
Shape decompositions and their algebras

DJORDJE KRSTIC
Alcatel, Calabasas, California 91302, USA

(Received October 16, 2004; Accepted May 18, 2005!

Abstract

Shapes play an important role in many human activities, but are rarely seen in their natural form as raw and unanalyzed.
Rather, shapes come analyzed, structured in terms of their certain parts, forming shape decompositions. Different kinds
of shape decompositions are developed, the most interesting among which are the decompositions that could be used
as shape approximations. Two kinds of such decompositions, discrete and bounded, are examined in greater detail.
Computations with shapes conducted in the framework of shape grammars and related shape algebras have been
standard for over 3 decades. Similar computations are possible with analyzed shapes or shape decompositions. Differ-
ent algebras to compute with shape decompositions are developed and compared to the shape algebras. The measure of
their agreement determines how well the shapes are approximated by their decompositions.

Keywords: Shape Algebras; Shape Approximations; Shape Decompositions; Shape Decompositions Algebras;
Shape Grammars

1. INTRODUCTION

Shapes are part of our everyday experience and play impor-
tant roles in many human activities. Shapes come without
apparent structure, therefore rendering any division into parts
possible. However, any attempt to ~verbally! describe a shape
inevitably leads to structuring the shape in terms of its cer-
tain parts or to a shape decomposition. According to Stiny
~1991!, “These are defined in a variety of ways, but most
simply as sets of shapes that show how their sums are divided
into parts of certain kinds.”

For example, the 3-dimensional shape in Figure 1a may
be described as a table having four legs and a board, which
leads to the decomposition ~Fig. 1b!.

The fact that we can name things around us structures
our surroundings in a shape decomposition; whereas the
simple naming of a shape structures it by recognizing the
shape as being a part of itself.

For example, the original shape in Figure 1a is called a
table in the description above. It should also be included in
the decomposition so that all of the shapes in Figure 1
become elements of the latter.

Shapes are rarely perceived in their natural form as raw0
unanalyzed, but rather approximated by their decomposi-
tions. An unknown shape may at first appear as raw0
unanalyzed, but it gradually acquires a structure as one tries
to understand it. As our understanding grows, we move
from raw0unanalyzed shapes to structured0decomposed
shapes.

Although important in many human activities, shapes are
prime to design and fine arts. Designers use shapes to spec-
ify things to make: to provide information on how things
function or how they should be built. To do so, designers
differentiate some parts of their designs by naming and
relating the parts. Shapes in designs are utilitarian in nature.
They come structured in decompositions with ambiguities
removed in order to avoid misunderstanding.

Ambiguities, although dismissed in designs, may well be
at home in fine arts. Shapes of art may serve a different
purpose than those of design. They need not be rationally
understood. An art object may appear pure, unanalyzed,
and open to any kind of interpretation by both the public
and critics. This kind of ambiguity allows for multiple inter-
pretations and adds to the richness of the object.

Although the outcomes of a designer’s or artist’s efforts
may be different in nature ~analyzed vs. raw shape!, the
design process may well be the same.

Reprint requests to: Djordje Kristic, Alcatel, 22415 Kearny Street, Cal-
abasas, CA 91302, USA. E-mail: George.Krstic@alcatel.com

Artificial Intelligence for Engineering Design, Analysis and Manufacturing ~2005!, 19, 261–276. Printed in the USA.
Copyright © 2005 Cambridge University Press 0890-0604005 $16.00
DOI: 10.10170S0890060405050183

261

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

In the course of design, an unanalyzed shape may be seen
in a certain way and accordingly decomposed into a certain
set of parts. These may then be used to compose new shapes.
The latter may again be seen as unanalyzed, only to be
decomposed in some new way leading to new sets of parts.
The process may be repeated until a design or an art object
is created. Moving from analyzed to raw shapes creates an
opportunity to see things in a different way, which then
moves shapes back from raw to analyzed. The creative phases
of the design process are characterized by shifts between
raw0unanalyzed shapes and decomposed0analyzed ones. Sti-
ny’s ~1994, 2001! shape computations with unexpected out-
comes are good examples of such shifts at work.

Decompositions are used to describe shapes. They often
appear in place of shapes functioning as their approxima-
tions. The purpose of this paper is to investigate how good
such approximations are.

The investigation is conducted in the context of formal
design theory that involves shape grammars and related
shape algebras. Central to the theory are shape computa-
tions that attempt to formalize what designers do when they
design. To use decompositions as shape approximations,
tools for computing with decompositions are developed. In
particular, algebras for decompositions similar to algebras
for shapes are introduced; and the properties of such alge-
bras are investigated and compared to the properties of shape
algebras. The measure of their agreement determines how
computations with decomposition may compare to the sim-
ilar computations with shapes. This ultimately shows how
well shapes are approximated by their decompositions.

1.1. A note on notation

Symbols like �, �, �, �, �, �, �, and ℘ are used in their
standard set-theory meaning: empty set, intersection, union,
subset, proper subset, element of, not an element of, and
power set, respectively. Some standard set-theory notions
are assumed, such as the ordered set with related maximal
and minimal elements, bounds, and closures, as well as the
direct product and related functions and relations.

Computations are carried out in different algebras, where
an algebra is seen as a set of objects that is closed under a
set of operations. The elements of an algebra may satisfy
certain equations, like distributive or associative laws, which
are axioms of that algebra. Axioms may serve to distinguish

classes of algebras such as rings, lattices, groups, Boolean
algebras, and so forth.

New algebras, in particular subalgebras and quotient alge-
bras, are constructed from the old ones. The former are
subsets of an algebra that are algebras themselves. The lat-
ter are algebras whose elements are equivalence classes of
some algebra, which has been partitioned with respect to an
equivalence relation of a certain kind: congruence. Congru-
ence preserves the operations of the algebra so that the
result of computations carried on with the equivalence classes
of some elements of the algebra is the equivalence class of
the result of the same computation carried on with the ele-
ments themselves.

Algebras with the same kinds of operations could be
related via certain mappings. If there is a mapping from an
algebra to another algebra such that the mapping enumer-
ates all of the elements of the latter algebra, and if it also
preserves the operations of the algebras, then the latter alge-
bra is homomorphic to the former one. If the mapping is
also one to one, then the two algebras are isomorphic. A
mapping defining isomorphism is a surjection because it
enumerates all of the elements of the latter algebra and it is
an injection because it is one to one; thus, it is a bijection.

We also make use of shape algebras ~Stiny, 1991, 1992,
2001!. These compute with shapes in a Boolean fashion
and are also closed under geometric transformations that
act on shapes. Shape algebras are seen as two-sorted ~oper-
ating on objects of two different sorts!, conveniently
keeping both shapes and transformations in a single alge-
braic structure ~Krstic, 1996, 1999, 2001!. Shape algebra
~Uij ! computes with i -dimensional shapes occupying
j-dimensional space forming the set Uij ~i, j � 0, 1, 2, 3, and
i � j ! and j-dimensional geometric transformations form-
ing the set Tj .

The set of shapes Uij has a lower bound, which is the
empty shape denoted by 0, but has no upper bound. Shapes
from Uij , together with Boolean operations of sum ~�!,
product ~{!, and difference ~�!, form a generalized Boolean
algebra: a relatively complemented distributive lattice with
a smallest element ~Birkhoff, 1993!. This establishes the
Boolean part of Uij .

Transformations of Tj form a group establishing the group
part of Uij . Transformations are combined with the aid of
group operations and act on shapes of Uij by a binary oper-
ation of group action that takes a shape a and a transforma-
tion t to produce a transformed shape t~a!.

Fig. 1. Decomposition of a table: ~a! the original shape and ~b! its decomposition.

262 D. Krstic

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

Shape algebras could be extended to other design-related
objects such as labeled shapes, weighted shapes, or n-tuples
of shapes. Such algebras still have the shape algebra struc-
ture, but the objects they operate on are not shapes.

1.2. Definition

Decompositions are used as shape descriptions that empha-
size certain properties of shapes. There are different ways
to define a decomposition of a shape depending mainly on
the kind of information that is to be highlighted.

For example, decompositions defined as directed graphs
containing shapes and spatial relations among them expose
the details of how shapes are generated with a shape gram-
mar ~Knight, 1988!.

Decompositions defined simply as sets of shapes will be
used exclusively in this work. Although very elementary,
the definition is general. Such decompositions do only the
minimum of what decompositions should do: they structure
unanalyzed shapes in terms of their certain parts and noth-
ing else. That is, certain properties ~parts! of a shape are
chosen to represent the shape while others are neglected.
This renders decompositions: shape approximations that suit
certain purposes.

