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DEFINABLE TOPOLOGICAL DYNAMICS

KRZYSZTOF KRUPIŃSKI

Abstract. For a group G definable in a first order structure M we develop basic topological dynamics
in the category of definable G-flows. In particular, we give a description of the universal definable G-ambit
and of the semigroup operation on it. We find a natural epimorphism from the Ellis group of this flow to
the definable Bohr compactification of G , that is to the quotient G∗/G∗00

M (where G
∗ is the interpretation

ofG in a monster model).More generally, we obtain these results locally, i.e., in the category of Δ-definable
G-flows for any fixed set Δ of formulas of an appropriate form. In particular, we define local connected
components G∗00

Δ,M andG
∗000
Δ,M , and show that G

∗/G∗00
Δ,M is the Δ-definable Bohr compactification ofG .

We also note that some deeper arguments from [14] can be adapted to our context, showing for example that
our epimorphism from the Ellis group to the Δ-definable Bohr compactification factors naturally yielding
a continuous epimorphism from the Δ-definable generalized Bohr compactification to the Δ-definable
Bohr compactification of G . Finally, we propose to view certain topological-dynamic and model-theoretic
invariants as Polish structures which leads to some observations and questions.

§1. Introduction. Topological dynamics was introduced to model theory by
Newelski in [20, 21] and then further developed by various authors, e.g., in
[2, 8, 10, 14, 15, 29]. There are several natural categories to develop topological
dynamics in model theory. The most natural are the categories of definable and
externally definable “objects”. So far, however, mostly the externally definable cate-
gory has been studied (the definable onewas investigated under the extra assumption
of definability of types, which makes both categories the same). In this paper, we
develop basic topological dynamics in the category of definable flows, without the
definability of types assumption.
Recall that a G-flow is a pair (G,X ), where G is a group acting on a compact,
Hausdorff space by homeomorphisms. We always consider discrete flows, i.e., with
no topology on G (or, if one prefers, with the discrete topology on G). A G-ambit
is a G-flow (G,X, x0) with a distinguished point x0 whose G-orbit is dense. With
the obvious notion of a homomorphism of G-ambits, a universal G-ambit always
exists and is unique; this universal ambit is exactly (G, �G, e) (see [9, Chapter 1,
Proposition 2.6]), where �G is the Stone-Čech compactification of G .
Now, we recall some flows which have been investigated in model theory.
LetG be a group ∅-definable in a first order structureM . By SG (M ) we denote the
space of complete types overM containing the formula definingG ; equivalently, this
is the space of ultrafilters in the Boolean algebra of all definable (with parameters
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fromM ) subsets of G , equipped with the Stone topology. By SG,ext(M ) we denote
the space of all externally definable complete types overM containingG , that is the
space of ultrafilters in the Boolean algebra of all externally definable subsets of G
(i.e., subsets which are intersections withG of sets definable in arbitrary elementary
extensions ofM ).
Following [8] and [14], we will use the notion of [externally] definable G-flows.
Namely, let C be a compact, Hausdorff space. A map f : G → C is said to be
[externally] definable if for all disjoint, closed subsets C1 and C2 of C the preimages
f−1[C1] and f−1[C2] can be separated by an [externally] definable subset of G .
An [externally] definable G-flow is a G-flow (G,X ) such that for every x ∈ X the
map fx : G → X defined by fx(g) = gx is [externally] definable. An [externally]
definableG-ambit is an [externally] definable G-flow (G,X, x0) with a distinguished
point x0 such that the orbit Gx0 is dense in X .
Now, G acts by translations as groups of homeomorphisms of the compact
spaces SG (M ), SG,ext(M ) and �G , turning them into G-flows. As mentioned
before, (G, �G, e) is the universal G-ambit. Similarly, (G,SG,ext(M ), tpext(e/M ))
is the universal externally definable G-ambit. In particular, by the universality,
there is a left-continuous semigroup operation on SG,ext(M ) turning it into a semi-
group isomorphic to the Ellis semigroup E(SG,ext(M )) (for the definitions of Ellis
[semi]groups see Section 2). So one can consider both the minimal ideals and
the Ellis group inside SG,ext(M ) instead of in E(SG,ext(M )). However, the ambit
(G,SG (M ), tp(e/M )) is not necessarily definable (it is so if all types in SG (M ) are
definable in which case SG (M ) = SG,ext(M )), and we do not have a natural semi-
group operation on SG (M ). This makes SG,ext(M ) and the category of externally
definable G-flows easier to work with, and that is why topological dynamics has
been developed in this context. On the other hand, SG (M ) and definable flows
are simpler and more natural objects from the point of view of model theory. This
motivates our interest in the category of definableG-flows. Another, more concrete
motivation stems from the fact that even if the language and the model M are
both countable, the universal externally definable G-ambit SG,ext(M ) may be “big”
(e.g., not metrizable) which causes some difficulties in the application of topological
dynamics to Borel cardinalities of bounded invariant equivalence relations [15]. In
contrast, as we explain in this paper, under such a countability assumption, the
universal definable G-ambit is always metrizable, which may lead to simplifications
of some proofs concerning Borel cardinalities or even to new results. On the other
hand, our research leads to interesting questions and relations with Polish structures
introduced in [12] and further developed by several authors, e.g., in [16].
In this paper, we will consider even a more general category than that of definable
G-flows, namely the category of Δ-definable G-flows, where Δ is an arbitrary set of
formulas �(x;y, z, t̄) of the form ϕ(y · x · z, t̄) which contains a formula defining
G . The definitions of Δ-formulas, the space SG,Δ(M ), and Δ-definable G-flows are
given in Section 2.
In Section 3, we present the universal Δ-definable G-ambit as the quotient
of SG,Δ(M ) by some closed equivalence relation EΔ, we describe the semigroup
operation on SG,Δ(M )/EΔ, and, using it, we give a description of the relation EΔ.
In Section 4, we define local versions of the connected components G∗00

M and
G∗000
M , namely G

∗00
Δ,M and G

∗000
Δ,M , and we show that G

∗/G∗00
Δ,M is the Δ-definable
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Bohr compactification of G . The proof follows the lines of the argument from [8]
showing that G∗/G∗00

M is the definable Bohr compactification, but it also requires
some additional observations (in particular, the fact that G∗00

Δ,M is a normal sub-
group is not completely obvious, and we need Lemma 4.4 in order to show that
the quotient map G → G∗/G∗00

Δ,M is Δ-definable). Using results from Section 3,
we find an explicitly given epimorphism � from the universal Δ-definable G-ambit
SG,Δ(M )/EΔ to G∗/G∗00

Δ,M , whose restriction to the Ellis group is also an epimor-
phism. We formulate interesting questions concerning an analogous statement for
G∗/G∗000

Δ,M .
In Section 5, we explain that some deeper arguments from [14] can be adapted
to the Δ-definable context, which results in Theorems 5.4, 5.7, and 5.8. We also use
[2, Theorem 5.6] to get a variant of this theorem in our definable context (see
Corollary 5.10).
In Section 6, we explain how to treat various invariants (e.g., the Ellis group or the
Δ-definable generalizedBohr compactification ofG) as Polish structures, which sug-
gests that in some situations one could expect to get structural and topological the-
orems about these invariants via application of theorems on small Polish structures.
We make a few observations in this direction and formulate some questions.

§2. Preliminaries. Detailed preliminaries concerning topological dynamics in
model theory were given in several papers, so here we only recall a few things.
For more details, see e.g., [14, Section 1]. A good reference for classical topological
dynamics is for example [1] or [9].

Definition 2.1. The Ellis semigroup of the flow (G,X ), denoted by E(X ), is the
closure of the collection of functions {�g : g ∈ G} (where �g : X → X is given by
�g(x) = gx) in the spaceXX equippedwith the product topology,with composition
as semigroup operation.

This semigroup operation is continuous in the left coordinate, E(X ) is also a
G-flow, andminimal subflowsofE(X ) are exactlyminimal left ideals with respect to
the semigroup structure on E(X ), in particular they are cosed and so compact. The
following was proved by Ellis (e.g., see [4, Propositions 3.5, 3.6] and [9, Chapter 1,
Propositions 2.3, 2.5]).
Fact 2.2. LetM be a minimal left ideal in E(X ), and let J (M) be the set of all
idempotents inM. Then:
(i) For any p ∈ M, E(X )p =Mp =M.
(ii) M is the disjoint union of sets uM with u ranging over J (M).
(iii) For each u ∈ J (M), uM is a group with the neutral element u, where the

group operation is the restriction of the semigroup operation on E(X ).
(iv) All the groups uM ( for u ∈ J (M)) are isomorphic, even when we vary the

minimal idealM.
For a given group G we say that a G-ambit (G,X, x0) is universal if for every
G-ambit (G,Y, y0) there exists a (unique) homomorphism h : X → Y of G-flows
mapping x0 to y0. The following fact is fundamental [9, Chapter 1, Proposition 2.6].
Fact 2.3. (G, �G, e) is the unique up to isomorphism universal G-ambit.
Using this fact, one gets an “action” of �G on any G-flow (G,X ), namely for
x ∈ X there is a unique flow homomorphism hx : (G, �G, e) → (G,X, x), and for
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p ∈ �G we define px = hx(p). More explicitly, this action is given by px = lim gix
for any net (gi ) of elements of G converging to p in �G . In particular, �G acts on
itself, and denoting this action by ∗, one has (p ∗ q)x = p(qx) for all p, q ∈ �G
and x ∈ X . In particular, ∗ is a semigroup operation on �G which is continuous
on the left and whose restriction to G × G is the original group operation on
G . One easily checks that (�G, ∗) ∼= E(�G) (by sending p ∈ �G to the function
(x �→ px) ∈ E(�G)). In particular, Fact 2.2 applies to (�G, ∗) in place of E(�G).
In this paper, M denotes a model of a first order theory in a language L, and

C � M is a monster model; G will be a group ∅-definable in M , and G∗ its
interpretation in C. Group multiplication, denoted by ·, will be often skipped for
simplicity, but sometimes we will write it explicitly.

