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Parametric instability in a rotating cylinder of
gas subject to sinusoidal axial compression.

Part 1. Linear theory

J. -P. RACZ AND J.F. SCOTT
Laboratoire de Mécanique des Fluides et d’Acoustique, ECL, UCBL, INSA, CNRS,

36 avenue Guy de Collongue, 69134 Ecully, France

(Received 27 February 2006 and in revised form 19 September 2007)

An analysis is presented of parametric instability in a finite-length rotating cylinder
subject to periodic axial compression by small sinusoidal oscillations of one of its
ends (the ‘piston’). The instability is due to resonant interactions between inertial-
wave (Kelvin) modes of the cylinder and the oscillatory compression and is resisted
by viscosity, acting both through thin boundary layers and throughout the volume,
the two mechanisms proving crucial for a satisfactory description. Instability is found
to take the form of either a single axisymmetric mode with frequency near to half that
of compression, or a pair of non-axisymmetric modes of the same azimuthal and axial
orders and oppositely signed frequencies, whose difference is close to the compression
frequency. Thus, in the axisymmetric case, instability leads to spontaneous growth of
a system of one or more oscillating toroidal vortices encircling the cylinder axis, while
the differing frequencies of the two modes of non-axisymmetric instability implies an
oscillatory aperiodic flow. The neutral curves giving the threshold for instability are
determined for all modes/mode pairs. For a given mode or mode pair, the neutral
curve shows a critical piston amplitude dependent on rotational Reynolds number
and cylinder aspect ratio, below which instability does not occur, and above which
there is instability provided the compression frequency is chosen to lie in a band
centred on the exact resonance condition.

1. Introduction
The problem studied in this paper is illustrated in figure 1. Gas inside a finite circular

cylinder which rotates about its axis is subject to axial sinusoidal compression by
oscillations of one of its ends (the ‘piston’). The initial motivation for this work
(and also that of the related study by Mansour & Lundgren 1990) was the observed
enhancement by swirl of mixing in the cylinders of piston engines. However, the
present problem is of more general interest as a new example of parametric instabilities
in rotating flows (see the review by Kerswell 2002, who mainly focuses on the most
widely studied case, namely the elliptic instability; the introduction and section 6 of
that review discuss applications to turbulence dynamics, geophysics, astrophysics, the
instability of shear flows and aircraft trailing vortices) which have, as their underlying
mechanism, resonant coupling of a pair of inertial-wave modes by an externally
applied periodic perturbation. In this context, our aim, through careful analysis and
detailed results for the present problem, is to elucidate more clearly the effects of
viscosity and (in Part 2, Racz & Scott 2008) nonlinearity for such instabilities.
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z

r

z = h (t)

z = 0

Ω

Figure 1. Illustration of the rotating cylinder with an oscillating piston at z = h(t). The z-axis
and radial coordinate, r , are also indicated. A frame of reference rotating with the cylinder is
used throughout the paper.

Small externally imposed sinusoidal perturbation of rotating flow, such as the
periodic compression of this paper, can have important results owing to resonant
interactions with inertial waves. One possibility is direct resonance, in which an inertial
mode is driven at or near its natural frequency, leading to modal growth until either
viscosity or nonlinearity intervenes (see e.g. Fultz 1959; Baines 1967; Aldridge &
Toomre 1969; Gans 1970; McEwan 1970; Stergiopoulos & Aldridge 1982; Rieutord
1991; Manasseh 1994; Kobine 1995). Although direct resonance induces transient
modal growth, this growth is not symptomatic of an instability. On the other hand,
another type of resonance, and the one that concerns us in this paper, involves
interactions of an oscillatory external perturbation and two inertial modes. One of
the modes, of frequency ω, interacts with the external perturbation, frequency ω0,
producing interaction frequencies ω ± ω0, one of which drives the other mode at its
natural frequency if ω0 coincides with the difference of the two modal frequencies (or
nearly so: the width of the band of resonant ω0 being proportional to the external
perturbation amplitude, supposed small). The resulting parametric resonance can lead
to instability via growth of the pair of inertial modes.

The elliptic instability, which has been the subject of considerable work (see Kerswell
2002 and references therein; Eloy, Le Gal & Le Dizés 2003), results from such a
resonance (Waleffe 1990; Gledzer & Ponomarev 1992), as does the instability which is
the subject of this paper. Elliptic flow with small eccentricity is a small perturbation
of solid-body rotation and, in the rotating frame of reference used throughout this
paper, consists of a sinusoidal flow with frequency ω0 = 2Ω, Ω being the rotational
angular velocity. Thus, parametric resonance of elliptic flow involves two inertial
modes whose frequency difference is close to 2Ω . Although the external perturbation
associated with elliptic flow has different spatial structure from that induced by piston
oscillations in our problem, and so couples different pairs of modes, the two problems
have many features in common, both in the linear theory of this paper and the weakly
nonlinear theory of Part 2. Note that, whereas the external perturbation frequency,
2Ω , of elliptic flow has a fixed relation to the rotation rate, that of the piston in the
present problem can be chosen at will. Other examples are provided by precession of
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Parametric instability in a rotating cylinder of gas. Part 1 267

a rotating container of fluid (see e.g. Kerswell 1993, 2002, § 5.1; Mahalov 1993), and
multipolar instabilities of higher order than the elliptic one (Eloy & Le Dizés 2001;
Eloy et al. 2003).

Most theoretical studies have been inviscid. Although inviscid theory permits an
understanding of the origin of the instability, no critical perturbation amplitude is
predicted and the flow is unstable to modes of unboundedly small wavelengths.
Viscous damping of inertial modes resists the instability, leading to a threshold
amplitude of external perturbation, below which instability does not occur, as well
as eliminating unstable growth of sufficiently short wavelengths. Furthermore, as we
shall see in our problem, the stability criterion obtained by taking the zero viscosity
limit does not in general coincide with that derived from inviscid theory, while neglect
of viscosity leads to singular behaviour in the weakly nonlinear regime, as will be
seen in Part 2. For these reasons, a satisfactory description of instability must allow
for viscosity, as we shall do.

In a finite container, such as the cylinder considered in this paper, there are two
types of viscous damping: that due to the boundary layers; and volumetric damping
due to viscous action throughout the rest of the container. An external perturbation
is necessary for instability and, given small amplitude, the viscosity should also be
small in order not to kill the instability altogether. Smallness of viscosity is expressed
via a large rotational Reynolds number, Re = 2Ωa2/ν (used here in preference to
the Ekman number, E = Re−1, which is perhaps more traditional in the theory of
rotating flows), where a is a length scale characterizing the size of the container and
which is taken as the cylinder radius in our case. In the classical theory of weakly
viscous modes in a rigidly rotating container (Greenspan 1969), the only damping
mechanism allowed for is due to the boundary layers, of thickness O(Re−1/2). Ekman
pumping by the boundary layers leads to weak (O(Re−1/2)) secondary flow in the
interior of the container and a modal damping rate of order Re−1/2Ω , inducing modal
decay on a time scale which is longer, by a factor of Re1/2, than that of the modal
oscillations.

Boundary-layer damping of modes in a finite container may be contrasted with
the case of plane inertial waves in an unbounded fluid, for which viscous damping
acts throughout the flow and is proportional to the product of Re−1 and the squared
wavenumber, increasing rapidly at smaller wavelengths. For the low-order modes of a
container, whose wavelengths are comparable with the container size, the volumetric
damping rate is O(Re−1), asymptotically small compared with that, O(Re−1/2), arising
from the layers, which is why the volumetric component is neglected in the classical
theory. On the other hand, although boundary-layer damping varies from mode to
mode, it remains O(Re−1/2) for the higher-order modes, whereas volumetric damping
increases and the two become comparable for modes of wavelengths O(Re−1/4), with
volumetric viscous effects dominating at still shorter wavelengths. Thus, a uniform
description, capable of handling modes of all orders, should include both, allowing
a continuous passage from the low-order modes, through those for which volumetric
damping becomes significant, to the volumetrically dominated damping of the highest-
order modes. As we shall see, the total modal damping in a cylinder can be expressed
as the sum of boundary-layer and volumetric contributions, both of which are crucial
for the treatment of the instabilities we wish to study. In particular, the volumetric
component is required to avoid the instability to high-order modes of unboundedly
short wavelengths noted earlier. Boundary-layer damping is also required, otherwise
the damping rates of the low-order modes, which are the least damped and hence
the first to become unstable as the external perturbation amplitude is increased,
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268 J.-P. Racz and J. F. Scott

are grossly underestimated. That is, boundary-layer damping controls the threshold
external perturbation amplitude for instability.