Shape parts are central to decompositions, and any shape,
with the exception of shapes consisting of points, has infi-
nitely many parts. A picture is literally worth infinitely many
words. The set of all parts of a shape is the upper bound for
all decompositions of that shape. This set has some inter-
esting properties that reveal shape structure.

Let B~a! denote the set that includes all of the parts of a
shape a. Any Boolean combination of parts of a carried out
in the algebra in which a is defined yield another part of a.
Set B~a! is a subalgebra of this algebra closed under its
Boolean operations. If a is a shape from Uij , then B~a! is a
Boolean algebra ~Stiny, 1980; Earl, 1997!. Because a is not
changed by the transformations of its symmetry group S~a!,
the set B~a! is closed under S~a! in accordance with the
following proposition.

Proposition 1. Set B~a! is closed under the symmetry
group of a, or S~a! . �

The proof follows from the definition of the symmetry
group of a shape and the order preserving nature of trans-
formations. That is, if t � S~a!, than t~a!� a, and if x � a,
then t~x! � t~a!. Consequently, t~x! � a so that t~x! �
B~a!.

This motivates the following definition: the maximal struc-
ture of a shape a denoted by B~a! is a two-sorted shape
algebra with B~a! as the Boolean part and S~a! as the group
part.

The maximal structure of a is clearly a proper subalgebra
of Uij , which shows that shapes, like their algebras, have a
dual nature. They have parts that are shapes from Uij closed
under transformations from Tj , where B~a! and S~a! are

respective upper bounds. The interplay of structure and sym-
metry, which is central to design, emerges here in the very
nature of the building blocks of designs: shapes.

Although it is possible to have decompositions contain-
ing infinitely many parts of a shape, like B~a!, only finite
decompositions will be examined in this work. The former
may be appealing to mathematicians, but the latter are cen-
tral to the design practice.

Definition 1. A finite nonempty set of shapes is a
decomposition. �

The set of all decompositions denoted by Dij is a proper
subset of ℘~Uij!. Set Dij is clearly without an upper bound
when ordered by �. It also lacks a lower bound, because
the empty set is not a decomposition.

Definition 2. Let a be a shape, the set A is a decompo-
sition of a whenever it is a decomposition and the sum of its
elements is a, or a � SA. �

Any decomposition is a decomposition of a shape because
finite sums of shapes are guaranteed to be shapes.

The set of finite subsets of B~a! that sum to a is the set of
all decompositions of a. Like Dij , this set does not have an
upper or a lower bound and is closed under the symmetry
group of a.

Decompositions structure shapes, and also structure their
parts. In Figure 2a, the square is structured as a conse-
quence of the structure of the double square in Figure 2b
that contains it. Note that the location of the shapes in some
coordinate system is indicated by cross marks.

The structure of an analyzed shape can be relativized to
each of its parts in accordance with the following definition.

Definition 3. If a is a shape, A its decomposition, and
shape b a part of a, then b is implicitly structured in decom-
position B � $b { x 6 x � A% , which is the relativization of
the structure of a to b or the relativization of A to b. �

2. ALGEBRAS OF DECOMPOSITIONS

Computations with decompositions may be carried out in a
similar way as computations with shapes. For example, the
shapes in Figure 3a and b, when combined in the frame-
work of U12, yield the shapes in Figure 3c, d, and e, which
are their respective sum, product, and difference. It should

Fig. 2. ~a, b! Decompositions: the structure of ~b! is recognized in ~a!
whereas its elements are not.

Shape decompositions and their algebras 263

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

be possible to duplicate these computations with the sets in
Figure 3f and g, which are respective decompositions of the
shapes in Figure 3a and b.

Computations with decompositions should be carried out
in the framework of appropriate algebras belonging to the
same family as shape algebras Uij . Such an algebra should
be two-sorted, having decompositions as well as transfor-
mations that act on decompositions. The operations should
include sum, product, and difference for decompositions,
group operations for transformations, and a group action
relating the two. More formally, an algebra for decomposi-
tions should satisfy the following general definition.

Definition 4. An algebra for decompositions is an
extended shape algebra. Its Boolean part is a set of decom-
positions X � Dij , whereas its group part is a group of
transformations that can act on shapes. The group action is
extended to decompositions so that t~A! � $ t~x!6 x � A% ,
where A is a decomposition and t is a transformation. �

The definition above allows for specifying different alge-
bras of decompositions, which may be tailored for specific
applications. We will examine two algebras defined on the
set of all decompositions Dij: the set algebra of decomposi-
tions, and the complex algebra of decompositions. Based
on these algebras, some other “smaller” algebras will be
constructed and examined.

2.1. Set algebras of decompositions

If parts recognized in decompositions are paramount in com-
putations, combining decompositions as sets is a viable
option. Set operations of union, intersection, and difference
may be taken as sum, product, and difference of decompo-
sitions. The operations preserve the set elements, and set
inclusion establishes the ordering on Dij . However, set Dij

of decompositions is not closed under � and �. The inter-
section or difference of two decompositions may be empty,
but there is no empty decomposition; a decomposition con-
tains at least one shape, which may be 0. The set Dij has to
be augmented with the empty set to become an algebra.

Definition 5. A set algebra of decompositions Dij sat-
isfies Definition 4 and has the set Dij � $�% together with
operations �, �, and � as the Boolean part, whereas its
group part is the same as that of Uij . �

This algebra, which was introduced by Stiny ~1990, 1994!,
treats shapes that are elements of decompositions as sym-
bolic objects without further dividing or summing them.
The algebra works well if shapes have predetermined parts
that remain fixed throughout a computation. The result of
the computation contains only shapes that are elements of
decompositions entering the computation. These are the
atoms of the computation. For example, decompositions in
Figure 4a, b, and c are respective sum, product, and differ-
ence of decompositions in Figure 3 computed in the frame-
work of Dij . Note that no new shape has been created in the
computations.

2.2. Complex algebras of decompositions

Set algebras compute with shapes as they would with any
other object. Properties of shapes are irrelevant in Dij . In
contrast, shape properties, in particular spatial properties,
are most important in design. An algebra of decompositions
that aspires to be an algebra of analyzed shapes should take
into account spatial properties of shapes that are elements
of decompositions. This can be achieved by letting the ele-
ments of one decomposition combine with the elements of
another decomposition in computations. With no special
preference, these combinations may be taken exhaustively.

Fig. 3. Computing in U12: ~a, b! shapes and their ~c! sum, ~d! product, and ~e! difference, as well as their respective ~f, g! decompositions.

264 D. Krstic

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

The operations of such an algebra are no more than exten-
sions of shape operations ~�, {, and �! to direct products of
decompositions.

Let A and B be two decompositions, then their sum �' is
defined as A �' B � �~A � B!. “Polish” notation used here
is an elegant way of writing A �' B � $x � y 6 x � A, y �
B% . The other two operations product {' and difference �'

follow as A{'B � { ~A � B! and A �' B � �~A � B!.
Because decompositions are finite subsets ~complexes!

of some algebra of shapes Uij , they may be seen as elements
of a complex algebra ℘~Uij! constructed on Uij . The alge-
bra operates on the set ℘~Uij! � $�% with the set of all
decompositions Dij as a subset. The latter set is precisely
the set of all finite complexes and forms a subalgebra in
℘~Uij!. The general rule for operations of complex alge-
bras ~Gratzer, 1979! yields operations �', {', and �' as
defined above.

Decompositions are ordered by �' defined in accordance
with the general definition for relations of complex struc-
tures ~Gratzer & Whitney, 1978!. That is, A �' B, if for
every x � A there exists y � B, such that x � y, and for
every y � B there exists x � A such that x � y.

The set Dij has a lower bound under the ordering �'. It is
the decomposition of the empty shape $0%. However, Dij

does not have an upper bound.

Definition 6. Complex algebra of decompositions
℘'~Uij! satisfies Definition 4 and has the set Dij together
with operation �', {', and �' as the Boolean part, whereas
its group part is the same as that of Uij . �

The new algebra handles shapes as spatial objects, not
unlike Uij . For example, decompositions in Figure 5a, b,
and c are the respective sum, product, and difference of
decompositions in Figure 3 when computed in the frame-
work ℘'~Uij!. Note that the resulting shapes differ from the
input ones: the former are combinations of the latter.

