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Abstract

A symptom of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) is a flat learning profile. Learning slope
calculation methods vary, and the optimal method for capturing neuroanatomical changes associated with MCI and early
AD pathology is unclear. This study cross-sectionally compared four different learning slope measures from the Rey
Auditory Verbal Learning Test (simple slope, regression-based slope, two-slope method, peak slope) to structural
neuroimaging markers of early AD neurodegeneration (hippocampal volume, cortical thickness in parahippocampal gyrus,
precuneus, and lateral prefrontal cortex) across the cognitive aging spectrum [normal control (NC); (n= 198; age= 76± 5),
MCI (n= 370; age= 75± 7), and AD (n= 171; age= 76± 7)] in ADNI. Within diagnostic group, general linear models
related slope methods individually to neuroimaging variables, adjusting for age, sex, education, and APOE4
status. Among MCI, better learning performance on simple slope, regression-based slope, and late slope (Trial 2–5) from
the two-slope method related to larger parahippocampal thickness (all p-values< .01) and hippocampal volume (p< .01).
Better regression-based slope (p< .01) and late slope (p< .01) were related to larger ventrolateral prefrontal cortex in MCI.
No significant associations emerged between any slope and neuroimaging variables for NC (p-values ≥ .05) or AD
(p-values ≥ .02). Better learning performances related to larger medial temporal lobe (i.e., hippocampal volume,
parahippocampal gyrus thickness) and ventrolateral prefrontal cortex in MCI only. Regression-based and late slope
were most highly correlated with neuroimaging markers and explained more variance above and beyond other common
memory indices, such as total learning. Simple slope may offer an acceptable alternative given its ease of calculation.
(JINS, 2015, 21, 455–467)
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INTRODUCTION

Alzheimer’s disease (AD) is a major public health issue for
older adults that is projected to worsen as the population ages
(Hebert, Scherr, Bienias, Bennett, & Evans, 2003). Episodic

verbal learning and memory impairments are among the
earliest clinical signs of AD pathophysiology (Jedynak et al.,
2012). Among episodic memory assessment tools, list-
learning tests are not only sensitive in detecting AD pathol-
ogy (Tierney et al., 1994), but they also predict cognitive
decline and conversion to AD (Albert, Moss, Tanzi, & Jones,
2001). To date, much of the literature has focused on delayed
recall (Tierney, Yao, Kiss, & McDowell, 2005). However,
learning slope is an important aspect of episodic memory
assessment in AD, as a flat learning slope is characteristic of a
classic amnestic profile (Bondi et al., 1994).
List-learning tests involve the presentation of a list of

words across several trials, with multiple methods to quantify
learning slope, including simple slope (i.e., Trial 1 to Trial 5
only; Jones et al., 2005), regression-based slope (i.e., linear fit
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over all learning trials; Tulving, 1964), or peak slope (i.e.,
Trial 1 to maximum recall; McMinn, Wiens, & Crossen,
1988). It remains unclear which calculation method is opti-
mal for assessing learning in clinical and research efforts.
Determining the neuroanatomical relevance of different

slope calculations would enhance the clinical utility of list-
learning measures. Episodic learning indices other than
learning slope have been linked to brain structures implicated
early in the pathophysiological process of AD, including the
hippocampus (Petersen et al., 2000) and parahippocampal
gyrus (Stout et al., 1999). Learning slope may be associated
with other brain regions, such as the dorsolateral prefrontal
cortex (DLPFC; D’Esposito, Postle, Ballard, & Lease, 1999),
ventrolateral prefrontal cortex (VLPFC; Park & Rugg, 2008),
and precuneus (Chang et al., 2010).
This study aims to identify the neuroanatomical sig-

nificance of learning slope in older adults across the cognitive
aging spectrum by comparing different slope calculation
measures to structural neuroimaging variables. Selected
neuroimaging variables include markers associated with the
earliest pathological signs of AD (i.e., hippocampal volume
and parahippocampal gyrus cortical thickness) and cortical
thickness markers in regions-of-interest (ROIs) implicated in
successful learning processes among older adults (i.e.,
DLPFC, VLPFC, and precuneus). We stratify the analyses by
diagnosis (i.e., normal cognition, MCI, AD) to evaluate the
relation between slope method and neuroimaging variable
separately. The separate analysis allows for a more specific
assessment of how learning slope relates to possible pathol-
ogy by minimizing the heterogeneity in both cognitive
performance and neuroanatomy across diagnostic categories.
We do not expect differences in the relation between slope
and neuroanatomical regions across diagnostic categories
given the reliance on these structures for cognitive perfor-
mance regardless of disease stage. Based on prior research,
we hypothesize that simple slope, regression-based slope,
late slope (Trials 2–5), and peak slope will correlate most
strongly with hippocampus, parahippocampal gyrus, and
precuneus cortical thickness. Also, we hypothesize that early
slope (Trials 1–2) will be associated with DLPFC and
VLPFC given lateral prefrontal associations with attention
and distractibility (Chao & Knight, 1995). Secondarily, we
will include other commonly used RAVLT summary score
indices in the models (i.e., Total Learning, Immediate Recall,
Delayed Recall) to assess the unique predictive utility of each
slope method. We hypothesize that learning slope will pro-
vide valuable information above and beyond other common
learning and memory indices.

METHODS

Participants

Participants were drawn from the multisite, longitudinal
Alzheimer’s Disease Neuroimaging Initiative (ADNI; http://
adni.loni.ucla.edu/), launched in 2003 to examine neuro-
imaging biomarkers in the progression of AD. At the time of

participant enrollment, ADNI exclusion criteria included
neurological disease other than AD, history of brain lesion or
head trauma, and history of psychoactive medication use
(http://www.adni-info.org for full inclusion/exclusion
criteria). We accessed publicly available data from the
original ADNI cohort on 1/07/13, including 822 individuals
aged 50 to 95 years who had a baseline diagnosis of normal
cognition (NC), MCI, or AD as follows:

(1) NC defined by (a) Mini-Mental State Examination
(MMSE; Folstein, Folstein, & McHugh, 1975) score
between 24 and 30; (b) Clinical Dementia Rating
(CDR; (Morris, 1993) global score of 0 (no dementia);
(c) preserved activities of daily living (ADLs); and
(d) not meeting criteria for MCI or AD.