As noted earlier, the subject of this paper is flow inside a finite cylinder of radius a,
rotating (along with its endwalls) at angular velocity Ω about its axis, one of whose
ends (the piston) executes small sinusoidal oscillations of frequency ω0 (comparable
with Ω) and hence subjects the gas inside the cylinder to periodic compression
(figure 1). The basic flow whose instabilities are studied has the defining properties
that it is axisymmetric and periodic with the piston period. In the limit of zero viscosity
and in the frame of reference rotating with the cylinder used throughout the paper, this
flow consists of simple periodic compression of the gas column in which fluid particles
oscillate axially with displacements which vary linearly with the axial coordinate z,
from zero at the fixed end z = 0 to that imposed by the piston at z = h(t). The basic
flow considered in this paper is the flow just described, modified by the addition
of small viscosity. Mansour & Lundgren (1990) undertook a linearized numerical
study of inviscid rotating flow between two infinite parallel plates, the oscillations of
one of which induce periodic compression, a limiting case of the present problem in
which viscosity is neglected and the cylinder radius is infinite. They determined the
unstable bands of piston frequency as a function of the piston amplitude for a given
inertial-wave mode (including bands arising from higher-order parametric resonances
which are killed off by viscous damping given the Reynolds-number scaling of the
present paper, chosen so that viscosity affects the primary resonance). Finiteness
of the cylinder in our case leads to discrete modes, rather than the continuum of
the infinite problem, while, as discussed earlier, viscosity allows a more satisfactory
description of the instability with a threshold piston amplitude for each mode.

The paper is organized as follows. The starting point in § 2 is the low-Mach-number
limiting form of the compressible Navier–Stokes equations. Following transformation
of the z-coordinate to render the cylinder geometry fixed, the basic flow is introduced
and equations for the perturbation are derived (to avoid confusion, note that
hereinafter, the term perturbation no longer refers to the externally imposed periodic
oscillations, as it did earlier, but instead to perturbations of the basic flow, which
already includes the external perturbation). In § 3, the inertial modes are introduced,
the velocity perturbation is expanded in terms of the modal eigenfunctions and exact
evolution equations for the modal amplitudes derived. Asymptotics based on small
sinusoidal piston amplitude is used in § 4 to derive amplitude equations for pairs
of parametrically resonant modes which form the basis of the stability analysis and
results of § 5.

2. Formulation
2.1. Low-Mach-number equations

Our starting point is the low-Mach-number limiting form of the compressible Navier–
Stokes equations for a gas with two thermodynamic degrees of freedom in a frame
of reference rotating with the cylinder:

∇ · v = − 1

ρ

Dρ

Dt
, (2.1)

ρ
Dv

Dt
= −∇p′ + ∇ ·τ − 2ρΩ × v − ρΩ × (Ω × x), (2.2)

ρT
Ds

Dt
= ∇ · (k∇T ), (2.3)
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where v, ρ, τ , T , s and k are the fluid velocity, density, viscous stress tensor, absolute
temperature, entropy per unit mass and thermal conductivity, Ω is the rotational
angular velocity of the cylinder and D/Dt = ∂/∂t + v · ∇ a material derivative. The
differences between the low-M and full compressible Navier–Stokes equations are that:
(i) viscous dissipation is neglected in (2.3), and (ii) the thermodynamically determined
quantities ρ(p, s), T (p, s) in (2.1)–(2.3), as well as k(p, s) and the coefficients of
viscosity implicit in the Newtonian expression for τ , are to be evaluated at uniform
pressure p̄(t). The total fluid pressure is p = p̄(t) + p′, where p′ represents small
(O(M2)) departures from uniformity and appears only via the pressure gradient term
in (2.2).

For simplicity, adiabatic thermal boundary conditions (∂T /∂n= 0) and initially
uniform entropy s0 are supposed. The solution of (2.3) is then s = s0, since the
corresponding T = T (p̄, s0) is uniform. Indeed, all thermodynamically determined
quantities are uniform, taking their values at pressure p̄(t) and entropy s0, but
evolving with time owing to variation of p̄(t). In particular, the density is uniform and
inversely proportional to the cylinder height h(t), thanks to overall mass conservation.
In consequence, (2.1) becomes

∇ · v =
1

h

dh

dt
, (2.4)

showing that ∇ · v is uniform. Using this fact, the Newtonian expression for τ and
uniformity of the coefficients of viscosity, (2.2) yields

Dv

Dt
= −∇π − 2Ω × v + ν (t)∇2v, (2.5)

where ν(t) is the kinematic viscosity, π = p′/ρ − Ω2r2/2 is a pressure variable
incorporating the centrifugal force and r is the distance from the rotation axis.
Because the gas has only two thermodynamic degrees of freedom, the quantity ν in
(2.5) can, in principle, be determined from the entropy s0 and density ρ(t), where the
latter is obtained by dividing the known total mass of gas by the cylinder volume.

From here on, we non-dimensionalize using the cylinder radius a and time scale
(2Ω)−1. Thus, (2.4) and (2.5) become

∇ · v =
1

h

dh

dt
, (2.6)

Dv

Dt
= −∇π − ez × v + Re−1∇2v, (2.7)

where ez is a unit vector in the direction of Ω (the z-direction) and Re(t) = 2Ωa2/ν

is a Reynolds number which inherits the time variations of ν. Note that, hereinafter,
h(t) is non-dimensional, equal to the ratio, h/a, of dimensional cylinder height and
radius. The boundary conditions are v = 0 on the sides (r = 1) and bottom end (z = 0)
of the cylinder, while v =(dh/dt)ez at the top end (z = h(t)). Equations (2.6) and (2.7),
together with these boundary conditions, govern the flow.

2.2. Transformation to fixed geometry

Writing x and y for the remaining coordinates of a Cartesian system x, y, z, it is
convenient to transform to fixed cylinder geometry via the new spatial coordinates

X = x, Y = y, Z =
h0

h (t)
z, (2.8)
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which collectively form a new position vector X =(X, Y, Z). The top end of the
cylinder is transformed to the fixed position Z = h0, where h0 is a reference height,
arbitrary for the moment, but which will be taken as the time-average of h(t) when
we later specialize to periodic piston motion. New velocity and pressure variables, V
and Π , are introduced according to

VX = vx, VY = vy, VZ =
h0

h

(
vz − z

h

dh

dt

)
, Π = π +

1

2h

d2h

dt2
z2. (2.9)

With these transformations, the governing equations, (2.6) and (2.7), become

∇ · V = 0 (2.10)

∂V
∂t

+ eZ × V + ∇Π = Re−1DV − V · ∇V

+ eZ

[
∂

∂t
+ V · ∇ − Re−1D

] (
1 −

(
h

h0

)2
)

VZ, (2.11)

where, hereinafter, ∇ denotes the operator

∇ =

(
∂

∂X
,

∂

∂Y
,

∂

∂Z

)
and

D =
∂2

∂X2
+

∂2

∂Y 2
+

(
h0

h

)2
∂2

∂Z2
(2.12)

is the Laplacian operator expressed in terms of the new coordinates. The boundary
conditions take the form

V = 0, Z = 0, h0 (2.13)

V = −Z

h

dh

dt
eZ, r = 1. (2.14)

2.3. Basic flow and perturbation

A particular solution of (2.10) and (2.11) is V =0, Π = 0, which yields

vx = vy = 0, vz =
dh

dt

z

h
, π = −d2h

dt2

z2

2h
, (2.15)

when expressed in terms of the original variables. Of the boundary conditions, this
flow fails to satisfy only the tangential component of the no-slip condition on r = 1
and is thus a solution of the inviscid problem. It corresponds to a simple motion
in which fluid particles oscillate axially in response to the piston motion, with a
single particle maintaining constant values of x, y and z/h. This, or rather its viscous
equivalent, forms the basic flow whose instability is the subject of this paper.

From here on, we assume time-periodic piston motion. The inviscid flow (2.15)
is then periodic with the piston period and it seems reasonable to suppose that
such a flow also exists in the presence of viscosity. It is this property of periodicity
with the same period as the piston which defines the basic flow and distinguishes it
from the flows arising from its instability. However, we know of no exact analytical
expression for the basic flow with both viscosity and piston motion. At the small
piston amplitudes and high Reynolds numbers to which we specialize later in this
paper, we expect viscosity to induce a thin boundary layer on r = 1 and more
complicated flows near the cylinder corners, with Ekman pumping by the boundary
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layer and corner regions inducing secondary flows in the interior of the cylinder.
Denoting the basic flow by V = U(X, t), Π =Λ(X, t), U is the difference between the
basic-flow velocity field with and without viscosity and should therefore consist of
the components just mentioned. Note that U(X, t) and Λ(X, t) are not determined in
this study (see Duguet, Scott & Le Penven (2005) for numerical results for particular
parameter values) because, as we shall see, they contribute only at asymptotic orders
above those to which we will work.

Introducing a perturbation to the basic flow:

V = U + u, Π = Λ + λ, (2.16)

where u and λ represent the perturbation, whose governing equations are obtained
by subtraction of (2.10) and (2.11) applied to the basic flow from the same equations
for the perturbed flow (2.16). Thus,

∇ · u = 0 (2.17)

∂u
∂t

+ eZ × u + ∇λ = eZ

∂

∂t

((
1 −

(
h

h0

)2
)

uZ

)
+ Re−1D

(
u⊥ + eZ

(
h

h0

)2

uZ

)

− u · ∇
(

U⊥ + eZ

(
h

h0

)2

UZ

)
− V · ∇

(
u⊥ + eZ

(
h

h0

)2

uZ

)
,

(2.18)

where U⊥ = (UX, UY , 0) and u⊥ = (uX, uY , 0) denote the transverse parts of U and u.
The boundary conditions on the perturbation are u = 0 on all boundaries.

