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SUMMARY

A laser range finder mounted on a site and azimuth
turret is used as a 3D range camera. It forms, associated
with a video camera, an original stereovision system. The
internal structure of both images are the same but the
resolution of 3D image stays low. By ignoring the
acquiring speed of measures, spatial resolution is limited
by the accuracy of deviation device and the laser
footprint. The fact that the impact of the beam is not a
point introduces spatial integration.

To correct the average at depth discontinuities due to
the beam footprint, a neural-network-based solution is
reported.

The use of such a multisensor system requires its
calibration. As camera calibration is a well-known
problem, the paper focuses on models and calibration
methods of the range finder. Experimental results
illustrate the quality of the calibration step in terms of
accuracy and stability.

The footprint correction is evaluated for both 1D and
2D range finder scannings.

KEYWORDS: 3D range finder; Modelling; Camera; Cali-
bration.

1. INTRODUCTION

The geometric modelling of the environment can be
carried out using a stereovision system. But in the case of
a degraded image due to vision conditions, robustness
and accuracy in depth measures are poor. If one of the
video cameras is replaced by a range image device, the
advantages of each sensor can be combined to increase
the quality and the complexity of data.

A range system generates a range image where each
pixel represents a depth. But, although the internal
structure of a video camera and range image are the
same, the latter presents poor resolution which poses a
problem during the matching step.

In the first section, we present the problem of
multisensor calibration. Measurements have to be
translated relatively to the same reference frame.

The camera calibration is now a well-known problem;
we focus on the geometric model of the range finder and
methods we studied to determine it. Experimental results
allow the evaluation of several models and methods in
terms of accuracy and stability.

In the second section, the building of a 3D image is
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studied. Its spatial resolution depends on two factors: the
angular accuracy of the rotation device, on which the
range finder is mounted, and the diameter of the laser
beam which increases with the depth of the target. We
put the stress on the latter point responsible for the
so-called ‘““footprint”. During scanning, the beam
operates as a spatial filter and any depth discontinuity is
averaged with neighbour points. (See references 1 and 2
where the problem is quoted without correcting it, so the
scanning step is limited according to the size of the laser
impact).

We propose a neural-network-based solution to
improve the spatial resolution, which acts as an ““inverse
model”. The aimed application consists of a perceptual
aid for an operator in teleoperation. In case of indirect
viewing via a video camera, the 3D image is
superimposed onto the video image to provide the
operator with a better perception of depth. This is a
typically enhanced reality.

Such an application does not directly concern the
geometric modelling of environment, but requires the
same matching step.

2. MULTISENSOR CALIBRATION

The geometric sensor model defines the transformation
from one frame (source) to another (destination). The
sensor calibration determines the parameters of the
transformtion with the help of special points called
““calibration points”. Their coordinates are known in
source and destination frames. We first present briefly a
camera calibration method, then we detail two methods
for range finder calibration.

2.1. Camera calibration
The camera model C is defined by the relationship
between the homogeneous coordinates of a point
M(x,, y,, z,, 1)’, relative to the world coordinate frame
R,, and its image m(u, v)" in pixels (Fig. 1).

A pin-hole model describes the optical part of the
video camera, so:

xO
u-s
ves |=c-| (1)
s %o

1

The resolution of the model, i.e. the estimation of matrix
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Fig. 1. Multisensor system and coordinate frames.

coefficients, has been carried out using extented Kalman
filter. Complete results are presented in reference 3.

2.2. Range finder calibration

Two calibration methods are studied:

e The first one uses a Least Square resolution and
constraint propagation on the geometric particularities of
the model.

* The second one is based on an optimisation technique
and allows the determination of parameters in case of a
non-linear model. In the following, internal and external
models of the range finder are distinguished.

2.2.1. Modelisation. Let Rr be the range finder-related
frame (see Figure 1).

The homogeneous coordinates of M, expressed in Rr,
are (0,0, —p,1). The range finder is mounted on a
two-degrees-of-freedom turret swivelling according to
sight and azimuth angles 8, and 6,. The geometric model
of this device is a 4X4 homogeneous matrix My,
defining the coordinate transformation between Ro and
Rr:

X, 0
5 0
Y = Mgl()b : (2)
2o -pP
1 1

This global model of the range finder can be divided into
internal and external models (see Figure 2).