(2) MCI, based upon Petersen et al. (2010), was defined by
(a) MMSE= 24–30; (b) CDR= 0.5–1.0 (mild impair-
ment); (b) relatively spared ADLs; (c) objective
cognitive impairment as measured by education-
adjusted scores on neuropsychological evaluation;
(d) report of subjective cognitive change by patient or
informant; and (e) not meeting criteria for AD.

(3) AD, defined by (a) MMSE= 20–26; (b) CDR= 0.5–
2.0; (c) objective cognitive impairment (i.e., perfor-
mances >1.5 standard deviations outside the
age-adjusted mean) in at least two cognitive systems;
(d) cognitive impairment that directly impaired ADLs;
and (e) meeting probable AD criteria (McKhann et al.,
1984). For the current study, we excluded participants
with severe AD (i.e., CDR= 3).

The current study was limited to ADNI participants with
available baseline structural neuroimaging data, which resul-
ted in a total sample size of 739 participants (n= 198 NC,
n= 370 MCI, and n= 171 AD). Apolipoprotein-E (APOE)
genotyping for the ε4 allele (APOE4) was performed by the
ADNI Biomarker Core at the University of Pennsylvania
(http://www.adni-info.org/). All study procedures were per-
formed in compliance with institutional research standards. All
participants provided written informed consent. Analysis of
ADNI’s publicly available database was approved by our local
Institutional Review Board before data access or analysis.

Rey Auditory Verbal Learning Test

The Rey Auditory Verbal Learning Test (RAVLT; Rey,
1964) evaluates verbal episodic memory skills. The examiner
reads aloud a list of 15 nouns, after which the patient is asked
to repeat as many words as s/he can remember. The list is
repeated for five total learning trials followed by immediate
recall of a distractor list, immediate recall, delayed (30-min)
recall, and recognition. The current study focused on four
methods for modeling learning slope across the initial five
learning trials:

(1) Simple slope, defined as the change in recall scores
between Trial 1 and Trial 5, divided by four
(Jones et al., 2005);
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(2) Regression-based slope, defined as the linear least
squares regression of Trials 1–5 recall scores on the trial
numbers (Tulving, 1964);

(3) Peak slope, defined as the change between Trial 1 recall
and the earliest peak recall on Trials 2 to 5, divided by
the change in trial number (McMinn et al., 1988); and

(4) Two-slope method, which separately assessed learning
slope between Trials 1 and 2 and between Trials 2 and 5
(Delis, Kramer, Kaplan, & Ober, 2000). Slope para-
meters were calculated using the formula by Delis et al.
(2000), based on the Pearson product moment correla-
tion coefficient (Rodgers & Nicewander, 1988):

r ¼
P

xy�
P

xð Þ P
yð Þ

n

P
x2�

P
xð Þ2

� �

n

where x indicates the Trial number (i.e., 1 through 5),
y indicates the total number correct per trial (i.e., 0 to 15), and
n is a normalization factor (i.e., total number of Trials or 5).
This method, like the regression-based slope, assumes
linearity between learning trials and fits a line to extract the
coefficient of correlation (Jones et al., 2005).

Neuroimaging Protocol

The ADNI neuroimaging protocol has been reported else-
where (Weiner et al., 2010). Images for the current study
included original uncorrected 1.5T T1-weighted high-
resolution three-dimensional structural data. Before proces-
sing, all scans were viewed on a slice-by-slice basis to confirm
motion and artifacts were not present. All neuroimaging
measures of interest were derived using FreeSurfer Version 5.0
(http://surfer.nmr.mgh.harvard.edu; (Dale, Fischl, & Sereno,
1999; Fischl, Sereno, & Dale, 1999). Briefly, participant data
were run through the reconstruction process (recon-all) for
skull stripping, intensity normalization, and segmentation by
tissue type (i.e., cerebrospinal fluid, gray matter, and white
matter). White and gray matter regions were segmented using
spatial intensity gradients and intensity of gray/white borders
(Fischl & Dale, 2000). Contiguous ROIs were detected based
on intensity similarity and spatial gradient (contour). Bias
fields were modeled as a three-dimensional second order
polynomial. After three iterations of likelihood maximizations
of the hidden Markov field model, estimated total intracranial
volume (etICV) was computed based on the transformation to
standard space as outlined by Buckner et al. (2004). The cor-
tical surface of the brain was then inflated and registered to a
spherical atlas to parcellate gyral and sulcal structures (Fischl,
Sereno, Tootell, & Dale, 1999). All data were manually
inspected and edited to correct for registration, topological,
and segmentation defects, which included inspection of white
and gray surfaces in accordance with the FreeSurfer training
manual (http://surfer.nmr.mgh.harvard.edu/fswiki/Edits). After
these manual intervention steps, images were re-processed
through FreeSurfer to update the transformation template
and segmentation information. After surface generation, all
surfaces were smoothed at 30mm full-width/half-maximum

Gaussian kernel to reduce the effects of noise on the results.
Variables of interest for the current study were generated
as follows:

1. Hippocampal volumetric analysis: Raw images under-
went automated Talairach transformation and segmenta-
tion (Fischl et al., 2002). ICV-corrected hippocampal
volume was computed as hippocampal ROI volume/
etICV*100.

