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 SUMMARY
 A laser range finder mounted on a site and azimuth
 turret is used as a 3D range camera .  It forms ,  associated
 with a video camera ,  an original stereovision system .  The
 internal structure of both images are the same but the
 resolution of 3D image stays low .  By ignoring the
 acquiring speed of measures ,  spatial resolution is limited
 by the accuracy of deviation device and the laser
 footprint .  The fact that the impact of the beam is not a
 point introduces spatial integration .

 To correct the average at depth discontinuities due to
 the beam footprint ,  a neural-network-based solution is
 reported .

 The use of such a multisensor system requires its
 calibration .  As camera calibration is a well-known
 problem ,  the paper focuses on models and calibration
 methods of the range finder .  Experimental results
 illustrate the quality of the calibration step in terms of
 accuracy and stability .

 The footprint correction is evaluated for both 1D and
 2D range finder scannings .

 KEYWORDS :  3D range finder ;  Modelling ;  Camera ;  Cali-
 bration .

 1 .  INTRODUCTION
 The geometric modelling of the environment can be
 carried out using a stereovision system .  But in the case of
 a degraded image due to vision conditions ,  robustness
 and accuracy in depth measures are poor .  If one of the
 video cameras is replaced by a range image device ,  the
 advantages of each sensor can be combined to increase
 the quality and the complexity of data .

 A range system generates a range image where each
 pixel represents a depth .  But ,  although the internal
 structure of a video camera and range image are the
 same ,  the latter presents poor resolution which poses a
 problem during the matching step .

 In the first section ,  we present the problem of
 multisensor calibration .  Measurements have to be
 translated relatively to the same reference frame .

 The camera calibration is now a well-known problem ;
 we focus on the geometric model of the range finder and
 methods we studied to determine it .  Experimental results
 allow the evaluation of several models and methods in
 terms of accuracy and stability .

 In the second section ,  the building of a 3D image is

 studied .  Its spatial resolution depends on two factors :  the
 angular accuracy of the rotation device ,  on which the
 range finder is mounted ,  and the diameter of the laser
 beam which increases with the depth of the target .  We
 put the stress on the latter point responsible for the
 so-called ‘‘footprint’’ .  During scanning ,  the beam
 operates as a spatial filter and any depth discontinuity is
 averaged with neighbour points .  (See references 1 and 2
 where the problem is quoted without correcting it ,  so the
 scanning step is limited according to the size of the laser
 impact) .

 We propose a neural-network-based solution to
 improve the spatial resolution ,  which acts as an ‘‘inverse
 model’’ .  The aimed application consists of a perceptual
 aid for an operator in teleoperation .  In case of indirect
 viewing via a video camera ,  the 3D image is
 superimposed onto the video image to provide the
 operator with a better perception of depth .  This is a
 typically enhanced reality .

 Such an application does not directly concern the
 geometric modelling of environment ,  but requires the
 same matching step .

 2 .  MULTISENSOR CALIBRATION
 The geometric sensor model defines the transformation
 from one frame (source) to another (destination) .  The
 sensor calibration determines the parameters of the
 transformtion with the help of special points called
 ‘‘calibration points’’ .  Their coordinates are known in
 source and destination frames .  We first present briefly a
 camera calibration method ,  then we detail two methods
 for range finder calibration .

 2 . 1 .  Camera calibration
 The camera model  C  is defined by the relationship
 between the homogeneous coordinates of a point
 M ( x o  ,  y o  ,  z o  ,  1) t  ,  relative to the world coordinate frame
 R o  ,  and its image  m ( u ,  y  ) t   in pixels (Fig .  1) .

 A pin-hole model describes the optical part of the
 video camera ,  so :

 1  u  ?  s
 y  ?  s

 s
 2  5  C  ? 1

 x o

 y o

 z o

 1
 2  (1)

 The resolution of the model ,   i .e .  the estimation of matrix
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 Fig .  1 .  Multisensor system and coordinate frames .

 coef ficients ,  has been carried out using extented Kalman
 filter .  Complete results are presented in reference 3 .

 2 . 2 .  Range finder calibration
 Two calibration methods are studied :
 $  The first one uses a Least Square resolution and
 constraint propagation on the geometric particularities of
 the model .
 $  The second one is based on an optimisation technique
 and allows the determination of parameters in case of a
 non-linear model .  In the following ,  internal and external
 models of the range finder are distinguished .

 2 .2 .1 .  Modelisation .  Let Rr be the range finder-related
 frame (see Figure 1) .

