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MULTIPLICATION FORMULAS AND SEMISIMPLICITY
FOR q-SCHUR SUPERALGEBRAS

JIE DU, HAIXIA GU∗ and ZHONGGUO ZHOU

Abstract. We investigate products of certain double cosets for the symmetric

group and use the findings to derive some multiplication formulas for the q-

Schur superalgebras. This gives a combinatorialization of the relative norm

approach developed in Du and Gu (A realization of the quantum supergroup

U(glm|n), J. Algebra 404 (2014), 60–99). We then give several applications of

the multiplication formulas, including the matrix representation of the regular

representation and a semisimplicity criterion for q-Schur superalgebras. We

also construct infinitesimal and little q-Schur superalgebras directly from the

multiplication formulas and develop their semisimplicity criteria.

§1. Introduction

The beautiful Beilinson–Lusztig–MacPherson construction [1] of quan-

tum gln has been generalized to the quantum affine gln [4, 9], to the quantum

super glm|n [12], and partially to the other classical types [2, 20] and affine

type C [19], in which certain coideal subalgebras of quantum gln (or affine

gln) are used to form various quantum symmetric pairs associated with

Hecke algebras of type B/C/D or affine type C. A key step of these works is

the establishment of certain multiplication formulas in the relevant q-Schur

algebras or Hecke endomorphism algebras. These formulas were originally

derived by geometric methods. When the geometric approach is not available

in the super case, a super version of the Curtis–Scott relative norm basis [8,

24], including a detailed analysis of the explicit action on the tensor space,

is used in deriving such formulas; see [12, 14, 15]. However, it is natural to

expect the existence of a direct Hecke algebra method involving only the

combinatorics of symmetric groups.
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q-SCHUR SUPERALGEBRAS 99

In this paper, we will develop such a method. The multiplication formulas
require to compute certain structure constants associated with the double
coset basis, a basis defined by the double cosets of a symmetric group. Since
a double coset can be described by a certain matrix with nonnegative integer
entries, our first step is to find formulas, in terms of the matrix entries, of
decomposing products of certain double cosets into disjoint unions of double
cosets. We then use the findings to derive the multiplication formulas in
q-Schur superalgebras; see Theorem 4.1 and Corollary 4.2. This method
simplifies the calculation in [12, Sections 2–3] using relative norms.

The multiplication formulas result in several applications. The first
one is the matrix representation of the regular representations over any
commutative ring R; see Theorem 4.5. When the ground ring R is a field,
we establish a criterion for the semisimplicity of q-Schur superalgebras (see
Theorem 5.4), generalizing a quantum result of Erdmann and Nakano to
the super case and a classical super result of Marko and Zubkov [26] (cf. [6,
18]) to the quantum case. Finally, we introduce the infinitesimal and little q-
Schur superalgebras directly from the multiplication formulas (Theorem 6.1,
Corollary 6.3). We also determine semisimple infinitesimal q-Schur superal-
gebras and semisimple little q-Schur superalgebras (Theorem 6.4).

It should be interesting to point out that, unlike the traditional methods

used in [7, 10], our definitions do not involve quantum enveloping alge-

bras or quantum coordinate algebras and the semisimplicity proof is also

independent of the representation theory of these ambient quantum groups

or algebras. We expect that this combinatorial approach will give further

applications to various q-Schur superalgebras of other types in the near

future.

§2. q-Schur superalgebras

Let W = S{1,2,...,r} be the symmetric group on r letters and let S =

{sk | 1 6 k < r} be the set of basic transpositions sk = (k, k + 1). Denote

the length function with respect to S by ` :W → N.

Let R be a commutative ring with 1 and let q ∈R×. The Hecke

algebra HR =HR(W ) is a free R-module with basis {Tw | w ∈W} and the

multiplication defined by the rules: for s ∈ S,

TwTs =

{
Tws, if `(ws)> `(w);
(q − 1)Tw + qTws, otherwise.

(2.0.1)

The Hecke algebra over R= Z := Z[υ, υ−1] and q = υ2 is simply denoted

by H.
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Let Wλ denote the parabolic subgroup of W associated with

λ= (λ1, λ2, . . . , λN ) ∈ Λ(N, r) where

Λ(N, r) =
{
λ ∈ NN

∣∣|λ| :=∑i λi = r
}
.