2. Cortical thickness analysis: Both intensity and continu-
ity information were used to produce representations of
cortical thickness, calculated as the closest difference
from the gray/white matter boundary to the gray matter/
CSF boundary at each surface vertex (Fischl & Dale,
2000). The generated values relied on spatial intensity
gradients not restricted to the voxel resolution, so they
were not affected by absolute signal intensity and were
able to detect submillimeter features. Such cortical
thickness procedures have been validated with histolo-
gical (Rosas et al., 2002) and manual measurements
(Salat et al., 2004). Average gray matter thickness was
calculated for all cortical ROIs. For the current study,
ROIs from FreeSurfer (Destrieux, Fischl, Dale, &
Halgren, 2009) included the precuneus, the parahippo-
campal gyrus, and the VLPFC (i.e., pars orbitalis, pars
triangularis, and pars opercularis). Cortical thickness of
the DLPFC was based on the caudal middle frontal gyrus
(Desikan et al., 2006).

Statistical Analysis

Baseline clinical characteristics were calculated and com-
pared across the three diagnostic groups (i.e., NC, MCI, and
AD) using Pearson’s chi-squared test and one way analyses
of variance. Characteristics included age, sex, education,
APOE4 status (i.e., positive defined as carrying one or more
copies of the ε4 allele or negative defined as carrying no
copies of the ε4 allele), global cognition (as assessed by the
MMSE), and RAVLT learning indices (i.e., Trial 1, Trial 2,
Trial 3, Trial 4, Trial 5, and Trial 1–5 Total Learning).
Pearson correlation analyses assessed the relatedness within
the predictor set of slope variables (simple, regression-based,
peak, and two-slope method where early and late slope
were treated as two separate terms) and within the outcome
set of neuroimaging variables (hippocampal volume, para-
hippocampal gyrus cortical thickness, precuneus thickness,
DLPFC thickness, and VLPFC thickness) by diagnosis.
Within each diagnostic group, general linear models

(GLMs) related each of the four learning slope calculation
methods to each of the structural neuroimaging markers.
Based on theoretical considerations, age (Salat et al., 2004;
Salthouse, 1996), sex (for review, see Cosgrove, Mazure, &
Staley, 2007; Herlitz, Nilsson, & Backman, 1997), and edu-
cation (Apostolova et al., 2006; Stern, 2002) were selected a
priori as covariates for inclusion in the GLMs. APOE4 status
was also used as a covariate because APOE4 carrier status
has been related to decreased memory performance and
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smaller brain structure (Flory, Manuck, Ferrell, Ryan, &
Muldoon, 2000; O’Dwyer et al., 2012) and thus could inde-
pendently relate to the predictor or outcome measures
regardless of diagnostic group status. For the two-slope
method, early (Trials 1–2) and late (Trials 2–5) slope were
included in the model simultaneously. For each model, the R2

of the base model (with only covariates) was measured and
used to calculate the incremental R2 (ΔR2) relative to the base
model for each slope method. This value was used to assess
the additive predictive value above and beyond the adjusting
covariates. The F-test was used to conduct significance test-
ing for ΔR2, which is equivalent to the t-test used to assess
significance in the regression coefficients between learning
slope methods and neuroimaging variables, resulting in
equivalent p-values to the primary regression analyses. Next,
semi-partial correlations were used to assess the unique
contribution (i.e., variance explained) of each learning slope
method, where a larger value of squared semi-partial corre-
lation indicates greater “unique” contribution. Significance
testing for the semi-partial correlations was calculated using a
Fisher’s Z-transformation. The exception is that the two-
slope method includes two variables, so significance testing
for the incremental and semi-partial correlation statistics is
calculated differently from the regression analyses (i.e., sig-
nificance is calculated after addition of both two-slope
method variables). Secondary analyses were conducted to
assess the predictive utility of each slope method compared to
other commonly used RAVLT summary score indices.
Specifically, significance tests on ΔR2 were conducted with
models including Total Learning (i.e., Trials 1–5), Immediate
Recall, and Delayed Recall to clarify if learning slope pro-
vides additional information above and beyond these more
common RAVLT summary score indices. The significance
threshold was set at p< .01 for primary hypothesis testing to
reduce the probability of a type I error while balancing power
and sample size given the number of comparisons (i.e., 20).
Analyses were conducted in R (http://cran.r-project.org) and
MATLAB (2012a, The MathWorks, Natick, MA) using
ordinary least-squares regression and custom scripts.

RESULTS

Participant Characteristics

Participants included 198 NC, 370 MCI, and 171 AD indi-
viduals. Between-group comparisons by diagnosis suggested
no difference in age [F(2,736)= 2.4; p= .09] but
differences in sex [χ2(2)= 9.1; p= .01], education
[F(2,736)= 9.8; p< .001], and APOE4 status [χ2(2)= 64.3;
p< .001]. By design, there were main effects for CDR global
score and all cognitive performances (see Figure 1 for total
words correctly recalled by learning trial by diagnostic
group). The three diagnostic groups differed on all learning
slope methods, including simple slope [F(2,736)=160.1;
p< .001], regression-based [F(2,736)=180.1; p< .001], Trials
1–2 [F(2,736)=39.2; p< .001], Trials 2–5 [F(2,736)
=96.1; p< .001], and peak slope [F(2,736)=40.2; p< .001].

Similarly, the diagnostic groups differed on all neuroimaging
outcomes, including parahippocampal gyrus [F(2,736)= 108.2;
p< .001], hippocampal volume [F(2,736)=124.1; p< .001],
precuneus [F(2,736)=27.6; p< .001], DPLFC [F(2,736)
= 36.1; p< .001], and VLPFC [F(2,736)= 24.1; p< .001]. Post
hoc analyses were completed on each demographic, predictor,
and outcome variable, and all differences were in the expected
direction (i.e., NC>MCI>AD; see Table 1).
Between-slope correlation analyses revealed across all

diagnostic groups, the strongest positive correlations were
seen between simple and regression-based slope (r≥ 0.93;
p-values <.01). Other strong positive correlations across all
groups included regression-based method and late slope
(Trials 2–5) from the two-slope method (r≥ 0.79; p-values
<.01), simple and late slope (Trials 2–5; r≥ 0.66; p-values
<.01), and peak and early slope (Trials 1–2 from the two-
slope method; r≥ 0.50; p-values <.01). A modest negative
correlation was noted between early slope and late slope
across all diagnostic groups (r≤ − 0.16; p-values <.01) with a
moderate association seen in AD participants (r= − 0.42;
p< .01; see Table 2).
Correlations between neuroimaging outcomes revealed