 The homogeneous coordinates of  M ,  expressed in Rr ,
 are (0 ,  0 ,  2 r  ,  1) t .  The range finder is mounted on a
 two-degrees-of-freedom turret swivelling according to
 sight and azimuth angles  θ x   and  θ y  .  The geometric model
 of this device is a 4  3  4 homogeneous matrix  M glob

 defining the coordinate transformation between Ro and
 Rr :

 1
 x o

 y o

 z o

 1
 2  5  M glob  ? 1

 0
 0

 2 r

 1
 2  (2)

 This global model of the range finder can be divided into
 internal and external models (see Figure 2) .
 (i)  Internal model of the range finder .  The internal
 model depends on the device structure .  It is a 4  3  4
 homogeneous matrix  M I n t   defining the coordinates

 Fig .  2 .  Range finder frames .

 transformation between Rm ,  attached to the turret base ,
 and the range finder frame Rr :

 1
 x m

 y m

 z m

 1
 2  5  M I n t  ? 1

 0
 0

 2 r

 1
 2  (3)

 The transformation depends on the nature of the
 mechanical link between the range finder and the turret
 and expresses the two frames coincidence defaults .

 According to the mechanical structure of the device ,
 M I n t   is given by the following relation :

 M I n t  5 S R ( θ x , θ y )

 0
 0
 1
 D  ?  S 1

 0
 T ( a ,b ,c )

 1
 D  ?  S R ( g x , g y

 0
 0
 1
 D  (4)

 where  R ( g x  ,  g y ) and  T ( a ,  b ,  c ) are the rotation and
 translation sub-matrices correcting frame coincidence
 defaults respectively .

 R ( θ x  ,  θ y ) represents the rotation angles of turret’s
 motors .
 (ii)  External model of the range finder .  The external
 model is the 4  3  4 homogeneous matrix defining the
 coordinates transformation from Rm to Ro :

 1
 x o

 y o

 z o

 1
 2  5  M E x t  ? 1

 x m

 y m

 z m

 1
 2  (5)

 2 .2 .2 .  Calibration .  Two approaches are presented in the
 following section :

 The first one determines  M i n t   and  M e x t  .  The second one
 identifies directly the global model  M g l o b .
 (i)  First calibration approach .  In this case ,  the internal
 model is defined with  a , b , c  parameters from mechanical
 dimensions given by the manufacturer .   g x   and  g y ;  the
 adjustment angles ,  have been obtained by an experimen-
 tal procedure using a mirror as a target and an
 autocollimation technique .

 H a  5  0 . 5  Ú  0 . 01  mm ;  b  5  c  5  0  Ú  0 . 01  mm
 g x  5  2 1 . 15  Ú  0 . 05 8 ;  g y  5  2 0 . 23  Ú  0 . 05 8

 (6)

 Two ways are possible following the formalism of the
 model .  A constraint propagation method applied to the
 homogeneous-matrix formalism has been tested in
 reference 4 .

 Another way consists of using the Rodrigues’
 formalism which leads to a more concise expression of
 the rotation .  The translation between the two frames is
 expressed by a 3 components vector .

 As seen just before ,  only the external model is given .
 The method determines the rotation parameters and the
 translation vector by a least square criterion .

 Using Rodrigues’ formalism ,  let vector  y $  i 9  deduced
 from  y $  i   by rotation of matrix  R ,  be

 y $  i 9  5  R  ?  y $  i
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 and

 Min
 R

 S O N
 i 5 1

 i  y $  i 9  2  R  ?  y $  i  i  2 D  (7)

 expresses the optimal rotation of a N measurements
 system (vector  y $  i 9  and  y $  i   are defined from Rm and Ro
 frames) .

 The rotation vector gives a representation with only
 four parameters :

 n $  5  ( n x  ,  n y  ,  n z ) t  represents  the  rotation  vector

 a   represents the rotation angle around the axis defined
 by  n $  .

 With Rodridgues’ relation :

 y $  i 9  5  y $  i  1  ( n $  ∧  y $  i )  ?  sin  ( a  )  1  n $  ∧  ( n $  ∧  y $  i )  ?  (1  2  cos  ( a  ))

 Each measurement  i  leads to a three equations system :

 y $  i 9  2  y $  i  5  s ( y $  i 9  1  y $  i )  ?  u $
 where :

 u $  5  ( u x  ,  u y  ,  u z ) t  is  defined  as  u $  5  tan  S a

 2
 D  ?  n $

 s ( y $  i 9  1  y $  i ) is the antisymmetrical cross product matrix of
 vector ( y $  i 9  1  y $  i ) ,  the rank of  s  is 2 .