Note that in the absence of piston motion (h = h0 constant), the basic flow is v = 0,
corresponding to solid-body rotation in a non-rotating frame. It is well-known that
solid-body rotation is unconditionally stable, i.e. any perturbation will eventually
decay to zero. It follows that piston motion is necessary for instability.

3. Inertial modes and the exact modal amplitude equations
3.1. Inertial modes

Kelvin (1880; see also Greenspan 1969, § § 2.7, 2.15) derived the inertial-wave
eigenmodes of a rotating cylinder which will be used as a basis set to expand
the velocity perturbation. These modes are solutions of the inviscid linear problem
without piston motion of the form

u = u(µ)(X) exp
(
−iω(µ)t

)
, λ = λ(µ)(X) exp

(
−iω(µ)t

)
, (3.1)

where µ is a modal index and the modal frequencies, ω(µ), and spatial factors, u(µ)(X)
and λ(µ)(X), are the eigenvalues and eigenfunctions of the problem

∇ · u(µ) = 0, (3.2)

−iω(µ)u(µ) + eZ × u(µ) + ∇λ(µ) = 0, (3.3)

with the inviscid boundary conditions that the normal component of u(µ) be zero at
the walls r =1 and Z =0, h0. The modal frequencies have the well-known properties
(Greenspan 1969) that they are real (implying purely oscillatory modes) and densely
fill the range |ω(µ)| < 1 (dimensional frequencies less than 2Ω). Note that the eigenvalue
problem, and hence ω(µ), u(µ) and λ(µ), depends on only one parameter, namely the
cylinder aspect ratio h0.
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(a) (b) (c)

Figure 2. (a) Streamlines (circles) in the plane Z =h0/2 for a mode of the axisymmetric,
geostrophic family n= m= 0. (b, c) Streamlines in a plane through the cylinder axis for the
two axisymmetric inertial modes defined by: (b) m= 1 and the lowest positive zero of J ′

0(k),
and (c) m= 3 and the second positive zero of J ′

0(k). The larger m and the zero of J ′
0(k), the

more toroidal vortices constitute the mode. As well as the ur and uZ velocity components
illustrated here, the modes have a uθ component whose oscillations are π/2 out of phase.

Modes may be classified into families indexed by a pair of integers: n, which
can take any integer value, and m � 0. Using cylindrical coordinates r, θ, Z (with θ

measured positive in the sense of the cylinder rotation), modes of the family n, m

have eigenfunctions of the form

⎡
⎢⎢⎢⎢⎢⎣

u(µ)
r

u
(µ)
θ

u
(µ)
Z

λ(µ)

⎤
⎥⎥⎥⎥⎥⎦ = einθ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i cos
mπZ

h0

χ (µ)
r (r)

cos
mπZ

h0

χ
(µ)
θ (r)

i sin
mπZ

h0

χ
(µ)
Z (r)

cos
mπZ

h0

Θ (µ)(r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.4)

where the real functions χ (µ)
r , χ

(µ)
θ , χ

(µ)
Z and Θ (µ) define the radial structure of the

mode and are given in Appendix A in terms of the Bessel function Jn(k
(µ)r) and

its derivative, while the quantity k(µ) is a transverse wavenumber which depends on
which of the infinity of modes of the family n, m is considered. We will occasionally
use the notation nµ and mµ to denote the indices of mode µ.

Modes with m = 0 have ω(µ) = 0, i.e. they do not oscillate in time, representing steady
two-dimensional motion, independent of Z and with uZ = 0. They are often referred to
as geostrophic because there is equilibrium between the Coriolis and pressure gradient
terms in (3.3) when ω(µ) = 0. Modes of the particular family n= m = 0 are real and
axisymmetric as well as geostrophic and play an important role in the nonlinear theory
of Part 2. Their only non-zero velocity component is uθ (r), corresponding to steady
differential rotation of cylinders of fluid of constant r about the Z-axis (see figure 2a).

The infinity of different geostrophic families (different values of n), each of which
consists of an infinity of modes, means that the eigenfrequency ω =0 is hugely
degenerate (any two-dimensional incompressible velocity field with ur =0 on r = 1
yields a geostrophic flow). As a result, there is considerable freedom in the choice of
geostrophic modes, a freedom which is exploited by the particular choice made in
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Appendix A. The m =0 modes defined there satisfy the no-slip condition u
(µ)
θ = 0 on

r = 1. Although, because it turns out that geostrophic modes do not lead to linear
instability, this property is unimportant for the purposes of the present paper, it is
significant in the weakly nonlinear analysis of Part 2.

Non-geostrophic modes are oscillatory (i.e. ω(µ) �= 0) and any given m �=0 modal
family can be subdivided into negative and positive values of ω(µ). Modes with
n= 0 are axisymmetric and can be visualized as one or more oscillatory toroidal
vortices encircling the Z-axis (see figure 2b, c). A non-axisymmetric mode, whether
geostrophic or not, has exp(i(nθ − ω(µ)t)) dependence on θ and t , implying steady
flow in a frame of reference rotating at velocity ω(µ)/n. That is, the mode structure
may be thought of as rotating about the cylinder axis, providing an interpretation of
the modal oscillations as arising from the passage of the non-axisymmetric sinusoidal
azimuthal structure einθ , past a fixed point of our chosen reference frame owing to
modal rotation at angular velocity ω(µ)/n.

To any mode µ, there is a complex conjugate mode, denoted µ∗. Conjugation
changes the signs of n and ω(µ), leaves m and k(µ) unchanged, and conjugates the
eigenfunctions u(µ) and λ(µ). The particular family n= m =0 are real modes which are
their own conjugates, while µ and µ∗ are otherwise distinct, contributing conjugate
terms to the modal expansion of a real velocity field. Although both the mode and its
conjugate are mathematically necessary in such an expansion, they can be thought of
as representing the same physical entity. Negative values of n are the conjugates of
positive ones, whereas the conjugate of an axisymmetric mode is also axisymmetric
and of the same family as the original one, but with the opposite sign of frequency
if m �= 0. Thus, a modal family n, m with negative n is mathematically distinct, but
physically equivalent to the family −n, m, while, among axisymmetric modes with
m �= 0, those of negative frequency are the conjugates of positive frequency ones,
forming pairs of physically equivalent axisymmetric modes differing by the sign of ω(µ).

We will sometimes refer to modes having large values of n, m or k(µ) as high-
order. Using the asymptotic expansion of the Bessel function Jn for large argument
and order, it can be shown that (in those parts of the cylinder where they are not
exponentially evanescent) high-order modes consist of a combination of four locally
plane inertial waves of wavenumber

K (µ) =

(
k(µ)2 +

(
mπ

h0

)2
)1/2

, (3.5)

which is the norm of a local wavevector K having axial component ±mπ/h0 and
a transverse part of norm k(µ). The modal frequency is related to the direction of
the local wavevector by the usual dispersion relation, ω(µ) = ± mπ/K (µ)h0, for plane
inertial waves. The modal wavenumber K (µ) provides a quantitative measure of the
order of mode µ. Low-order modes have wavelengths comparable with the cylinder
dimensions and K (µ) of order one, but as K (µ) increases, the modal wavelength,
2π/K (µ), decreases and high-order modes consist of short waves and have large K (µ).
The infinite density of modal frequencies in |ω(µ)| < 1 remarked on earlier, reflects
modes of shorter and shorter wavelengths covering the same range of frequency.

3.2. Modal projection

The inertial-mode eigenfunctions form an orthogonal set with respect to the usual
complex inner product (Greenspan 1969, § 2.7), i.e.∫

u(µ)∗ · u(ν)d3 X = δµν, (3.6)
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where the asterisk denotes complex conjugation and the value 1 for µ = ν is a conse-
quence of the normalization adopted in Appendix A (hereinafter ν is a modal
index, not to be confused with the kinematic viscosity, which does not appear
in the remainder of these papers). A general divergence-free vector field whose
normal component is zero at the boundaries of the cylinder can be written as a
linear combination of the inertial-mode eigenfunctions. In particular, the velocity
perturbation may be expanded as

u =
∑

µ

Bµ(t)u(µ)(X), (3.7)

where Bµ are modal amplitudes which, using (3.6), are given by

Bµ =

∫
u(µ)∗ · u d3 X . (3.8)

Since u is real and u(µ∗) = u(µ)∗
, B∗

µ = Bµ∗, i.e. the amplitudes of a mode and its
conjugate are complex conjugates, a necessary and sufficient condition for the Bµ to
represent a real perturbation and which reflects the physical equivalence of conjugate
modes discussed earlier.