that in all diagnostic groups, hippocampal volume was
moderately correlated with parahippocampal gyrus (r≥ 0.36;
p-values <.01). Similarly, VLPFC thickness was strongly
correlated to DLPFC thickness across the three groups
(r≥ 0.68; p-values <.01). Precuneus thickness was moder-
ately related to VLPFC (r≥ 0.56; p-values <.01) and DLPFC
(r≥ 0.63; p-values <.01) in all diagnostic groups. Across the
three groups, VLPFC was modestly correlated with para-
hippocampal gyrus (r≥ 0.39; p-values <.01). VLPFC was
positively related to hippocampal volume (r≥ 0.24; p-values
< .01) in NC and MCI only. Hippocampal volume was
weakly related to precuneus (r= 0.17; p< .01) in MCI and
was related to DLPFC (r≥ 0.20; p< .01) in NC and MCI.

Simple Slope

The simple slope method was unrelated to any neuroimaging
marker in NC (p-values >0.23) or AD (p-values > .09). In
MCI, a higher simple slope value (indicating better perfor-
mance) was associated with larger parahippocampal gyrus
thickness (β= 0.25; p< .001) and hippocampal volume
(β= 0.02; p< .001; see Table 3). In NC, the absolute semi-
partial correlations between simple slope and all neuroima-
ging outcomes were small in magnitude (r= 0.00–0.08;
p-values > .05). In MCI, the absolute semi-partial correla-
tions between simple slope and all neuroimaging outcomes
were small in magnitude (r= 0.07–0.24, p> .05). Absolute
semi-partial correlations in AD were small (r= 0.02–0.13;
p-values > .05; see Table 4). R2 and incremental R2 values
indicated that in NC, simple slope did not explain additional
variance above and beyond the covariates on any neuroima-
ging marker (ΔR2 = 0.00–0.01). In MCI, simple slope
explained additional variance compared to the covariates and
parahippocampal gyrus thickness (ΔR2= 0.06; p< .01) and
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hippocampal volume (ΔR2= 0.03; p< .01). In AD, simple
slope did not explain additional variance above and beyond
the covariates on any neuroimaging marker (ΔR2= 0.00–
0.02, all p-values > .09; see Table 4).

Regression-Based Slope

The regression-based slope method was unrelated to any
neuroimaging marker in NC (all p-values ≥ .14) or AD based
on the a priori significance threshold (all p-values ≥ .02). In
MCI, a higher regression-based slope value (indicating better
performance) was associated with larger parahippocampal
gyrus thickness (β= 0.27; p< .001), hippocampal volume
(β= 0.03; p< .001), and VLPFC (β= 0.05; p= .003; see
Table 3). In NC, the absolute semi-partial correlations between
regression-based slope and all neuroimaging outcomes were
small in magnitude (r= 0.01–0.10; p-values ≥ .05). In MCI,
absolute semi-partial correlations between regression-based
slope and all neuroimaging outcomes were relatively small
in magnitude (r= 0.10–0.24; p-values > .08). Absolute

semi-partial correlations in AD were small (r= 0.02–0.17; p-
values ≥ .05). See Table 4 for semi-partial correlations. R2 and
incremental R2 values indicated that in NC, regression-based
slope did not explain additional variance (all p-values > .23).
In MCI, regression-based slope explained additional variance
in the parahippocampal gyrus thickness (ΔR2= 0.06; p< .01),
hippocampal volume (ΔR2= 0.04; p< .01), and VLPFC
(ΔR2= 0.02; p< .01). In AD, regression-based slope did not
explain additional variance compared to the covariates
(all p-values > .02; see Table 4).

Two-Slope Method

The two-slope method was assessed using a single model
with two predictors: early slope (i.e., from Trial 1 to Trial 2)
and late slope (i.e., from Trial 2 to Trial 5). Conditional on the
value of the late slope, early slope was not related to any
neuroimaging marker in NC (all p-values > .46) or AD
(all p-values > .55). In MCI, early slope was related to
parahippocampal gyrus thickness (β= 0.06; p= .003).

NC MCI AD
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Fig. 1. RAVLT Learning Trial Scores by Diagnostic Group. Points are ‘jittered’ to minimize overplotting. RAVLT = Rey Auditory
Verbal Learning Test, NC = normal control, MCI = mild cognitive impairment; AD = Alzheimer’s disease
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Conditional on early slope, late slope (i.e., from Trial 2 to
Trial 5) was not related to any neuroimaging marker in NC
(p-values > .05) or AD (p-values > .03). In MCI, late slope
was related to parahippocampal gyrus thickness (β= 0.19;
p< .001), hippocampal volume (β= 0.02; p< .001), and
VLPFC (β= 0.04; p= .008; see Table 3).
In NC, the absolute semi-partial correlations between two-

slope method and all neuroimaging outcomes were small in
magnitude (r= 0.04–0.13; p-values > .05). In MCI, the abso-
lute semi-partial correlations between two-slope-method and
neuroimaging outcomes were relatively small in magnitude
(r= 0.10–0.23; p-values > .05); see Table 4). R2 and incre-
mental R2 values indicated that in NC, the two-slope method
did not explain additional variance above and beyond the
covariates (all p-values > .14). In MCI, the two-slope method
explained additional variance beyond the covariates with
respect to parahippocampal gyrus thickness (ΔR2= 0.05;
p< .01) and hippocampal volume (ΔR2= 0.04; p< .01).

In AD, the two-slopemethod did not explain additional variance
compared to the covariates (all p-values > .07; see Table 4).