(i) Internal model of the range finder. The internal
model depends on the device structure. It is a 4X4
homogeneous matrix M,, defining the coordinates

Fig. 2. Range finder frames.
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transformation between Rm, attached to the turret base,
and the range finder frame Rr:

X, 0
Ym 0
= Mlm : (3)
Zm -p
1 1

The transformation depends on the nature of the
mechanical link between the range finder and the turret
and expresses the two frames coincidence defaults.

According to the mechanical structure of the device,
M, is given by the following relation:

R(ar:ey) 0) . (1 T(a,h,c)) X <R(7x17y 0) (4)
0 1 0 1 0 1

where R(v,, v,) and T(a, b,c) are the rotation and
translation sub-matrices correcting frame coincidence
defaults respectively.

R(6,, 6,) represents the rotation angles of turret’s
motors.
(ii) External model of the range finder. The external
model is the 4 X4 homogeneous matrix defining the
coordinates transformation from Rm to Ro:

M[m‘ = (

Xo X
Yo Ym
= MExt . (5)
2o Zm
1 1

2.2.2. Calibration. Two approaches are presented in the
following section:

The first one determines M,,, and M,,,. The second one
identifies directly the global model M.
(i) First calibration approach. In this case, the internal
model is defined with a, b, ¢ parameters from mechanical
dimensions given by the manufacturer. vy, and v,; the
adjustment angles, have been obtained by an experimen-
tal procedure using a mirror as a target and an
autocollimation technique.

{a=0.5:|:0.01 mm; b=c=0+£0.0lmm ©)

¥, = —1.15£0.05% vy, = —0.23 £ 0.05°

Two ways are possible following the formalism of the
model. A constraint propagation method applied to the
homogeneous-matrix formalism has been tested in
reference 4.

Another way consists of using the Rodrigues’
formalism which leads to a more concise expression of
the rotation. The translation between the two frames is
expressed by a 3 components vector.

As seen just before, only the external model is given.
The method determines the rotation parameters and the
translation vector by a least square criterion.

Using Rodrigues’ formalism, let vector 7 deduced
from 9; by rotation of matrix R, be
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and

N
Min (3 15 - R -5 ™
i=1

R

expresses the optimal rotation of a N measurements
system (vector ¥; and ¥; are defined from Rm and Ro
frames).

The rotation vector gives a representation with only

four parameters:
i = (n,, n,, n,)" represents the rotation vector

a represents the rotation angle around the axis defined
by 7.
With Rodridgues’ relation:
v/ =v;+ (7 0%) - sin (a) +AJ@#EOT;) - (1 — cos (a))
Each measurement i leads to a three equations system:
1_))[', - l_})i :S(l_})i’ + 1_;,) : lz

where:

. N o R
IZ = (ux; uy; L[Z)’ is defined as i = tan <5> ‘n

s(¥! + ;) is the antisymmetrical cross product matrix of
vector (¥ + ¥;), the rank of s is 2.

If N points are available the system is composed of 2N
independent equations. In a matrix form:

Y=H-u €))
with:
O _(UZ,1 + vZ1) (vy,1 + UY1)
(vz/l +v11) 0 _(U;l +Ux1)
o= - - -
0 _(UZ,N + UZN) (U)”N + UYN)
(UéN + UZN) 0 _(UJ;N + vXN)
(v, —v1,)
(v)’1 - v),}])
— ux
Y= i=\ u,
u
(UXN B U)LN) )
(=250 )

The optimal solution is obtained applying a mean square
method:

i=(H-H)'-H-Y 9
This, finally, leads to:
=t (10)
[l
and
a =2 -arctan (||i]) (11)

If required, the rotation matrix R can be expressed as a
function of 7i and a:

R=cos(a)-Id+ (7i-n)-(1—cos(a))+s(#) sin(a)
(12)
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s(f) is the antisymmetrical cross-product matrix related
to vector 7.