Then Wλ consists of permutations that leave invariant the following sets of

integers

Nλ1 = {1, 2, . . . , λ1}, Nλ2 = {λ1 + 1, λ1 + 2, . . . , λ1 + λ2}, . . . .

Let Dλ :=DWλ
be the set of all shortest coset representatives of the right

cosets of Wλ in W . Let Dλµ =Dλ ∩ D−1
µ be the set of the shortest Wλ–Wµ

double coset representatives.

For λ, µ ∈ Λ(N, r) and d ∈ Dλµ, the subgroup W d
λ ∩Wµ = d−1Wλd ∩Wµ

is a parabolic subgroup associated with a composition, which is denoted by

λd ∩ µ. In other words, we define

Wλd∩µ =W d
λ ∩Wµ.(2.0.2)

The composition λd ∩ µ can be easily described in terms of the

following N ×N -matrix A= (ai,j) with ai,j = |Nλi ∩ d(Nµj )|: if ν(j) =

(a1,j , a2,j , . . . , aN,j) denotes the jth column of A, then

λd ∩ µ= (ν(1), ν(2), . . . , ν(N)).(2.0.3)

Putting (λ, d, µ) = (|Nλi ∩ d(Nµj )|)i,j , we obtain a bijection

 : {(λ, d, µ) | λ, µ ∈ Λ(N, r), d ∈ Dλµ} −→M(N, r),(2.0.4)

where M(N, r) is the set of all N ×N matrices A= (ai,j) over N whose

entries sum to r, i.e., |A| :=
∑

i,j ai,j = r.

For A ∈M(N, r), if −1(A) = (λ, d, µ), then λ, µ ∈ Λ(N, r) and

λ= ro(A) :=

( N∑
j=1

a1,j , . . . ,

N∑
j=1

aN,j

)
and

µ= co(A) :=

( N∑
i=1

ai,1, . . . ,

N∑
i=1

ai,N

)
.

(2.0.5)

For the definition of q-Schur superalgebra, we fix two nonnegative integers

m, n and assume R has characteristic 6= 2. We also need the parity function

ĥ=

{
0 if 1 6 h6m;

1 if m+ 1 6 h6m+ n.
(2.0.6)
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q-SCHUR SUPERALGEBRAS 101

A composition λ of m+ n parts will be written

λ= (λ(0)|λ(1)) = (λ
(0)
1 , λ

(0)
2 , . . . , λ(0)

m |λ
(1)
1 , λ

(1)
2 , . . . , λ(1)

n )

to indicate the “even” and “odd” parts of λ. Let

Λ(m|n, r) := Λ(m+ n, r) =
⋃

r1+r2=r

(Λ(m, r1)× Λ(n, r2)).

For λ= (λ(0) | λ(1)) ∈ Λ(m|n, r), we also write

Wλ =Wλ(0)Wλ(1)
∼=Wλ(0) ×Wλ(1) ,(2.0.7)

where Wλ(0) 6S{1,2,...,|λ(0)|} and Wλ(1) 6S{|λ(0)|+1,...,r} are the even and odd

parts of Wλ, respectively.

Denote the Hecke algebra associated with the parabolic subgroup Wλ by

Hλ, which is spanned by Tw, w ∈Wλ. The elements in Hλ

[xy]λ := xλ(0)yλ(1) , [yx]λ := yλ(0)xλ(1) ,(2.0.8)

where, for i= 0, 1,

xλ(i) =
∑

w∈W
λ(i)

Tw, yλ(i) =
∑

w∈W
λ(i)

(−q)−`(w)Tw

generate Hλ-modules R[xy]λ, R[yx]λ. Define the “tensor space” (cf. [16,

(8.3.4)])

TR(m|n, r) =
⊕

λ∈Λ(m|n,r)

[xy]λHR.(2.0.9)

By the definition in [16], the endomorphism algebra

SR(m|n, r) = EndHR(TR(m|n, r))

is called a q-Schur superalgebra whose Z2-graded structure is given by

SR(m|n, r)i =
⊕

λ,µ∈Λ(m|n,r)
|λ(1)|+|µ(1)|≡i(mod 2)

HomHR([xy]λHR, [xy]µHR) (i= 0, 1).

We will use the notation S(m|n, r) to denote the υ2-Schur algebra over Z.

