2). Then f is locally definable

(with parameters) almost everywhere in U , with respect to RPR(F0), in the sense of

proposition 3.3.

Proof. Let F3 = F1 ∪F2. We may assume that F3 is finite and contains at most one

representative of each ISR-class. Let C be a countable subfield of C which is hclF3 -closed

and contains the parameters needed to define f . It follows that C is hclFi -closed for all

i = 0, 1, 2, 3.

Let a ∈ U . Then, for i = 1, 2, we have f (a) ∈ hclFi (Ca), so dimFi ( f (a)/Ca) = 0. Let

di = dimFi (a/C) for i = 0, 1, 2, 3. By Proposition 6.9, there are subfields B1 and B2 of C
containing C ∪ {a, f (a)} such that δFi (Bi/C) = di . We choose the Bi to be the smallest
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such fields, so Bi �F C, and we let A = B1 ∩ B2, and let B be the subfield of C generated

by B1 ∪ B2.

Let F4 = F1 rF0 and F5 = F2 rF0, so F0, F4, and F5 are disjoint. Henceforth, we

write grki for grkFi
, δi for δFi , and dimi for dimFi .

Then we have

grk3(B/C) = grk4(B/C)+ grk5(B/C)+ grk0(B/C)

> grk4(B1/C)+ grk5(B2/C)+ grk0(B/C) by monotonicity

> grk4(B1/C)+ grk5(B2/C)+ grk0(B1/C)+ grk0(B2/C)− grk0(A/C)

by upper semi-modularity

= grk1(B1/C)+ grk2(B2/C)− grk0(A/C).

Also, td(B/C) 6 td(B1/C)+ td(B2/C)− td(A/C) by submodularity, so

d3 6 δ3(B/C)

= td(B/C)− grk3(B/C)

6 td(B1/C)+ td(B2/C)− td(A/C)− [grk1(B1/C)+ grk2(B2/C)− grk0(A/C)]

6 δ1(B1/C)+ δ2(B2/C)− δ0(A/C)

and hence δ0(A/C) 6 d1+ d2− d3. Now, we have d3 6 min(d1, d2) since F3 ⊇ F1,F2,

and hence δ0(A/C) 6 d3. So dim0(a, f (a)/C) 6 d3 by Proposition 6.9 again, but, since

F0 ⊆ F3, we have dim0(a/C) > d3, and hence dim0( f (a)/Ca) = 0. So f (a) ∈ hclF0(Ca).
This applies to all a ∈ U , and hence, by Proposition 3.3, f is locally definable (with

parameters from C) almost everywhere in U , with respect to RPR(F0).

We can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Proposition 5.1 shows that, if g is ISR-equivalent to one of the

fi , then it is locally definable in RPR(F). So suppose that g is not ISR-equivalent to

any of the fi . By Proposition 5.1, we may suppose that the fi are all from different

ISR-classes. Applying Proposition 7.2 with F1 = F and F2 = {g}, we see that, if g
is locally definable in RPR(F), then it is locally definable almost everywhere in R̄.

However, all functions definable in R̄ are piecewise algebraic, and Weierstrass ℘-functions

and complex exponentiation are not algebraic, for example because they are periodic

functions. Hence g is not locally definable in RPR(F).

8. Definable sets

In the case where F0 = ∅, we are able to extend our result from holomorphic functions

to all definable sets. This is because we can show that all definable sets come in some

way from definable holomorphic functions.

Proposition 8.1. Suppose that F is a collection of holomorphic functions. If f : U → R
is an analytic function definable in the structure RPR(F), on U , an open subset of Rn,

then there exists an RPR(F)-definable subset X of U of dimension at most n− 1, an open

subset W of Cn with W ∩Rn
= U \ X , and an RPR(F)-definable holomorphic F : W → C

such that F�U\X= f .
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Proof. For the result we will quote, we need our functions to be total, so we first fix for

each open box in Rm and each m a semialgebraic analytic isomorphism between the box

and Rm . Let R̃ be the expansion of the real field by all real and imaginary parts of proper

restrictions of functions in F suitably composed with these isomorphisms to make total

functions, and then add all derivatives of these functions. Note that the definable sets

in R̃ and in RPR(F) are the same. For this proof, we write definable to mean definable

in either of these structures. Suppose that F ∈ F and that φ and ψ are the real and

imaginary parts of some proper restriction of F . For convenience, suppose that the box

these functions are restricted to is [−1, 1]2n . Define holomorphic functions Fφ, Fψ near 0
in C2n by

Fφ(z, w) =
F(z+ iw)+ F(z+ iw)

2

Fψ (z, w) =
−i · F(z+ iw)+−i · F(z+ iw)

2
,

where the bars denote coordinatewise complex conjugation. These functions, near 0,

extend φ and ψ , respectively, and are definable. Using compactness, we see that the

real and imaginary parts of any proper restriction of functions in F have definable

holomorphic extensions, and hence the same is true for the functions in the language of

R̃, and thus for all terms in the language of R̃ (after these are identified with functions).