3. DECOMPOSITIONS AS SHAPE
APPROXIMATIONS

Shape grammars and later shape algebras have a history of
more than three decades as formal design theory tools. They
have been established as formalizations of design practice.
The algebras model what designers do when they draw and

Fig. 4. Computing in D12: ~a! sum, ~b! product, and ~c! difference of decompositions in Figure 3.

Fig. 5. Computing in ℘'~Uij!: ~a! sum, ~b! product, and ~c! difference of decompositions in Figure 3.

Shape decompositions and their algebras 265

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

erase shapes, build, and modify models, or just move shapes
around to produce new spatial relations. Grammars and alge-
bras are capable of handling the emergence and ambiguity
of shapes, which are important in the most creative, explor-
atory phase of a design process ~Knight, 2003a, 2003b!. In
contrast, algebras of decompositions operate on sets of
shapes, but these may or may not be seen as approxima-
tions of shapes. If decompositions are seen as shape approx-
imations, the properties of their algebras should match those
of shape algebras as closely as possible.

At minimum, an algebra for decompositions should be
such that an appropriate shape algebra is homomorphic to
it. This guaranties that the result of a computation carried
on with decompositions of shapes is a decomposition of the
result of the same computation carried on with the shapes
themselves. Such symmetry between the two algebras is
important if shapes in computations are to be approximated
by their decompositions. Note that the mapping defining
the homomorphism is the summation from Definition 2.

At maximum, algebras for shapes and decompositions
should be isomorphic. At this point, symmetry between the
algebras is complete and decompositions behave as shapes.
Such an algebra of decompositions becomes a true algebra
of analyzed shapes.

As an additional requirement, an algebra of decomposi-
tions should have enough power to inform the decision on
whether two of its elements are analyzing the same shape.
This renders the transition from an analyzed shape to the
raw unanalyzed shape possible within the framework of the
algebra.

3.1. Properties of set algebras of decompositions

Set algebras for decompositions compare favorably with
shape algebras. All of the important properties of the latter,
such as distributive and idempotent, are preserved by the
former algebras. However, set algebras are less successful
in satisfying minimum and additional requirements.

The minimum requirement holds for sums, but not for
products and differences.

It is not possible to decide, by using operations and the
relation of Dij , whether two of its different elements are
decompositions of the same shape. The algebra sees decom-
positions as sets of shapes ~Definition 1!, rather then decom-
positions of shapes ~Definition 2!. It manipulates elements
of decompositions as symbols disregarding their spatial
properties.

This renders Dij an unlikely choice if computations with
analyzed shapes are an objective. However, Dij is not with-
out design applications.

Set algebras work well in situations where design is
restricted to a finite kit of discrete parts, such that all shapes
of interest are simple sums of the parts. Designing in the
framework of a building system is a good example. Such
systems usually offer kits of prefabricated building parts
that may be assembled to produce a variety of buildings.

Parts may range from structural members, like bearing walls
or ceiling slabs, to architectural elements, such as partitions
or facade articulations.

The set of all subsets of such a kit is a subalgebra of Dij ,
which is isomorphic with a certain subalgebra of Uij .

Let Kij be a finite set of pairwise discrete shapes ~no two
of its elements share parts!, ℘~Kij! the set of all of its
subsets, and S℘~Kij! the set of shapes obtained by sum-
ming the elements of ℘~Kij!. Because elements of Kij are
pairwise discrete shapes, combining them in products and
differences yields no new shapes except for the empty shape.
For example, if a, b � Kij and a � b, then a { b � 0 and a �
b � a, if a � b, then a { b � a and a � b � 0. New shapes
can only be produced in sums so that S℘~Kij! is the set of
all shapes that could be created from the shapes of Kij . In
contrast, set ℘~Kij! enumerates all of the decompositions
of the former shapes into the latter ones. Mapping S that
connects the two sets has some interesting properties.

Lemma 1. Mapping S from ℘~Kij! to S℘~Kij! is a
bijection. �

Because S℘~Kij! is an image of ℘~Kij!, S is a surjec-
tion. To prove that S is an injection ~one to one! we assume
the opposite: there are two distinct decompositions in ℘~Kij!
that analyze the same shape in S℘~Kij!. For the assump-
tion to hold, there has to be at least one shape that is an
element of one of the decompositions, but not an element of
the other one. Say, decompositions A and B both analyze
some shape a, and shape x is an element of A, but not of B.
Consequently, x is a part of SA, but not of SB. The latter
holds because x does not share parts with any of the ele-
ments of B because they all belong to Kij and so does x.
However, SA � SB � a, which leads to a contradiction
rendering x both a part of a and not part of a. This refutes
the assumption rendering S an injection. Because S is both
a surjection and an injection it is a bijection, which com-
pletes the proof.

Sets ℘~Kij! and S℘~Kij! are closed under set operations
of Dij , and shape operations of Uij , respectively. They are
Boolean parts of the two new algebras: decomposition alge-
bra ℘~Kij! � Dij and shape algebra S℘~Kij! � Uij . The
two new algebras are isomorphic in accordance with the
following proposition.

Proposition 2. Algebras ℘~Kij ! and S℘~Kij ! are
isomorphic. �

The isomorphism is framed by the bijection S. We only
need to show that S preserves the operations of algebras.
Sum is preserved because a � b � SA � SB � S~A � B!,
where a and b are shapes from S℘~Kij! and A and B are
their respective decompositions from ℘~Kij!. The same can
be shown for product and difference to complete the proof
of the proposition.

The new kit of parts algebra ℘~Kij! computes with ana-
lyzed shapes in a meaningful way even though it does not

266 D. Krstic

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

see them as spatial objects. In formal design theory ℘~Kij!
algebras are used in systems like set grammars ~Stiny, 1982!
or structure grammars ~Carlson et al., 1991!, which work
with predefined vocabularies of shapes. These systems have
the same computational power as shape grammars and pro-
duce languages of designs similar to that generated by shape
grammars. However, they cannot handle the emergence and
ambiguity of shapes, which are important in creative phases
of a design process. In contrast, shape grammars do that
well ~Knight, 2003a, 2003b!.

3.2. Properties of complex algebras
of decompositions

Unlike set algebras, complex algebras for decompositions
do not preserve important properties of Uij algebras. There
are two reasons for this.

First, it is known in universal algebra that the identities
r � s valid in an algebra are also valid in its complex coun-
terpart if and only if individual variables occur only once in
both r and s ~Guatam, 1957; Bleicher et al., 1973; Shafaat,
1974!. However, most of the important identities of Uij are
not of this kind. In particular, these defining idempotent,
a � a � a, a{a � a, and distributive property, a{ ~b � c!�
~a { b!� ~a { c!, a � ~b { c!� ~a � b! { ~a � c! are valid in
Uij , but not in ℘'~Uij!.

Second, the relation �' is not a partial order, but a pre-
order. It is reflexive and transitive, but not antisymmetric.
Consequently, Dij is not a partially ordered set so that iden-
tities that are valid in Uij , under some condition~s! expressed
in terms of �, may not be valid in ℘'~Uij!. In particular, if
a � b, then a � b � b and a{b � a, and if a � b and b � a,
then a � b are valid in Uij , but not in ℘'~Uij!.

Algebra ℘'~Uij!, does better than Dij when it comes to
satisfying the minimum and the additional requirements
above. The former holds if the differences are ignored,
whereas the latter holds with no constraints.

Because it is possible to decide by using operations and
the relation of ℘'~Uij! whether its two elements are decom-
positions of the same shape, the algebra sees decomposi-
tions as in Definition 2, that is as decompositions of shapes.
This is handled by the following proposition.

Proposition 3. Let A and B be decompositions of shapes
a and b, respectively, then a � b if and only if Sk�1, . . . , m

' A ≤'
Sk�1, . . . , n
' B and Sk�1,. . . ,n B �' Sk�1, . . . , m

' A, where m and n
are cardinalities of A and B, respectively, and S ' is the
extension of the sum �' of ℘ '~Uij! . �

Therefore, Sk�1, . . . , m
' A � A �' A �' A �' . . . , where A

appears m times on the right side of the equality. The proof
then follows from the definition of �' and the fact that a �
Sk�1, . . . , m
' A and b � Sk�1, . . . , n

' B . The latter is due to the
following lemma and its corollary.