We now describe a characteristic-free basis for SR(m|n, r).
For λ, µ ∈ Λ(m|n, r), let

D◦λµ = {d ∈ Dλµ |W d
λ(0) ∩Wµ(1) = 1, W d

λ(1) ∩Wµ(0) = 1}.(2.0.10)
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This set is the super version of the usual Dλµ. We need the following subsets

of the (m+ n)× (m+ n) matrix ring Mm+n(N) over N:

M(m|n, r) = {(λ, d, µ) | λ, µ ∈ Λ(m|n, r), d ∈ D◦λµ},

M(m|n) =
⋃
r>0

M(m|n, r)⊆Mm+n(N).(2.0.11)

Following [16, (5.3.2)], define, for λ, µ ∈ Λ(m|n, r) and d ∈ D◦λµ,

TWλdWµ := [xy]λTdTDν∩Wµ = TDν′∩Wλ
Td[xy]µ,(2.0.12)

where ν = λd ∩ µ, ν ′ = µd−1 ∩ λ, and

TD∩Wη =
∑

w0∈D0,w1∈D1

Tw0(−q)−`(w1)Tw1

for any D ⊆W (η = λ or µ) with Di =D ∩Wη(i) (cf. [16, (5.3.2)]).

The element TWλdWµ is used to define an HR-module homomorphism φdλµ
on TR(m|n, r):

φdλµ([xy]αh) = δµ,αTWλdWµh, ∀α ∈ Λ(m|n, r), h ∈H.

The first assertion of the following result is given in [16, 5.8], while the

last assertion for the nonquantum case was observed in [23, Section 3.1].

Write φA := φdλµ if A= (λ, d, µ).

Lemma 2.1. The set {φA |A ∈M(m|n, r)} forms an R-basis for

SR(m|n, r). Hence, SR(m|n, r)∼= S(m|n, r)⊗Z R. Moreover, there is an R-

algebra isomorphism

SR(m|n, r)∼= SR(n|m, r).

Proof. We only need to prove the last assertion. The Hecke alge-

bra HR admits an R-algebra involutory automorphism ϕ sending Ts to

−qT−1
s = (q − 1)− Ts for all s ∈ S. Since ϕ(xλ) = q`(w0,λ)yλ, where w0,λ

is the longest element in Wλ (see, e.g., [5, (7.6.2)]), we have ϕ([xy]λ) =

ϕ(xλ(0)yλ(1)) = q
`(w

0,λ(0) )−`(w
0,λ(1) )

yλ(0)xλ(1) . If we denote by ([xy]λHR)ϕ the

module obtained by twisting the action on [xy]λHR by ϕ, i.e., ([xy]λh) ∗ h′ =
([xy]λh)ϕ(h′) for all h, h′ ∈HR, then the map

Φλ : ([xy]λHR)ϕ→ [yx]λHR, [xy]λh 7→ ϕ([xy]λh)

is anHR module isomorphism. These Φλ induce anHR module isomorphism

Φ : TR(m|n, r)ϕ −→ TR(n|m, r). Now the required isomorphism follows.
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§3. Decomposing products of double cosets

Throughout the section, let W be the symmetric group and let n, r be

positive integers. We also fix the following notation in this section:

M = (mij) ∈M(n, r) with −1(M) = (λ, d, µ), dM := d,

νM := λd ∩ µ= (m1,1, m2,1, . . . , mn,1, . . . , m1,n, m2,n, . . . , mn,n),

σi,j =

j−1∑
k=1

n∑
h=1

mh,k +
∑

k6i,l>j

mk,l,

M+
h,k =M + Eh,k − Eh+1,k if mh+1,k > 1,

M−h,k =M − Eh,k + Eh+1,k if mh,k > 1.

(3.0.1)

Moreover, to any sequence (a1, a2, . . . , an), we associate its partial sum

sequence (ã1, ã2, . . . , ãn) with ãi = a1 + · · ·+ ai. Thus, λ̃i = λ1 + · · ·+ λi
and m̃i,j is the partial sum at the (i, j)-position of νM . We also note that

σi,j = µ̃j−1 +mx
i,j , where mx

i,j =
∑

k6i,l>j ak,l. In particular, σi,1 =mx
i,1 = λ̃i.

The following result will be proved at the end of the section.