As above, a universal [externally] definable G-ambit is defined as an [externally]
definableG-ambit which maps homomorphically (by a (unique) homomorphism of
G-ambits) to an arbitrary [externally] definableG-ambit. It is clear (by general cat-
egory theory reasons) that, in each of these two categories, if a universal G-ambit
exists, then it is unique up to isomorphism. As mentioned in the introduction,
(G,SG,ext(M ), tpext(e/M )) is the unique up to isomorphism universal externally
definable G-ambit, so, in the same way as above, we get a semigroup opera-
tion on SG,ext(M ). The existence of the universal definable G-ambit is justified
in Remark 3.1. The main point of the current paper is to describe the universal
definable G-ambit as well as its local versions.
Let Δ be a subset of the set of all formulas (without parameters) in the language

L in the variable x of the same sort as G and some parametric variables. By a
Δ-formula overM we mean a Boolean combination of instances of formulas from
Δ with parameters fromM . By SG,Δ(M ) we denote the compact space of complete
Δ-types over M concentrating on G , equivalently, the space of ultrafilters of rel-
atively Δ-definable over M subsets of G . In the case when Δ is the collection of
all formulas in the variable x of the same sort as G and arbitrary parametric
variables, Δ-formulas over M are just all formulas over M in the variable x, and
SG,Δ(M ) = SG(M ).
Sometimes we will be using Δ-types over sets of parameters other than M . In
such situations, all the definitions of “Δ-objects” are analogous, except we take the
convention that by a Δ-formula over A we mean a formula over dcl(A) which is
equivalent to a Boolean combination of instances of formulas from Δ with parame-
ters from dcl(A) (we do it in order to avoid writing “dcl” many times in the paper).
Another option is to define Δ-formulas over A as those formulas over A which are
equivalent to Boolean combinations of instances of formulas from Δ with arbitrary
parameters (but then some statements would be slightly less general).
We naturally extend the definition of a definable function from G to a compact
space C to a Δ-definable context.

Definition 2.4. Let C be a compact space. A map f : G → C is Δ-definable if
for all disjoint, closed subsets C1 and C2 of C the preimages f−1[C1] and f−1[C2]
can be separated by a Δ-definable subset of G .

Now, we recall the definition of a definable map defined on the monster model
and we extend it to local versions.
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Definition 2.5. Let C be a compact space.

(i) A function f : G∗ → C is M -definable if for every closed C1 ⊆ C the
preimage f−1[C1] is type-definable overM .

(ii) A function f : G∗ → C is Δ-definable overM if for every closed C1 ⊆ C the
preimage f−1[C1] is Δ-type-definable over M (i.e., the intersection of sets
defined by Δ-formulas overM ).

The first item of the next fact is [8, Lemma 3.2], and the second one (generalizing
the first one) can be proved analogously. As usual,C denotes a compact, Hausdorff
space.

Lemma 2.6. 1) Definable context:
(i) If f : G → C is definable, then it extends uniquely to an M -definable
function f∗ : G∗ → C . Moreover, f∗ is given by the formula {f∗(a)} =⋂
ϕ∈tp(a/M ) cl(f[ϕ(M )]).

(ii) Conversely, iff∗ : G∗ → C is anM -definable function, thenf∗|G : G → C
is definable.

2) Δ-definable context:
(i) If f : G → C is Δ-definable, then it extends uniquely to a function
f∗ : G∗ → C which is Δ-definable over M . Moreover, f∗ is given by
the formula {f∗(a)} = ⋂

ϕ∈tpΔ(a/M ) cl(f[ϕ(M )]).
(ii) Conversely, if a function f∗ : G∗ → C is a Δ-definable over M , then
f∗|G : G → C is Δ-definable.

Remark 2.7. If f : G → C is Δ-definable, then the unique function
f∗ : G∗ → C which extends f and is Δ-definable over M is also given by
{f∗(a)} = ⋂

ϕ∈tp(a/M ) cl(f[ϕ(M )]).

Proof. This follows from the formula in point 2)(i) of Lemma 2.6 and the
observations that

⋂
ϕ∈tp(a/M ) cl(f[ϕ(M )]) is nonempty (which follows from the

compactness of C ) and contained in
⋂
ϕ∈tpΔ(a/M ) cl(f[ϕ(M )]). 


The following remark follows easily from definitions.

Remark 2.8. A function f : G∗ → C is Δ-definable overM if and only if there
is a continuous function h : SG,Δ(M ) → C such that f = h ◦ r, where r : G∗ →
SG,Δ(M ) is the obvious map a �→ tpΔ(a/M ). In particular, a function f : G∗ → C
is M -definable if and only if there is a continuous function h : SG(M ) → C such
that f = h ◦ r, where r : G∗ → SG (M ) is the obvious map.
We extend the notion of the definable flow in a natural way. Namely, a flow
(G,X ) will be called Δ-definable if for every x ∈ X the map fx : G → X given by
fx(g) = gx is Δ-definable.
The first part of the following observation was made in [14, Remark 1.12], and
the generalization to the second part can be obtained analogously.

Remark 2.9. (i) A product of definable G-flows is a definable G-flow.
(ii) A product of Δ-definable G-flows is a Δ-definable G-flow.
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Whenever we consider the quotient ofG∗ by a bounded,M -invariant equivalence
relation E, we can equip it with the logic topologywhich is defined by saying that a
subset of the quotient is closed if its preimage in G∗ is type-definable (equivalently,
type-definable overM ). If E is type-definable, then G∗/E is a compact, Hausdorff
space; if E is only invariant, thenG∗/E is only quasicompact. The definition of the
logic topology applies in particular to the quotient G∗/H , where H is an arbitrary
bounded index, M -invariant subgroup of G∗. If H is type-definable, then G∗/H
is a compact, Hausdorff group. For details on the logic topology see e.g., [13] and
[23, Section 2]. The following basic remark will be useful later.

Remark 2.10. Let E be an bounded,M -invariant equivalence relation on G∗.
Then G/E is dense in G∗/E.

Proof. Consider any nonempty, open subsetU ofG∗/E, and let � : G∗ → G∗/E
be the quotient map. Then �−1[U ] is a nonempty,

∨
-definable over M subset of

G∗, and as such it has a point in G . 


§3. Universal Δ-definable G-ambit. From now on, we fix a set Δ of formulas
about which we assume that:

(1) It consists of some formulas �(x;y, z, t̄) of the form �(y · x · z; t̄).
(2) The formula G(y · x · z) is in Δ, where G(x) is a formula over ∅ which
defines G .

This makes sure that any left or right translate of a Δ-formula by an element
of G is still a Δ-formula. Note that if all formulas as in (1) are included in
Δ, then being “a subset of G which is Δ-definable over M” is the same thing
as being “a subset of G which is definable over M”, so we are in the definable
context.

Remark 3.1. There exists a unique (up to isomorphism) universal Δ-definable
G-ambit.

Proof. Uniqueness is clear. To show existence, consider a set (G,Xi , xi)i∈I of
all up to isomorphism Δ-definable G-ambits (such a set exists, as there is a com-
mon bound on the cardinalities of all G-ambits). Now, let X ′ =

∏
i Xi , x = (xi)i ,

and let X be the closure of the orbit of x under the coordinatewise action of G .
Then (G,X ′) is Δ-definable by Remark 2.9, and so (G,X, x) is a Δ-definable
G-ambit. From the construction, we see that (G,X, x) maps on any Δ-definable
G-ambit, i.e., it is universal. 

By the assumption on the form of the formulas in Δ, we see that G acts on
SG,Δ(M ) by

g tpΔ(a/M ) = tpΔ(ga/M ),

so that (G,SG,Δ(M ), tpΔ(e/M )) is a G-ambit.
Let (G,U , x) be the universal Δ-definable G-ambit. Then, fx : G → U given by
fx(g) = gx is Δ-definable. Thus, by Fact 2.6, it extends to the functionf∗

x : G
∗ → U

which is Δ-definable over M . Hence, by Remark 2.8, there exists a continuous
function h : SG,Δ(M ) → U such that f∗

x = h ◦ r, where r : G∗ → SG,Δ(M ) is the
obvious map (namely a �→ tpΔ(a/M )). The function h is uniquely determined
by f∗

x , and we see that h(tpΔ(e/M )) = x.

https://doi.org/10.1017/jsl.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.32


1086 KRZYSZTOF KRUPIŃSKI

Remark 3.2. The above map h yields a homomorphism from the G-ambit
(G,SG,Δ(M ), tpΔ(e/M )) to (G,U , x).

Proof. It remains to show that h(gp) = gh(p) for any g ∈ G and p ∈ SG,Δ(M ).
By the explicit formula for f∗

x , we have

{gh(p)} = g
⋂

ϕ∈p
cl(fx[ϕ(M )]) =

⋂

ϕ∈p
cl(fx[gϕ(M )]) =

⋂

�∈gp
cl(fx[�(M )]) = h(gp).



If (G,SG,Δ(M ), tpΔ(e/M )) was a Δ-definable G-ambit, we could proceed with
the development of the theory exactly as in the well-understood externally defin-
able context. However, in general, this ambit is not necessarily Δ-definable (see
Example 4.13). Recall that if all types in SG(M ) are definable, then (G,SG (M ),
tp(e/M )) is definable and coincides with (G,SG,ext(M ), tpext(e/M )), and the cate-
gories of definable and externally definable G-flows coincide. Our goal is to start to
develop a theory of definable G-flows without the definability of types assumption.
Let EΔ be the equivalence relation on SG,Δ(M ) given by

EΔ(p, q) ⇐⇒ h(p) = h(q).

In the definable context (i.e., when Δ consists of all formulas of the appropriate
form), we will write E instead of EΔ.

Corollary 3.3. (G,SG,Δ(M )/EΔ, tpΔ(e/M )/EΔ) is the universal Δ-definable
G-ambit.

Proof. By Remark 3.2, EΔ is closed and invariant under the action of G .
This implies that (G,SG,Δ(M )/EΔ, tpΔ(e/M )/EΔ) naturally becomes a G-ambit.
From the very definition of EΔ, we get that h factors through the quotient
map SG,Δ(M ) → SG,Δ(M )/EΔ yielding an isomorphism from the G-ambit
(G,SG,Δ(M )/EΔ, tpΔ(e/M )/EΔ) to (G,U , x). This completes the proof as (G,U , x)
was chosen to be the universal Δ-definable G-ambit. 


Remark 3.4. (i) EΔ is the unique equivalence relation F on SG,Δ(M ) for
which (G,SG,Δ(M )/F,tpΔ(e/M )/F ), with the action of G defined by
g(p/F ) := (gp)/F, is the universal Δ-definable G-ambit.

(ii) In the definable context (i.e., when Δ consists of all formulas of the appropri-
ate form), if all types in SG(M ) are definable, then E is trivial (i.e., it is the
equality).