 If  N  points are available the system is composed of 2 N
 independent equations .  In a matrix form :

 Y  5  H  ?  u  (8)
 with :

 H  5

 0

 ( y  9 z 1  1  y  z 1 )

 —

 —

 0

 ( y  9 z N
 1  y  z N

 )

 2 ( y  9 z 1  1  y  z 1 )

 0

 —

 —

 2 ( y  9 z N
 1  y  z N

 )

 0

 ( y  9 y 1  1  y  y 1 )

 2 ( y  9 x 1  1  y  x 1 )

 —

 —

 ( y  9 y N
 1  y  y N

 )

 2 ( y  9 x N
 1  y  x N

 )

A B
 Y  5

 ( y  x 1  2  y  9 x 1 )

 ( y  y 1  2  y  9 y 1 )

 —

 —

 ( y  x N
 2  y  9 x N

 )

 ( y  y N
 2  y  9 y N

 )

 u $  5 1  u x

 u y

 u z
 2A B

 The optimal solution is obtained applying a mean square
 method :

 u $  5  ( H t  ?  H ) 2 1  ?  H t  ?  Y  (9)

 This ,  finally ,  leads to :

 n $  5
 u $

 i  u $  i
 (10)

 and
 a  5  2  ?  arctan  (  i  u $  i  )  (11)

 If required ,  the rotation matrix  R  can be expressed as a
 function of  n $    and  a  :

 R  5  cos  ( a  )  ?  Id  1  ( n $  ?  n $  )  ?  (1  2  cos  ( a  ))  1  s ( n $  )  ?  sin  ( a  )

 (12)

 s ( n $  ) is the antisymmetrical cross-product matrix related
 to vector  n $  .

 Let cos  ( a  )  5  c  and sin  ( a  )  5  s ,  then R can be
 expressed by :

 1  c  1  (1  2  c )  ?  n x
 2

 (1  2  c )  ?  n x  ?  n y  1  s  ?  n z

 (1  2  c )  ?  n x  ?  n z  2  s  ?  n y

 (1  2  c )  ?  n x  ?  n y  2  s  ?  n z

 c  1  (1  2  c )  ?  n 2
 y

 (1  2  c )  ?  n z  ?  n y  1  s  ?  n x

 (1  2  c )  ?  n x  ?  n z  1  s  ?  n y

 (1  2  c )  ?  n z  ?  n y  2  s  ?  n x

 c  1  (1  2  c )  ?  n 2
 z

 2  (13)

 The translation sub-matrix is obtained by the relation :

 T  5  B 9  2  R  ?  B  (14)
 where :

 B  5
 1
 N
 O N
 i 5 1

 P i  B 9  5
 1
 N
 O N
 i 5 1

 P i 9

 P i   and  P i 9  represents calibration points .
 (ii)  Second calibration approach .  The Levenberg &
 Marquardt optimisation method (see reference 5) allows
 the determination of both internal and external models
 of the range finder .

 Internal model
 Taking into account the mechanical structure (see
 equation (4)) internal model is expressed as :

 x m  5  2 r  ?  ( 2 g y  ?  c θ y  1  g x  ?  s θ x  ?  s θ y  2  c θ x  ?  s θ y )

 1  a i r  ?  c θ y  1  b i r  ?  s θ x  ?  s θ y  2  c i r  ?  c θ x  ?  s θ y

 y m  5  2 r  ?  ( g x  ?  c θ x  1  s θ x )  1  b i r  ?  c θ x  1  c i r  ?  s θ x  (15)

 z m  5  2 r  ?  ( 2 g y  ?  s θ y  2  g x  ?  s θ x  ?  c θ y  1  c θ x  ?  c θ y )

 1  a i r  ?  s θ y  2  b i r  ?  s θ x  ?  c θ y  1  c i r  ?  c θ x  ?  c θ y

E
 External model
 The external model is a homogeneous matrix :

 M E x t  5 S R ( a  , n $  )

 0
 T
 1
 D  (16)

 where  R  and  T  are rotation and translation submatrices .