Theorem 3.1. Maintain the notation in (3.0.1) with λ= (λ1, . . . , λn)

and, for 1 6 h6 n, let λ[h±] := λ± eh ∓ eh+1 = ro(M±h,k), where ei =

(δ1,i, . . . , δn,i). Then

(W
λ[h+]1Wλ)(WλdMWµ) =

⋃
k

mh+1,k>1

W
λ[h+]dM+

h,k
Wµ,

(W
λ[h−]1Wλ)(WλdMWµ) =

⋃
k

mh,k>1

W
λ[h−]dM−h,k

Wµ.

We first describe some standard reduced expression for dM .

Ifmi,j = 0, ormi,j > 0 but σi−1,j = m̃i−1,j (i.e.,mx
i−1,j+1 = 0), set wi,j = 1;

if mi,j > 0 and σi−1,j > m̃i−1,j , let

wi,j = (sσi−1,jsσi−1,j−1 · · · sm̃i−1,j+1)

(sσi−1,j+1sσi−1,j · · · sm̃i−1,j+2) · · ·

(sσi−1,j+mi,j−1sσi−1,j+mi,j−2 · · · sm̃i,j )(3.1.1)

and w+
i,j = sσi−1,j+1sσi−1,j+2 · · · sσi−1,j+mi,jwi,j (and w+

i,j = 1 if mi,j = 0).

Note that we may rewrite w+
i,j as

w+
i,j = sσi−1,j+1(sσi−1,jsσi−1,j−1 · · · sm̃i−1,j+1)
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sσi−1,j+2(sσi−1,j+1sσi−1,j · · · sm̃i−1,j+2) · · ·

sσi−1,j+mi,j (sσi−1,j+mi,j−1sσi−1,j+mi,j−2 · · · sm̃i,j ).(3.1.2)

For example, if M =
(

1 3 2
2 1 1
1 0 2

)
then

(σij) =

 6 9 10
10 11 11
13 13 13

 , (m̃ij) =

1 7 10
3 8 11
4 8 13

 ,

and

w2,1 = (s6s5 · · · s2)(s7s6 · · · s3) =

(
2 3 4 5 6 7 8
7 8 2 3 4 5 6

)
,

w3,1 = s10s9 · · · s4 = ( 4 5 6 7 8 9 10 11
11 4 5 6 7 8 9 10), and w2,2 = s9s8 = ( 8 9 10

10 8 9 ), w3,2 = 1,

then w2,1w3,1w2,2w3,2 = (1 2 3 4 5 6 7 8 9 10 11 12 13
1 7 8 11 2 3 4 9 5 6 10 12 13), which is dM .

Lemma 3.2. [12, Algorithm 2.1] Let M , dM and M+
h,k be given as in

(3.0.1). Then a reduced expression of dM is of the form

dM = (w2,1w3,1 · · · wn,1)(w2,2w3,2 · · · wn,2) · · · (w2,n−1w3,n−1 · · · wn,n−1).

If mh+1,k > 1, then

dM+
h,k

= (w′2,1w
′
3,1 · · · w′n,1)(w′2,2w

′
3,2 · · · w′n,2) · · · (w′2,n−1w

′
3,n−1 · · · w′n,n−1),

where, for almost all i, j, w′ij = wij, except w′h+1,j = w+
h+1,j for j < k and

(3.2.1)
w′h,k = w•h,k := wh,k(sσh−1,k+mh,ksσh−1,k+mh,k−1 · · · sm̃h,k+1),

w′h+1,k = w◦h+1,k := (sσh,k+1sσh,k · · · sm̃h,k+2)(sσh,k+2sσh,k+1 · · · sm̃h,k+3) · · ·

(sσh,k+mh+1,k−1sσh,k+mh+1,k−2 · · · sm̃h+1,k
).

In particular, `(dM+
h,k

) = `(dM ) +
∑

j<k mh+1,j −
∑

j>k mh,j.

Remark 3.3. (1) We display the factors wi,j of dM through a matrix

notation:

dM =


w2,1 w2,2 · · · w2,n−1

w3,1 w3,2 · · · w3,n−1

...
... · · ·

...

wn,1 wn,2 · · · wn,n−1

 ,(3.3.1)
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where dM is simply a product of the entries down column 1, then down

column 2, and so on. Note that wi,j = 1 whenever mi,j = 0 or mx
i−1,j+1 = 0.