Proof. (i) Suppose F1 and F2 are two such relations. It is enough to show
that F1 ⊆ F2. By the universality of (G,SG,Δ(M )/F1, tpΔ(e/M )/F1), there is
f : SG,Δ(M )/F1 → SG,Δ(M )/F2 which is a homomorphism of G-ambits. Let
f′ : SG,Δ(M ) → SG,Δ(M )/F2 be the composition of f with the quotient map
SG,Δ(M ) → SG,Δ(M )/F1. We see that f′ is a homomorphism from the G-ambit
(G,SG,Δ(M ), tpΔ(e/M )) to (G,SG,Δ(M )/F2, tpΔ(e/M )/F2). But there is only one
such homomorphism, and it is given by p �→ p/F2. Therefore, f(p/F1) = p/F2 for
any p, hence F1 ⊆ F2.
(ii) By assumption, (G,SG (M ), tp(e/M )) is a definable G-ambit. Hence,
Corollary 3.3 implies that (G,SG (M ), tp(e/M )) is the universal definable G-ambit
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(literally, the quotientSG (M )/E is universal definable, but this implies the universal
property of SG (M )). And we finish using (i). 

Define an equivalence relation E ′

Δ on G
∗ by

E ′
Δ(a, b) ⇐⇒ EΔ(tpΔ(a/M ), tpΔ(b/M )).

In the definable context, we will skip Δ and write E ′. We see that E ′
Δ is a type-

definable over M , bounded equivalence relation on G∗ which is coarser than the
relation of having the same complete Δ-type overM . We have a natural topological
identification of SG,Δ(M )/EΔ with G∗/E ′

Δ, which we will be using freely.
Our main goal is to give an explicit description of the relation EΔ, equivalently
of E ′

Δ.
By Corollary 3.3, a standard argument (a sketch of which we give below for the
reader’s convenience) shows that there is a left continuous semigroup operation ∗
on SG(M )/EΔ which is given by

p/EΔ ∗ q/EΔ = lim
g→p/EΔ

g(q/EΔ), (1)

equivalently,
a/E ′

Δ ∗ b/E ′
Δ = lim

g→a/E′
Δ

g(a/E ′
Δ).

(When we write “g tends to p/EΔ”, we mean “tpΔ(g/M )/EΔ tends to p/EΔ with
g ranging over G”, i.e., limg→p/EΔ g(q/EΔ) = r/EΔ if and only if for every open
neighborhood U of r/EΔ there is an open neighborhood V of p/EΔ such that for
all g ∈ G such that tpΔ(g/M )/EΔ ∈ V one has g(q/EΔ) ∈ U . And analogously in
the equivalent definition.)
Sketch of the proof. Tosimplynotation,denote (G,SG,Δ(M )/EΔ, tpΔ(e/M )/EΔ)
by (G,U , x0). By the universality of (G,U , x0), for every x ∈ U there is a unique
fx : U → U which is a G-flow homomorphism mapping x0 to x. For p ∈ U put

p ∗ x = fx(p).
From the choice of fx , the following properties follow immediately.
(i) ∗ is continuous in the left coordinate.
(ii) ∗ extends the action of G , i.e., (gx0) ∗ x = gx for all g ∈ G and x ∈ U .
(iii) limg→p gq = p ∗ q for all p, q ∈ U (here g → p means that gx0 tends to p).
Finally, we leave as an exercise (using nets and limits) to check that ∗ is
associative. 

Next, we give an explicit formula for ∗, which is similar to the one in the externally
definable case.
Proposition 3.5. For any p, q ∈ SG,Δ(M ), p/EΔ ∗ q/EΔ = tpΔ(a · b/M )/EΔ,
where b |= q and a realizes a Δ-coheir extension of p overM,b (i.e., tpΔ(a/M, b) is
finitely satisfiable inM ).
Proof. Note that a basis of open neighborhoods of tpΔ(ab/M )/EΔ ∈
SG,Δ(M )/EΔ consists of the sets

Uϕ := {r/EΔ : [r]EΔ ⊆ [ϕ]}
with ϕ ranging over all Δ-formulas overM such that tpΔ(ab/M )/EΔ ∈ Uϕ , where
[r]EΔ = {q ∈ SG,Δ(M ) : EΔ(r, q)} and [ϕ] = {q ∈ SG,Δ(M ) : ϕ ∈ q}. Indeed, first
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of all, each set Uϕ is open in the quotient topology, because the preimage of the
complement ofUϕ under the quotient map consists of all the types r ∈ SG,Δ(M ) for
which there exists a type r′ ∈ SG,Δ(M ) such thatEΔ(r, r′) and¬ϕ(x) ∈ r′ (and sowe
see that this preimage is closed as a projection of a closed set in a product of compact,
Hausdorff spaces). Secondly, take any open neighborhood U of tpΔ(ab/M )/EΔ.
Then [tpΔ(ab/M )]EΔ is contained in the preimageU

′ ofU under the quotient map.
Since [tpΔ(ab/M )]EΔ is closed and U

′ is open, by the compactness of SG,Δ(M ), we
can find a Δ-formula (overM ) ϕ(x) such that [tpΔ(ab/M )]EΔ ⊆ [ϕ(x)] ⊆ U ′, and
so Uϕ is an open neighborhood of tpΔ(ab/M )/EΔ contained in U .
Consider any ϕ as above. Then tpΔ(ab/M ) � E ′

Δ(ab, x) � ϕ(x). So there is
�(x) ∈ tpΔ(ab/M ) such that

(∃y)(�(y) ∧ E ′
Δ(x, y)) � ϕ(x). (2)

Clearly |= �(ab).
Consider any �(w) ∈ p. As |= �(a)∧�(ab), we get �(w)∧�(wb) ∈ tpΔ(a/M, b).
(Note that in order to have that �(wb) is a Δ-formula over M,b, we use our
conventionwhich allowsBoolean combinations of instances of formulas fromΔwith
parameters from dcl(M,b); namely, we have to use parameters which are products
of the form b · g ∈ dcl(M,b) where g ∈ G .) By the assumption that tpΔ(a/M, b)
is finitely satisfiable in M , there exists g�,ϕ ∈ G such that |= �(g�,ϕ) ∧ �(g�,ϕ · b).
By (2), we conclude that E ′

Δ(g�,ϕ · b, x) � ϕ(x), and so
g�,ϕ(q/EΔ) = tpΔ(g�,ϕ · b/M )/EΔ ∈ Uϕ. (3)

The collection of all formulas ϕ as above forms a directed set (with ϕ1 ≤ ϕ2
iff ϕ2 � ϕ1) and similarly the collection of all �’s from p forms a directed set; the
product of these two directed sets is also a directed set with the product preorder,
and the limits below are computed with respect to this product preorder.
By (3), we conclude that

lim
�,ϕ
g�,ϕ(q/EΔ) = tpΔ(ab/M )/EΔ. (4)

On the other hand,
lim
�,ϕ
tpΔ(g�,ϕ/M ) = p,

so
lim
�,ϕ
tpΔ(g�,ϕ/M )/EΔ = p/EΔ,

which by virtue of (1) implies that

lim
�,ϕ
g�,ϕ(q/EΔ) = p/EΔ ∗ q/EΔ. (5)

From (4) and (5), we get p/EΔ ∗ q/EΔ = tpΔ(ab/M )/EΔ. 

Define a relation F0Δ on G∗ as follows. F0Δ(α, �) holds if there exist
a, b, a1, b1 ∈ G∗ such that the following conditions hold:

(1) α = a · b and � = a1 · b1,
(2) tpΔ(a/M ) = tpΔ(a1/M ) and tpΔ(b/M ) = tpΔ(b1/M ),
(3) tpΔ(a/M, b) and tpΔ(a1/M, b1) are both finitely satisfiable inM .
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The relation F0Δ is clearly reflexive and symmetric, but there is no obvious reason
why it should be transitive. Let FΔ be the transitive closure of F0Δ. We see that
F0Δ and FΔ are M -invariant. Finally, let F̄Δ be the finest type-definable over M
equivalence relation on G∗ containing the relation FΔ. We easily see that all the
relations F0Δ, FΔ, and F̄Δ are coarser than the relation of having the same complete
Δ-type overM , so the last two are bounded equivalence relations.
As usual, in the definable context (i.e., when Δ consists of all formulas of the
appropriate form), we skip the index Δ and write F0, F and F̄ .

Remark 3.6. The relations F0Δ, FΔ and F̄Δ are all invariant under the action
of G , so (G,G∗/F̄Δ, e/F̄Δ) is a G-ambit.
Proof. First, we check that F0Δ is invariant under G . Consider any g ∈ G and
α, � ∈ G∗ such thatF0Δ(α, �). Take a, b, a1, b1 from the definition of F0Δ witnessing
that F0Δ(α, �) holds. Since g ∈ G ⊆M , one easily checks that ga, b, ga1, b1 witness
that F0Δ(gα, g�) holds.
Since F0Δ is invariant under G , so is FΔ. For any g ∈ G , the equivalence relation
gF̄Δ is type-definable over M and contains gFΔ = FΔ, so F̄Δ ⊆ gF̄Δ. This implies
that F̄Δ is invariant under G , which yields the natural action of G on G∗/F̄Δ given
by g(h/F̄Δ) := (gh)/F̄Δ. By the definition of the logic topology, we see that this is
an action by homeomorphisms. Finally, theG-orbit of e/F̄Δ equals G/F̄Δ, which is
dense in the logic topology by Remark 2.10. 

We will also need the following general remark.

Remark 3.7. If D is a type-definable subset of G∗ which is a union of sets of
realizations of complete Δ-types overM , then D is Δ-type-definable overM .

Proof. Let � : G∗ → SG,Δ(M ) be the map given by �(a) := tpΔ(a/M ), and let
p(x) be a partial type defining D. Then �[D] is the subset of SG,Δ(M ) consisting
of all types consistent with p(x), so �[D] is closed, i.e., it is the set of all types in
SG,Δ(M ) extending some partial Δ-type p′ over M . Since D is a union of sets of
realizations of complete Δ-types overM , we see thatD = �−1[�[D]], soD = p′(G∗)
is Δ-type-definable overM . 

Theorem 3.8. F̄Δ = E ′

Δ, so (G,G
∗/F̄Δ, e/F̄Δ) is the universalΔ-definableG-ambit.

Proof. First,weprove that F̄Δ ⊆ E ′
Δ.For this, it is enough to show thatF0Δ ⊆ E ′

Δ,
because then clearly FΔ ⊆ E ′

Δ which implies that F̄Δ ⊆ E ′
Δ by the definition of F̄Δ

and the fact that E ′
Δ is type-definable overM .