Peak Slope

Across the three diagnostic groups, peak slope was not
related to any neuroimaging marker (all p-values > .11; see
Table 3). The semi-partial correlations between peak
slope and all neuroimaging outcomes were small across the
three diagnostic groups, including NC (r= 0.00–0.05;
p-values ≥ .46), MCI (r= 0.01–0.08; p-values ≥ .11),
and AD (r= 0.01–0.06; p-values ≥ .41; see Table 4). R2

and incremental R2 values indicated that peak slope did
not explain additional variance above and beyond the
covariates on any neuroimaging marker in NC (all
ΔR2= 0.00; all p-values > .47), MCI (ΔR2= 0.00–0.01; all
p-values > .11), and AD (all ΔR2= 0.00; all p-values > .41;
see Table 4).

Table 1. Participant characteristics

NC MCI AD p-Value* Pairwise comparison

Sample size, n 198 370 171 — —

Age, y 76± 5 75± 7 76± 7 .09 —

Sex, % female 47 36 47 .01 NC>MCI, MCI = AD, NC = AD
Education, y 16± 3 16± 3 15± 3 <.001 NC = MCI, NC>AD, MCI>AD
CDR, Global Score, %
0.0 100 0 0
0.5 0 88 16 <.001 —

1.0 0 12 78
2.0 0 0 7

APOE4 positive, % 26 54 66 <.001 NC<MCI<AD
MMSE, total score† 29± 1 27± 2 23± 2 <.001 NC>MCI>AD
RAVLT Performance
Trial 1 5.1± 1.6 4.2± 1.6 3.5± 1.4 <.001 NC>MCI>AD
Trial 2 7.5± 2.0 5.6± 1.9 4.4± 1.7 <.001 NC>MCI>AD
Trial 3 9.2± 2.4 6.5± 2.2 4.9± 1.8 <.001 NC>MCI>AD
Trial 4 10.3± 2.5 7.0± 2.3 5.1± 1.9 <.001 NC>MCI>AD
Trial 5 11.0± 2.4 7.5± 2.6 5.3± 2.1 <.001 NC>MCI>AD
Total Learning Trials 1-5 43.1± 9.1 30.9± 9.1 23.1± 7.5 <.001 NC>MCI>AD

Learning slope measures
Simple slope 1.5± 0.6 0.8± 0.6 0.5± 0.5 <.001 NC>MCI>AD
Regression-based slope 1.5± 0.6 0.8± 0.6 0.4± 0.4 <.001 NC>MCI>AD
Two-slope —

Early slope (Trials 1–2) 2.4± 1.8 1.4± 1.6 0.9± 1.4 <.001 NC>MCI>AD
Late slope (Trials 2–5) 1.2± 0.7 0.6± 0.6 0.3± 0.6 <.001 NC>MCI>AD

Peak slope 2.0± 0.8 1.5± 0.9 1.3± 0.8 <.001 NC>MCI>AD
Neuroimaging variables
Parahippocampal gyrus thickness, mm 6.04± 0.43 5.62± 0.61 5.14± 0.67 <.001 NC>MCI>AD
ICV-corrected hippocampal volume 0.47± 0.07 0.40± 0.07 0.36± 0.06 <.001 NC>MCI>AD
Precuneus thickness, mm 2.29± 0.17 2.21± 0.20 2.13± 0.23 <.001 NC>MCI>AD
DLPFC thickness, mm 2.36± 0.17 2.28± 0.18 2.20± 0.21 <.001 NC>MCI>AD
VLPFC thickness, mm 2.40± 0.16 2.33± 0.17 2.28± 0.18 <.001 NC>MCI>AD

Note: Data presented as mean ± standard deviation.
*Based on Pearson’s chi-squared test for categorical variables and one-way analysis of variance for continuous variables.
†MMSE score range from 0 to 30 with lower score = worse performance.
NC = cognitively normal control; MCI = mild cognitive impairment; AD = Alzheimer’s disease; ICV = Intracranial Volume; CDR = Clinical Dementia
Rating; APOE4 = Apolipoprotein E ε4; MMSE = Mini-Mental State Examination; DLPFC = dorsolateral prefrontal cortex, VLPFC = ventrolateral pre-
frontal cortex.

460 K.A. Gifford et al.

https://doi.org/10.1017/S1355617715000430 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617715000430


Secondary Analysis

For all primary analyses, regression results were unchanged
when APOE4 allele status was removed from the model (data
not shown). That is, for each diagnostic group all statistically
significant findings persisted (and were not strengthened
or weakened) when APOE4 status was removed from
the model.
R2 and ΔR2 (incremental change) values for each slope

method and neuroimaging variable were assessed with
RAVLT Total Learning, Immediate Recall, and Delayed
Recall included separately in the model to measure the
additional predictive ability of slope over covariates and
other common RAVLT memory indices. With Total Learn-
ing in the model, no learning slope method explained addi-
tional variance in NC (ΔR2= 0.00–0.01; p-values ≥ .23) or
AD (ΔR2= 0.00–0.02; p-values ≥ .16). In MCI, additional
predictive ability was noted for simple slope and para-
hippocampal gyrus (ΔR2= 0.02; p< .01), and regression-
based slope and parahippocampal gyrus (ΔR2= 0.02;
p< .01) and hippocampal volume (ΔR2= 0.02; p< .01).
When Immediate Recall was included in the model, no slope
method explained additional variance in NC (ΔR2= 0.00–
0.02; p-values ≥ .09), MCI (ΔR2= 0.00–0.01; p-values
≥ .08), or AD (ΔR2= 0.00–0.02; p-values ≥ .12). When
Delayed Recall was included in the model, no slope method
explained additional variance in NC (ΔR2= 0.00–0.02;
p-values ≥ .19), MCI (ΔR2= 0.00–0.01; p-values ≥ .05), or
AD (ΔR2= 0.00–0.02; p-values ≥ .08).