 Global model
 This representation leads to three equations used to
 determine the criterion :

 M Glob  5  M Ext  ?  M Int  (17)
 where :

 1
 x o

 y o

 z o

 1
 2  5  M GLob  ? 1

 0
 0

 2 r

 1
 2  (18)

 and

 5  x o  5  2 r  ?  M Glob [1 , 3]  1  M Glob [1 , 4]

 y o  5  2 r  ?  M Glob [2 , 3]  1  M Glob [2 , 4]

 z o  5  2 r  ?  M Glob [3 , 3]  1  M Glob [3 , 4]

 (19)

 The optimisation process minimises a mean square
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 criterion (19) ,  taking into account the rotation vector
 norm .

 Crit  5  O N
 i 5 1 3

 ( x o – i  1  r  – i  ?  M glob [1 , 3] – i  2  M glob [1 , 4] – i )
 2

 1  (  y o – i  1  r  – i  ?  M Glob [2 , 3] – i  2  M Glob [2 , 4] – i )
 2

 1  ( z o – i  1  r  – i  ?  M Glob [3 , 3] – i  2  M Glob [3 , 4] – i )
 2

 1  (1  2  i  n $  i  ) 2
 4  (20)

 The Levenberg-Marquart optimisation is applied twice .
 In the first step ,  the internal model is not taken into
 account ,   i .e .  its parameters are taken equal to zero .  The
 solution is an approximation to the external model .  It
 allows the initialisation of the non-linear process carried
 out in the second step ,  which solves the global model .

 Then in a few steps the algorithm converges to an
 optimal solution .

 2 .2 .3 .  Results .  (i)  Experimental en y  ironment .  The calib-
 ration methods need two distinct sets of measurements :

 the first set for the calibration step
 the second one for the evaluation step

 They are made on an experimental stand composed of a
 mobile carriage following an  x  and  y  horizontal plane
 and a calibration grid .
 (ii)  Main characteristics of the experimental site .  The
 world frame point coordinates are known with a 0 . 1  mm
 accuracy .

 The carriage translation accuracy is also 0 . 1  mm .
 The range finder has the following characteristics :

 —statistical accuracy on distance  r  :  3  mm
 —angular accuracy on  θ x   and  θ y :  0 . 01 8
 —mean distaince range finder / target :  1700  mm .
 (iii)  E y  aluation elements .  The building error is defined
 as the dif ference between coordinates of points known
 (0 . 1  mm) in a Ro frame and the coordinates of the same
 points computed from measurements in a sensor frame
 and estimated model .

 Figure 3 shows  tz  parameter evolution versus the
 number of calibration .

 Only the  tz  parameter is presented (worst case) .  For
 the first approach ,  it is more stable than the second one .

 Table I shows building errors .  Building errors related
 to range finder / grid distance are about 0 . 26% on  x ,

 Fig .  3 .  Variation of  tz  parameter .

 Table I .  Building errors for 25 calibrating points

 N  5  25
 calibration

 points
 Least  Square

 Method
 Optimisation

 Method

 Absolute
 Mean  (m)

 Mx
 My
 Mz

 9 . 64 E -04
 7 . 97 E -04
 5 . 54 E -03

 1 . 00 E -03
 6 . 41 E -04
 2 . 73 E -03

 Standard
 Deviation  (m)

 Sx
 Sy
 Sz

 1 . 15 E -03
 1 . 17 E -03
 6 . 32 E -03

 7 . 99 E -04
 7 . 46 E -04
 1 . 75 E -03

 Maximum  (m)
 Ex
 Ey
 Ez

 2 . 70 E -03
 4 . 42 E -03
 1 . 06 E -02

 2 . 64 E -03
 2 . 74 E -03
 5 . 95 E -03

 0 . 15% on  y  and 0 . 62% on  z  for the Least Square method
 and about 0 . 15% on  x ,  0 . 14% on  y  and 0 . 35% on  z  for
 the optimisation method .

 Thus the optimisation method seems to give the best
 results .

 3 .  FOOTPRINT CORRECTION

 3 . 1 .  Presentation of the sensing system
 Before developing the approaches to correct the
 footprint error ,  the sensing system is presented .

 To get a depth image of the environment the
 range-finder scans the scene with constant steps ( θ x  ,  θ y )
 (see Figure 4) .

 3 . 2 .  Telemeter characteristics
 The sensor is a commercial device of IBEO (reference
 6) .  The distance is computed from the measure of the
 wave time-of-flight between the target and the sensor .
 The wave-length of the laser pulse is 905  nm .

 Four accuracies ,  given by the manufacturer as
 statistical standard deviations ,  are available :  20 ,  10 ,  5 ,
 3  mm .