So, consider anyα, � ∈ G∗ such thatF0Δ(α, �). Thenwehavea, b, a1, b1 satisfying
(1), (2), and (3) from the definition of F0Δ. Let p = tpΔ(a/M ) and q = tpΔ(b/M ).
By Proposition 3.5, we get tpΔ(α/M )/EΔ = tpΔ(a · b/M )/EΔ = p/EΔ ∗ q/EΔ =
tpΔ(a1 · b1/M )/EΔ = tpΔ(�/M )/EΔ. Hence, E ′

Δ(α, �).
Now, we will prove that E ′

Δ ⊆ F̄Δ. Note that it is enough to show
that (G,G∗/F̄Δ, e/F̄Δ) is a Δ-definable G-ambit. Indeed, if we know that
(G,G∗/F̄Δ, e/F̄Δ) is Δ-definable, then, by the universality of (G,G∗/E ′

Δ, e/E
′
Δ) (see

Corollary 3.3), there exists a G-flow homomorphism 	1 : G∗/E ′
Δ → G∗/F̄Δ such

that 	1(g/E ′
Δ) = g/F̄Δ for all g ∈ G . On the other hand, by the already proven fact

that F̄Δ ⊆ E ′
Δ, there is a G-flow homomorphisms 	2 : G

∗/F̄Δ → G∗/E ′
Δ given by

	2(a/F̄Δ) := a/E ′
Δ. Therefore, (	1 ◦ 	2)|G/F̄Δ = idG/F̄Δ , hence 	1 ◦ 	2 = idG∗/F̄Δ , so

	2 is injective which implies that F̄Δ = E ′
Δ.
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So, our goal is to prove that (G,G∗/F̄Δ, e/F̄Δ) is Δ-definable. This means that
for any a ∈ G∗ the function fa : G → G∗/F̄Δ given by fa(g) = (g · a)/F̄Δ is
Δ-definable. Fix any a ∈ G∗.
Define f̄a : G∗ → G∗/F̄Δ by f̄a(α) = (α′ · a)/F̄Δ for any (equivalently, some)
α′ ∈ G∗ such that tpΔ(α

′/M ) = tpΔ(α/M ) and tpΔ(α
′/M, a) is finitely satisfiable

inM . By the definition of F̄Δ, this function is well-defined. We see that f̄a extends
fa . Hence, it remains to show that f̄a is Δ-definable overM .
So, consider any D ⊆ G∗/F̄Δ which is closed. Let � : G∗ → G∗/F̄Δ be the
quotient map. Then �−1[D] is type-definable over M by a partial type p(x). We
see that f̄−1

a [D] is the set of all α ∈ G∗ for which there exists α′ ∈ G∗ such
that

tpΔ(α
′/M ) = tpΔ(α/M ) and tpΔ(α

′/M, a) finitely satisfiable inM and |= p(α′a).
Hence, f̄−1

a [D] is type-definable (over M ∪ {a}) and it is also a union of sets of
realizations of complete Δ-types overM . Therefore, it is Δ-type-definable overM
by Remark 3.7. 

Question 3.9. (1) Is F0Δ type-definable?
(2) Is FΔ generated by F0Δ in finitely many steps?
(3) Is F̄Δ equal to FΔ?

The answers are probably negative in general and the problem is to find appropri-
ate counter-examples. It would be also interesting to understand when the answers
are positive. Note that they are trivially positive when we work in the definable
context and all types in SG (M ) are definable, as then F0(α, �) ⇐⇒ α ≡M � .

§4. Connected components andΔ-definable Bohr compactification. A very impor-
tant aspect of the topological-dynamic approach to model theory have been
connections of some topological-dynamic invariants (e.g., the Ellis group) with
model-theoretic invariants (such as quotients by various connected components of
groups). Here, we try to say something about such connections in our Δ-definable
context. In particular, we introduce two Δ-definable connected components and
relate one of them to the Ellis group of the universal Δ-definable ambit. We also
give a desciption of the Δ-definable Bohr compactification.
Recall that:

• G∗00
M is the smallestM -type-definable subgroup of G

∗ of bounded index,
• G∗000

M is the smallestM -invariant subgroup of G
∗ of bounded index.

Take Δ as in the previous section.We extend the first definition to the local context
in the following way.

Definition 4.1. G∗00
Δ,M is the smallest Δ-type-definable overM subgroup of G

∗

of bounded index.

Note that G∗ is Δ-definable overM (even over ∅) by the formula defining G , so
G∗00
Δ,M exists as the intersection of all Δ-type-definable overM subgroups of G

∗ of
bounded index.
Another definition of G∗00

Δ has been proposed by E. Hrushovski in his lec-
ture notes on approximate equivalence relations, but the above definition is more
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appropriate in our current situation of Δ-definable topological dynamics. Later, we
will also propose a local version of G∗000

M , which leads to some questions.
It is well-known that G∗000

M ≤ G∗00
M are both normal subgroups of G

∗ (e.g., see
[6, Lemma 2.2]).

Proposition 4.2. G∗00
Δ,M is a normal subgroup of G

∗.

Proof. Note thatG∗00
Δ,M is normalized byG , which follows from the fact that the

conjugate of a Δ-formula over M by any element of G remains a Δ-formula over
M . Therefore,

G∗00
Δ,M =

⋂

ϕ(x)∈A
ϕ(G∗)

for some family A of formulas over M which is closed under conjugations by
elements of G .
Let {gi : i ∈ I } be a bounded set of representatives of right cosets of G∗00

Δ,M
in G∗. Then clearly ⋂

g∈G∗
(G∗00

Δ,M )
g =

⋂

i∈I
(G∗00

Δ,M )
gi .

So this intersection is invariant over M and also type-definable, and hence it is
type-definable overM . Thus,

⋂

g∈G∗
(G∗00

Δ,M )
g =

⋂

ϕ(x)∈B

ϕ(G∗)

for some familyB of formulas overM .
It is enough to show that G∗00

Δ,M ⊆ ⋂
g∈G∗(G∗00

Δ,M )
g . So take any ϕ(x) ∈ B.

Then there are ϕ1(x), . . . , ϕn(x) ∈ A and a1, . . . , an ∈ {gi : i ∈ I } such that
ϕ1(G∗)a1 ∩ · · · ∩ ϕn(G∗)an ⊆ ϕ(G∗). Since M ≺ C, there are h1, . . . , hn ∈ G for
which ϕ1(G∗)h1 ∩ · · · ∩ ϕn(G∗)hn ⊆ ϕ(G∗). Since A is closed under conjugations
by elements of G , we get G∗00

Δ,M ⊆ ϕ1(G∗)h1 ∩ · · · ∩ ϕn(G∗)hn . We conclude that
G∗00
Δ,M ⊆ ϕ(G∗), and the proof is complete. 

Let 
 be the subgroup of G∗ generated by all elements of the form a−1b for
tpΔ(a/M ) = tpΔ(b/M ) ∈ SG,Δ(M ). Since there are only boundedly many complete
Δ-types overM , we get

Remark 4.3. 
 has bounded index in G∗.

Lemma 4.4. 
 ≤ G∗00
Δ,M .

Proof. By compactness and the fact thatG∗00
Δ,M is a group Δ-type-definable over

M , we can present G∗00
Δ,M as the intersection of some family {ϕi(G∗)}i∈I of sets

Δ-definable overM such that for every i ∈ I :
(1) ϕi(G∗) is symmetric, i.e., e ∈ ϕi(G∗) = ϕi(G∗)−1,
(2) there is j ∈ I for which ϕj(G∗) · ϕj(G∗) ⊆ ϕi(G∗).

Since G∗00
Δ,M is of bounded index, each ϕi (G

∗) is left generic, i.e., there exist
gi,1, . . . , gi,ni ∈ G such that gi,1ϕ(G∗) ∪ · · · ∪ gi,ni ϕi(G∗) = G∗.
We need to show that if tpΔ(a/M ) = tpΔ(b/M ), then a

−1b ∈ G∗00
Δ,M . For this

it is enough to show that for any i ∈ I , a−1b ∈ ϕi(G∗). Choose j ∈ I for which
ϕj(G∗) ·ϕj(G∗) ⊆ ϕi(G∗). Since each gj,kϕj(x) is a Δ-formula overM , we get that
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gj,kϕj(x) ∈ tpΔ(a/M ) for some k ∈ {1, . . . , nj}. But then gj,kϕj(x) ∈ tpΔ(b/M ).
Hence, a−1b ∈ ϕj(G∗)−1ϕj(G∗) = ϕj(G∗)ϕj(G∗) ⊆ ϕi(G∗). 

The quotients G∗/G∗00

M and G
∗/G∗00

Δ,M will be always equipped with the logic
topology (see the end of Section 2).
Recall that a definable compactification of G is a definable homomorphism from
G to a compact, Hausdorff group with dense image. The definable Bohr compact-
ification of G is a unique (up to ∼=) universal definable compactification G , that is
a definable compactification f : G → H such that for an arbitrary definable com-
pactification f1 : G → H1 there is a unique morphism from f to f1 (i.e., a group
homomorphism h : H → H1 such that h ◦ f = f1).
In [8, Proposition 3.4], it was proven that the natural homomorphism from G to
G∗/G∗00

M is the definable Bohr compactification of G . Here, we extend this result
to the Δ-definable context.
By a Δ-definable compactification of G we mean a Δ-definable homomor-
phism from G to a compact, Hausdorff group with dense image. A universal
Δ-definable compactification of G is defined analogously to the universal definable
compactification.

Proposition 4.5. The natural homomorphism from G to G∗/G∗00
Δ,M is a unique

(up to ∼=) universal Δ-definable compactification of G , which we call the Δ-definable
Bohr compactification of G .