DISCUSSION

The current study advanced understanding of the neuroana-
tomical and clinical importance of learning efficiency by
comparing different learning slope measures to structural
neuroimaging markers of early AD pathology and neurode-
generation in cognitively normal, MCI, and AD individuals.
Our primary results suggest that among MCI participants,
stronger simple slope, regression-based slope, and two-slope
method performances were associated with more robust
volumes in the medial temporal lobe, including para-
hippocampal gyrus thickness and hippocampal volume.
Stronger regression-based and two-slope method perfor-
mances also related to higher VLPFC thickness values in
MCI. In contrast, there were no statistically significant asso-
ciations between learning performance assessed by any of the
slope measures and any structural neuroimaging markers for
either the NC or AD groups, suggesting that a subset of
learning slope measures correspond to the structural integrity
within the medial temporal lobe and prefrontal cortex in
individuals with MCI but not necessarily among individuals
with normal cognition or clinical AD.
The association between stronger learning slope perfor-

mance and larger medial temporal lobe structures is consistent
with prior work inMCI linking word list recall to hippocampal
volume (Mormino et al., 2009) and parahippocampal gyrus
thickness (Leube et al., 2008). The current results enhance
prior literature in at least two ways. First, we report associa-
tions between specific learning slope methods and surrogate

Table 2. Pearson correlations between slope variables by diagnosis

Two-slope method

NC participants (n = 198) Simple slope Regression-based slope Trials 1–2 slope Trials 2–5 slope

Regression-based slope 0.95* — — —

Trials 1–2 slope 0.55* 0.36* — —

Trials 2–5 slope 0.66* 0.79* − 0.23* —

Peak slope 0.50* 0.51* 0.50* 0.12

Two-slope method

MCI participants (n = 361) Simple slope Regression-based slope Trials 1–2 slope Trials 2–5 slope

Regression-based slope 0.96* — — —

Trials 1–2 slope 0.55* 0.39* — —

Trials 2–5 slope peak 0.72* 0.83* − 0.16* —

Peak slope 0.41* 0.34* 0.68* − 0.09

Two-slope method

AD participants (n = 155) Simple slope Regression-based slope Trials 1–2 slope Trials 2–5 slope

Regression-based slope 0.93* — — —

Trials 1–2 slope 0.36* 0.12 — —

Trials 2–5 slope peak 0.67* 0.83* − 0.42* —

Peak slope 0.31* 0.15 0.75* − 0.30*

Note: NC = normal control; MCI = mild cognitive impairment; AD = Alzheimer’s disease.
*p< .01.
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neuroimaging markers of neurodegeneration likely due to AD
pathology, and we provide information about which specific
calculation method may be most clinically meaningful.
Second, our findings highlight that poor learning efficiency
may correspond to structural brain changes in the prodromal
phase of dementia (MCI) when secondary prevention methods
could be most useful.
Another key finding in MCI was that two different methods

(regression-based and late slope) correlated with VLPFC cor-
tical thickness, consistent with prior work (Chang et al., 2010).
The VLPFC has been implicated in memory tasks that require
maintaining, retrieving, and selecting detailed item information
(Blumenfeld, Parks, Yonelinas, & Ranganath, 2011), goal-
oriented learning (Badre & Wagner, 2007), and learning item-
to-item associations between unrelated words (Park & Rugg,
2008). Successful performance on a list-learning task involves
recalling an increasing number of words across consecutive
learning trials, a cognitive skill that may be mediated by the

VLPFC. Thus, VLPFC may be important for performance
across all trials (i.e., Trials 1–5) rather than just early learning
(i.e., Trials 1–2) given that both regression-based slope and
late slope related to VLPFC. Future research should explore
the VLPFC’s involvement in list-learning paradigms before the
onset of clinical dementia.
The null results found in the current study warrant some

discussion. First, learning slope performance (regardless of
calculation method) was not associated with any structural
neuroimaging marker among the AD group, even though
episodic learning deficits are a hallmark symptom of AD
(Bondi et al., 1994). This finding is inconsistent with pre-
vious literature that links episodic memory performance
(assessed by story learning) to hippocampal volume
(Scheltens et al., 1992). One explanation for this disparity
could be that AD participant data were confounded by a lack
of variability in slope or in the amount of information
learned. However, a priori, we intentionally excluded AD

Table 3. Slope and neuroimaging regression results by diagnostic group

Two-slope method

NC participants

Simple slope
n = 198

Regression-based
n = 198

Trials 1–2 slope
n = 198

Trials 2–5 slope
n = 198

Peak slope
n = 198

β p-Value β p-Value β p-Value β p-Value β p-Value

Parahippocampal gyrus thickness − 0.01 .88 − 0.03 .63 0.01 .70 − 0.03 .47 0.03 .47
Hippocampal volume** 0.00 .83 0.00 .52 0.00 .96 0.00 .62 0.00 .46
Precuneus thickness 0.00 .96 0.00 .92 0.00 .59 0.00 .98 0.00 .91
DLPFC thickness − 0.01 .62 − 0.01 .65 0.00 .46 0.00 .86 0.00 .96
VLPFC thickness − 0.02 .23 − 0.03 .14 0.00 .92 − 0.03 .05 0.00 .88

Two-slope method

MCI participants

Simple slope
n = 370

Regression-based
n = 370

Trials 1–2 slope
n = 370

Trials 2–5 slope
n = 370

Peak slope
n = 361

β p-Value β p-Value β p-Value β p-Value β p-Value

Parahippocampal gyrus thickness 0.25 < .01* 0.27 < .01* 0.06 < .01* 0.19 < .01* 0.06 .11
Hippocampal volume** 0.02 < .01* 0.03 < .01* 0.00 .24 0.02 < .01* 0.00 .58
Precuneus thickness 0.04 .03 0.04 .02 0.01 .32 0.04 .03 0.01 .36
DLPFC thickness 0.02 .15 0.03 .05 0.00 .96 0.03 .05 0.00 .92
VLPFC thickness 0.03 .02 0.05 < .01* 0.00 .37 0.04 .01 0.01 .48