An evolution equation for Bµ can be derived by scalar multiplication of (2.18)
by u(µ)∗

followed by integration over the cylinder volume. All spatial derivatives are
transferred onto u(µ)∗

using the divergence theorem, (2.10), (2.12), (2.17), (3.2), (3.3)
and (3.8) and the boundary conditions on u and u(µ). Finally, V is written as the sum
of U and u, leading to

dBµ

dt
+ iω(µ)Bµ =

d

dt

{(
1 −

(
h

h0

)2
)∫

u
(µ)∗

Z uZ d3 X

}
︸ ︷︷ ︸

Piston motion

+ Re−1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
∫

r=1

(
u(µ)∗

⊥ +

(
h

h0

)2

eZu
(µ)∗

Z

)
· (n · ∇u) d2 X

︸ ︷︷ ︸
Side-wall viscous term

+

∫
Z=0,h0

((
h0

h

)2

u(µ)∗

⊥ + eZu
(µ)∗

Z

)
· (n · ∇u) d2 X

︸ ︷︷ ︸
End-wall viscous term

+

∫
u · D

(
u(µ)∗

⊥ +

(
h

h0

)2

eZu
(µ)∗

Z

)
d3 X

︸ ︷︷ ︸
Volumetric viscous term

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

∫ ⎡
⎢⎢⎣u · (u · ∇)︸ ︷︷ ︸

Nonlinearity

+ U · (u · ∇) + u · (U · ∇)︸ ︷︷ ︸
Effects of viscosity
on the basic flow

⎤
⎥⎥⎦

×
(

u(µ)∗

⊥ +

(
h

h0

)2

eZu
(µ)∗

Z

)
d3 X, (3.9)
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where n is an outward unit normal at the cylinder boundary. As indicated by the
annotation, the right-hand side of (3.9) consists of three groups of terms representing:
(i) piston motion; (ii) viscous effects and (iii) a combination of nonlinearity (the
u · (u · ∇) term) and linear terms involving the departure, U , between the viscous and
inviscid basic flows. The viscous terms can be further subdivided into surface and
volumetric contributions.

The piston motion term in (3.9) can be immediately expressed in terms of the Bµ

using (3.7): ∫
u

(µ)∗

Z uZ d3 X =
∑

ν

CµνBν, (3.10)

where Cµν =
∫

u
(µ)∗

Z u
(ν)
Z d3 X is a real symmetric matrix representing modal coupling by

piston motion and whose elements satisfy |Cµν | < 1. Since, as noted earlier, instability
is due to piston motion, the coupling coefficients Cµν are crucial to the present study
and details are given in Appendix A. It is found that: (i) piston motion only couples
modes µ, ν of the same family; (ii) there is no coupling of geostrophic modes (m = 0);
(iii) an axisymmetric mode (n= 0) only couples to itself and its conjugate; and (iv)
when n �= 0 and m > 0, all modes in the family are coupled. As we shall see, these
properties of Cµν have important consequences for stability.

4. Asymptotics for small sinusoidal piston motion
From now on, we consider

h = h0(1 + ε cosω0t), (4.1)

where ω0 > 0 is the piston frequency and the piston amplitude, ε > 0, is a small
parameter on which subsequent asymptotics are based. Since piston motion is the
source of instability, small ε implies low growth rates. Viscosity has a damping effect
on the instabilities and must therefore also be small so as not to kill them altogether.
As we shall see, the appropriate Reynolds-number scaling, making viscous effects
comparable with those of piston motion, is Re = O(ε−2) and this is supposed in what
follows. As usual in rotating flows, the boundary-layer thickness scales as Re−1/2 at
large Reynolds number (Greenspan 1969, § 2.3, recalling that the Ekman number
used there is the inverse of the rotational Reynolds number used in this paper). The
assumed scaling thus implies a boundary-layer thickness O(ε).

The modal amplitudes of the perturbation are expanded as

Bµ = δ
(
B [1]

µ + εB [2]
µ + . . .

)
, (4.2)

where δ is a parameter determining the perturbation amplitude which is sufficiently
small that nonlinearity can be neglected and the coefficients B [i]

µ are functions of the
fast and slow times t and T = εt . All terms on the right-hand side of (3.9) are of
smaller order than δ and so

∂B [1]
µ

∂t
+ iω(µ)B [1]

µ = 0, (4.3)

at leading order. The solution of (4.3) is

B [1]
µ = Aµ(T ) exp

(
− iω(µ)t

)
, (4.4)

so each mode oscillates with its natural frequency at leading order and on the fast
time scale. Observe that, since ω(µ∗) = − ω(µ), the conjugacy relation Aµ∗ = A∗

µ follows
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from that of the Bµ. To derive equations for the slowly varying Aµ(T ), we go to the
next order. To this effect, we examine each term on the right-hand side of (3.9).

4.1. Derivation of the mode-pair amplitude equations

The piston-motion term is evaluated using (3.10), (4.1), (4.2) and (4.4) as

d

dt

{(
1 −

(
h

h0

)2
)∫

u
(µ)∗

Z uZd3 X

}
∼ iδε

∑
ν

CµνAν

{(
ω(ν)−ω0

)
exp

(
−i
(
ω(ν)−ω0

)
t
)

+
(
ω(ν) + ω0

)
exp

(
− i

(
ω(ν) + ω0

)
t
)}

, (4.5)

correct to order δε, where we have written cos ω0t as a sum of exponentials. The
viscous terms are treated as follows. The Reynolds number is replaced by its time
average Re, becoming a constant parameter from here on, while the quantity h/h0

is replaced by 1 in (2.12) and all viscous terms of (3.9). Boundary-layer analysis
(Appendix B) is then used to evaluate the surface integral terms as

Re
−1
∫

u(µ)∗ · (n · ∇u) d2 X ∼ −δRe
−1/2

∑
ν

DµνAν exp
(

− iω(ν)t
)
, (4.6)

again correct to order δε, where Dµν is a complex coupling matrix representing surface
viscous effects, some details of which are given in Appendix B. Only modes with the
same angular order n are coupled by Dµν . Finally, the volumetric viscous term is
evaluated using (A 8), with the help of (2.17), (3.8), (4.2) and (4.4), the divergence
theorem and the boundary conditions on u, as

Re
−1
∫

u · ∇2u(µ)∗
d3X ∼ −δRe

−1
K (µ)2Aµ exp

(
− iω(µ)t

)
. (4.7)

Although (4.7) is formally of order δε2 (one order smaller than the other terms), as
discussed in § 1, we include it at the present order to allow a uniform treatment of
the higher-order modes. That is, (4.7) becomes O(δε), if K (µ) is large O(ε−1/2), and
we treat it as if it were the same order as (4.5) and (4.6) in what follows. Note that,
like the modal eigenvalue problem, the matrices Cµν and Dµν depend only on h0.

The nonlinear term in (3.9) is neglected because the perturbation amplitude δ is
assumed sufficiently small and the terms involving U for the following reasons. As
discussed earlier, U is the difference between the basic flow with and without viscosity
and consists of a side-wall boundary layer, corner flows and secondary flows in the
cylinder interior owing to Ekman pumping. U is O(ε) in the boundary-layer and
corner regions, which occupy a volume O(ε) of the cylinder and hence contribute
O(δε2) to the U-terms in (3.9). The volume flux deficit in the basic-flow boundary layer
is O(ε2) (a velocity deficit of O(ε) multiplying a layer thickness of the same order).
Ekman pumping thus drives the secondary flow with a forcing O(ε2), suggesting a
contribution O(δε2) to (3.9) from the cylinder interior. However, this estimate can
be too conservative. If the piston frequency ω0 happens to be close to one of the
low-order axisymmetric modal frequencies, the resonant response of the mode is
larger than the O(ε2) forcing would suggest, rising to O(ε) if ω0 matches a low-order
modal frequency to within the modal damping bandwidth O(ε). This would yield
a contribution to (3.9) of O(δε), comparable with (4.5), (4.6) and too large to be
neglected. However, at small ε, fine tuning of the cylinder geometry is required to
make a low-order axisymmetric mode satisfy the direct resonance condition to O(ε)
and we suppose this is not the case. With this proviso, the contribution of the U-terms
to (3.9) is o(δε), negligible compared to (4.5) and (4.6).
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Collecting together the above results, the O(δε) problem arising from (3.9) can be
written as

∂B [2]
µ

∂t
+ iω(µ)B [2]

µ = Ψµ − dAµ

dT
exp

(
−iω(µ)t

)
, (4.8)

where Ψµ is the sum of the right-hand sides of (4.5)–(4.7), divided by δε. As usual, the
amplitude equations follow from imposing non-secularity conditions. The right-hand
side of (4.8) consists of a sum of oscillatory exponentials and secular terms in B [2]

µ

arise from those exponentials which satisfy a fast-time resonance condition, i.e. their
frequency coincides with ω(µ) to O(ε). For instance, the second term on the right of
(4.8) is always resonant, as are (4.7) and the ν = µ term of (4.6). If these are the only
resonant terms, the non-secularity condition is

dAµ

dT
= −ε−1Re

−1/2
dµAµ, (4.9)

where

dµ = Dµµ + Re
−1/2

K (µ)2 (4.10)

is the complex viscous damping factor, dµ = dr
µ + idi

µ, of mode µ. The real part of

Dµµ = Dr
µµ + iDi

µµ is positive and thus both boundary-layer and volumetric contri-
butions to dr

µ are positive. According to (4.9) with positive dr
µ, the mode decays and

oscillates with a frequency which undergoes a small viscous correction Re
−1/2

di
µ to its

inviscid value ω(µ). This almost corresponds with the classical theory of inertial-mode
damping by viscosity (Greenspan 1969, § 2.9), which yields the boundary-layer
modal damping factor Re