(2) Note that a product of the form sh−1sh−2 · · · sk for h > k is in fact

the cycle permutation h→ h− 1→ · · · → k + 1→ k→ h. Thus, each wi,j is

a product of cycle permutations. Note also that the largest number permuted

(or moved) by the partial column product w2,jw3,j · · · wh,j is σh−1,j +mh,j .

Lemma 3.4.

(1) For any nonnegative integers k, i, h with 0< k 6 i < h < r,

si(shsh−1 · · · sk) = (shsh−1 · · · sk)si+1.

Hence, for 0< k 6 i < h1 < h2 < · · ·< hl < r,

si(sh1sh1−1 · · · sk)(sh2sh2−1 · · · sk+1) · · · (shlshl−1 · · · sk+l−1)

= (sh1sh1−1 · · · sk)(sh2sh2−1 · · · sk+1) · · · (shlshl−1 · · · sk+l−1)si+l.

(2) With the notation given in (3.0.1) and (3.1.1), if σh−1,j +mh,j < l <

σh,j and l > m̃h,j + 1, then

sl(w2,jw3,j · · · wn,j) = (w2,jw3,j · · · wn,j)sl+∑n
i=h+1 mi,j

.

(3) For any 1< k 6 n, if 0< x6mh,k and assume
∑k−1

j=1 mh,j + x < λh,

then

sσh−1,1+
∑k−1
j=1 mh,j+x

(w2,1 · · · wn,1) · · · (w2,k−1 · · · wn,k−1)

= (w2,1 · · · wn,1) · · · (w2,k−1 · · · wn,k−1)sσh−1,k+x.

Proof. The proof for the first two assertions is straightforward. We now

prove (3).

Consider the product
∏
t of first t columns of dM :

Πt = (w2,1 · · · wh−1,1wh,1wh+1,1 · · · wn,1)

· · · (w2,t · · · wh−1,twh,twh+1,t · · · wn,t).

We claim for all t < k that

sσh−1,1+
∑k−1
j=1 mh,j+x

·Πt = Πt · sσh−1,t+1+
∑k−1
j=t+1 mh,j+x

.(3.4.1)

Thus, taking t= k − 1 gives the assertion (3).
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We prove (3.4.1) by induction on t. If t= 1, then x > 0 implies

l = σh−1,1 +
k−1∑
j=1

mh,j + x > σh−1,1 +mh,1.

As the largest number permuted by w2,1 · · · wh,1 is σh−1,1 +mh,1, we have

sl(w2,1 · · · wh,1) = (w2,1 · · · wh,1)sl.(3.4.2)

Now we consider sl(wh+1,1 · · · wn,1). Assume wh+1,1 6= 1 (and so mh+1,1 >

0). Since k > 1 and m̃h,1 + 1 6 l = σh−1,1 +
∑k−1

j=1 mh,j + x < σh−1,1 + λh =

σh,1, by (2), slwh+1,1 = wh+1,1sl+mh+1,1
and, by an inductive argument as

above,

slwh+1,1wh+2,1 · · · wn,1 = wh+1,1wh+2,1 · · · wn,1sl+∑n
i=h+1 mi,1

.

But l +
∑n

i=h+1 mi,1 = σh−1,2 +
∑k−1

j=2 mh,j + x. This proves (3.4.1) for

t= 1.

Suppose now t > 1 and (3.4.1) is true for t− 1. That is, assume

sσh−1,1+
∑k−1
j=1 mh,j+x

(w2,1 · · · wn,1) · · · (w2,t−1 · · · wn,t−1)

= (w2,1 · · · wn,1) · · · (w2,t−1 · · · wn,t−1)sσh−1,t+
∑k−1
j=t mh,j+x

.

Since σh−1,t +
∑k−1

j=t mh,j + x > σh−1,t +mh,t and

σh,t = σh−1,t +
n∑
j=t

mh,j > σh−1,t +
k−1∑
j=t

mh,j + x> m̃h,t + 1,

applying (2) with l = σh−1,t +
∑k−1

j=t mh,j + x gives

sl(w2,t · · · wh,twh+1,t · · · wn,t) = (w2,t · · · wh,t)sl(wh+1,t · · · wn,t)

= (w2,t · · · wh,twh+1,t · · · wn,t)sl+∑n
i=h+1 mi,t

,

where

l +
n∑

i=h+1

mi,t = σh−1,t +
k−1∑
j=t

mh,j + x+
n∑

i=h+1

mi,t

= σh−1,t+1 +
k−1∑
j=t+1

mh,j + x.