 The main error is the footprint error depending on
 beam diameter .  The beam model (20) ,  proposed in

 Fig .  4 .  3D sensor .

https://doi.org/10.1017/S0263574797000246 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000246


 Range finder system  229

 Fig .  5 .  Beam model

 reference 7 ,  is illustrated (see Figure 5) .  An experimental
 study for dif ferent distances (0 . 6 to 5  m) has allowed the
 identification of the sensor model parameters .

 D 2 ( r  )  5  D 2
 0 S r  2  r  0

 r  0
 D 2

 1  D  2
 min  (21)

 lens diameter  D 0  5  14  mm
 waist  D m i n  5  7  mm
 focusing distance  r  0  5  3 . 1  m

 3 . 3 .  Method used to correct the footprint error
 Several remarks can be deduced from the study of the
 physical sensor characteristics :
 1 .  The error of measures (footprint) appears when the

 laser is scanning a discontinuity of depth .  Therefore ,
 this part of profile has to be found and corrected .

 2 .  If the distance between two discontinuities of depth is
 less than the beam diameter ,  there is a critical lost of
 information and no correction seems possible .

 The following section describes three approaches to
 correct the footprint error with the aim of improving the
 depth image :
 a .  Parametric Inverse Model
 b .  Neural Inverse Model
 c .  Neural-Parametric Inverse Model

 3 .3 .1 .  Parametric Inverse Model .  The telemeter appears
 as a  black box  which is the parametric model .  The
 telemeter characteristics leads to the Finite Impulse
 Response (F . I . R . ) representation :

 u ( k )  5  discrete  input
 y ( k )  5  discrete  output

 H ( z  2 1 )  5  discrete  transfer  function
 e ( k )  5  discrete  white  noise  ( s  5  3  mm)
 y ( k )  5  H ( z  2 1 ) u ( k )  1  e ( k )  direct  model
 u ( k )  5  H 2 1 ( z  2 1 )(  y ( k )  2  e ( k ))  inverse  model

 Due to the beam divergence ,  an inverse model has to be
 found ,  for each distance ,  to correct measures .  The model
 found for one distance is often unsteady .

 3 .3 .2 .  Neural Inverse Model .  The neural approach
 appears as another way to determine the inverse model
 when classical approaches are invalid . 8

 The neural network can be represented as a universal
 estimator .  It is generally modelled by several fully
 interconnected layers of elements called ‘neurons’ .

 The neural network used is a feedforward network ;  the

 information flow is transmitted from layer to layer (from
 input layer to output layer) .  The learning algorithm
 suitable for this kind of problem and network
 architecture is the backpropagation .  This algorithm is
 summarised below :
 1 .  presentation phase
 2 .  propagation in the network
 3 .  computation of the criteria error
 4 .  backpropagation phase
 5 .  modification of network weights
 6 .  evaluation of the stop criterion
 The choice of a neural network architecture for the input
 number and output number is conducted by the
 characteristics of the system to design .  The number of
 inputs is constrained by the beam diameter and the step
 of measure .  This network is composed of 1 hidden layer
 with an output and 6 inputs ,  with a Sigmoide (non linear)
 activation function .  The entry vector is made of 5
 measures  y ( k ) normalised between 0 . 1 and 0 . 9 ,  and an
 indication of the distance  d ( k ) also normlised (0 for 0  m
 and 1 for 5  m) .  The output vector is the real distance (see
 Figure 6) .

 The size of the hidden layer is a variable depending of
 each system ;  there are no rules to determine it .  The
 training uses the Nguyen and Widrow initialisation .  To
 avoid local minima due to the bad initialisation and to
 select the best architecture ,  the ef fects of hidden neurons
 and initialisations have been tested as compared to the
 generalization error (see Figure 7) .  It appears that 8
 hidden neurons give the best results .

 The improvement of the measure is not satisfying ;  the
 error after correction remains too significant .  In addition ,
 the neural network has some problems in trying to
 correct a dif ferent class of a discontinuity of depth .  It
 works better for very specialised tasks .

 3 .3 .3 .  Neural Detection-Parametric Correction
 (i)  Presentation
 The principle of the approach described below is to split
 detection of profile classes and data correction .
 (ii)  Detection of classes profile
 The classification is a well adapted task to neural
 network . 9

 These profiles are classified into 4 classes (see Figure
 8) :
 1 .  line of slope 0 (order 0)
 2 .  line of constant slope (order 1)
 3 .  curve (order 2)

 Fig .  6 .  Neural network .
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 Fig .  7 .  Surface of error for 50 learning .