Lemma 2. Let A � $x1, x2, . . . , xn% be a decomposition,
the sum S~k!� Si�1, . . . , k

' A, where A appears k-times as an

argument with k � n, contains an element y � Si�1,. . . , k xi.
Note that S ' is the extension of �' of ℘ '~Uij! whereas S is
the extension of � of Uij. �

The proof is based on the definition of �' where each
element of one decomposition is combined in sum � with
each element of the other decomposition. Therefore, the
lemma holds for k � 2 because S~2! � A �' A contains
shape x1 � x2. If we assume that it holds for k, 2 � k � n,
so that S~k! contains shape z �Si�1,. . . ,k xi , then it is easy to
show that it also holds for k �1. Sum S~k �1!� S~k!�' A
contains shape z�xk+1 � ~Si�1,...,k xi!�xk+1 �Si�1,...,k�1 xi ,
which completes the proof by the induction.

Corollary. Let A be as above and let a be the shape A
analyzes, SS~n! then contains a. �

By Definition 2, a � SA � Si�1,. . . ,n xi whereas by the
lemma above, S~n! contains Si�1,. . . ,n xi .

Note that the dual of Lemma 2 also holds, so that P~k!�
Pi�1, . . . , k
' A contains an element y �Pi�1,. . . ,kxi , where P' is

the extension of {' whereas P is the extension of {.
Computations involving sums and products satisfy the

minimum requirement. For example, the decompositions in
Figure 5a and b analyze shapes in Figure 3c and d. The
latter are the respective sum and product of the shapes in
Figure 5a and b, whereas the former are the respective sum
and product of their decompositions in Figure 5f and g.

Unfortunately, the minimum requirement is not satisfied
by computations involving difference. For example, decom-
position in Figure 5c analyzes shapes in Figure 3a. The
latter is not the difference of the shapes in Figure 5a and b,
although the decomposition is the difference of their decom-
positions in Figure 5f and g.

Although ℘'~Uij! treats shapes as spatial objects, the same
way Uij does, ℘'~Uij! is still a poor choice for computing
with analyzed shapes. It does not satisfy the minimum
requirement and most of the important identities ~proper-
ties! of Uij .

However, as with Dij , special kinds of decompositions
form a subalgebra in ℘'~Uij!, which is capable of handling
analyzed shapes in a meaningful way. The decompositions
are singletons containing the shape they analyze and noth-
ing else. Approximating a shape with itself does not add
much to the shape description, so that an algebra of such
decompositions should behave as a shape algebra. This is
true due to the following result.

Proposition 4. Any identity r � s valid in Uij is valid in
℘ '~Uij! if a singleton from ℘ '~Uij! is assigned to each
individual variable occurring more than once in r or s. �

This proposition is valid for any algebra and its complex
counterpart; however, the proof in its generality is left to math-
ematicians. We will only show that it holds for one of the
identities defining the distributivity of Uij . Let A, B, C �
℘ '~Uij!. The identity A {' ~B �' C!� ~A {' B! �' ~A {' C!,

Shape decompositions and their algebras 267

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

defining distributivity of { ' over � ', is not valid
in ℘ '~Uij !, because A occurs twice on the right-hand
side. However, if A is a singleton $a% , the identity becomes
$a%{' ~B �' C!� ~$a%{' B!�' ~$a%{' C! ~'!. Elements of $a%
{' ~B �' C! are, in accordance with definitions of the oper-
ations {' and �', of the form a { ~x�y!, where x � B and y �
C. In contrast, all of the elements of ~$a% {' B!�' ~$a% {' C!
are of the form ~a { x!� ~a { y!. Because Uij is distributive,
a { ~x � y!� ~a { x!� ~a { y!, so that identity ~'! holds.

The algebra for singleton decompositions can now be
constructed as follows. The set Aij � Dij of singleton decom-
positions together with operations �', {', and �' forms the
Boolean part of a new algebra Aij . The group part and the
operation of the group action of Aij are the same as in
℘'~Uij!.

Proposition 5. The new algebra Aij is a subalgebra of
℘ '~Uij! isomorphic with Uij. �

For Aij � ℘ '~Uij! to hold Aij should be closed under the
operations of ℘'~Uij!. Indeed, according to definitions of
these operations we have $a%�' $b%� $a � b%, $a% {' $b%�
$a { b% , and $a%�' $b%� $a � b% , where a, b � Uij and $a%,
$b% � Aij ~'!. In set theory, a singleton ~decomposition! can
uniquely be specified as $a%� $x 6 x � a% , whereas ~shape!
a can be “recovered” from the singleton ~decomposition!
via �$a% � a. Therefore, there is one to one correspon-
dence between shapes and their singleton decompositions.
This correspondence preserves operations of Uij as evident
in identities ~'!, which completes the proof.

3.3. Algebras of analyzed shapes

Even though ℘'~Uij! treats shapes as spatial entities, the
only analyzed shapes it can meaningfully handle are ~triv-
ial! singleton decompositions. This is rather disappointing
because analyzed shapes play an important role not only in
design, but also in our everyday lives. However, there is
still some room for improvement of ℘'~Uij!.

One can normalize operations of ℘'~Uij! to make a shape
algebra homomorphic to it, the minimum requirement. The

normalization relies on the concept of relativization of the
structure of a shape to its subshape. In ℘'~Uij!, the relativ-
ization can be expressed in accordance with the following
proposition.

Proposition 6. Let a be a shape, A � ℘ '~Uij! its decom-
position, and shape b its part. Set B � $b%{' A is a decom-
position of b, which is the relativization of A to b. �

Set B � $b% {' A � { ~$b%� A!� $x { y 6 x � $b%, y � A%�
$b { x 6 x � A% , which is, according to Definition 3, the
relativization of A to b.

If A is the result of a computation with decompositions
and b is the result of the same computations carried on with
the corresponding shapes, then B is the result of the normal-
ized operation. If A is the result of a sum or a product, then
B � A, which means that normalization does not affect
these operations. The normalized sum �* and product {*

are the same as �' and {'. Normalization affects only the
difference, which becomes A �* B � $SA � SB% {' ~A
�'B!� A �' $SB% , where A and B are decompositions. Set
A �* B is clearly a decomposition of the difference of shapes
analyzed by decompositions A and B. It has the structure of
A, but not of B.

It is now possible to define a new normalized complex
algebra of decompositions ℘*~Uij!, which is the same as
℘'~Uij! except for the Boolean operations, which are now
normalized.

For example, the decompositions in Figure 6a, b, and c
are the respective sum, product, and difference of decom-
positions in Figure 3 when computed in the framework
℘*~Uij!. Note that sum in Figure 6a and product in Fig-
ure 6b are the same as the ones computed in the framework
of ℘'~Uij! ~Fig. 5a, b!.

The new algebra satisfies the minimum requirement: Uij

is homomorphic to it. However, the two algebras still have
different properties.

These differences could be largely reduced if the order-
ing on decompositions is changed to reassemble that on
shapes. Relation �' is a preorder on Dij , whereas � is a
partial order on Uij . Universal algebra provides a procedure

Fig. 6. Computing in ℘*~Uij!: ~a! sum, ~b! product, and ~c! difference of decompositions in Figure 3.

268 D. Krstic

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

for turning a preordered set into a partially ordered one
~Vickers, 1989!. The partially ordered set can then be
extended to an algebra to handle analyzed shapes.

The procedure starts with equivalence relation[defined
on Dij in terms of preorder �'. Two decompositions A and B
are equivalent with respect to [, or equivalent modulo [,
or A[B, if and only if A �' B and B �' A.

For example, decompositions in Figure 7a and b are equiv-
alent modulo[. Every element of the former decomposition
is a part of shape c from the latter decomposition. In contrast,
the empty shape from the former decomposition is a part of
every element of the latter decomposition. Consequently, the
latter includes the former decomposition in accordance with
the definition of �'. It is easy to verify that the relation also
holds if the decompositions exchange places.

In the next step, Dij is partitioned so that decompositions
equivalent modulo [are grouped into subsets or equiva-
lence classes. Each decomposition A belongs to a class @A# [
and the set of all equivalence classes is a quotient set Dij0[.

Finally, set Dij0[is partially ordered by �' so that @A#[
�' @B# [if and only if A �' B ~Vickers, 1989!.

Each equivalence class of Dij0[contains decomposi-
tions that have the following common properties.

Proposition 7. Two decompositions are equivalent
modulo[if and only if they share the sets of minimal and
maximal elements. �

Let min A and max A denote sets of minimal and maxi-
mal elements of a decomposition A, and let B be a decom-
position. We will first prove the following lemma.

Lemma 3. If A[B, then max A � B, max B � A, min A
� B, and min B � A. �

Let x � max A. According to the definition of [, A �' B
and, according to definition of �', there is y � B such that
x � y. According to the same definitions, B �' A and there
is z � A such that y � z. Consequently, x � y � z ~*! and

because x is a maximal element of A and z is an element of
A, the two have to be equal for ~*! to hold. This makes x
equal to y so that x � B, which proves that max A � B. The
proof of max B � A follows from the symmetry of [. The
proofs of the last two assertions may be done in the similar
fashion to complete the proof of the lemma.