−1/2
Dr

µµ and frequency correction Re
−1/2

Di
µµ, but with the

significant addition of the volumetric term containing K (µ) in (4.10).
For there to be instability, piston-motion must play a role in the amplitude

equations. Thus, (4.5) should contribute secular forcing to (4.8) for at least one
mode µ. This implies the existence of a pair of modes, µ+ and µ− say, which satisfy
the parametric resonance condition that the difference of their modal frequencies
matches ω0 to O(ε) and have a non-zero coupling coefficient C = Cµ+µ− =Cµ−µ+

.
Interchanging the two modes if necessary, the resonance condition can be written

ω0 = ω+ − ω− + ε∆, (4.11)

where ω+ = ω(µ+), ω− = ω(µ−) and ∆ is an O(1) detuning parameter expressing the
departure from exact resonance. Focusing attention on (4.8) with µ = µ+ and µ = µ−
and supposing there are no resonant terms other than those identified above (a
question we will return to in the discussion below), the non-secularity conditions for
the two modes yield

dA+

dT
= iω+Ce−i�T A− − d̂+A+, (4.12)

dA−

dT
= iω−Cei�T A+ − d̂−A−, (4.13)

where d̂± = ε−1Re
−1/2

d±, d± = dµ± , A± =Aµ± and we have used (4.11) in the ω(ν) ± ω0

multiplicative factors of the resonant terms of (4.5). Given the properties of Cµν

noted at the end of § 3, non-zero C implies that µ+ and µ− must not only satisfy
(4.11), but also (i) belong to the same m �= 0 family (same n and m), and (ii) be
conjugates (µ− = µ∗

+) if they are axisymmetric. These are important constraints on
possible mode pairs. The mode-pair equations (4.12) and (4.13) form the basis for the
stability analysis in the next section.
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4.2. Discussion

4.2.1. Out-of-pair coupling

Resonant interactions with other modes might arise from either (4.5) or (4.6).
Significant coupling to a third mode ν via (4.5) requires (i) that parametric resonance
between ν and one of the modes of the pair, i.e. either |ων − ω+| or |ων − ω−| coincide
with ω0 to O(ε), and (ii) that the corresponding coupling coefficient, Cµ+ν or Cµ−ν ,
not be small or zero, for otherwise the resonant term in (4.5) is o(δε) and need not
be included at the present order. Such coupling is impossible for axisymmetric mode
pairs, because Cµ+ν = Cµ−ν =0 for all modes ν not already in the pair. On the other
hand, if n �= 0, all ν which are members of the same modal family as the pair are
possible candidates. However, the parametric resonance condition means that ω(ν)

must fall within one of four small frequency ranges of width O(ε) and this becomes
increasingly hard for modes in the given family to satisfy as ε → 0. Unless the cylinder
aspect ratio has been specially chosen to tune one of the ω(ν) and provided ε is
sufficiently small, there should be no third-mode coupling by piston motion.

Significant coupling of a third mode via (4.6) requires (i) coincidence to O(ε) of
ω(ν) with either ω+ or ω−, and (ii) that the corresponding coupling coefficient, Dµ+ν

or Dµ−ν , not be small or zero. The first condition requires ω(ν) to lie in one of two
small frequency ranges of width O(ε). Non-zero Dµ±ν implies that ν has the same
angular order n as the mode pair, but this leaves open the infinity of modal families
obtained by varying m. Unlike those of a single family, possible modal frequencies
are dense in the interval |ω(ν)| < 1, leading to an infinite number of modes satisfying
the resonance condition. However, infinite modal density arises from modes of higher
and higher orders and it can be shown that the coupling coefficients Dµ+ν and Dµ−ν

tend to zero for high-order ν, hence significant resonances should not occur if ε is
sufficiently small unless the cylinder geometry has been specially chosen. It is worth
remarking that the classical theory of inertial-mode damping also implicitly supposes
lack of significant resonant coupling of inviscid modes by viscosity, which should
lend confidence to our neglect of such coupling here.

4.2.2. Volumetric damping

As noted earlier, the volumetric term in (4.10) does not appear in the classical
theory of viscous damping because that theory is based on large-Reynolds-number

asymptotics and the volumetric term is, after all, multiplied by Re
−1/2

. It is maintained
here to allow a uniform treatment of higher-order modes and it is perhaps worth
assessing the importance of the volumetric contribution to viscous damping.

Kerswell & Barenghi (1994) undertook a numerical study of the linearized incom-
pressible Navier–Stokes equations in a rotating cylinder without piston motion. They
compared their results with the modal damping factors obtained from classical theory
and observed discrepancies at lower (but still high) Reynolds numbers. Le Noble
(1995) carried out a similar numerical study and found that adding volumetric
damping greatly improved the agreement. Kerswell (1999, figure 10) came to the same
conclusion. To fix ideas, when Re = 104 and h0 = 2, the volumetric term contributes
14 %, 34 % and 52 % to the total damping of the first three modes of the family n= 0,
m =1. Thus, it is far from negligible for the third mode, which is still of relatively
low order.

On the subject of modal damping, there is some confusion in the literature
concerning the correct expression for the boundary-layer damping factors (Dµµ)
of a cylinder, with different authors reporting differing results. Kerswell & Barenghi
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(1994) compared two such expressions with their numerical results and concluded
that their equation (2.12) (due to Kudlick (1966) and in agreement with our results)
was in better agreement with their simulations in the limit of large Reynolds number.
The problem appears to have arisen from insufficient care in taking the limit of the
classical results for a general container (Greenspan 1969, (2.9.12), (2.9.13)) as the
singular case of the cylinder is approached. Note that the present approach, based on
modal projection, avoids such difficulties.

5. Instability criteria and results
5.1. Instability criteria

Equations (4.12), (4.13) have exponential solutions of the form

A+ = a+e(s−i∆/2)T , A− = a−e(s+i∆/2)T , (5.1)

where the constants a± satisfy a pair of linear equations, the condition for a non-trivial
solution of which yields the quadratic equation

ŝ2 +
(
d̂r

+ + d̂r
−
)
ŝ + d̂r

+d̂r
− + ω+ω−C2 + 1

4
∆̂2 + 1

2
i∆̂
(
d̂r

+ − d̂r
−
)

= 0, (5.2)

for ŝ = s + 1
2
i(d̂ i

+ + d̂ i
−), where ∆̂ = ε−1(ω0 − ωc) is a modified detuning parameter

expressing the scaled departure of the piston frequency from the viscous parametric
resonance condition ω0 = ωc and

ωc = ω+ + Re
−1/2

d i
+ −

(
ω− + Re

−1/2
di

−
)

(5.3)

is the difference between the mode frequencies of the pair, corrected for viscous effects.
Instability implies a growing solution, corresponding to a root of (5.2) with a

positive real part. It can be shown that this requires

∆̂2 < −
(
d̂r

+ + d̂r
−
)2

{
1 +

ω+ω−C2

d̂r
+d̂r

−

}
. (5.4)

If C2ω+ω− � 0, this condition cannot be satisfied and instability never occurs for
the given mode pair, whereas when C2ω+ω− < 0, the pair grows provided

ε > εc

[
1 + Re

(
ω0 − ωc

dr
+ + dr

−

)2
]1/2

, (5.5)

where we have re-expressed ∆̂ and d̂r
± in (5.4) using their definitions and introduced

εc =

[
− dr

+dr
−

Re ω+ω−C2

]1/2

. (5.6)

Thus, instability occurs if C2ω+ω− < 0 and (5.5) holds. C2ω+ω− < 0 selects mode pairs
with C �=0 and oppositely signed frequencies (ω+ > 0 and ω− < 0), while (5.5) yields
a neutral hyperbola in the (ω0, ε)-plane illustrated in figure 3. The lowest point of
the hyperbola occurs at ω0 = ωc, ε = εc and yields a critical piston amplitude εc below
which instability cannot occur no matter what the piston frequency. When ε > εc,
there is a band of piston frequencies centred on ω0 =ωc for which the mode pair has
unstable exponential growth. Both εc and the width of the unstable band are small,

O(Re
−1/2

).
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ε

εc

ωc ω0

Unstable

Stable

Figure 3. Sketch of the neutral curve (hyperbola) of a single mode pair in the ω0 (piston
frequency), ε (piston amplitude) plane for given values of Re and h0.

A summary is given below.
(i) Geostrophic modes do not lead to coupled mode pairs, a prerequisite for insta-

bility, and for this reason are not considered further in this paper. However, as we
will see in Part 2, the particular family n= m =0 turns out to be important in the
weakly nonlinear theory.

(ii) Conjugate axisymmetric modes form coupled mode pairs and, what is more,
have oppositely signed frequencies ω− = − ω+. In consequence, they are unstable
within the neutral hyperbola (5.5), where, since d− = d∗

+ and C = − 1
2
(1 − ω2

+),

εc =
2Re

−1/2
dr

+

ω+

(
1 − ω2

+

) , ωc = 2
(
ω+ + Re

−1/2
d i

+

)
, (5.7)

give the base of the neutral curve. The result of instability is a growing mode pair,
physically equivalent to a single axisymmetric mode, µ+. As discussed earlier, the
associated velocity perturbation consists of one or more oscillating toroidal vortices
encircling the Z-axis (recall figures 2b and 2c). Since |ω0 − ωc| = O (ε) for instability,
the oscillation frequency is close to half the piston frequency according to (5.7). It
should be borne in mind that, in addition to the ur and uZ components illustrated by
figures 2(b) and 2(c), the mode involves a uθ component, whose oscillations are π/2
out of phase with those of ur , uZ owing to the factors of i in (3.4).