 4 .  discontinuity of depth
 In the preprocessing step a derivative filter is used to

 extract features of the profile .  One neural network is
 used for each class to optimise the results of detection .
 The final choice of class among the four outputs of
 neural networks is done by the maximal output greater
 than a threshold value (see Figure 9) .

 The neural network architecture is dif ferent for each
 detection only at hidden layer level .  The choice is made
 as in the previous paragraph ,  by comparing dif ferent
 numbers of hidden neurons .  The number of discrete
 inputs and output are ,  respectively ,  5 and 1 (Table II) .

 The percentages are :

 d  5
 number  of  vectors  of  good  classes  detected

 number  of  vectors  of  the  class  to  be  detected

 ied  5
 number  of  vectors  of  false  classes  detected

 number  of  vectors  not  to  be  detected

 (iii)  Correction of profile
 The dif ferent steps of the detection – correction are
 presented :
 1 .  Measurement (see Figure 10)
 2 .  Detection of profile classes (see Figure 11) .
 3 .  Estimation of the discontinuity position (zero crossing
 of second derivative) .
 4 .  Estimation of the coef ficients of a polynomial  p ( x ) of
 degree  n  5  class that fits the data ,   p ( x ( i ))  <  z ( i ) ,  in a
 least-square sense .  The coef ficients are computed versus
 measures ,  before the discontinuity profile (b) and after
 (a) in Figure 12 . 1 .
 5 .  Substitution of the discontinuity part by the 2
 polynomials extrapolated until the discontinuity position
 (see Figure 12 . 2) .

 Fig .  8 .  Classes of profile .

 Fig .  9 .  Detection structure .

 3 .3 .4 .  Results .  The profile (see Figure 13) is composed
 of three distinct parts :  order 1 ,  discontinuity ,  order 1 .

 To evaluate the improvement brought by the process ,
 a criterion is computed :
 error before correction (ebc) :

 ebc  5

 o
 n

 1
 (  y real  2  y measured ) 2

 n
 (22)

 error after correction (eac) :

 eac  5

 o
 n

 1
 (  y real  2  y corrected ) 2

 n
 (23)

 For this representative sample the results are :
 ebc  5  94 . 5
 eac  5  0 . 95

 Case of a depth image
 The techniques can be spread over a depth image ,  line by
 line and column by column .

 For a scene (50  3  217  mm) composed of two cubes
 (25  3  25  3  50) and one cylinder ( f  60  3  25) located at 5  m
 from the range finder :

 ebc  5  9 . 587 E  1  04
 eac  5  7 . 502 E  1  03

 The image size is 50  3  217 pixel .

 4 .  CONCLUSION
 The multisensor system is composed of a camera and a
 3D range finder .

 The calibration step allows one to express the
 measures of each sensor in the same reference frame .
 For the camera ,  it has been carried out using the
 extended Kalman filter .  For the 3D range finder ,  two
 approaches based on Rodrigues’ formalism are pre-
 sented .  The first one ,  a least square method ,  leads to a

 Table II .  Optimal  NN  structure and detection results

 Detection
 Structure

 I-H-O
 Detection

 (d)
 Interlcass  error
 detection  (ied)

 Order 0
 Order 1
 Order 2
 Discontinuity

 5-6-1
 5-8-1
 5-6-1
 5-9-1

 93 . 8%
 79 . 1%
 94%
 78%

 0 . 7%
 9%

 13%
 1 . 5%

 I  5  input ,  H  5  hidden ,  O  5  output neurons .
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 Fig .  10 .  Profile measured and real profile .

 Fig .  11 .  Detection of profile classes .

 Fig .  12 .  Estimation-extrapolation of the polynomials .

 Fig .  13 .  Profile corrected .

 building error related to the distance sensor-target of
 about 0 . 62% on  z .  The optimization method leads to a
 building error of about 0 . 35% on  z  and presents the
 advantage of computing both internal and external
 models .

 As far as the range finder is concerned ,  the main
 objective is the improvement of the spatial resolution of
 the depth image .  The physical limit is due to the
 diameter of the laser beam .  The approach consists in
 treating the measures by a black box which acts as an
 inverse model .  The inputs are a set of points belonging to
 a profile .

 A NN-based solution is better than parametric
 methods .  The problem is divided into a detection of the
 profile class by a NN and then a data correction by a
 parametric method .

 These techniques can be spread over a depth image ,
 line by line and column by column .
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