Proof. First, we check that the natural homomorphism � : G → G∗/G∗00
Δ,M

(given by �(g) = g/G∗00
Δ,M ) is a Δ-definable compactification ofG . Density of �[G ]

in G∗/G∗00
Δ,M (equipped with the logic topology) follows from Remark 2.10. Let

�̄ : G∗ → G∗/G∗00
Δ,M be the quotient map. For Δ-definability of � it is enough to

show that �̄ is Δ-definable over M (as �̄ extends � and we can use Lemma 2.6).
Consider any closed D ⊆ G∗/G∗00

Δ,M . Then, �̄
−1[D] is type-definable overM, and,

by Lemma 4.4, it is a union of sets of realizations of complete Δ-types over M .
By Remark 3.7, this implies that �̄−1[D] is Δ-type-definable overM .
Now, we check universality of �. We adapt the proof of [8, Proposition 3.4].
Consider any Δ-definable compactification f : G → C . By Lemma 2.6, there is a
unique Δ-definable overM functionf∗ : G∗ → C extendingf. We check thatf∗ is
a homomorphism. Consider any a, b ∈ G∗, and let p := tp(a/M ), q := tp(b/M ),
and r := tp(ab/M ). Then, by Remark 2.7 and compactness,

{f∗(ab)} = ⋂
�∈r cl(f[�(G)]) ⊆

⋂
ϕ∈p,�∈q cl(f[ϕ(G) · �(G)])

=
⋂
ϕ∈p,�∈q cl(f[ϕ(G)]) · cl(f[�(G)])

=
⋂
ϕ∈p cl(f[ϕ(G)]) ·

⋂
�∈q cl(f[�(G)])

= {f∗(a)f∗(b)}.

Since f∗ is Δ-definable overM , ker(f∗) is a normal subgroup of bounded index
which is an intersection of some sets Δ-type-definable over M . Since G∗00

Δ,M is
the smallest such group, we finish as in the proof of [8, Proposition 3.4]. Namely,
there is a natural continuous homomorphism fromG∗/G∗00

Δ,M toG
∗/ ker(f∗), and

G∗/ ker(f∗) is naturally topologically isomorphic with C , so we get a continuous
homomorphism h : G∗/G∗00

Δ,M → C such that h ◦ � = f. 
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Remark 4.6. (i) G∗00
Δ,M is the smallest type-definable over M subgroup of

G∗ containing 
.
(ii) G∗00

Δ,M ≥ 
 · G∗00
M .

Proof. (i) Let H be this smallest subgroup. Then H is type-definable over M
and it is a union of sets of realizations of complete Δ-types overM , so it is Δ-type-
definable overM by Remark 3.7. Thus, by Remark 4.3, G∗00

Δ,M ≤ H . The opposite
inclusion follows from Lemma 4.4.
(ii) follows from Lemma 4.4 and the definitions of G∗00

Δ,M and G
∗00
M . 


This suggests the following generalization of the component G∗000
M to the local

context.

Definition 4.7. G∗000
Δ,M is the smallest normal, invariant overM subgroup ofG

∗

of bounded index containing 
.

We know that G∗000
M is generated by all elements a−1b for a ≡M b. There-

fore, G∗000
M ≤ 
, and so 
 has bounded index in G∗ (which was already noted

in Remark 4.3). So, by the obvious observation that 
 is invariant over M ,
we get

Remark 4.8. G∗000
Δ,M = 〈
G∗〉, where 〈
G∗〉 denotes the normal closure of 
.

It is clear that when we are in the definable context, i.e., Δ consists of all formulas
of the appropriate form, then G∗00

Δ,M = G
∗00
M and G

∗000
Δ,M = G

∗000
M = 
.

Question 4.9. Is it true that G∗000
Δ,M = 
? Equivalently, is 
 a normal subgroup

of G∗?

Take the notation from Section 3. Now, we define a counterpart of Newelski’s
map defined in the externally definable context (see [20, Proposition 4.4] or
[14, Proposition 3.1]).

Proposition 4.10. The map �̂ : G∗/E ′
Δ → G∗/G∗00

Δ,M given by �̂(a/E
′
Δ) =

a/G∗00
Δ,M is a well-defined, continuous semigroup epimorphism.

Proof. First, we check that �̂ is well-defined. Theorem 3.8 tells us that E ′
Δ = F̄Δ.

So, by the definition of F̄Δ and the fact that the relation of lying in the same left coset
of G∗00

Δ,M is type-definable overM , we see that it is enough to show that whenever
F0Δ(α, �), then �−1α ∈ G∗00

Δ,M .
So, take any α, � with F0Δ(α, �). Then α = ab and � = a1b1 for some
a, b, a1, b1 such that tpΔ(a/M ) = tpΔ(a1/M ) and tpΔ(b/M ) = tpΔ(b1/M ). Then
�−1α = b−11 a

−1
1 ab ∈ b−11 
b = b−11 b
b ⊆ 
 · 
b . The last set is contained

in G∗00
Δ,M , because G

∗00
Δ,M is normal and contains 
 (by Proposition 4.2 and

Lemma 4.4).
The fact that �̂ is onto is clear from the definition of �̂. Continuity follows from
the definition of the logic topology. It remains to check that �̂ is a homomorphism.
Identifying G∗/E ′

Δ with SG,Δ(M )/EΔ, we see that �̂(p/EΔ) = a/G
∗00
Δ,M for any

a |= p. Consider any p, q ∈ SG,Δ(M ) and choose b |= q and a satisfying a Δ-coheir
extension of p over M,b. By Proposition 3.5, p/EΔ ∗ q/EΔ = tpΔ(ab/M ). Thus,
�̂(p/EΔ ∗ q/EΔ) = ab/G∗00

Δ,M = �̂(p/EΔ) · �̂(q/EΔ). 
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LetM be aminimal left ideal inG∗/E ′
Δ and u an idempotent inM. Let � : uM →

G∗/G∗00
Δ,M be the restriction of �̂ to uM. By Proposition 4.10 and the fact that

uM = u ∗G∗/E ′
Δ ∗ u, we get that � is a group epimorphism.

In the externally definable case, a very important ingredient of the theory was
the fact that there is also an epimorphism from the universal externally definable
G-ambit and from its Ellis group toG∗/G∗000

M . In the current context, we leave it as
an open problem.

Problem 4.11. (1) Is f̂ : G∗/E ′
Δ → G∗/G∗000

Δ,M given by f̂(a/E
′
Δ) = a/G

∗000
Δ,M

a well-defined semigroup epimorphism? Notice that whenever it is well-defined,
then it is an epimorphism (as in the proof of Proposition 4.10).

(2) If the answer to the above question in general is no, the problem is to understand
when f̂ is well-defined. This may lead to a new dividing line (motivated by
topological dynamics andmodel theory together) in the class of groups definable
in first order structures.

(3) If f̂ is well-defined, then its restriction f to the Ellis group uM is also an
epimorphism. If, however, it turns out that f is not always well-defined, an
interesting question is whether always there exits a (natural ) epimorphism
from uM to G∗/G∗000

Δ,M .
(4) It is very interesting to consider the above questions in the definable context,
i.e., when Δ consists of all formulas of the appropriate form. For example, the
first question asks if f̂ : G∗/E ′ → G∗/G∗000

M given by f̂(a/E
′) = a/G∗000

M is
well-defined.

Let us look at the definable context. Notice that any counter-example to the
statement that f̂ : G∗/E ′ → G∗/G∗000

M given by f̂(a/E
′) = a/G∗000

M is well-defined
must satisfyG∗000

M �= G∗00
M and not all types in SG(M ) are definable (the later prop-

erty follows from Remark 3.4(ii) and the fact that a ≡M b implies a−1b ∈ G∗000
M ).

So a (simplest) natural candidate is the universal cover of SL2(R) interpreted in the
model ((Z,+), (K,+, ·)), where K is the real closure of the rationals. (For a model-
theoretic analysis of the universal cover of SL2(R) (in particular, for the proofs that
the two connected components differ) see [3] and [7]). However, an analysis of this
example from the point of view of the definable topological dynamics seems quite
complicated. Below we describe what happens in a much simpler example, namely
in the unit circle S1(K).
The following remark follows easily from definitions by an argument as in the
second paragraph of the proof of Proposition 4.10.

Remark 4.12. f̂− : G∗/FΔ → G∗/G∗000
Δ,M given by f̂

−(a/FΔ) = a/G∗000
Δ,M is

a well-defined function. So, if FΔ = F̄Δ (which is unlikely in general), then f̂ is
well-defined.

Example 4.13. LetM := (K,+, ·) be the real closure of the rationals, Δ consist
of all formulas of the appropriate form, and let G := S1(K) be the unit circle
computed in K ×K . Then

SG (M ) = {pa : a ∈ S1(R)\S1(K)} ∪ {p−a , p+a , qa : a ∈ S1(K)},
where qa := tp(a/M ) is the algebraic type isolated by x = a, pa is the cut at a, and
p−a and p

+
a are the left and right cuts at a, respectively.
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It is well-known that 
 = G∗000
M = G∗00

M is the subgroup of all infinitesimal
elements (i.e., the monad of 1 in S1(C)). Moreover, G∗/G∗00

M is homeomorphic
with the real circle S1.
We will show that for any α, � ∈ S1(C)

F0(α, �) ⇐⇒ (� · α−1 ∈ 
 ∧ α /∈ S1(K) ∧ � /∈ S1(K)) ∨ α = �. (6)

(⇒) First, consider the case when α ∈ S1(K) or � ∈ S1(K). Without loss
α ∈ S1(K). Take a, b, a1, b1 witnessing that F0(α, �). Then a = α · b−1 and
tp(a/K, b) is finitely satisfiable in K , so b ∈ S1(K), and hence a ∈ S1(K). Since
tp(a1/K) = tp(a/K) and tp(b1/K) = tp(b/K), we conclude that a1 = a and
b1 = b. Therefore, α = � .
Now, consider the case whenα /∈ S1(K) and � /∈ S1(K). Take a, b, a1, b1 witness-
ing that F0(α, �). Then the computation from the second paragraph of the proof of
Proposition 4.10 shows that � · α−1 ∈ 
.
(⇐) If α = � , then clearly F0(α, �). So assume that � ·α−1 ∈ 
, α /∈ S1(K), and
� /∈ S1(K). Then �0 := st(α) = st(�), where st is the standard part map computed
on the circle. SinceK is countable, we can find �1 ∈ S1(R)\ acl(K,α, �, �0), and put
� := �0 · �1. Then � ∈ S1(R)\S1(K), and since α, � /∈ S1(K), the exchange
property for acl implies that α, � /∈ acl(K, �1). Define a = α · �1, b = �−11 ,
a1 = � · �1, b1 = �−11 . We check that a, b, a1, b1 witness that F0(α, �). The
equalities α = a · b, � = a1 · b1, and tp(b/K) = tp(b1/K) are obvious. Since
st(a) = st(a1) = � /∈ S1(K), we get tp(a/K) = tp(a1/K) = p� . It remains to check
that tp(a/K, �1) and tp(a1/K, �1) are finitely satisfiable inK . As �1, �2 ∈ S1(R) and
S1(K) is dense in S1(R), it is enough to check that a, a1 /∈ acl(K, �1). But this is
clear, as otherwise α ∈ acl(K, �1) or � ∈ acl(K, �1), a contradiction.
By (6), F0 is already an M -type-definable equivalence relation, so, by Theorem
3.8, we conclude that F0 = F = F̄ = E ′. This in turn implies that the classes of E
are the singletons {pa}, a ∈ S1(R)\S1(K), the singletons {qa}, a ∈ S1(K), and the
pairs {p−a , p+a }, a ∈ S1(K). Hence, E is nontrivial, which implies that the ambit
(G,SG (M ), tp(e/M )) is not definable by Remark 3.4.
One can check that SG(M )/E is the real circle S1 with an additional copy of
each point from S1(K), with the usual circle topology expanded by new subbasic
open sets which are the singletons of the additional points of the circle and their
complements (in particular, each additional point is clopen). Then there is a unique
minimal left idealM in SG (M )/E and it consists of E-classes of the nonalgebraic
types (which follows from the observations that the G-orbit of each algebraic type
is dense and that each nonalgebraic type lies in the closure of an arbitraryG-orbit).
Moreover, there is a unique idempotent u ∈ M, namely the E-class {p−1 , p+1 }. In
particular,M = uM by Fact 2.2(ii). One easily sees that � : uM → G∗/G∗00