Two-slope method

AD participants

Simple slope
n = 171

Regression-based
n = 171

Trials 1–2 slope
n = 171

Trials 2–5 slope
n = 171

Peak slope
n = 155

β p-Value β p-Value β p-Value β p-Value β p-Value

Parahippocampal gyrus thickness 0.19 .09 0.26 .02 0.01 .72 0.21 .03 − 0.05 .41
Hippocampal volume** 0.01 .40 0.01 .31 0.00 .94 0.01 .46 0.00 .88
Precuneus thickness 0.02 .68 0.04 .40 − 0.01 .55 0.02 .50 -0.01 .61
DLPFC thickness − 0.01 .84 0.01 .79 0.00 .65 0.01 .79 0.00 .94
VLPFC thickness 0.03 .34 0.05 .12 0.00 .80 0.04 .14 − 0.01 .49

Note. NC = normal control, MCI = mild cognitive impairment; AD = Alzheimer’s disease; DLPFC = dorsolateral prefrontal cortex, VLPFC = ventrolateral
prefrontal cortex
*p< .01.
**Hippocampal volume was corrected by intra-cranial volume.
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participants with severe dementia (CDR= 3) to minimize a
potential floor effect, and post hoc visual inspection of trial-
by-trial performances in the AD participants does not suggest
a notable floor effect (Figure 1). Alternatively, in the AD
group, the neuroimaging markers may not have had sufficient
variability because of extensive atrophy. Another explanation
may be that memory measures reported in the existing
literature differ from the current study (i.e., story memory vs.
list-learning), including the metric by which memory was
measured (i.e., total score in prior literature vs. process
variable in the current study). Usage of different memory
measures may capture diverse learning approaches (i.e., two
learning trials with contextual information in story learning
versus five learning trials of unrelated words in list-learning),
thus yielding different associations to neuroimaging markers
of brain aging. Similarly, no learning slope model was related
to any neuroimaging marker among the NC group, which is

inconsistent with previous findings suggesting that poorer
episodic memory (i.e., story recall) is associated with smaller
hippocampal volumes (Golomb et al., 1993). These null
findings may also be due to the usage of different memory
measures or potential insufficient variability among the slope
and neuroimaging markers. It is unlikely these null findings
are due to a restriction of range as evidenced by post hoc
visual inspection of trial-by-trial performances. Overall, if the
current results are valid, then compromised learning slope
performance may best reflect underlying neurodegeneration
in individuals with mild cognitive changes but offer less
information in individuals with intact cognition or frank mild
to moderate dementia.
Subtle methodological differences in slope calculation

methods and psychometrics may also exist as varying
correlation patterns emerged between slopes. Simple slope
and regression-based slope were most strongly correlated.

Table 4. Semi-partial correlations, R2, and incremental R2 for slope x neuroimaging regression results

NC participants
Base model Simple slope Regression-based Two-slope method Peak slope

R2 R2 ΔR2
Semi-
partial R2 ΔR2

Semi-
partial R2 Δ R2

Semi-
partial R2 ΔR2

Semi-
partial

Parahippocampal gyrus
thickness

0.07 0.07 0.00 0.01 0.07 0.00 0.03 0.07 0.00 0.06 0.07 0.00 0.05

Hippocampal volume** 0.24 0.24 0.00 0.01 0.24 0.00 0.04 0.24 0.00 0.03 0.24 0.00 0.05
Precuneus thickness 0.08 0.08 0.00 0.00 0.08 0.00 0.01 0.08 0.00 0.04 0.08 0.00 0.01
DLPFC thickness 0.15 0.15 0.00 0.03 0.15 0.00 0.03 0.15 0.00 0.05 0.15 0.00 0.00
VLPFC thickness 0.10 0.10 0.01 0.08 0.11 0.01 0.10 0.12 0.02 0.13 0.10 0.00 0.01

MCI participants Base model Simple slope Regression-based Two-slope method Peak slope

R2 R2 ΔR2
Semi-
partial R2 ΔR2

Semi-
partial R2 ΔR2

Semi-
partial R2 ΔR2

Semi-
partial

Parahippocampal gyrus
thickness

0.07 0.13 0.06* 0.24 0.13 0.06* 0.24 0.12 0.05* 0.23 0.07 0.01 0.08

Hippocampal volume** 0.16 0.20 0.03* 0.18 0.21 0.04* 0.20 0.20 0.04* 0.20 0.17 0.00 0.03
Precuneus thickness 0.02 0.03 0.01 0.11 0.03 0.01 0.12 0.03 0.01 0.12 0.02 0.00 0.05
DLPFC thickness 0.07 0.08 0.01 0.07 0.08 0.01 0.10 0.08 0.01 0.10 0.07 0.00 0.01
VLPFC thickness 0.11 0.12 0.01 0.12 0.13 0.02* 0.14 0.13 0.02 0.13 0.11 0.00 0.04

AD participants Base model Simple slope Regression-based Two-slope method Peak slope

R2 R2 ΔR2
Semi-
partial R2 ΔR2

Semi-
partial R2 ΔR2

Semi-
partial R2 ΔR2

Semi-
partial

Parahippocampal gyrus
thickness

0.08 0.09 0.02 0.13 0.11 0.03 0.17 0.11 0.03 0.17 0.09 0.00 0.06

Hippocampal volume** 0.14 0.14 0.00 0.06 0.14 0.01 0.07 0.14 0.00 0.05 0.13 0.00 0.01
Precuneus thickness 0.03 0.03 0.00 0.03 0.03 0.00 0.06 0.03 0.01 0.09 0.03 0.00 0.04
DLPFC thickness 0.08 0.08 0.00 0.02 0.08 0.00 0.02 0.08 0.00 0.05 0.08 0.00 0.01
VLPFC thickness 0.05 0.06 0.01 0.07 0.07 0.01 0.12 0.07 0.02 0.13 0.05 0.00 0.06