This proves (3.4.1) for t and, hence, (3).
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Corollary 3.5. For 0< x6mh,k, l = σh−1,1 +
∑k−1

j=1 mh,j with l +

x < σh,1, we have

sl+xdM =



w2,1 · · · w2,k−1 w2,k w2,k+1 · · · w2,n−1

...
... · · ·

...
... · · ·

...

wh−1,1 · · · wh−1,k−1 wh−1,k wh−1,k+1 · · · wh−1,n−1

wh,1 · · · wh,k−1 w∗h,k wh,k+1 · · · wh,n−1

wh+1,1 · · · wh+1,k−1 wh+1,k wh+1,k+1 · · · wh+1,n−1

...
... · · ·

...
... · · ·

...

wn,1 · · · wn,k−1 wn,k wh,k+1 · · · wn,n−1


,

where w∗h,k = sσh−1,k+xwh,k. In particular, sl+1sl+2 · · · sl+mh,kdM can be

expressed by the same matrix with w∗h,k = w+
h,k, the element defined in

(3.1.2).

The next result is the key to establish the decomposition in Theorem 3.1

and the multiplication formulas in Theorem 4.1.

Proposition 3.6. Maintain the notation as given in (3.0.1) and The-

orem 3.1, and let a=
∑k−1

j=1 mh+1,j, and b=
∑n

j=k+1 mh,j.

(1) If mh+1,k > 1 then, for λ+ = λ[h+] = λ+ eh − eh+1 and 0 6 p <mh+1,k,

s
λ̃h+1

s
λ̃h+2

· · · s
λ̃h+a+p

dM

= s
λ̃+
h−1

s
λ̃+
h−2
· · · s

λ̃+
h−b

dM+
h,k

(sm̃h,k+1 · · · sm̃h,k+p)

= s
λ̃h
s
λ̃h−1

· · · s
λ̃h−b+1

dM+
h,k

(sm̃h,k+1 · · · sm̃h,k+p).

(2) If mh,k > 1 then, for λ− = λ[h−] = λ− eh + eh+1 and q =mh,k − p with

0< p6mh,k (so 0 6 q <mh,k),

s
λ̃h−1

s
λ̃h−2

· · · s
λ̃h−b−q

dM

= s
λ̃−h +1

s
λ̃−h +2

· · · s
λ̃−h +a

dM−h,k
(sm̃h,k−1sm̃h,k−2 · · · sm̃h,k−q)

= s
λ̃h
s
λ̃h+1

· · · s
λ̃h+a−1

dM−h,k
(sm̃h,k−1sm̃h,k−2 · · · sm̃h,k−q).

Here every product of the si’s is regarded as 1 if its “length” is 0.

Proof. We only prove (1), (2) follows from (1) with a similar argument.

We first assume that p= 0. In this case, we want to prove
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s
λ̃h+1

s
λ̃h+2

· · · s
λ̃h+a

dM = s
λ̃+
h−1

s
λ̃+
h−2
· · · s

λ̃+
h−b

dM+
h,k
.(3.6.1)

Since a=mh+1,1 + · · ·+mh+1,k−1, repeatedly applying Corollary 3.5

(with h replaced by h+ 1, noting mh+1,k > 0) yields

s
λ̃h+1

s
λ̃h+2

· · · s
λ̃h+a

dM

=



w2,1 · · · w2,k−1 w2,k · · · w2,n−1

...
... · · ·

... · · ·
...

wh,1 · · · wh,k−1 wh,k · · · wh,n−1

w+
h+1,1 · · · w+

h+1,k−1 wh+1,k · · · wh+1,n−1

wh+2,1 · · · wh+2,k−1 wh+2,k · · · wh+2,n−1

...
... · · ·

... · · ·
...

wn,1 · · · wn,k−1 wn,k · · · wn,n−1


.

(Note that, if k = 1, then a= 0 and so left-hand side (LHS) of (3.6.1)

= dM . Note also that w+
h+1,j = 1 if mh+1,j = 0.) By comparing this

with the “matrix” of dM+
h,k

, we now show that multiplying dM+
h,k

by

s
λ̃+
h−1

s
λ̃+
h−2
· · · s

λ̃+
h−b

on the left will turn the product w•h,kw
◦
h+1,k into

wh,kwh+1,k.