By a theorem of Gabrielov [8, Theorem 1], the structure R̃ is model complete. It is also

polynomially bounded, and hence it is, in the sense of [11], locally polynomially bounded

(we do not need the definition here). So we can apply Corollary 4.5 of [11] to our function

f to obtain definable open sets U1, . . . ,Uk such that the dimension of U \
⋃

Ui is at most

n− 1 and such that for each i there exist terms gi,1, . . . , gi,mi : Rn+mi → R in the language

of R̃, with mi > 1 and definable functions φi,1, . . . , φi,mi : Ui → R such that

gi,1(x, φi,1, . . . , φi,mi (x)) = 0
...

gi,mi (x, φi,1, . . . , φi,mi (x)) = 0

and

det


∂gi,1

∂xn+1
· · ·

∂gi,1

∂xn+mi
...

...
...

∂gi,mi

∂xn+1
· · ·

∂gi,mi

∂xn+mi

 (x) 6= 0

for all x ∈ Ui and φi,1 = f �Ui . Let X = U \
⋃

Ui . We prove the conclusion for each

restriction f �Ui , and for simplicity of notation we drop the i and suppose that the above

holds throughout U . So we have terms g1, . . . , gm : Rn+m
→ R and definable functions

φ1, . . . , φm : U → R such that f = φ1 and the equations and inequation above hold on U .

As we noted above, the terms g1, . . . , gm all have definable holomorphic extensions. So
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we obtain definable holomorphic functions G1, . . . ,Gm on a definable open set V in

Cn+m with V ∩Rn+m
= Rn+m . The graph of f is contained in the common zero set Z

of G1, . . . ,Gm , and at each point of this graph the hypotheses of the complex implicit

function theorem hold. For each x ∈ U , let εx > 0 be such that the complex implicit

function theorem holds on Wx := {z ∈ V : |z− x | < εx } so that Z is the graph of a map

above Wx . By definable choice we can take ε to be definable function of x and then the

union W of the Wx is a definable open set. The projection of Z to Cn+1 intersected with

W ×C is the graph of a holomorphic extension of f on W , and is definable.

We need a cell decomposition result which may be known, though it is not well known.

Lemma 8.2. Suppose that R is an expansion of R̄ in which every definable set is also

definable in Ran. Then R has analytic cell decomposition.

Proof. Throughout this proof, by definable we mean definable with parameters in R.

It suffices to show that every definable cell C ⊆ Rn is a disjoint union of finitely many

definable analytic cells. This is proven by induction on the pairs (n, k), where k is the

dimension of C . Clearly, we may suppose that n > 1 and k > 0.

Suppose first that C = graph( f ), where f : C ′→ R is definable and C ′ ⊆ Rn−1 is a

definable cell of dimension k. By the inductive hypothesis, we may suppose that C ′ is an

analytic cell. So we can find a definable analytic diffeomorphism ϕ : C ′→ C ′′ onto an open

analytic cell C ′′ ⊆ Rk , with analytic inverse ψ : C ′′→ C ′. By Tamm’s theorem (see [24,

Theorem 2.3.3] and also the formulation given in [5, p. 1367]), there exists p ∈ N such

that, if U ⊆ C ′′ is an open set and f ◦ϕ : C ′′→ R is C p on U , then it is actually analytic

on U . Consider a C p-cell decomposition of C ′′, and let D1, . . . , Dl be the open cells. Then

ψ (Di ) ⊆ C ′ is an analytic cell for each i = 1, . . . , l, and so is graph( f �ψ(Di )) ⊆ C . Notice

that dim
(

C \
⋃l

i=1 ψ (Di )
)
< k, and hence, by the inductive hypothesis on k, and by

further cell decomposition, the set C \
⋃l

i=1 ψ (Di ) has an analytic cell decomposition.

Suppose now that C =
{
(x, y) : x ∈ C ′, f (x) < y < g (x)

}
, where f, g : C ′→ R are

definable and C ′ ⊆ Rn−1 is a definable cell of dimension k− 1. By the first part of this

proof, there are analytic cell decompositions D f and Dg of graph( f ) and graph (g),
respectively. Let D′ be an analytic cell decomposition of C ′ which is compatible with

every set π (D), where D ∈ D f ∪Dg and π : Rn
3 (x, y) 7→ x ∈ Rn−1 is the projection

onto the first n− 1 coordinates. By the inductive hypothesis on k, it suffices to remark

that, by construction, for every cell D ∈ D′ of dimension k− 1, the set C ∩ (D×R) is a

disjoint union of finitely many analytic cells.

The following lemma is proved by inserting the word ‘analytic’ at appropriate points

in the proof of [27, Lemma 1.1, p. 32].

Lemma 8.3. Suppose that C ⊆ Rn is an analytic cell definable in an o-minimal expansion

of R̄. Then there are an open analytic cell U ⊆ Rn such that C ⊆ U and an analytic

retraction θ : U → C (that is, for each a ∈ U we have θ(a) = a) which are definable in

the structure 〈R̄,C〉.