M is
an isomorphism. In contrast, �̂ : SG(M )/E → G∗/G∗00

M is not injective, as it glues
{p−a , p+a } with {qa} for every a ∈ S1(K).
Note also that in this example the universal definable G-ambit is different (i.e.,
nonisomorphic) from the universal externally definable G-ambit, which follows
from the more general observation that if E in nontrivial, then the universal
externally definable G-ambit is not definable. Indeed, if SG,ext(M ) was a defin-
able G-ambit, then its homomorphic image SG (M ) would be also definable,
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soE would be trivial by Remark 3.4. One can check thatSG,ext(M ) can be identified
with the collection of all points of S1(K) and all left and right cuts at all points of
S1(R) with the topology whose description is left as an exercise.

§5. On some results from [14] in theΔ-definable context. Most of themain results
of [14] are about connections of the Ellis group and the externally definable gener-
alized Bohr compactification of G with quotients of G∗ by connected components.
It is very important in there that we have a natural epimorphism from the Ellis
group of the universal externally definable G-ambit to G∗/G∗000

M . As we saw in the
previous section, in the definable context, we do not know whether such an epimor-
phism exists. However, we have the natural epimorphism � from the Ellis group of
the universal definable G-ambit to G∗/G∗00

M .
In this section, we formulate variants of some results from [14] in our Δ-definable
context (with G∗/G∗00

Δ,M in place of G
∗/G∗000

M ) whose proofs are obvious adapta-
tions of the proofs from [14], so they will be omitted. It would be really interesting,
however, to get these kind of results with G∗/G∗000

Δ,M in place of G
∗/G∗00

Δ,M , which
would allow us to extend or strengthen some results from [14], and, in the case of
a countable language, maybe apply to get information on the Borel cardinality of
G∗00
Δ,M/G

∗000
Δ,M and simplify the proofs from [15] for the quotient G

∗00
M/G

∗000
M .

In the final part of this section, we analyze connections with the externally defin-
able topological dynamics, and, using [2, Theorem 5.7], we obtain a variant of this
result in the definable context.
The key role in [14] is played by the so-called �-topology introduced by Ellis.
Basic theory related to this notion is described in [9, Chapter IX] for the Ellis group
of the universal G-ambit �G , but it works similarly for the Ellis group of universal
G-ambits in many other categories. In [14, Section 2], we described how to work
with the universal externally definable G-ambit. In our new, Δ-definable context,
everything works analogously, so we will skip all the discussions, sending the reader
to [9] and [14] for details. Let us only recall the main definitions.
We take the notation as in previous sections. In particular,M is a minimal left
ideal in G∗/E ′

Δ, and u ∈ M is an idempotent.

Definition 5.1. For A ⊆ G∗/E ′
Δ and p ∈ G∗/E ′

Δ, p ◦ A is defined as the set of
all points x ∈ G∗/E ′

Δ for which there exist nets (xi) in A and (gi ) in G such that
limi gi = p (here by gi we mean gi/E ′

Δ) and limi gixi = x.

Definition 5.2. For A ⊆ uM, define cl�(A) = (u ◦ A) ∩ uM.
The proofs of 1.2–1.12 (except 1.12(2)) from [9, Chapter IX] go through (with
some slight modifications) in our context. In particular, cl� is a closure operator
on subsets of uM, and it induces the so-called �-topology on uM. This topology
is compact and T1, and multiplication is continuous in each coordinate separately.
It is easy to see that p ◦A is always closed, and so the �-topology on uM is weaker
than the topology inherited from G∗/E ′

Δ.

Definition 5.3. H (uM) is the intersection of the sets cl�(V ) with V ranging
over all �-neighborhoods of u in the group uM.
Then H (uM) is a �-closed, normal subgroup of uM, and uM/H (uM) is a
compact, Hausdorff group (see [9, Chapter IX, Theorem 1.9]).
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The notion of generalized Bohr compactification was introduced in [9, Chap-
ter VIII]. It is recalled in [14, Definition 1.23] in the externally definable context.
In the Δ-definable situation, we take the same definition, replacing the expression
“externally definable” by “Δ-definable”. The reader is referred to 1.13, 1.14, 1.21,
1.22, 1.23 from [14] for details.
It was proven in [9, Chapter IX, Theorem 4.2] that the generalized Bohr compact-
ification of a discrete group G equals uM/H (uM) (everything computed in �G).
In [14, Theorem 2.5], this was extended to the externally definable context. Since
the class of Δ-definable G-flows is closed under taking both products and quotients
by closed, G-invariant equivalence relations, the proof from [14] yields

Theorem 5.4. uM/H (uM) is the Δ-definable generalized Bohr compactification
of G .

The following fact is folklore in general topology, but we give a justification.

Fact 5.5. If f : X → Y is a continuous epimorphism, where X is a second-
countable (i.e., with a countable basis of open sets) space andY is a compact,Hausdorff
space, then Y is also second-countable.

Proof. If Z is a topological space, then a family N of subsets of Z is said to be
a network for Z if for every z ∈ Z and its open neighborhood U , there is N ∈ N
with z ∈ N ⊆ U . The smallest possible cardinality of a network for Z is called the
network weight of Z and is denoted by nw(Z). For every space Z we clearly have
nw(Z) ≤ w(Z) (where w(Z) is the weight of Z, i.e., the smallest cardinality of a
basis of open sets). [5, Theorem 3.1.19] tells us that if Z is compact, Hausdorff,
then nw(Z) = w(Z).
Now, take a countable basis {Bi : i ∈ } of X . It is clear, by the continuity of f,
that {f[Bi ] : i ∈ } is a network for Y . Hence, w(Y ) = nw(Y ) ≤ ℵ0. 

Corollary 5.6. If both the language and the model M are countable, then
uM/H (uM) is a Polish, compact group.
Proof. We know that it is a compact, Hausdorff group, so it remains to show
that it is metrizable. For this, it is enough to show that it is second-countable (see
[5, Theorem 4.2.8]).
We know that SG,Δ(M ) is second-countable, and so is SG,Δ(M )/EΔ (by Fact 5.5
and the observations that SG,Δ(M )/EΔ is compact, Hausdorff and is the image of
SG,Δ(M ) under a continuous map).
Since the �-topology on uM is weaker than the topology inherited on uM
from SG,Δ(M )/EΔ, we have that for uM equipped with this inherited topology
(and uM/H (uM) equipped with its usual quotient topology coming from the
�-topology on uM) the quotient function uM → uM/H (uM) is continuous. But
this inherited topology on uM has a countable basis (by the second paragraph
of the proof). Thus, since uM/H (uM) is compact, Hausdorff, we get that it is
second-countable by Fact 5.5. 

This corollary shows an advantage of uM/H (uM) computed in the definable
category in comparison with the same object computed in the externally definable
category (where it does not have to be metrizabe). In [14], G∗00

M/G
∗000
M is presented

as a quotient of a closed subgroup of the group uM/H (uM) computed in the
externally definable context, and in [15], it was used to get new information on
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the Borel cardinality of G∗00
M/G

∗000
M . If we were able to present G

∗00
M/G

∗000
M as a

quotient of closed subgroup of the group uM/H (uM) computed in the definable
context, by the above remark, we would be immediately within a nice descriptive
set-theoretic setting, which could simplify some arguments from [15] (for the objects
that we are considering now) and maybe lead to new results. But in this paper, we
only describe connections between uM/H (uM) and G∗/G∗00

M .
Proposition 4.10 gives us the epimorphism �̂ : G∗/E ′

Δ → G∗/G∗00
Δ,M whose

restriction � to uM is also an epimorphism. Using the explicit definition of �̂,
one can adapt the proof of [14, Theorem 0.1] to get the next theorem. In fact, the
proof of (2) is even simpler now, because we do not use the Fn’s.

Theorem 5.7. Suppose thatuM is equippedwith the �-topologyand uM/H (uM)
– with the induced quotient topology. Then:

(1) � is continuous,
(2) H (uM) ≤ ker(�),
(3) the formula p ∗H (uM) �→ �(p) yields a well-defined continuous epimorphism
�̄ from uM/H (uM ) to G∗/G∗00

Δ,M .

In particular, we get the following sequence of continuous epimorphisms

uM � uM/H (uM) �̄−� G∗/G∗00
Δ,M . (7)

We say that G is Δ-definably strongly amenable if it has no nontrivial Δ-definable
proximal G-flows (i.e., flows in which any two points x and y are proximal which
means that there exists a net (gi ) in G such that lim gix = lim giy). This extends
the notion of strongly amenable group from [9]. For example, [9, Chapter II, Theo-
rem 3.4] tells us that all nilpotent groups are strongly amenable so also Δ-definably
strongly amenable. Now, we significantly generalize Corollary 0.4 from [14] (by
dropping the definability of types assumption and by extending the context to the
local, Δ-definable one). The same proof as the one from [14] works, once we use
Proposition 4.5 and (in the final part of the proof) the explicit formula for ∗obtained
in Proposition 3.5.

Theorem 5.8. Suppose G is Δ-definably strongly amenable. Then the natural
epimorphism �̄ : uM/H (uM )→ G∗/G∗00

Δ,M is an isomorphism.