(iii) In the non-axisymmetric case n �= 0, the modes are no longer conjugates and
represent distinct physical entities, which changes the nature of the flow resulting
from instability. The modes must belong to the same family and their frequencies
must have opposite signs, conditions which place restrictions on possible mode pairs,
but which are less severe than the conjugacy requirement of axisymmetric modes.
Instability occurs if (5.5) holds, implying a growing mode pair whose frequency
difference is close to the piston frequency. Since modes in the pair are not conjugates,
a physically meaningful (i.e. real) solution also involves the conjugate mode pair.
Thus, four modes are mathematically necessary to express a real perturbation, of
which just two are physically distinct. It is more difficult to visualize the velocity
perturbation associated with non-axisymmetric instability, partly because the modes
themselves are harder to visualize, but also because it involves a superposition of
two modes of different frequencies and radial structures, whose velocity perturbations
interfere in a complicated time-dependent manner.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

92
38

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007009238


Parametric instability in a rotating cylinder of gas. Part 1 281

In the limit Re → ∞, (4.10), (5.5) and (5.6) yield the limiting neutral curve

ε =

[
− Ξ

ω+ω−C2(Ξ + 1)2

]1/2

|ω0 − ωc|, (5.8)

where Ξ = Dr
µ+µ+

/Dr
µ−µ−

. Thus, viscosity still appears in the problem in the large-
Reynolds-number limit via the ratio, Ξ , of boundary-layer modal damping factors.
The neutral curve (5.8) consists of two straight lines originating at ε =0, ω0 =ωc

( = ω+ − ω− in the infinite Re limit considered here) in the (ω0, ε)-plane and the
unstable region is a vertical straight-sided wedge. There is no minimum piston
amplitude for instability since εc → 0 as Re → ∞.

Equation (5.8) does not generally coincide with the neutral curve obtained from
inviscid analysis. The inviscid equivalent of (5.2) is obtained by setting d̂r

± = 0. One of
the roots of the resulting equation has a positive real part inside the inviscid neutral
wedge bounded by

ε = (−4ω+ω−C2)−1/2|ω0 − ωc| (5.9)

which has the same generic form as (5.8), with the same ωc = ω+ − ω−, but the slopes
of the straight lines differ unless Ξ = 1. Whereas Ξ = 1 for axisymmetric mode pairs
(because they consist of conjugate modes) this is not generally the case for non-
axisymmetric ones. When Ξ �= 1, the unstable region given by (5.8) is larger than the
inviscid one, i.e. the addition of non-zero viscosity can destabilize non-axisymmetric
mode pairs. Outside (5.9), the growth/decay rates of viscous theory tend to zero in the
limit Re → ∞, in which sense the inviscid case is approached, but instability persists
inside the region bounded by (5.8). Although, as we have just seen, the inclusion
of viscosity can destabilize a non-axisymmetric mode pair in the limit of infinite
Reynolds number, at finite Re it can be either stabilizing or destabilizing. Both the
width and centre of the unstable band of piston frequencies are altered by viscosity
and a particular operating point in the (ω0, ε)-plane may find itself taken from inside
(5.9) to lie outside the neutral curve when viscosity is introduced, or vice versa. What
is more, within the viscous theory, mode pairs (even axisymmetric ones) can lose
stability as Re is decreased at fixed ω0, ε. However, viscosity is always stabilizing
in the sense that it gives rise to a critical piston amplitude, zero at infinite Re and
increasing with decreasing Re according to (4.10) and (5.6), below which the pair
is stable at all piston frequencies. As we shall see, when the overall stability of the
flow is examined, it is this stabilizing effect of viscosity, rather than the possible
destabilization of particular mode pairs at particular values of ω0, ε, which is more
significant.

5.2. Detailed results

To determine the overall stability of the flow, all mode pairs satisfying ω+ω−C2 < 0
must be included. Figure 4 shows the neutral curves in the (ω0, ε)-plane when Re = 104

and h0 = 2 (i.e. a cylinder of square cross-section). Qualitatively similar results are
found for other values of Re and h0. The flow is linearly stable at low enough
piston amplitudes, having the potential for instability with appropriate choice of ω0

once ε exceeds the bottom of the lowest of the hyperbolae. If ω0, ε lie inside just
one hyperbola, the corresponding mode pair grows, whereas, where two hyperbolae
overlap there are two growing mode pairs, and so on. As ε is increased, there are
more and more overlapping bands of instability in ω0, reflecting the destabilizing
effect of raising the piston amplitude. Many, but not all, of the lower hyperbolae in
the figure correspond to axisymmetric modes (thicker lines). This reflects a general
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0 1 2
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ω0

Figure 4. Neutral curves in the (ω0, ε)-plane for all modes (Re= 104, h0 = 2). The thicker
curves represent axisymmetric modes.

trend to greater stability at larger n which is a consequence of shorter wavelengths,
hence increased volumetric damping.

It is apparent from figure 4 that instability is confined to ω0 < 2 (corresponding to
dimensional piston frequencies below 4Ω), the range spanned by taking the difference
of two inviscid mode frequencies. There is a striking trend for the base, εc, of the
hyperbolae to rise as the limiting values ω0 = 0 and ω0 = 2 are approached, indicating
greater stability at such piston frequencies. Since ω+ and ω− are oppositely signed for
instability, values of ω0 ≈ ω+ − ω− near ω0 = 0 and ω0 = 2 correspond, respectively,
to mode pairs near ω = 0 and ω = ±1. Stabilization near these limiting values of ω0

reflects weakness of piston-motion coupling of mode pairs near ω = 0 and ω = ±1.
Weakness of coupling near ω = 0 stems from the smallness of ω± in (4.12), (4.13),
which can, in turn, be traced back via the factors ω(ν) ± ω0 in (4.5) to the time
derivative on the piston-motion term in (3.9). On the other hand, modes which are
close to ω = ±1 are of high order and the locally plane waves from which they are
constituted have wavevectors which are nearly in the Z-direction according to the
inertial-wave dispersion relation, ω = ± KZ/|K |. As a result, the modal velocities,
which are perpendicular to the wavevector for a plane wave, are dominantly in

directions other than Z, making the coefficient C = Cµ+µ− =
∫
u

(µ+)∗

Z u
(µ−)
Z d3 X small

(recall that modes are normalized based on |u(µ)|, which includes all components of
velocity). Small C implies weak piston-motion coupling for modes close to ω = ±1,
leading to stabilization near ω0 = 2.

Another reason for the stabilizing trend near ω0 = 0 and ω0 = 2 is that the
corresponding mode pairs are of high order, and volumetric damping, proportional
to K2, is larger for such modes. Of course, the higher the Reynolds number, the
larger the value of K2 required to make volumetric damping significant compared
with boundary-layer damping in (4.10) and the less important this second mechanism
becomes. Stabilization of mode pairs of sufficiently high order by volumetric damping
plays a still more important role away from ω0 = 0 and ω0 = 2. It causes the hyperbolae
in the (ω0, ε) plane to rise as the mode order is increased, less rapidly so at higher
Reynolds numbers. In consequence, the lowest hyperbolae (lowest εc) correspond to
low-order mode pairs.

The effect of neglecting the volumetric contribution to modal damping is illustrated
by the dashed curve in figure 5. The entire region above this curve is densely covered
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Figure 5. Neutral curves in the (ω0, ε)-plane for all modes (Re= 104, h0 = 2) when
boundary-layer damping is neglected. Dropping volumetric damping instead, the region above
the dashed curve (given by (5.10)) is densely filled by neutral curves.

by high-order neutral curves which were pushed off the top of figure 4 by volumetric
damping. Comparing the results with and without volumetric damping, it should be
clear that the inclusion of the volumetric term in the viscous damping is crucial,
avoiding as it does instability to perturbations of shorter and shorter wavelengths.
The lower boundary of the unstable region without volumetric damping is found to
be

ε = 2Re
−1/2

{
ω

−1/2
0 +

(2 − ω0)
3/2 + (2 + ω0)

3/2

h0ω0

(
4 − ω2

0

)1/2

}
, (5.10)

an expression which can be derived by considering the special case n= 0. Without

volumetric damping, (5.7) yields εc = 2Re
−1/2

Dr
µ+µ+

ω−1
+ (1 − ω2

+)−1 for the base of the
neutral curves as a function of ω+. Evaluating Dr

µ+µ+
using (B 6) and replacing ω+

by ω0/2 (exact inviscid parametric resonance) and εc by ε gives (5.10). The scaling of

critical piston amplitude with Reynolds number as Re
−1/2

, typical of boundary-layer
damping, is clearly apparent in (5.10).