Let us now assume that max A � max B and min A �
min B. For every x � A there is y � max A such that x � y,
and because max A � max B, y � B. Similarly, for every
vvvv � B there is u � min B such that u � vvvv, and because
min A � min B, u � A. Consequently, A �' B in accordance
with the definition of �'. The proof of B �' A may be
obtained in the similar fashion so that A [B, which com-
pletes the proof of the “if” part of the proposition.

Now assume that A[B, but the two do not have a com-
mon set of maximal elements. For example, there is an
element x maximal in A but not in B. According to Lemma
3, max A � B so that x � B. Because x is not maximal in B
there is y � max B such that x � y. Again, according to
lemma 3, max B � A so that y � A, and because x is max-
imal in A, x � y does not hold. This refutes our assumption
that max A Þ max B so that max A � max B holds. The
proof that min A � min B holds could be obtained in a sim-
ilar fashion, which completes the proof of the “only if” part
of the proposition.

Corollary 1. Decompositions equivalent modulo[are
analyzing the same shape. �

Let A and B be two decompositions such that A[B. The
shape that A analyzes is SA and because a � b � a if b � a,
we can take Smax A for SA. By the same token, the shape
that B analyzes or SB is the same as shape Smax B. Accord-
ing to Proposition 7, max A � max B so that SA �Smax A �
Smax B � SB, which completes the proof.

Corollary 2. There is a unique smallest representative
max A � min A for each equivalence class @A#[, where A is
a decomposition. �

Fig. 7. ~a, b! Decompositions are equivalent modulo [. Every element of ~a! is a part of ~c! the shape included in ~b!. The empty
shape in ~a! is a part of every element of ~b!. Every element of ~b! is a part of shape ~c! included in ~a!. The empty shape in ~b! is a
part of every element of ~a!.

Shape decompositions and their algebras 269

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

Note that the word smallest is related to the cardinality
~number of elements! of decompositions.

For Dij0[to be extended to a quotient algebra, equiva-
lence[needs to be a congruence on ℘*~Uij!.

Proposition 8. Equivalence relation[is a congruence
on ℘*~Uij! . �

Let A, B, C, D � ℘*~Uij! and let A[B and C[D. For[
to be a congruence, substitution property has to hold for
each operation of ℘*~Uij!. Substitution property for the
sum is A �* C[B �* D. Elements of max~A �* C! are of
the form x � y, where x � max A and y � max C. In con-
trast, elements of max~B �* D! are of the form u � vvvv,
where u � max B and vvvv� max D. Because, max A � max B
and max C � max D, in accordance with Proposition 7,
max~A �* C!� max~B �* D!. Similarly, min~A �* C!�
min~B �* D!, so that, according to Proposition 7, A �*

C [B �* D, which proves that the substitution property
holds for �*. It can be shown that the same property also
holds for {* and �*, which renders [a congruence on
℘*~Uij!.

It is now possible to construct a quotient algebra
℘*~Uij!0[, with elements that are classes of decomposi-
tions that share the shape they analyze and sets of minimal
and maximal elements. The set of such classes is partially
ordered with a smallest element, which is a one-element
equivalence class of $0%, but with no greatest element.

Computations in ℘*~Uij!0[are carried on as in ℘*~Uij!.
For example, computations in Figure 6 may be seen as com-
putations in ℘*~Uij , !0[, except that the decompositions
are now seen as representatives of their equivalence classes.
Consequently, any other representative of the same class
may be used in the place of any of the decompositions. For
example, decomposition in Figure 6a may be replaced with
decomposition in Figure 8a because they belong to the
same equivalence class. That is, they share sets of maximal
and minimal elements, represented in Figure 8b and c,
respectively.

Although all decompositions of an equivalence class are
guaranteed to analyze the same shape, there are other classes

in ℘*~Uij!0[with decompositions that analyze that very
shape.

For example, decompositions in Figure 8a and d both
analyze the shape in Figure 8b, but they do not belong to
the same equivalence class. The former decomposition has
a singleton containing the shape ~Fig. 8b! as the set of
maximal elements and the decomposition in Figure 8c as
the set of minimal elements. In contrast, the decomposition
in Figure 8d has c as the set of maximal elements and a
singleton containing an empty shape as the set of minimal
elements.

There is no one to one correspondence between shapes of
Uij and classes of ℘*~Uij!0[so that the two algebras are
not isomorphic. However, any subalgebra of ℘*~Uij!0[
whose elements enumerate shapes in a one to one fashion is
isomorphic with Uij .

For example, the algebra Aij of singleton decompositions
can be constructed as a subalgebra of ℘*~Uij!0[. For each
singleton $a% , sets of maximal and minimal elements are
equal and both are equal to $a% . This places $a% into an
equivalence class of ℘*~Uij!0[, with $a% the only element.

The following proposition sheds some light on the struc-
ture of decompositions that are building blocks of subalge-
bras of ℘*~Uij!0[that are isomorphic with Uij .

Proposition 9. Only decompositions that contain the
shape they analyze and have exactly one minimal element
qualify as the members of equivalence classes forming a
subalgebra of ℘*~Uij!0[isomorphic with Uij . �

Members of the Boolean part of such a subalgebra are
equivalence classes of decompositions, which according to
Proposition 7, are characterized by the common sets of max-
imal and minimal elements. Proposition 9, however, requires
these sets to be singletons. The following two lemmas prove
this statement.

Lemma 4. No subset of ℘~Uij!0[with elements that are
classes of decompositions characterized by nonsingleton
sets of maximal elements is a subalgebra of ℘*~Uij!0[
isomorphic with Uij . �

Fig. 8. ~a! Decompositions and Figure 6a belong to the same equivalence class. ~a,d! Decompositions both analyze ~b! the shape, but
they do not belong to the same equivalence class. Their sets of maximal and minimal elements are different: ~b,c! for ~a!, and ~c! and
$0% for ~d!, respectively.

270 D. Krstic

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

Let Vij � ℘~Uij!0[be such a subset and let @A# [be one
of its elements, where A � $x1, x2, . . . xn% , maxA � $x1, x2,
. . . xk%, 2 � k � n, and A analyzes shape a. If we take a
finite sum Si�1, . . . n

* @A#[� Si�1, . . . n
' @A#[� @Si�1, . . . n

' A#[�
@S~n!#[then, according to the corollary of Lemma 2, a is
an element of S~n!. Because Uij is homomorphic to ℘*~Uij!,
both S~n! and A are analyzing the same shape, a. Conse-
quently, max S~n!� $a% , and because k � 2 max A � $x1,
x2, . . . xk% Þmax S~n! so that @A#[� @S~n!#[. This means
that if @S~n!#[is an element of Vij and Vij is a subalgebra
℘*~Uij!0[, then Vij is not isomorphic with Uij because shape
a is represented by the two different elements: @A# [and
@S~n!#[of Vij . If @S~n!#[is not an element of Vij , then Vij is
not a subalgebra of ℘*~Uij!0[, which completes the proof.

Lemma 5. No subset of ℘~Uij!0[with elements that are
classes of decompositions characterized by nonsingleton
sets of minimal elements is a subalgebra of ℘*~Uij!0[
isomorphic with Uij . �

The proof is similar to that of Lemma 4 except that P~n!�
Pi�1, . . . , n
' A and the dual of Lemma 2 are used in the place of

S~n! and Lemma 2.
According to the lemmas above, only subsets of ℘~Uij!0[

with elements that are equivalence classes of decomposi-
tions characterized by singleton sets of minimal and maxi-
mal elements may be subalgebras of ℘*~Uij!0[isomorphic
with Uij . If max A is a singleton, it has to be equal to $a% ;
however, for min A we have more options. For example, in
Aij , min A is the same as max A, namely $a% .

Another example of a subalgebra of ℘*~Uij!0[isomor-
phic with Uij is based on equivalence classes of decompo-
sitions that recognize the shape they analyze, as well as the
fact that the empty shape is a part of any shape. It may
contain other parts too, but has, at least, to recognize the
two. Such a decomposition satisfies Proposition 9 with min-
imal element 0. For each shape a � Uij there is exactly one
equivalence class @$a, 0%#[of such decompositions that
corresponds to a. Set Cij � Dij0[of such equivalence classes
can be elevated to an algebra in accordance with the fol-
lowing result.