The theorem implies that for Δ-definably strongly amenable groups, the
Δ-definable generalized Bohr compactification is isomorphic with the Δ-definable
Bohr compactification.
Let us finish this section with a comparison of externally definable and definable
objects.
Let Mext be a minimal left ideal of the universal externally definable G-flow
SG,ext(M ), and let uext ∈ Mext be an idempotent. Since each Δ-definable G-flow is
externally definable, there is a unique epimorphism ĥ : (G,SG,ext(M ), tpext(e/M ))→
(G,SG,Δ(M )/EΔ, tpΔ(e/M )/EΔ). Then ĥ is an epimorphism of semigroups. Put
M := ĥ[Mext] and u := ĥ[uext] (so farM and u were chosen arbitrarily at the
beginning, but now we define them in this particular way). We easily get thatM is
a minimal left ideal, u ∈ M is an idempotent, and h := ĥ|uextMext is an epimorphism
from uextMext to uM.
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Remark 5.9. h is continuous, where both Ellis groups are equipped with the
�-topologies.

Proof. Let D ⊆ uM be �-closed. Let D′ = h−1[D]. The goal is to show that
D′ is �-closed. Take p ∈ cl�(D′). There are nets (gi) in G and (xi) in D′ such
that limi gi = uext and limi gixi = p. Then limi ĥ(gi ) = ĥ(uext) = u and
limi ĥ(gi )ĥ(xi) = limi ĥ(gixi) = ĥ(p). Moreover, ĥ(gi) = gi/E ′

Δ and ĥ(xi) ∈ D.
Therefore, h(p) = ĥ(p) ∈ cl�(D) = D, hence p ∈ D′. 

By this remark, we see that h[H (uextMext)] ≤ H (uM). Therefore, h induces a
continuous epimorphism from uextMext/H (uextMext) to uM/H (uM).
Let N �M be an |M |+-saturated elementary extension, and let SG,M (N) be the
space of all types in SG (N) finitely satisfiable inM . Then SG,ext(M ) can be naturally
identified with SG,M (N), which we will be using freely. Newelski was considering
the epimorphism �̂ext : SG,M (N) → G∗/G∗00

M given by �̂ext(tp(a/N)) = a/G
∗00
M

and conjectured that �ext := �̂ext|uextMext : uextMext → G∗/G∗00
M is an isomorphism

(at least in nice situations), e.g., see the comment after [20, Proposition 4.4].
In general, such a conjecture is false, but it turned out to be true for definably
amenable groups in NIP theories [2, Theorem 5.6]. Using this result, we easily get
that the same is true in our definable category.

Corollary 5.10. Assume we are in the definable case (i.e., Δ consists of all formu-
las of the appropriate form). If G is definable amenable and T := Th(M ) has NIP,
then � : uM → G∗/G∗00

M is an isomorphism.

Proof. Consider first the case as above, namely withM := ĥ[Mext] and u :=
ĥ[uext]. Note that ĥ(tp(a/N)) = a/E ′ for any tp(a/N) ∈ SG,M (N). Therefore,
using the definitions of �̂ and �̂ext, we get �̂ext = �̂ ◦ ĥ. Hence, �ext = � ◦ h. On the
other hand, [2, Theorem 5.6] tells us that �ext is an isomorphism, and, by the above
observations, we know that h is an epimorphism. Therefore, � is an isomorphism.
Now, consider an arbitrary minimal left idealM and an idempotent u ∈ M.
LetM0 := ĥ[Mext] and u0 := ĥ[uext]. By [9, Chapter I, Proposition 2.5], there is
an idempotent v ∈ M such that vu0 = u0 and u0v = v. Then f : uM → u0M0

given by f(x) = u0vxu0 = vxu0 is a group isomorphism (even �-continuous).
Indeed, f(x)f(y) = vxu0vyu0 = vxvyu0 = vxyu0 = f(xy) (the fact that
xv = x follows from the fact that u ∈ M = Mv (as v ∈ M), x ∈ M = Mu
and v is an idempotent), so f is a homomorphism; to see that it is an iso-
morphism, one should check, by similar computations, that g : u0M0 → uM
given by g(y) = uyv is the inverse of f. Let �0 : u0M0 → G∗/G∗00

M be �̂|u0M0 .
By Proposition 4.10 and the definitions of �, �0 and f, we get � = �0 ◦ f.
Indeed, �0(f(x)) = �̂0(vxu0) = �̂(v)�̂(x)�̂(u0) = �̂(x) = �(x). By the first
paragraph of the proof, �0 is an isomorphism. Hence, we conclude that � is an
isomorphism, too. 

Similarly to the externally definable case, also in the Δ-definable category there
is a general question about the impact of changing the ground model M on the
topological-dynamic invariants uM and uM/H (uM). In particular, if we com-
pute these invariants for a bigger model, does there exist epimorphisms to the
corresponding objects for the smaller model? If we assume NIP, is uM/H (uM)
independent of the choice ofM ?

https://doi.org/10.1017/jsl.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.32


1100 KRZYSZTOF KRUPIŃSKI

Another interesting direction concerns some weaker versions of the notion of
definable [extremal] amenability that naturally arise in our Δ-definable category,
but we leave this for the future.

§6. Topological-dynamic invariants as Polish structures. In [12], the following
notion was introduced.

Definition 6.1. A Polish structure is a pair (G,X ), where G is a Polish group
acting on a set X so that the stabilizer of any singleton is a closed subgroup of G .
We say that (G,X ) is small if for every n ∈  there are only countably many orbits
on Xn under the action of G .

In [12], it is assumed that the action of G on X is faithful, but this assumption
is purely cosmetic. The notion of nm-independence was introduced in [12, Defini-
tion 2.2], and it was proven that it has some nice properties (as forking independence
in stable or simple theories), but the existence of nm-independent extensions requires
the assumption of smallness of the Polish structure in question. Then a counterpart
of basic stability theory was developed for small Polish structures. In particular, a
counterpart of a superstable structurewas introduced and called an nm-stablePolish
structure. The following, particular case of Polish structures was studied deeply in
[12] and [16].

Definition 6.2. (i) A compact G-space is pair (G,X ), where G is a Polish
group acting continuously on a compact, Hausdorff space X .

(ii) A compact G-group is pair (G,H ), where G is a Polish group acting
continuously and by automorphisms on a compact, Hausdorff groupH .

Various structural theorems on compact groups in the context of small Polish
structures were proved in [12] and [16], e.g.,
Fact 6.3. If (G,H ) is a small, nm-stable compact G-group, then H is nilpotent-
by-finite.
The main motivation to introduce Polish structures was to apply model-theoretic
ideas to study purely topological objects. There is a variety of examples of classical
small Polish structures, e.g., various compact metric spaces considered with the full
group of homeomorphisms are always Polish structures which are often small. On
theother hand, it would be interesting to use small Polish structures to get new results
in pure model theory. A joint idea with Jan Dobrowolski is to view some spaces of
types as Polish structures. For example, ifM is a countable first order structure, then
Aut(M ) is naturally a Polish group and (Aut(M ), S(M )) becomes aPolish structure
(note that the action of Aut(M ) on the type space S(M ) is continuous). However,
even ifM is -categorical (in particular, if its theory is small), this Polish structure
is not necessarily small (e.g., for the random graph it is not small). However, one
can formulate the following conjecture. Note before that a small, complete theory
in a countable language has a unique (up to ∼=) countable saturated model.
Conjecture 6.4. Assume thatM is a countable, saturated model of a small, NIP
theory in a countable language. Let Δ be a finite set of formulas without parameters.
Then:

(i) (Aut(M ), S(M )) is a small Polish structure,
(ii) (Aut(M ), SΔ(M )) is a small Polish structure.
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As both pairs are Polish structures, only smallness requires a proof. Clearly,
(i) implies (ii). Artem Chernikov suggested that maybe some ideas from [26] could
be used to prove (ii).
As we will see in a moment, this conjecture is very important for potential
applications of small Polish structures to say something new about topological-
dynamic invariants, but it is also interesting in its own right.

In this section, we explain how to view various invariants as Polish structures.
Take the context and notation from previous sections. We start from a corollary of
Theorem 3.8.

Corollary 6.5. EΔ is Aut(M )-invariant.

Proof. This is equivalent to the statement that E ′
Δ is Aut(C/{M})-invariant.

By Theorem 3.8, E ′
Δ = F̄Δ. Since F̄Δ is the finest type-definable overM equivalence

relation containing FΔ, it is enough to show that FΔ is Aut(C/{M})-invariant.
Since FΔ is the transitive closure of F0Δ, this boils down to showing that F0Δ is
Aut(C/{M})-invariant. But this follows immediately from the definition of F0Δ,
namely, items (1)–(3) from the definition of F0Δ are clearly preserved under all
automorphisms which fixM setwise. 

Thus, Aut(M ) acts on SG,Δ(M )/EΔ in the natural way, namely f(p/EΔ) :=
f(p)/EΔ; denote this action by Φ: Aut(M )× SG,Δ(M )/EΔ → SG,Δ(M )/EΔ.
Proposition 6.6. Φ is continuous.

Proof. Abasic open set inSG,Δ(M )/EΔ is of the formUϕ := {p/EΔ : [p]EΔ ⊆ [ϕ]}
for a Δ-formula ϕ = ϕ(x, m̄) with parameters m̄ fromM . Let o(m̄) be the orbit of
m̄ under Aut(M ). We compute

Φ−1[Uϕ] =
⋃

m̄′∈o(m̄)
{f ∈ Aut(M ) : f(m̄′) = m̄} ×Uϕ(x,m̄′),

which is clearly open in Aut(M ) × SG,Δ(M )/EΔ. 

Proposition 6.7. The action Φ preserves ∗.
Proof. Consider any f ∈ Aut(M ) and p, q ∈ SG,Δ(M ). By Proposition 3.5,

p/EΔ ∗ q/EΔ = tpΔ(ab/M ),
where b |= q and a satisfies a Δ-coheir extension of p over M,b. Let f̄ be an
extension of f to an automorphism of C. Then f(p) = tpΔ(f̄(a)/M ), f(q) =
tpΔ(f̄(b)/M ), and tpΔ(f̄(a)/M, f̄(b)) is finitely satisfiable inM . Therefore,

f(p/EΔ) ∗ f(q/EΔ) = f(p)/EΔ ∗ f(q)/EΔ = tpΔ(f̄(a)f̄(b)/M )/EΔ
= tpΔ(f̄(ab)/M )/EΔ = f(tpΔ(ab/M )/EΔ)
= f(p/EΔ ∗ q/EΔ). 