Figure 5 also shows the neutral curves if boundary-layer, rather than volumetric
viscous, effects are neglected. The curves extend much lower in the (ω0, ε)-plane than
they should, reflecting the relative smallness of the remaining volumetric damping
mechanism for the low-order modes which yield the lowest values of εc. In summary,
it is apparent that both volumetric and boundary-layer damping must be allowed
for. The location of the lower boundary of the neutral curves in the (ω0, ε)-plane is

mainly determined by boundary-layer damping, and thus scales roughly as Re
−1/2

,
while volumetric damping stabilizes high-order mode pairs which would otherwise
densely cover the (ω0, ε)-plane with unstable regions due to instability of shorter
and shorter wavelengths. Note that, if viscosity were completely neglected, the entire
region ω0 < 2 would be densely covered by unstable regions and the instability criterion
would become simply ω0 < 2.

Figures 6(a) and 6(b) show the equivalent of figure 4, but for different rotational
Reynolds numbers, Re =5 × 103 and Re= 2 × 104, respectively half and twice that of
figure 4. Decreasing the Reynolds number tends to have a stabilizing effect, which
is understandable given the role of viscosity as a damping mechanism, although
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Figure 6. Neutral curves in the (ω0, ε)-plane for all modes with (a) Re= 5 × 103, h0 = 2, and
(b) Re= 2 × 104, h0 = 2.

decreasing Re can destabilize individual mode pairs, as noted earlier. The neutral
curves are denser at the higher Reynolds number, a reflection of the higher order
of modes required to make volumetric damping important. In the limit, Re → ∞, the
neutral curves reach down to ε =0, becoming straight-sided wedges with apex at
ω0 = ω+ − ω− according to (5.8), wedges which fill the unstable region ω0 < 2. The
same is true under inviscid theory and the overall instability criterion, ω0 < 2, does
not depend on whether we take the limit Re → ∞ or consider the inviscid case from
the start. However, as discussed earlier, the Re → ∞ limiting wedges do not in general
coincide with their inviscid counterparts, so the details of precisely which mode pairs
are unstable at given ω0, ε differ depending on whether viscosity is included or not. As
for the case without volumetric damping, denseness of the neutral curves at infinite
Reynolds number reflects instability of an infinity of mode pairs with unboundedly
small wavelengths, underlining the fact that Re → ∞ is a singular limit. Inviscid
theory, while not agreeing with the Re → ∞ neutral curves, suffers from the same
problem.

Note, from figures 4 and 6, that the Reynolds numbers involved are considerably
larger than we might at first think, given the scaling Re= O(ε−2). For instance, this
scaling suggests that Reynolds numbers large compared with 102 would be effectively
infinite when ε is of order 0.1, whereas figure 4, which is for Re =104, indicates this
is not the case, since the neutral curves of even the low-order modes are far from
having taken on their infinite Re, wedge-like forms. This is not to say that the scaling,
Re= O(ε−2), for significant viscous effects, is incorrect, but instead that there are
nominally O(1) numerical factors which are, in fact, rather far from 1. Thus, viscous
effects are considerably stronger than might be thought based on order-of-magnitude
estimates.

Figures 7(a) and 7(b) show results for Re =104 and two cylinder aspect ratios,
h0 = 1 and h0 = 10. The former illustrates the stabilizing effect of taking smaller h0.
It should, however, be borne in mind that ε is the piston amplitude divided by the
cylinder height. Thus, if h0 is reduced by decreasing the cylinder height at constant ε,
the piston amplitude is reduced as well. Figure 7(b) illustrates the increasing density
of neutral curves at large h0. In the limit h0 → ∞, the case of a cylinder of infinite
length is approached. This infinite cylinder problem can be analysed in terms of
waveguide modes for which the axial wavenumber KZ = ±mπ/h0 is a continuous
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Figure 7. As figure 6, but with (a) Re =104, h0 = 1, and (b) Re= 104, h0 = 10.

variable, a continuum which is the limit of more and more closely spaced, discrete
axial wavenumbers and reflected in the high density of neutral curves of figure 7(b).
However, it should be noted that the increasingly dense neutral curves as h0 → ∞
do not represent smaller and smaller wavelengths, so this limit is not singular in the
sense that Re → ∞ is.

6. Conclusions
This paper has concerned linear instability resulting from resonant interaction

between small sinusoidal compression and the inertial-wave modes of a rotating
cylinder, allowing for the stabilizing effects of viscous damping of both volumetric and
boundary-layer origins, both of which are important. Beginning with the low-Mach-
number formulation of the compressible Navier–Stokes equations and using adiabatic
thermal boundary conditions, followed by transformation to a fixed cylinder geometry,
the equations for the perturbation were derived and projected onto the inertial modes
to yield equations for the modal amplitudes. Small-piston-amplitude asymptotics of
these equations in § 4 showed that, unless the cylinder aspect ratio has been specially
tuned, attention may be restricted to pairs of modes whose frequency difference is
close to the piston frequency. Analysis of the resulting mode-pair equations yields
stability criteria which imply growth of a single axisymmetric inertial mode or a
pair of non-axisymmetric ones above a piston amplitude, ε, which depends on ω0,
Re and h0 and whose graph in the (ω0, ε)-plane for fixed Re, h0 and a particular
mode/mode pair gives the neutral hyperbola sketched in figure 3(a). As illustrated by
figures 2(b) and 2(c), axisymmetric modes consist of one or more oscillatory toroidal
vortices encircling the cylinder axis, so the result of axisymmetric instability is the
spontaneous growth of such a vortex system superimposed on the basic flow. The
frequency of oscillation of the mode and hence of the vortex system is close to half
that of the piston. The non-axisymmetric case is rather harder to visualize because
of the presence of two growing modes of different frequencies and radial spatial
structures, which interfere in a time-varying aperiodic fashion.

When all modes are superposed, we obtain the neutral hyperbolae plotted in
figures 4, 6 and 7 for particular values of Re and h0. Inside one of these neutral
hyperbolae, the corresponding mode or mode pair is unstable, while in the interior of
two or more neutral curves there are several growing modes/mode pairs. When there
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are multiple unstable mode pairs, we expect the fastest growing one to dominate
at large times, at least in the linear regime considered here. The neutral curves
depend on Re and h0, tending to rise and become less dense when Re is reduced,
reflecting the overall stabilizing effect of viscosity. Volumetric damping renders the
density of neutral curves finite by suppression of short-wavelength high-order modes,
while boundary-layer damping is the principal viscous mechanism for low-order ones,
crucial in determining the critical piston amplitudes of the lower curves in the figures.
Thus, both mechanisms are important in different ways, with boundary-layer damping
being the main determinant of the minimum piston amplitude at which instability
can occur for suitable choice of piston frequency.

In the case of the elliptic and triangular instabilities, Eloy et al. (2003) compared
their experimental results with theoretical neutral curves allowing for both volumetric
and boundary-layer damping and found good agreement, both in terms of the location
of the stability boundary and the modes selected by the instability. Note that the
amplitude equations, and hence the stability criterion, for these instabilities have the
same form as for the present case, although the mode pairs they represent and the
values of the coefficients are different. We expect the same to be generally true for
instabilities of this kind. Experimental (Graftieaux et al. 2002) and DNS (Duguet
et al. 2005) studies of the present instability for the lowest-order axisymmetric mode
have shown good agreement with the theoretical neutral curve and also that the
velocity field resulting from instability is very close to the inertial mode predicted by
theory. In quantitative terms, the bottom point of the neutral curve in the (ω0, Re)-
plane determined using DNS with h0 = 1.18 and ε = 0.131 (the experimental values)
differs from that of the present theory by just 3 % in Re and 0.4 % in ω0, while the
corresponding experimental departures are 18 % and ∼0.5 %.

Part 2 examines the fate of a linearly unstable mode or mode pair when it
grows beyond the linear regime. Weakly nonlinear theory yields nonlinear mode-pair
equations coupled to an infinite set of nonlinear amplitude equations for geostrophic
modes of the family n= m =0.

J.-P. R. acknowledges support by the Service de la Recherche et des Etudes Amont
for part of the study reported in this paper.

Appendix A. Inertial-mode properties
When m �=0 (non-geostrophic modes), the spatial eigenfunctions are

χ (µ)
r = N (µ)

(
ω(µ)k(µ)J ′

n

(
k(µ)r

)
− n

r
Jn

(
k(µ)r

))
, (A 1a)

χ
(µ)
θ = N (µ)

(
k(µ)J ′

n

(
k(µ)r

)
− ω(µ) n

r
Jn

(
k(µ)r

))
(A 1b)

χ
(µ)
Z = N (µ) ω

(µ)k(µ)2h0

mπ
Jn

(
k(µ)r

)
, Θ (µ) = N (µ)

(
1 − ω(µ)2

)
Jn

(
k(µ)r

)
(A 1c, d)

where Jn and J ′
n denote the Bessel function and its derivative and k(µ) is a transverse

wavenumber, one of the infinity of positive real roots of

k(µ)J ′
n

(
k(µ)

)
= ±n

(
1 +

(
k(µ)h0

mπ

)2
)1/2

Jn

(
k(µ)

)
, (A 2)
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each of which yields a mode (or pair of conjugate modes if n= 0) of the family n, m.
The modal frequency is determined by

ω(µ) = ±
(

1 +

(
k(µ)h0

mπ

)2
)−1/2

, (A 3)

where the sign should be chosen as in (A 2). The choice of signs in (A 2) and (A 3)
leads to a subdivision of the modal family n, m into positive and negative frequencies
in |ω(µ)| < 1. The normalization constant N (µ) in (A 1) is

N (µ) =
(
πh0η

(µ)
)−1/2 mπ

h0k(µ)Jn

(
k(µ)

) , (A 4)

where η(µ) = nω(µ) + n2 + m2π2/h2
0. Equation (A 4) results from requiring that (3.6)

holds when ν = µ, determining the volume integral using (3.4), (A 1)–(A 3), and the
evaluation of integrals of trigonometric and Bessel functions.