Let cos(a)=c and sin(a)=s,
expressed by:

then R can be

c+(1—c) n:
(I-c)-ny-n,+s-n,

1-¢)-n,-n,—s-n,
c+t(1—c)-ny
(I-¢)'n,-n,—s-n, (1-c)-n,-n,+s-n,

(I-c¢) ny-n,+s-n,
(I-c¢)-n,-n,—s-n.| (13)
c+(1—c)-n?
The translation sub-matrix is obtained by the relation:

T=B'"-R-B (14)
where:

1 & 1 &
B=y 2P B=y2F

P, and P/ represents calibration points.

(ii) Second calibration approach. The Levenberg &
Marquardt optimisation method (see reference 5) allows
the determination of both internal and external models
of the range finder.

Internal model
Taking into account the mechanical structure (see
equation (4)) internal model is expressed as:
Xp=—p- (=7, -cO,+ vy, 50, 56, —cO, -s6,)
+a; - cB,+b, 50,56, —c;, - cO, - 56,
Ym=—"p" (‘YX ' cex + sex) + bir ' Cex + Cir sex (15)
Zn=—p (—y, 56, — 7y, 56, -cO,+cb, - ch,)
+a; 56, — b, 50, -cO, +c;, -, -,

External model
The external model is a homogeneous matrix:

Ro i T)

M=
Ext 0 1

(16)
where R and T are rotation and translation submatrices.

Global model
This representation leads to three equations used to
determine the criterion:

Mo = Mgy - My, (17)
where:
X, 0
' 0
Y =Mcrop* (18)
2o -pP
1 1
and

X,=—p" M(;/ob[l,S] + MG/ob[l,4]
Yo = =P Mcuobp2,31 T Mciob2,41 (19)
20 = =P " Mcionz 31 T Mciob(3,41

The optimisation process minimises a mean square
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criterion (19), taking into account the rotation vector
norm.

(Xoitpi- M giopp1,31 — glob[1,4],i)2
Crit = i +(Yoitpi Mciob2,31 — MGlob[2,4]_i)2
S ol T P Maionz a1 — Maiopsa i)’
+(1 =[]y

The Levenberg-Marquart optimisation is applied twice.
In the first step, the internal model is not taken into
account, i.e. its parameters are taken equal to zero. The
solution is an approximation to the external model. It
allows the initialisation of the non-linear process carried
out in the second step, which solves the global model.

Then in a few steps the algorithm converges to an
optimal solution.

(20)

2.2.3. Results. (i) Experimental environment. The calib-
ration methods need two distinct sets of measurements:

the first set for the calibration step
the second one for the evaluation step

They are made on an experimental stand composed of a
mobile carriage following an x and y horizontal plane
and a calibration grid.
(ii) Main characteristics of the experimental site. The
world frame point coordinates are known with a 0.1 mm
accuracy.

The carriage translation accuracy is also 0.1 mm.

The range finder has the following characteristics:
—statistical accuracy on distance p: 3 mm
—angular accuracy on 8, and 6,:0.01°
—mean distaince range finder/target: 1700 mm.
(iii) Evaluation elements. The building error is defined
as the difference between coordinates of points known
(0.1 mm) in a Ro frame and the coordinates of the same
points computed from measurements in a sensor frame
and estimated model.

Figure 3 shows tz parameter evolution versus the
number of calibration.

Only the #z parameter is presented (worst case). For
the first approach, it is more stable than the second one.

Table I shows building errors. Building errors related
to range finder/grid distance are about 0.26% on x,

tz Evaluation

///

162 + + + + 1
4 5 6 7T 8 9 10 1M 12 13 14 15 16 17 18 19 20 21 22 23 24 75
Number of cailbration points

Fig. 3. Variation of ¢z parameter.
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Table I. Building errors for 25 calibrating points

N=25
calibration  Least Square  Optimisation

points Method Method
Absolute Mx 9.64E-04 1.00E-03
Mean (m) My 7.97E-04 6.41E-04
Mz 5.54E-03 2.73E-03
Standard Sx 1.15E-03 7.99E-04
Deviation (m) Sy 1.17E-03 7.46E-04
Sz 6.32E-03 1.75E-03
Ex 2.70E-03 2.64E-03
Maximum (m) Ey 4.42E-03 2.74E-03
Ez 1.06E-02 5.95E-03

0.15% on y and 0.62% on z for the Least Square method
and about 0.15% on x, 0.14% on y and 0.35% on z for
the optimisation method.