Proposition 10. Set Cij together with operations �*,
{*, and �*, is the Boolean part of an algebra Cij, which is
a subalgebra ℘*~Uij!0[isomorphic with Uij . �

Let a and b be shapes from Uij, A and B their respective
decompositions, and t a transformation from the group part
of ℘*~Uij!0[. In addition, let A and B be members of some
equivalence classes of Cij .

Because @A#[� Cij , $a, 0% � A so that max A � $a% and
minA � $0%. According to Corollary 2 of Proposition 7,
there is a unique representative of @A# [, such that @A# [�
@max A � min A# [� @$a, 0%#[. Consequently, there is only
one equivalence class in Cij containing decompositions of
a, each class of Cij corresponds to only one shape, and for

every shape in Uij there is a corresponding class in Cij . The
correspondence is a bijection, thus, enumerating all of the
elements of Uij and Cij . It needs to be shown that the corre-
spondence also preserves the operations and transforma-
tions of Cij ~or Uij!.

For the sum we have @A#[�* @B#[� @$a, 0%#[�*

@$b, 0%#[� @$a � b, a, b, 0%#[� @$a � b, 0%#[� Cij in
accordance with Corollary 2 of Proposition 7. The result of
the sum of equivalence classes is the equivalence class of
the sum of corresponding shapes. The same is true for prod-
ucts and differences: @A#[{* @B#[� @$a, 0%#[{* @$b, 0%#[�
@$a { b, 0%#[� Cij and @A#[�* @B#[� @$a, 0%#[�*

@$b, 0%#[� @$a � b, 0%#[� Cij . This renders Cij a subalge-
bra of the Boolean part of ℘*~Uij!0[isomorphic with the
Boolean part of Uij .

Set Cij is closed under transformations of ℘*~Uij!0[
and the correspondence above preserves the transforma-
tions. We have t~ @A#[!� t~ @$a, 0%#[!� @$ t~a!, 0%#[� Cij .
Consequently, Cij and Uij are isomorphic, which completes
the proof.

For example, each of the decompositions in Figure 3
may be augmented with an empty shape and used to com-
pute in the framework of Cij as illustrated in Figure 9.

Algebra Cij is the most interesting of the algebras con-
structed here. It computes with decompositions that are non-
trivial shape approximations and behaves like a shape
algebra. The shape approximations of Cij are rather general
ones. They may contain any set of parts of a shape provided
that the shape itself and the empty shape are included. This
renders Cij an excellent choice as a framework for compu-
tations with decompositions seen as shape approximations.
Computations carried on with shapes in the framework of
Uij algebra can now be repeated with analyzed shapes in the
framework of Cij algebra.

For example, the result @$a � b, a, b, 0%#[of the sum
above seems like a reasonable explanation of the sum of
shapes a and b. One should expect both a and b to be pre-
served by the sum. If we add two new parts c � a and d �
b to the decompositions above, the same computation
becomes the following:

@$a, c, 0%#[�* @$b, d, 0%#[� @$a � b, a, b, c � d, c, d, 0%#[.

The new parts are preserved, whereas their sum c � d,
also included, extends the computation to the new parts.
The two principles, preservation and extension, inform com-
putations in Cij . A computation preserves as much as pos-
sible of the original parts, but also extends ~to! these parts.

It has been believed that algebras Aij and Cij are the only
subalgebras of ℘*~Uij !0[isomorphic with Uij ~Krstic,
2004!; however, Proposition 9 seems to allow for construc-
tion of some other such algebras. This is based on the fact
that for a given shape a we can create an equivalence class
@$a, f ~a!%#[to represent a. Operator f ~on the Boolean part
of Uij! has to be chosen so that f ~a! is a part of a. For a set
of such equivalence classes to be an algebra isomorphic

Shape decompositions and their algebras 271

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

with Uij , operator f has to satisfy the following five
conditions:

f ~a! � a,

f ~a!� f ~b! � f ~a � b!,

f ~a! { f ~b! � f ~a { b!,

f ~a!� b � f ~a � b!, and

t~ f ~a!! � f ~t~a!!,

where a and b are shapes from the Boolean part of Uij and t
is a transformation from the group part of Uij .

Because every shape is guaranteed to be a part of itself
and to have 0 as a part we can take operator f to be an
identity f ~a!� a or a constant f ~a!� 0 and get algebras Aij

and Cij , respectively. In both cases, f satisfies all five of the
conditions above. We may also try some other ways of defin-
ing f.

For example, we can pick parts of a by using some fixed
shape c so that f ~a!� a { c, or alternatively f ~a!� a � c. In
both cases, f satisfies first four of the above conditions,
rendering the related sets of equivalence classes, algebras
isomorphic, with the Boolean part of Uij . However, f fails
the fifth condition, and the related sets are not closed under
transformations of the group part of Uij .

To satisfy the fifth condition we may choose f so that it
involves transformations. For example, f ~a!� a { t~a!, or
alternatively f ~a!� a � t~a!, where t is a transformation
defined in a coordinate system local to a. When a is trans-
formed, so is its local coordinate system. If a is represented
by an equivalence class @$a, a { t~a!%#[, then t~a! is rep-
resented by @$ t~a!, t~a! { t � t � t�1~t~a!!%#[� @$ t~a!, t~a! {
t � t~a!%#[, where � is a group composition. Alternatively, if
a is represented by @$a, a � t~a!%#[, then t~a! is repre-

sented by @$ t~a!, t~a!� t � t~a!%#[. Although f satisfies the
first and fifth condition, it fails the second and the third
one. We may choose for t to be defined in a global coordi-
nate system. Thus, if a is represented by @$a, a { t~a!%#[,
or by @$a, a � t ~a! %#[, then t ~a! is represented
by @$ t~a!, t~a! { t~t~a!!%#[� @$ t~a!, t~a! { t � t~a!%#[or
@$ t~a!, t~a!� t � t~a!%#[, respectively. This again satisfies
the first four conditions but fails the last one because t �

t~a! may differ from t � t~a!.
Although all of the possibilities for f have not been

exhausted, we may speculate with a great certainty that
f ~a!� a and f ~a!� 0 are the only solutions that satisfy all
of the conditions above. Thus, we have the following
conjecture.

Conjecture 1. Algebras Aij and Cij, which are subalge-
bras of ℘*~Uij!0[isomorphic with Uij , are the only such
subalgebras. �

Conjecture 1 singles out both: algebra Cij , as the only
nontrivial algebra for analyzed shapes, and also decompo-
sitions that recognize the shape they analyze as well as the
empty shape as the only meaningful shape approximations.

3.4. Properties of decompositions

Thus far, different algebras of decompositions were con-
structed and analyzed. Now, attention will be shifted to
different decompositions of shapes emerging with these
algebras. Seven algebras Dij , ℘ '~Uij!, ℘*~Uij!, ℘*~Uij!0[,
Aij , ℘ ~Kij !, and Cij , have been defined. The first
four compute with general0unstructured decompositions,
whereas the remaining three use different kinds of struc-
tured decompositions.

The structure of decompositions unfolds on two levels:
local, exposing the relations between the elements of a

Fig. 9. Computing in Cij: ~a! sum, ~b! product, and ~c! difference of decompositions in Figure 3, each augmented with an empty
shape.

272 D. Krstic

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

decomposition; and global, relating these elements to the
parts of the shape analyzed by the decomposition. If a decom-
position is to be an approximation of a shape, then its struc-
ture on the global level is of the most importance. All parts
of the shape should be represented by the elements of the
decomposition. There are infinitely many shape parts, but
only finitely many elements so that the relation between the
two is many to one.

For a given shape a, its part x, and its decomposition A,
this relation is as follows. There may exist two elements y
and z in A such that y is a part of x and x is a part of z, or y �
x � z. Decomposition A approximates part x by means of
elements y and z. If y exists, then x is bottomed by y, or x
has at least properties of y. If z exists, then x is topped by z,
or x has at most properties of z. If both elements exist, then
x is bounded by y and z, or x has at least properties of y and
at most properties of z. If neither y nor z exist, then x is not
recognized by decomposition A. All elements of A, when
seen as parts of a, are bounded by themselves.

Algebra Aij works with singleton decompositions that
are singleton sets of Dij . These contain only the shape they
decompose and nothing else. Each part of the shape is triv-
ially represented, topped, by the shape itself ~i.e., it has at
most properties of the shape!.