Numerical implementation of the stability analysis of this paper requires the positive
roots of (A 2). The positive zeros of Jn and J ′

n may first be determined by stepping
upwards in multiples of π from 0 to find intervals in which there is a change of sign,
followed by interval halving to compute the zeros to machine precision. If n= 0, the
zeros of J ′

n yield the k(µ) directly. When n �= 0, it can be shown that the positive
roots of (A 2) are interlaced with the positive zeros of Jn and J ′

n, so interval halving
can again be used to determine the k(µ). The Bessel function and its derivative are
evaluated using a high-precision standard library routine.

For geostrophic modes (m =0, ω(µ) = 0),

χ (µ)
r = nN (µ)

r

(
Jn

(
k(µ)

)
r |n| − Jn

(
k(µ)r

))
, χ

(µ)
θ = N (µ)

(
k(µ)J ′

n

(
k(µ)r

)
− |n|Jn

(
k(µ)

)
r |n|−1

)
,

(A 5)
χ

(µ)
Z = 0, Θ (µ) = N (µ)

(
Jn

(
k(µ)r

)
− Jn

(
k(µ)

)
r |n|),

where k(µ) is one of the infinite set of positive real roots of

k(µ)J ′
n

(
k(µ)

)
= |n|Jn

(
k(µ)

)
, (A 6)

each of which yields a different geostrophic mode of azimuthal order n. From (A 5)
and (A 6), u(µ) = 0 on r = 1, i.e. the no-slip condition is satisfied on the sidewalls. The
normalization constant in (A 5) is

N (µ) = (πh0)
−1/2

(
k(µ)Jn

(
k(µ)

))−1
. (A 7)

Whether or not they are geostrophic, it is apparent from (A 2) and (A 6) that
axisymmetric modes derive from the positive roots of J ′

0

(
k(µ)

)
= 0.

From (3.4), (A 1) and (A 5), it can be shown that

∇2u(µ) + K (µ)2 u(µ) = ∇φ(µ) (A 8)

for all modes, where φ(µ) is zero for non-geostrophic modes and

φ(µ) = i sgn(n)N (µ)k(µ)2Jn

(
k(µ)

)
r |n|einθ (A 9)

when µ is geostrophic.

Finally, the coupling matrix Cµν =
∫

u
(µ)∗

Z u
(ν)
Z d3 X can be determined using (3.4),

(A 1)–(A 3) and the evaluation of integrals of trigonometric and Bessel functions.
Aside from the properties given in the text at the end of § 3, when m > 0 we find

Cµµ = −Cµµ∗ = 1
2

(
1 − ω(µ)2

)
(A 10)
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for axisymmetric modes and

Cµµ = 1
2

(
1 − ω(µ)2

)η(µ) − nω(µ)

η(µ)
, (A 11)

Cµν =
nk(µ)k(ν)

(
ω(µ) − ω(ν)

)
(
η(µ)η(ν)

)1/2(
k(µ)2 − k(ν)2

) , µ �= ν, (A 12)

for modes µ, ν of the same non-axisymmetric family. Equations (A 10) for n= 0,
m > 0 and (A 11), (A 12) for µ, ν belonging to the same n �= 0, m > 0 family yield all
non-zero Cµν .

Appendix B. Boundary-layer analysis
The object of this Appendix is the derivation of (4.6) using leading-order boundary-

layer analysis. Consider a boundary layer away from the corners of the cylinder. As
in classical boundary-layer theory, (2.17) and zero normal velocity at the wall imply
that u is parallel to the wall at leading order, while the normal component of (2.18)
implies that the pressure variable λ does not vary significantly across the layer, being
imposed from outside. Taking the component of (2.18) tangential to the wall, the fact
that u is dominantly tangential allows approximation of the Coriolis term on the
left by e × u at leading order, where e = (eZ · n)n is the projection of eZ normal to
the wall. All terms on the right-hand side of the tangential component of (2.18) are
negligible at leading order, apart from the viscous term, which is promoted to leading

order by thinness of the layer and can be approximated as ∂2u/∂ξ 2, where Re
−1/2

ξ is
distance from the wall. Thus, one obtains the leading-order boundary-layer equation
for the perturbation flow

∂u
∂t

+ e × u − ∂2u
∂ξ 2

= −∇||λ, (B 1)

where u is parallel to the wall and ∇||λ is the perturbation pressure gradient parallel
to the wall, independent of ξ and imposed from outside the layer. The boundary
conditions to go with (B 1) are that u = 0 at ξ = 0 and u → u∞ as ξ → ∞, where
u∞ is the leading-order external flow, extrapolated to the wall. Since viscosity is
unimportant outside the boundary layer, ∇||λ and u∞ are related by (B 1) without the
viscous term.

Outside the boundary layer, the leading-order flow is a combination of inertial
modes with amplitudes δAµ and frequencies ω(µ). Each such mode forces motion in
the boundary-layer via its contributions to the right-hand side of (B 1) and to u∞,
while linearity of (B 1) implies that the response of the layer is a sum over the modal
contributions taken separately. With unit modal amplitude, the response induced by
mode ν is obtained by solving (B 1) with −∇||λ

(ν) exp(−iω(ν)t) on the right-hand side
and the boundary conditions u =0 at ξ = 0 and u → u(ν) exp(−iω(ν)t) as ξ → ∞,
where ∇||λ

(ν) and u(ν) are to be evaluated at the wall. Following a transient period of
duration O(1), which does not concern us here since we are interested in the evolution
at longer times, the solution for u takes on the same time dependence as the forcing,
namely exp(−iω(ν)t). For the side-wall layer, e = 0 (i.e. rotation is unimportant) and
the velocity has the classical Stokes-layer form

u = u(ν) exp
(
−iω(ν)t

)(
1 − exp

(
−
(
−iω(ν)

)1/2
ξ
))

(B 2)
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whereas for the end-wall boundary layers e = eZ and the velocity has the Ekman-layer
form

u = exp
(

− iω(ν)t
){

u(ν) − 1
2

((
u(ν) + ieZ × u(ν)

)
exp

(
− γ

(ν)
+ ξ

)
+
(
u(ν) − ieZ × u(ν)

)
exp

(
− γ (ν)

− ξ
))}

(B 3)

where

γ
(ν)
± =

(
− i

(
ω(ν) ± 1

))1/2
(B 4)

and principal values are taken for the complex square roots in (B 2) and (B 4),
in order that the exponential functions of ξ decay to zero, rather than growing,
as ξ → ∞.

We may calculate the normal derivative n · ∇u = −Re
1/2

∂u/∂ξ at the wall ξ =0
from (B 2) or (B 3) and hence determine the leading-order contribution of mode ν

(with unit amplitude) to the surface integral in (4.6). Multiplying the result by δAν

and summing over ν gives (4.6) with

Dµν =
(
−iω(ν)

)1/2
∫

r=1

u(µ)∗ · u(ν) d2 X︸ ︷︷ ︸
Sidewall boundary layer

+ 1
2

(
γ

(ν)
+ + γ (ν)

−
)∫

Z=0,h0

u(µ)∗ ·u(ν)
d2 X + 1

2
i
(
γ

(ν)
+ − γ (ν)

−
)∫

Z=0,h0

u(µ)∗ ·
(
eZ × u(ν)

)
d2 X︸ ︷︷ ︸

Endwall boundary layers

(B 5)

Note that, in deriving (B 5), departures from (B 2) and (B 3) near the cylinder corners
have been neglected on the grounds that the corner regions are small and hence
contribute little to the surface integral. It can easily be shown using (3.4) that Dµν is
zero unless nµ = nν . It can also be shown that Dµν = 0 if µ �= ν are both geostrophic
modes, i.e. there is no viscous coupling between such modes, a result which will be
used in Part 2.

It is possible to evaluate (B 5) using (3.4) and the expressions for the modal
eigenfuctions of Appendix A, but the results are very lengthy and are not given here.
However, the diagonal components of Dµν are required in deriving the results of § 5.2
and are given by

Dµµ = i

(
1 − ω(µ)2

)1/2

η(µ)h0

{(
η(µ) + nω(µ)

)(
γ

(µ)
+ − γ (µ)

−
)

+
(
η(µ) − nω(µ)

) (
ω(µ)(γ (µ)

+ + γ (µ)
−
)

− ih0

(
1 − ω(µ)2

)1/2(−iω(µ)
)1/2

)}
(B 6)

for non-geostrophic modes and

Dµµ =
21/2

h0

(B 7)

for geostrophic µ. Equation (B 7) does not depend on which geostrophic mode
is considered, implying the same viscous decay rate for all geostrophic modes if
volumetric damping is neglected.
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