Thus the optimisation method seems to give the best
results.

3. FOOTPRINT CORRECTION

3.1. Presentation of the sensing system
Before developing the approaches to correct the
footprint error, the sensing system is presented.

To get a depth image of the environment the
range-finder scans the scene with constant steps (6,, 6,)
(see Figure 4).

3.2. Telemeter characteristics

The sensor is a commercial device of IBEO (reference
6). The distance is computed from the measure of the
wave time-of-flight between the target and the sensor.
The wave-length of the laser pulse is 905 nm.

Four accuracies, given by the manufacturer as
statistical standard deviations, are available: 20, 10, 5,
3 mm.

The main error is the footprint error depending on
beam diameter. The beam model (20), proposed in

average measwe

Fig. 4. 3D sensor.
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"o

Fig. 5. Beam model

reference 7, is illustrated (see Figure 5). An experimental
study for different distances (0.6 to 5 m) has allowed the
identification of the sensor model parameters.

_ 2

D*(p) = D%)(u) + Diin (21)
Po

lens diameter Dy, =14 mm

waist D,,;, =7 mm

focusing distance p,=3.1m

3.3. Method used to correct the footprint error

Several remarks can be deduced from the study of the

physical sensor characteristics:

1. The error of measures (footprint) appears when the
laser is scanning a discontinuity of depth. Therefore,
this part of profile has to be found and corrected.

2. If the distance between two discontinuities of depth is
less than the beam diameter, there is a critical lost of
information and no correction seems possible.

The following section describes three approaches to

correct the footprint error with the aim of improving the

depth image:

a. Parametric Inverse Model

b. Neural Inverse Model

c. Neural-Parametric Inverse Model

3.3.1. Parametric Inverse Model. The telemeter appears
as a black box which is the parametric model. The
telemeter characteristics leads to the Finite Impulse
Response (F.I.R.) representation:

u(k) = discrete input

y(k) = discrete output
H(z ') = discrete transfer function

e(k) = discrete white noise (o =3 mm)

y(k) = H(z Yu(k) + e(k) direct model

u(k)=H "(z ")(y(k) — e(k)) inverse model
Due to the beam divergence, an inverse model has to be
found, for each distance, to correct measures. The model
found for one distance is often unsteady.

3.3.2. Neural Inverse Model. The neural approach
appears as another way to determine the inverse model
when classical approaches are invalid.®

The neural network can be represented as a universal
estimator. It is generally modelled by several fully
interconnected layers of elements called ‘neurons’.

The neural network used is a feedforward network; the
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information flow is transmitted from layer to layer (from
input layer to output layer). The learning algorithm
suitable for this kind of problem and network
architecture is the backpropagation. This algorithm is
summarised below:

1. presentation phase

propagation in the network

computation of the criteria error

backpropagation phase

modification of network weights

. evaluation of the stop criterion

The choice of a neural network architecture for the input
number and output number is conducted by the
characteristics of the system to design. The number of
inputs is constrained by the beam diameter and the step
of measure. This network is composed of 1 hidden layer
with an output and 6 inputs, with a Sigmoide (non linear)
activation function. The entry vector is made of 5
measures y(k) normalised between 0.1 and 0.9, and an
indication of the distance d(k) also normlised (0 for 0 m
and 1 for 5 m). The output vector is the real distance (see
Figure 6).

The size of the hidden layer is a variable depending of
each system; there are no rules to determine it. The
training uses the Nguyen and Widrow initialisation. To
avoid local minima due to the bad initialisation and to
select the best architecture, the effects of hidden neurons
and initialisations have been tested as compared to the
generalization error (see Figure 7). It appears that 8
hidden neurons give the best results.

The improvement of the measure is not satisfying; the
error after correction remains too significant. In addition,
the neural network has some problems in trying to
correct a different class of a discontinuity of depth. It
works better for very specialised tasks.