In set algebras, where shape parts are of the most impor-
tance, singletons inform that the shape is a part of itself.
Singletons are less informative in complex algebras. The
former depend on shape structures, but singletons by them-
selves do not structure shapes. Singletons and their alge-
bras simply demonstrate that complex algebras behave well
in a boundary case. They do so by validating all of the
identities of Uij , as shown in Proposition 4.

Algebra ℘~Kij! uses discrete decompositions, or subsets
of a finite set Kij of pairwise discrete shapes. No two ele-
ments of such a decomposition have common parts. Approx-
imating shapes with discrete decompositions is thrifty, with
no redundancy or ambiguity. The only shape parts that are
bounded are the elements of a decomposition. All other
parts are topped by only one element, bottomed by one and
possibly more elements, or not recognized at all. Any part
of the shape that consists of proper parts of two or more
elements of the decomposition is not recognized.

The set in Figure 10a is an example of a discrete decom-
position of the shape in Figure 3a, whereas the shapes in Fig-
ure 10b, c, and d are its proper parts. The shape in Fig-

ure 10b is topped by the first element of decomposition a,
shape c is bottomed by both the second and the third element
of decomposition a, whereas shape d is not recognized by a.

Discrete decompositions are good representations of fin-
ished designs ready to be assembled from the parts that are
elements of the decompositions.

By including the sums of the original elements, a discrete
decomposition could extend to a hierarchical structure. Hier-
archies are often used in design and elsewhere because their
straightforward structure shows not only the parts of a shape,
but also the way the parts are put together to assemble the
shape.

The algebra of analyzed shapes Cij computes with bounded
decompositions, which are, as shown earlier, the only mean-
ingful shape approximations. These recognize the shape they
analyze and the empty shape and can include other shape
parts besides the two. At a minimum, no other parts are
included. Every shape part is guaranteed to be bounded
~represented! by such a decomposition. However, at a min-
imum, this representation is a rather trivial one. At most, a
part has properties of the shape itself, and at least, no prop-
erties at all. The other elements a bounded decomposition
may contain contribute to a finer shape part representa-
tion. Shapes in Figure 5b and c are examples of bounded
decompositions.

The two shapes recognized in a minimum bounded decom-
position are important from the algebraic point of view.
They work in computations to preserve structures and shape
parts recognized by decompositions.

For example, if two shapes a and b are analyzed by their
respective bounded decompositions A and B and if the prod-
uct A {* B is taken, then shape a from A combines with
elements of B to preserve the structure recognized by B,
whereas shape b from B combines with the elements of A to
preserve the structure recognized by A. If b � a, then a
preserves elements of B as well. Similarly, b preserves ele-
ments of A if b � a. The empty shape has the same function
in sums: the one in A preserves elements of B and vice
versa. Both a and b assure that the product, sum, or differ-
ence of A and B contains the shape it analyzes: a � b, a { b,
or a � b, respectively.

Bounded decomposition may serve as the basis for cre-
ating more structured decompositions of shapes. They may
satisfy additional conditions to become lattices, topologies,
groups, and Boolean algebras.

Fig. 10. ~a! A discrete decomposition of the shape in Figure 3a, with shape parts that are ~b! topped, ~c! bottomed, or ~d! not
recognized by decomposition ~a!.

Shape decompositions and their algebras 273

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

4. DISCUSSION

If algebras for shapes are good models of how shapes are
used in design, then algebras of decompositions may inform
on how analyzed shapes are utilized. Table 1 sorts all of the
algebras for decompositions constructed here and high-
lights the ones suitable for computing with analyzed shapes.
It also exposes relationships among the algebras and shows
how they relate to shape algebras.

Unstructured decompositions are not suitable as approx-
imations of shapes. Neither set nor complex algebras of
general decompositions could be used to duplicate compu-
tations with shapes. This could only be achieved with decom-
positions structured in some ways. Two such structures
were distinguished: discrete decompositions and bounded
decompositions.

The structure of a discrete decomposition is minimum in
the sense that there is no overlap between the elements. The
same amount of material would be used for making all of
the elements of a discrete decomposition as for making the
shape itself.

However, bounded decompositions are far from being
minimum because they always contain the shape they ana-
lyze and may contain some other parts as well. Although
their structure comes from purely algebraic considerations,
it is not without intuitive appeal. The presence of both, the
shape analyzed by a decomposition and the empty shape,
provides certain context for the other shape parts recog-
nized by the decomposition.

The former shape assures that the parts are always seen
in the context of the whole. This local context is given
explicitly by the fact that the whole is a member of the
decomposition. If a description is associated with a bounded
decomposition, it contains the name of the shape analyzed
by the decomposition. In this sense, bounded decomposi-
tions are named.

The empty shape in a bounded decomposition implies
the global context in which the analyzed shape is placed. It
shifts attention from shape parts to the shape surroundings,
which are implied by the absence of the parts. In an asso-
ciated description, the empty shape may map to a descrip-
tion of the shape surroundings.

Algebra Cij suggests that both local and global contexts
are necessary for decompositions to be successfully used as
shape approximations. How intuitive is this? Do we ana-
lyze ~see! shapes with their parts always related to both the
whole and its surroundings? These questions are interesting
in their own right, but need to be decided by cognitive
psychologists.

For our part, future research should concentrate on mov-
ing from general decompositions to ones tailored to spe-
cific applications. This may lead to decompositions with
more elaborate structures.

As mentioned earlier, both discrete and bounded decom-
positions could be extended to more structured entities. The
elements of such decompositions may form different alge-
bras. The latter could then be combined within the frame-
work of algebras capable of preserving the algebraic structure
of decompositions.

For example, Stiny ~1994, 2001! computes with decom-
positions that are topologies and Boolean algebras, whereas
Krstic ~1996! does it with decompositions that are lattices,
hierarchies, topologies, Boolean algebras, and Boolean alge-
bras with operators. Such decompositions are able to han-
dle a variety of problems, from continuity of computations
in shape grammars, to recasting spatial computations with
shapes into nonspatial ones with symbols.

4.1. A note on implementation

Although this work is theoretical, the results obtained could
lead to practical applications. It would be advantageous to

Table 1. Algebras for decompositions

Properties

Algebra Decompositions

Name Symbol Type Structure
Subalgebra

of
Homomorphic

Image
Isomorphic

With
Additional
Condition

Identities
of Uij

Preserved
Shape

Approximations

Set Dij General None NA NA NA No Yes No
Complex ℘ '~Uij! General None NA NA NA Yes No No
Normalized

complex ℘*~Uij! General None NA Uij NA Yes No No
Quotient ℘*~Uij!0[Equivalence

class
None NA Uij NA Yes Yes No

Kit of parts ℘~Kij! Discrete Discrete
elements Dij S℘~Kij! S℘~Kij! No Yes Yes

Singletons Aij Singleton $a%
@$a%#[

℘ '~Uij!
℘*~Uij!

℘*~Uij!0[

Uij Uij Yes Yes Yes ~trivial!

Analyzed
shapes Cij Bounded $a, . . . 0%

@$a, 0%#[

℘*~Uij!0[Uij Uij Yes Yes Yes

274 D. Krstic

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

be able to experiment with shape decompositions used as
shape approximations, or analyzed shapes. This way the
assumptions we make about shapes and their parts will be
included in computations with shapes and affect the results
of such computations.

Major domains of implementation for shape algebras
are shape grammars ~production systems!, which use rewrit-
ing rules to generate designs. Grammars were introduced
over three decades ago by George Stiny and James Gips,
and were successfully used to generate new design styles
and analyze the existing styles ~Stiny, 2001!. Computer
implementations of shape grammars are many, ranging
from general grammar interpreters ~Krishnamurti, 1982;
Krishnamurti, & Giraud, 1986; Chase, 1989; Piazzalunga
& Fitzhorn, 1998; Tapia, 1999! to ones specific to cer-
tain design styles ~Flemming, 1987; Agrawal & Cagan,
1998!.

Algebras developed here should serve as a framework
for a new kind of grammars for analyzed shapes ~shape
decompositions!, thus extending the shape grammar formal-
ism. Computer implementations of such grammars could
be based on the existing shape grammar interpreters because
operations of algebras ℘'~Uij!, ℘*~Uij!, ℘*~Uij!0[, Aij ,
and Cij are extensions of shape operations ~�, {, and �! to
direct products of decompositions. Such an operation can
be computed by computing a number of shape operations.