We can now prove Theorem 1.2.
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Proof of Theorem 1.2. Suppose that X ⊆ Rn is definable in RF1 and in RF2 . By

Lemma 8.2, there is an analytic cell decomposition of X in the structure 〈R̄; X〉, which

is then a decomposition in both RF1 and RF2 . Hence it suffices to prove the theorem in

the case where X is an analytic cell, C ⊆ Rn .

We proceed by induction on n, with the case n = 1 being trivial. So suppose that n > 1.

If C = graph( f ) with f : C ′→ R, then, by induction, C ′ is a semialgebraic cell. Let θ :

U ′→ C ′ be the analytic retraction provided by Lemma 8.3, and note that it is definable

in RF1 and RF2 . The function f ◦ θ : U ′→ R is analytic and definable in RF1 and RF2 .

Hence, using Proposition 8.1, its holomorphic extension g to some open set W ⊆ Cn is

definable both in RF1 and in RF2 . But then, by Theorem 7.2, some restriction of g to an

open set is definable in R̄, and hence is a semialgebraic function. But g is holomorphic,

so it must be an algebraic function, and hence f ◦ θ and f are also algebraic functions.

Hence C is a semialgebraic cell.

Otherwise C is a parameterized interval of the form ( f, g)C ′ . By the previous case, f
and g are semialgebraic functions on C ′, so C is also semialgebraic.

Note that in this last result we have worked with parameters. Care needs to be taken

when formulating an analogue for 0-definable sets. For example, we could take F1 to

consist of the exponential on its own, and F2 to consist of the ℘-function associated to

the curve Y 2
= 4X3

− e, where e = exp(1). Then e is 0-definable in both RF1 and in RF2 .

But it is certainly not 0-definable in R̄! So, at the very least, the conclusion would be that

a set that is 0-definable in both structures is 0-definable in the expansion of the real field

by the constants occurring in the equations for all the curves associated to the ℘-functions

in F1 and F2. Perhaps this is the correct formulation, but it seems hopeless to prove, as it

makes assertions about relations between values of iterated exponentials and ℘-functions.

For example, take F1 to again consist of the exponential only and F2 to consist of a single

℘-function now associated to a curve defined by an equation over the rationals. Then it

may be that ee and ℘(℘(℘ (1))) are transcendental but interalgebraic, and in that case ee

would be a 0-definable point in both RF1 and RF2 , but not 0-definable in R̄. Ruling out

all such coincidences is part of the content of Bertolin’s Conjecture Elliptico-Torique [3],

which is a special case of the André–Grothendieck conjecture on the periods of 1-motives.

9. A counting application

Our main result can be used to show that certain functions are transcendental.

For example, suppose that F consists of all ℘-functions, that f : (a, b)→ (a′, b′)
is an analytic homeomorphism definable in Rexp, and that g : (a′, b′)→ (a′, b′) is a

transcendental function definable in RF . Then the function h : (a, b)→ (a, b) defined

by

h(t) = f −1(g( f (t)))

is transcendental. For otherwise, we would have h algebraic, and then g = f ◦ h ◦ f −1

would be definable in Rexp, which would contradict Theorem 7.2.

Using this together with recent results on counting rational points on definable sets

in o-minimal structures (that is, results starting with the Pila–Wilkie theorem [22]), we

can count points of the form f (q) on certain sets, in terms of the height of q. We give
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an example in the direction of transcendence theory. First, recall that, if a rational q
is written in lowest terms as a/b, then the height H(q) is defined as the maximum of

|a| and |b|, and that this height function is extended to tuples by taking coordinatewise

maximum. Now suppose that, as above, we take F to be the collection of all ℘-functions.

We take f above to be the logarithm, and hence count points of the form (log p, log q)
on the graph of an RF definable function g : R→ R, in terms of the height of (p, q).
This is clearly the same as counting rational points (p, q) on the graph of the function

h(t) = exp(g(log t)). This function is definable in the expansion RF ,exp of RF by the

exponential function. Adding the Pfaffian chains of the functions in the language of RF
(see [17]) and constants to the language of RF ,exp, we obtain a reduct of the expansion

of the real field by all Pfaffian functions and this reduct is model complete by a result

of van den Dries and Miller [6, Corollary 6.12(ii)]. By the application of Theorem 7.2

described above, the function h is transcendental. Hence we can apply a result due to

the first author and Thomas [10, Theorem 4.4] to obtain the following.

Proposition 9.1. Suppose that g : R→ R is definable in the expansion of the real field

by all proper restrictions of the real and imaginary parts of all Weierstrass ℘-functions.

Then there exist positive c and k depending on g with the following property. There are

at most

c(log H)k

positive rationals p and q of height at most H such that (log p, log q) lies on the graph

of g.

Taking another f in place of the logarithm, or interchanging the role of the structures,

leads to other similar results.
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