SRV VRN

3.3.3. Neural Detection-Parametric Correction
(i) Presentation
The principle of the approach described below is to split
detection of profile classes and data correction.
(ii) Detection of classes profile
The classification is a well adapted task to neural
network.’
These profiles are classified into 4 classes (see Figure
8):
1. line of slope 0 (order 0)
2. line of constant slope (order 1)
3. curve (order 2)

input vector

y(k-2)
v(k-1)
v(k)
y(k+1)
y(k+2)
dck)

output vector

u(k)

Fig. 6. Neural network.
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mean sum squared error

8 10 © initialisation n°

number of hidden neuron

Fig. 7. Surface of error for 50 learning.

4. discontinuity of depth

In the preprocessing step a derivative filter is used to
extract features of the profile. One neural network is
used for each class to optimise the results of detection.
The final choice of class among the four outputs of
neural networks is done by the maximal output greater
than a threshold value (see Figure 9).

The neural network architecture is different for each
detection only at hidden layer level. The choice is made
as in the previous paragraph, by comparing different
numbers of hidden neurons. The number of discrete
inputs and output are, respectively, 5 and 1 (Table II).

The percentages are:

number of vectors of good classes detected

" number of vectors of the class to be detected

ied number of vectors of false classes detected
ied =

number of vectors not to be detected
(iii) Correction of profile
The different steps of the detection—correction are
presented:
1. Measurement (see Figure 10)
2. Detection of profile classes (see Figure 11).
3. Estimation of the discontinuity position (zero crossing
of second derivative).
4. Estimation of the coefficients of a polynomial p(x) of
degree n =class that fits the data, p(x(i))=z(i), in a
least-square sense. The coefficients are computed versus
measures, before the discontinuity profile (b) and after
(a) in Figure 12.1.
5. Substitution of the discontinuity part by the 2
polynomials extrapolated until the discontinuity position
(see Figure 12.2).

Fig. 8. Classes of profile.
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Fig. 9. Detection structure.

3.3.4. Results. The profile (see Figure 13) is composed

of three distinct parts: order 1, discontinuity, order 1.
To evaluate the improvement brought by the process,

a criterion is computed:

error before correction (ebc):

n
2
; (yreal - ymeasured)

ebc = (22)
n

error after correction (eac):

n
2
; (y real — Y corrected)

eac = (23)
n

For this representative sample the results are:

ebc =94.5
eac =0.95

Case of a depth image
The techniques can be spread over a depth image, line by
line and column by column.

For a scene (50X 217 mm) composed of two cubes
(25 X 25 X 50) and one cylinder (¢60 X 25) located at 5m
from the range finder:

ebc =9.587F + 04
eac="7.502E + 03

The image size is 50 X 217 pixel.

4. CONCLUSION
The multisensor system is composed of a camera and a
3D range finder.

The calibration step allows one to express the
measures of each sensor in the same reference frame.
For the camera, it has been carried out using the
extended Kalman filter. For the 3D range finder, two
approaches based on Rodrigues’ formalism are pre-
sented. The first one, a least square method, leads to a

Table II. Optimal NN structure and detection results

Structure Detection  Interlcass error
Detection I-H-O (d) detection (ied)
Order 0 5-6-1 93.8% 0.7%
Order 1 5-8-1 79.1% 9%
Order 2 5-6-1 94% 13%
Discontinuity 5-9-1 78% 1.5%

I =input, H = hidden, O = output neurons.
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Fig. 10. Profile measured and real profile.
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Fig. 12. Estimation-extrapolation of the polynomials.
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Fig. 13. Profile corrected.

building error related to the distance sensor-target of
about 0.62% on z. The optimization method leads to a
building error of about 0.35% on z and presents the
advantage of computing both internal and external
models.

As far as the range finder is concerned, the main
objective is the improvement of the spatial resolution of
the depth image. The physical limit is due to the
diameter of the laser beam. The approach consists in
treating the measures by a black box which acts as an
inverse model. The inputs are a set of points belonging to
a profile.

A NN-based solution is better than parametric
methods. The problem is divided into a detection of the
profile class by a NN and then a data correction by a
parametric method.

These techniques can be spread over a depth image,
line by line and column by column.
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