LetM be a minimal left ideal in SG,Δ(M )/EΔ and u ∈ M an idempotent.We will
need the following observation [9, Chapter IX, Lemma 1.5].

Fact 6.8. If (pi) is a net in uM converging (in the usual topology onM) to p,
then �- limi pi = up.

Let Aut(M/u) be the stabilizer of u under the action Φ. By Proposition 6.6 and
the fact that SG,Δ(M )/EΔ is Hausdorff, Aut(M/u) is a closed subgroup of Aut(M ).
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Proposition 6.9. The actionΦ induces a �-continuous action ofAut(M/u) on uM.
Proof. By Proposition 6.7 and the fact thatM = SG,Δ(M )/EΔ ∗ u, we see that
any automorphism f ∈ Aut(M/u) fixes bothM and uM setwise. Thus, the action
Φ induces an action of Aut(M/u) onM, and further on uM. Now, we want to
show the continuity of this action of Aut(M/u) on uM.
Consider arbitrary nets (fi) inAut(M/u) and (pi) in uM such that limi fi = f ∈
Aut(M/u) and �- limi pi = p ∈ uM. We need to show that �- limi fi(pi) = f(p).
For this it is enough to prove that any subnet (f′

k(p
′
k)) of (fi(pi)) has a subnet

which is �-convergent to f(p). Hence, we see that it is enough to show that, for any
data as in the first sentence of this paragraph, the net (fi(pi)) has a subnet which
is �-convergent to f(p).
By the compactness ofM, there is a subnet (p′k) of (pi) converging, in the usual
topology onM, to some p′, i.e., limk p′k = p′. The corresponding subnet (f′

k) of
(fi) still converges to f, i.e., limk f′

k = f.
By Proposition 6.6, limk f′

k(p
′
k) = f(p

′). Hence, by Fact 6.8 and Proposition 6.7,
we get �- limk f′

k(p
′
k) = uf(p

′) = f(u)f(p′) = f(up′).
On the other hand, by Fact 6.8 applied to the net (pk), we get p = �- limi pi =
�- limk p′k = up

′.
By the last two paragraphs, �- limk f′

k(p
′
k) = f(p), and the proof is finished. 


Corollary 6.10. Aut(M/u) acts continuously on uM/H (uM), i.e., on the
Δ-definable generalized Bohr compactification of G (see Theorem 5.4).

Note that Aut(M ) also acts on G∗/G∗00
Δ,M . Namely, for f ∈ Aut(M ), take any

f̄ ∈ Aut(C) extending f and define f · (a/G∗00
Δ,M ) := f̄(a)/G

∗00
Δ,M . (The fact that

this action is well-defined follows easily from the observation thatG∗00
Δ,M is invariant

under Aut(C/{M}) and contains all a−1b for a ≡M b.) By a similar argument to
the proof of Proposition 6.6, one can show

Proposition 6.11. The action of Aut(M ) on G∗/G∗00
Δ,M is continuous.

By the above observations, we get

Corollary 6.12. Assume that the model M is countable. The following are
Polish structures: (Aut(M ), SG,Δ(M )), (Aut(M ), SG,Δ(M )/EΔ), (Aut(M/u), uM),
(Aut(M/u), uM/H (uM)), and (Aut(M ), G∗/G∗00

Δ,M ). More precisely, all these are
compact G-spaces (except the third one, which is not necessarily Hausdorff ). More-
over, the second one is a compact Aut(M )-semigroup with left-continuous semigroup
operation, the fourth one is a compactAut(M/u)-group, and the last one is a compact
Aut(M )-group.

From now on, we always assume that M is countable. In order to apply some
knowledge on small Polish structures, first one would have to describe interest-
ing classes of theories for which some of the above Polish structures are small.
Conjecture 6.4 may provide such classes.
Using Proposition 4.10, we easily get

Remark 6.13. If (Aut(M ), SG,Δ(M )) is small, then all other Polish structures
from Corollary 6.12 are small, too.

By Theorem 5.7, we easily get
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Remark 6.14. If (Aut(M/u), uM/H (uM)) is small, then (Aut(M ), G∗/G∗00
Δ,M )

is small as well.

There are two kinds of possible applications of small Polish structures. First of
all, [12, Corollary 5.9] tells us that small compact G-groups are profinite.

Corollary 6.15. (i) If (Aut(M/u), uM/H (uM)) is small, thenuM/H (uM)
is a profinite group.

(ii) If (Aut(M ), G∗/G∗00
Δ,M ) is small, then G

∗/G∗00
Δ,M is a profinite group.

Secondly, we would like to describe the algebraic structure of uM/H (uM) and
G∗/G∗00

Δ,M , but for this we would have to know that the corresponding Polish
structures are not only small, but also nm-stable (e.g., to apply Fact 6.3).

Corollary 6.16. (i) If (Aut(M/u), uM/H (uM)) is small and nm-stable,
then uM/H (uM) is nilpotent-by-finite.

(ii) If (Aut(M ), G∗/G∗00
Δ,M ) is small and nm-stable, then G

∗/G∗00
Δ,M is nilpotent-

by-finite.

We finish with a discussion on NIP and stable situations, but before that we need
to make one general observation.
Recall that by G∗00 we denote the smallest type-definable (over arbitrary param-
eters from C) subgroup ofG∗ of bounded index, if it exists. Note ifG∗00 exists, then
it is type-definable over ∅, soG∗00 = G∗00

∅ . Therefore,G
∗00 exists if and only ifG∗00

A

does not depend on the choice of the parameter set A.

Remark 6.17. If G∗00 exists, then for any set Δ of formulas of the appropriate
form,G∗00

Δ,M does not depend on the choice of the modelM and it is type-definable
over ∅; in fact, G∗00

Δ,M is the smallest Δ-type-definable (over arbitrary parameters
from C) subgroup of G∗ of bounded index.

Proof. By the existence of G∗00, there exists the smallest Δ-type-definable (over
arbitrary parameters from C) subgroup of G∗ of bounded index, which we denote
by G∗00

Δ . This component is clearly invariant under Aut(C), so it is type-definable
over ∅ by a collection of formulas {ϕi(x) : i ∈ I } closed under (finite) conjunctions.
We will show that G∗00

Δ = G
∗00
Δ,M for any modelM ≺ C.

The inclusion (⊆) is clear. For the other inclusion it is enough to show thatG∗00
Δ is

the intersection of a family of sets which areΔ-definable overM . Consider any i ∈ I .
We will be done if we show that there exist a Δ-formula ϕ(x) overM and j ∈ I such
that ϕj(G∗) ⊆ ϕ(G∗) ⊆ ϕi(G∗). By the definition of G∗00

Δ and compactness, there
is a Δ-formula ϕ∗(x) over C such that G∗00

Δ ⊆ ϕ∗(G∗) ⊆ ϕi(G∗). By compactness,
there is j ∈ I such that ϕj(G∗) ⊆ ϕ∗(G∗) ⊆ ϕi(G∗). SinceM ≺ C, we can replace
the parameters of ϕ∗(x) by some parameters fromM , obtaining a Δ-formula ϕ(x)
overM for which ϕj(G∗) ⊆ ϕ(G∗) ⊆ ϕi (G∗). 

When the theory T := Th(M ) has NIP, we know thatG∗00 exists (see [25] or [27,
Theorem 8.4]). By Remark 6.17, this implies that G∗00

Δ,M is type-definable over ∅.
Thus, if we assume that the language of T is countable, then G∗/G∗00

Δ,M is a com-
pact, metrizable group and Aut(C) induces a compact group, say AUT, acting
continuously on G∗/G∗00

Δ,M as a group of automorphisms (see [17, Lemma 3.11]
and [13, Fact 1.3]). So (AUT, G∗/G∗00

Δ,M ) is a compact structure interpretable in
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T over ∅, according to [11, Definition 1.3]. It is very easy to see that if T is small,
then this compact structure is also small, and then [11, Remark 2.1] tells us that
G∗/G∗00

Δ,M is a profinite space (i.e., a totally disconnected, compact, Hausdorff
space (see [24, Theorem 1.1.12] for equivalent definitions of a profinite space))
which implies that it is a profinite group (see [24, Theorem 2.1.3]). In fact, the
assumption that the language is countable can be dropped in the last conclusion,
as each small theory is a definitional extension of its reduct to a certain countable
sublanguage. Alternatively, in the very simple proof of [11, Remark 2.1], the fact
that the underlying space (in our case, G∗/G∗00

Δ,M ) of the small compact structure
in question is metrizable is irrelevant to conclude that it is profinite, hence the
countability of the language can be dropped. So we have justified the following

Remark 6.18. IfT := Th(M ) is small and hasNIP, thenG∗/G∗00
Δ,M is a profinite

group.

Assume that T := Th(M ) is stable. We will be using fundamental knowl-
edge on stability and stable groups (e.g., see [22, Chapter 1]). By [22, Chapter 1,
Lemma 2.2(i)] and the shape of the formulas in Δ, one easily gets that the G-ambit
SG,Δ(M ) is Δ-definable, so it is the universal Δ-definable G-ambit and the rela-
tion EΔ is trivial (by Corollary 3.3 and Remark 3.4). Since (by stability) there is a
generic type in SG,Δ(M ), Corollary 1.9 of [20] implies that there is a unique minimal
left ideal (equivalently, minimal subflow)M of SG,Δ(M ) and it consists of all the
generic types. Another consequence of stability and the shape of the formulas in Δ
is that any coset of G∗00

Δ,M determines a unique generic type in SG,Δ(M ) (which is
the Δ-type over M of some element of this coset). Together with Proposition 3.5,
this implies that there is a unique idempotent u ∈ M which is exactly the unique
generic type containing all Δ-formulas over M defining G∗00

Δ,M . Thus,M = uM,
� : uM → G∗/G∗00

Δ,M is a topological isomorphism, the usual topology on M
coincides with the �-topology on uM, and G∗/G∗00

Δ,M is profinite.
ByworkofNewelski (e.g., see [18, Proposition 1.6] and [19,Example 3]), it follows
that if the language is countable and T is superstable with few countable models
(so T is small), then (AUT, G∗/G∗00

Δ,M ) is a small, m-stable profinite structure (in
the sense of [19]), which in turn implies, by [28], thatG∗/G∗00

Δ,M is abelian-by-finite.
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