If b= 0, then σh,k = σh−1,k +mh,k and so w•h,kw
◦
h+1,k = wh,kwh+1,k (cf.

Lemma 3.2). This proves (3.6.1) in this case. Assume now b > 0. Observe

that, for λ+ = ro(M+
h,k), λ̃

+
h −

∑
j>k mh,j = λ̃h−1 +

∑k
j=1 mh,j + 1. Let l =

λ̃h−1 +
∑k−1

j=1 mh,j and 1 6 x6mh,k. Then l + x < l + x+mh+1,k 6 λh+1.

By Lemma 3.4(3) (cf. (3.4.1)),

sl+xΠ+
k−1 = Π+

k−1sσh−1,k+x,(3.6.2)

where Π+
k−1 is the product of the first k − 1 columns of dM+

h,k
. By (3.3.1) for

M+
h,k and noting (3.2.1),

s
λ̃+
h−1

s
λ̃+
h−2
· · · s

λ̃+
h−

∑
j>k mh,j

dM+
h,k

= Π+
k−1 · sσh,ksσh,k−1 · · · sσh−1,k+mh,k+1

(w2,k · · · wh−1,kw
•
h,kw

◦
h+1,kwh+2,k · · · wn,k)

· · ·

(w2,n−1 · · · wh,n−1wh+1,n−1wh+2,n−1 · · · wn,n−1).(3.6.3)
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Since the smallest number permuted by sσh,ksσh,k−1 · · · sσh−1,k+mh,k+1

is σh−1,k +mh,k + 1, while the largest number permuted

by w2,1 · · · wh−1,kwh,k is σh−1,k +mh,k, it follows that

sσh,ksσh,k−1 · · · sσh−1,k+mh,k+1 commutes with w2,k · · · wh−1,k and wh,k.

Thus,

sσh,ksσh,k−1 · · · sσh−1,k+mh,k+1w
•
h,kw

◦
h+1,k

= wh,k(sσh,k · · · sσh−1,k+mh,k+1)sσh−1,k+mh,ksσh−1,k+mh,k−1

· · · sm̃h,k+1w
◦
h+1,k

= wh,k(sσh,ksσh,k−1 · · · sm̃h,k+1)w◦h+1,k

= wh,kwh+1,k.

Hence, s
λ̃+
h−1

s
λ̃+
h−2
· · · s

λ̃+
h−

∑
j>k mh,j

dM+
h,k

= LHS, proving the p= 0 case.

Assume now p > 0. Then one can easily prove by Corollary 3.5 that

sl+1 · · · sl+pdM = dMsm̃h,k+1sm̃h,k+2 · · · sm̃h,k+p.

Now the required formula follows from (3.6.1).

Proof of Theorem 3.1. Set D+
h = diag(λ− eh+1) + Eh,h+1. Then

ro(D+
h ) = λ[h+], co(D+

h ) = λ, and

ν ′ := νD+
h

= (λ1, λ2, . . . , λh, 1, λh+1 − 1, λh+2, . . . , λn).

Note that in this case dD+
h

= 1. Observe that

(3.6.4)

Dν′ ∩Wλ = {1, s
λ̃h+1

, s
λ̃h+1

s
λ̃h+2

, . . . , s
λ̃h+1

s
λ̃h+2

· · · s
λ̃h+λh+1−1

}.

Putting di = s
λ̃h+1

s
λ̃h+2

· · · s
λ̃h+i

for 0 6 i6 λh+1 − 1, the LHS becomes⋃
iWλ[h+]didMWµ. Since λh+1 =

∑
k;mh+1,k>1 mh+1,k, the first decomposi-

tion follows from Proposition 3.6(1). The second decomposition can be

proved similarly.

§4. Regular representation of the q-Schur superalgebra

We now use Proposition 3.6 to derive certain multiplication formulas in

S(m|n, r) and the matrix representation of the regular representation. For

any integers 0 6 t6 s, define Gaussian polynomials in Z = Z[υ, υ−1] by[[s
t

]]
=
[[s
t

]]
q

=
JsK!