For example, to compute the sum or product of decom-
positions A and B in ℘ '~Uij!, ℘*~Uij!, or ℘*~Uij!0[, we
need to compute cardAcardB corresponding shape opera-
tions, where cardA and cardB are cardinalities of the respec-
tive decompositions. The same number of shape operations
is needed to compute a difference in ℘'~Uij!. However,
for difference A � B in ℘*~Uij! or ℘*~Uij!0[, only cardA
shape operations is needed if the shape B analyzes is known.
If this shape is not known, another cardB operations is
needed to compute SB, which amounts to total of cardA �
cardB operations for the difference. To transform a decom-
position A we need cardA shape transformations. In
℘*~Uij!0[, the number of shape operations needed to com-
pute a single analyzed shape operation could be further
reduced if the unique smallest representatives for equiva-
lence classes are used ~Corollary 2 of Proposition 7!, which
for Cij will amount to just one shape operation. This is not
surprising because Cij and Uij are isomorphic. However,
by using the smallest representatives in Cij , all of the dis-
tinguished shape parts that are not included in the repre-
sentatives are lost in computations. Therefore, there is no
advantage in computing with decompositions instead of
shapes themselves. Even without using the smallest repre-
sentatives, computations could be reduced because bounded
decompositions of Cij are guaranteed to contain empty shape
so that shape operations involving it may be omitted. For
the sum or product of decompositions A and B in Cij we
need ~cardA � 1!~cardB � 1! shape operations; and for the
difference A � B or transformation t~A!, cardA � 1 shape
operations. Note that in the case of difference above there
is no need to compute SB because it is already an element

of B, and one only needs to keep track of it. The latter task
is not difficult because of isomorphism between Cij and
Uij . If one knows SA and SB, then computing S~A � B!
is simple because it is equal to SA � SB. The same is true
for products and differences, S~A { B! � SA { SB and
S~A � B! � SA � SB.

A shape generation with a shape grammar starts with an
initial shape, which is then gradually changed by recursive
applications of shape rules. Similarly, an analyzed shape
generation should start with an initial analyzed shape ~shape
decomposition!. To change an analyzed shape C with a
shape rule A r B, which replaces an analyzed shape A
with an analyzed shape B, one needs a transformation t
under which A becomes a part of C, or t~A! �' C. If such
t exists, then a transformed analyzed shape t~A! is removed
from C and replaced with the transformed analyzed shape
t~B! to create a new analyzed shape C '. This can be accom-
plished by computing four operations from an algebra
for analyzed shapes, in accordance with the following
expression.

C ' � @C � t~A!#� t~B!.

To implement the expression above in Cij , one needs to
compute cardA � 1 of shape operations for t~A!, cardB � 1
for t~B!, cardC � 1 for C � t~A! and another ~cardC � 1!
~cardB �1! for the sum, which totals cardBcardC � cardA �
2 of shape operations. This is k �104 ~cardBcardC � cardA �
2! times more shape operations per rule application than is
needed in standard shape grammars. Note that k � 1 if
decompositions in the computations are of cardinality 2,
which means at they are the smallest representatives. This
is expected because Cij and Uij are isomorphic. If we take
n for an average number of elements for decompositions
in computations, then k � ~n02!2 is an approximation with
less then 2% error for n . 50. Computation time is pro-
portional to the square of cardinalities of decompositions
in computations. The time could be reduced with the aid
of parallel computing. Operations in Cij are extensions of
shape operations to direct products of decompositions
and are done componentwise, which may be computed in
parallel.

Subshape evaluations necessary to determine transforma-
tion t are computationally the most complex operations a
shape grammar interpreter faces. However, no complexity
is added for evaluating decompositions of Cij . Because Cij

and Uij are isomorphic, t~A! �' C if and only if t~SA! �
SC so that shapes SA and SC could be evaluated instead of
their decompositions A and C.

We have not elaborated on implementations of algebras
Aij , Dij , and ℘~Kij! as there are no computational issues
with these algebras. Decompositions of the first algebra
are, for any practical application, shapes themselves whereas
operations of the last two algebras are set operations, which
are easier to implement than standard shape operations.

Shape decompositions and their algebras 275

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

REFERENCES

Agrawal, M., & Cagan, J. ~1998!. A blend of different tastes: the language
of coffee makers. Environment and Planning B: Planning and Design
25, 205–226.

Birkhoff, G. ~1993!. Lattice Theory. Providence, RH: American Mathemat-
ical Society.

Bleicher, M.N., Schneider, H., & Wilson, R.L. ~1973!. Permanence of
identities on algebras. Algebra Universalis 3, 72–93.

Carlson, C., Woodbury, R., & McKelvey, R. ~1991!. An introduction to
structure and structure grammars. Environment and Planning B: Plan-
ning and Design 18, 417– 426.

Chase, S.C. ~1989!. Shapes and shape grammars: from mathematical model
to computer implementation. Environment and Planning B: Planning
and Design 16, 215–242.

Earl, C. ~1997!. Shape boundaries. Environment and Planning B: Plan-
ning and Design 24, 668– 687.

Flemming, U. ~1987!. The role of shape grammars in analysis and creation
of designs. In Computability of Designs ~Kaley, Y.E., Ed.!, pp. 245–
272. New York: Wiley.

Gratzer, G. ~1979!. Universal Algebra. Providence, RI: American Math-
ematical Society.

Gratzer, G., & Whitney, S. ~1978!. Infinitary varieties of structures closed
under the formation of complex structures @Abstract# . Notices of the
American Mathematical Society 25, A224.

Guatam, N. ~1957!. The validity of equations of complex algebras. Archives
Mathematic Logik Grundlagenforch 3, 117–124.

Knight, T. ~1988!. Comparing designs. Environment and Planning B: Plan-
ning and Design 7, 73–110.

Knight, T. ~2003a!. Computing with emergence. Environment and Plan-
ning B: Planning and Design 30, 125–155.

Knight, T. ~2003b!. Computing with ambiguity. Environment and Plan-
ning B: Planning and Design 30, 165–180.

Krishnamurti, R. ~1982!. SGI: A Grammar Interpreter @Research Report# .
Centre for Configurational Studies, The Open University, Milton
Keynes.

Krishnamurti, R., & Giraud C. ~1986!. Towards a shape editor: the imple-
mentation of a shape generation system. Environment and Planning B:
Planning and Design 13, 391– 403.

Krstic, D. ~1996!. Decompositions of shapes. PhD Thesis. University of
California, Los Angeles.

Krstic, D. ~1999!. Constructing algebras of design. Environment and Plan-
ning B: Planning and Design 26, 45–57.

Krstic, D. ~2001!. Algebras and grammars for shapes and their boundaries.
Environment and Planning B: Planning and Design 28, 151–162.

Krstic, D. ~2004!. Computing with analyzed shapes. In Design Computing
and Cognition ’04 ~Gero, J.S., Ed.!, pp. 397– 416. Dordrecht: Kluwer
Academic.

Piazzalunga, U., & Fitzhorn, P.I. ~1998!. Note on three-dimensional shape
grammar interpreter. Environment and Planning B: Planning and Design
25, 11–33.

Shafaat, A. ~1974!. On varieties closed under construction of power alge-
bras. Bulletin Australian Mathematical Society 11, 213–218.

Stiny, G. ~1980!. Introduction to shape and shape grammars. Environment
and Planning B: Planning and Design 7, 243–251.

Stiny, G. ~1982!. Spatial relations and grammars. Environment and Plan-
ning B: Planning and Design 9, 113–114.

Stiny, G. ~1990!. What is a design. Environment and Planning B: Planning
and Design 17, 97–103.

Stiny, G. ~1991!. The algebras of design. Research in Engineering Design
2, 171–181.

Stiny, G. ~1992!. Weights. Environment and Planning B: Planning and
Design 19, 413– 430.

Stiny, G. ~1994!. Shape rules: closure, continuity, and emergence. Envi-
ronment and Planning B: Planning and Design 21, S49–S78.

Stiny, G. ~2001!. How to calculate with shapes. In Formal Engineering
Design Synthesis ~Antonson, E.K., & Cagan J., Eds.!, pp. 24– 60. Cam-
bridge: Cambridge University Press.

Tapia, M.A. ~1999!. A visual implementation of a shape grammar system.
Environment and Planning B: Planning and Design 26, 59–73.

Vickers, S. ~1989!. Topology Via Logic. New York: Cambridge University
Press.

Djordje Krstic holds a BA and MA from Belgrade Univer-
sity and a PhD from UCLA. He taught at Belgrade Univer-
sity and is currently a Principal Software Engineer at Alcatel
USA. Dr. Kristic has been performing research in the field
of computational design theory since 1988. His main research
interests are in shape grammars, algebras of design, and
space syntax.

276 D. Krstic

https://doi.org/10.1017/S0890060405050183 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060405050183