Note. Data presented as absolute semi-partial correlation; p-values for the incremental R2 are equivalent to the beta p-values in Table 4 except for the Two
Slope Method
*p< .01.
**Hippocampal volume was corrected by intra-cranial volume.
NC = normal control, MCI = mild cognitive impairment; AD = Alzheimer’s disease; DLPFC = dorsolateral prefrontal cortex, VLPFC = ventrolateral
prefrontal cortex; Δ = Incremental.
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These slopes are conceptually similar, although simple slope
relies only on two data points whereas the regression-based
slope incorporates five data points. Interestingly, even despite
the loss of information in simple slope, the association
between simple slope and neuroimaging outcomes remains
strong suggesting the utility of this slope calculation method.
Furthermore, each of these methods correlated with late slope
regardless of diagnostic group. Associations with late slope
were likely attenuated in strength because of the 20% loss of
information in late slope through exclusion of Trial 1 infor-
mation. Additionally, peak slope moderately correlated with
early slope regardless of diagnostic group but was incon-
sistently and less strongly related to late slope. Early and late
slope were unrelated, except in the AD group where the
slopes were negatively correlated. This pattern of results may
be related to several factors. First, the greatest gain in learning
is thought to occur between Trials 1 and 2 (Baldo, Delis,
Kramer, & Shimamura, 2002). Second, psychological factors
during testing may contribute to learning pattern differences
across trials. For example, compared to individuals with no
depression, individuals with depression show worse
immediate recall for novel information (Trial 1) in the
presence of intact learning and recall abilities (Kizilbash,
Vanderploeg, & Curtiss, 2002). Performance changes from
Trial 1 to Trial 2 may be especially augmented in older adults
with attention difficulties, concerns about their memory, or
marked memory impairment. Specifically, in NC, the inverse
correlation may be reflective of individuals reaching their
ideal performance earlier, reflecting intact learning abilities.
Similarly, in AD, this inverse correlation may relate to indi-
viduals with marked memory impairment reaching their
maximum storage capacity almost immediately and being
unable to recall any additional words after the initial learning
trials. Overall, the pattern of results between early and late
slope suggests these two slope methods may reflect different
processes and predict different variances in individuals with
normal cognition versus dementia.
The current study provides some clinical guidance regard-

ing the ideal method for calculating learning slope among
older adults across the cognitive aging spectrum. We con-
ducted semi-partial correlations and R2 analyses to compare
the relative contribution of each slope method to the various
neuroimaging outcomes for each diagnostic group. The semi-
partial correlations suggest that in MCI, simple slope,
regression-based slope, and the late slope from two-slope
method were uniquely related to neuroanatomical regions,
whereas the other slope methods (i.e., peak slope and early
slope) were not. This finding was further supported by incre-
mental R2 results suggesting that simple, regression-based,
and late slope methods may be the most clinically relevant
calculations to use, as they have robust relations with key
neuroanatomical structures. Because the regression-based and
late slope methods require scoring software or complex
mathematical calculation for computation, they may not be
practical in many settings. Simple slope provides a feasible
alternative for easy implementation in both clinical and
research settings because it strongly correlates with both other

slope methods and has significant associations with neuroa-
natomical regions implicated in AD and neurodegeneration.
That said, it is worth noting that other methods requiring more
complex calculations (i.e., regression-based, late slope) may
be more highly correlated with certain neuroimaging markers.
However, results suggest that peak slope and early slope from
the two-slope method may be less acceptable methods given
the lack of neuroanatomical correlation or additional infor-
mation provided above and beyond covariates.
The current findings highlight details about the predictive

utility of different slope methods above and beyond other
common RAVLT learning indices, such as Total Learning
(i.e., Trials 1–5). Specifically, incremental R2 analyses suggest
that simple, regression-based, and two-slope methods provide
a small degree of additional predictive power with respect to
various neuroimaging markers (i.e., parahippocampal gyrus,
hippocampal volume, VLPFC) above and beyond total
learning on the RAVLT. Slope methods may lack additional
predictive power above and beyond Immediate and Delayed
Recall because these latter measures depend upon learning
(i.e., slope) and thus share variance. This assumption is
supported by the strong correlation between each slope
method and the more common learning indices (i.e., Total
Learning, Immediate Recall, and Delayed Recall). Given these
associations, it is difficult to disentangle the specific role of
these common and slope indices in relation to neuroimaging
markers of atrophy. However, taken together, results suggest
that in some cases slope calculation (i.e., simple, regression-
based, and two-slope method) may provide some (albeit
limited) additional information about cognitive and neural
integrity, particularly in MCI.
The present study has several noteworthy limitations. First,

ADNI participants are predominantly White and well
educated, whichmay limit the generalizability of findings. Due
to the sample selection, the age of the cohort is restricted to
older adults and different results may be seen in a younger
sample. Second, limited item-level data in the ADNI dataset
preclude examination of anatomical associations with other
learning metrics, such as clustering or error responses. Third,
our analyses are cross-sectional in nature, and as such we are
unable to determine temporal or causal associations about the
relation of slope indices and neuroanatomical changes.
A longitudinal analysis would be beneficial in further under-
standing how learning slope contributes to brain morphology
changes over time. Next, variability in hardware and software
configurations may have contributed unknown variance to the
neuroimaging data. Additionally, we used the FreeSurfer esti-
mation of ICV, which does not directly measure subarachnoid
CSF. Finally, although our analytical plan was hypothesis-
driven, the current study did not analyze all possible brain
structures, so we may have overlooked an important associa-
tion between learning slope and neuroanatomical changes.
Despite these limitations, the present study offers several

strengths. We chose a comprehensive set of commonly used
slope calculation methods to ensure our study’s pertinence to
as many clinical applications as possible. In addition, our
cohort samples the entire cognitive aging spectrum, allowing
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us to draw more comprehensive conclusions about the nature
of slope performances among older adults free of cognitive
impairment as well as elders with MCI and AD. Third,
ADNI itself offers a nationally representative cohort, as well as
a standardized entry, diagnostic, and neuroimaging protocol.
In conclusion, we systematically evaluated different

learning slope calculation methods in relation to neuroima-
ging markers associated with AD pathology and neuro-
degeneration. Although results are correlative in nature, they
suggest a neuroanatomical association by which impaired
verbal learning slope is related to reductions in hippocampal
volume and cortical thinning in medial temporal and
ventrolateral prefrontal regions among MCI participants.
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