JtK!Js− tK!
,

https://doi.org/10.1017/nmj.2018.12 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.12


110 J. DU, H. GU AND Z. ZHOU

where JrK! := J1KJ2K · · · JrK with JiK = 1 + q + · · ·+ qi−1 (q = υ2). Define

[r]! similarly with [i] = (υi − υ−i)/(υ − υ−1).

For λ ∈ Λ(m|n, r), denote PWλ
to be the super Poincaré polynomial

PWλ
=

∑
w0∈Wλ(0) ,w1∈Wλ(1)

(q)`(w0)(q−1)`(w1).(4.0.5)

For 1 6 h6m+ n, define q̇h, q̈h, υh by{
q̇h = 1, q̈h = q, υh = υ, if 1 6 h6m;

q̇h =−q−1, q̈h =−1, υh = υ−1, if m< h6m+ n,

and let qh = υ2
h. Recall the basis {φA}A∈M(m|n,r) given in Lemma 2.1.

Theorem 4.1. For any A= (ai,j) ∈M(m|n, r) and 1 6 h <m+ n, let

D+
h , D

−
h be the matrices defined by the conditions that D+

h − Eh,h+1, D
−
h −

Eh+1,h are diagonal and co(D+
h ) = co(D−h ) = ro(A), and assume D+

h , D
−
h ∈

M(m|n, r). Then the following multiplication formulas hold in S(m|n, r):

(1) φD+
h
φA =

∑
k∈[1,m+n]
ah+1,k>1

q̇
∑
j<k ah+1,j

h+1 q̈
∑
j>k ah,j

h Jah,k + 1KqhφA+
h,k

;

(2) φD−h
φA =

∑
k∈[1,m+n]
ah,k>1

q̇
∑
j>k ah,j

h q̈
∑
j<k ah+1,j

h+1 Jah+1,k + 1Kqh+1
φA−h,k

.

(Here [1, m+ n] = {1, 2, . . . , m+ n}.)

Proof. We only prove (1). The proof of (2) is symmetric.

Let λ= ro(A), µ= co(A), d= dA andWν =W d
λ ∩Wµ =Wν(0) ×Wν(1) (cf.

(3.0.1)), where Wν(i) =W d
λ(i) ∩Wµ(i) for i= 0, 1. Then λ= co(D+

h ), λ[h+] =

ro(D+
h ) = λ+ eh − eh+1, and (λ[h+], 1, λ) =D+

h .

Putting Wν′(h) =W
λ[h+] ∩Wλ, we see from (3.6.4),

Dν′(h) ∩Wλ = {1, s
λ̃h+1

, s
λ̃h+1

s
λ̃h+2

, . . . , s
λ̃h+1

· · · s
λ̃h+λh+1−1

}.

Since Dν′(h) ∩Wλ ⊆Wλ(1) whenever h>m, the element TDν′(h)∩Wλ
used in

(2.0.12) can be written as TDν′(h)∩Wλ
=
∑

w∈Dν′(h)∩Wλ
(q̇h+1)`(w)Tw.

By definition, to compute φD+
h
φA, it suffices to write φD+

h
φA([xy]µ) as

a linear combination of some TWξd′Wµ , where ξ = λ[h+]. We compute this
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within SQ(υ)(m|n, r):

φD+
h
φA([xy]µ) = φ1

ξ,λφ
d
λ,µ([xy]µ) = φ1

ξ,λ(TWλdWµ)

= φ1
ξ,λ([xy]λTdTDν∩Wµ) (by (2.0.12))

= TWξWλ
TdTDν∩Wµ = (PWν )−1TWξWλ

Td[xy]µ

= (PWν )−1[xy]ξTDν′(h)∩Wλ
Td[xy]µ

= (PWν )−1
∑

w∈Dν′(h)∩Wλ

[xy]ξ(q̇
`(w)
h+1Tw)Td[xy]µ.(4.1.1)

Note that d= dA ∈ Dλµ. If ah+1,k > 0 and

wp := s
λ̃h+1

s
λ̃h+2

· · · s
λ̃h+

∑k−1
j=1 ah+1,j+p

for some 0 6 p < ah+1,k, then by Proposition 3.6(1), we have

wpd= s
λ̃h
s
λ̃h−1

· · · s
λ̃h−

∑m+n
j=k+1 ah,j+1

d+(sãh,k+1 · · · sãh,k+p),

where d+ = dA+
h,k

. Clearly,
∑

j<k ah+1,j = `(wp)− p. If we put Qh+1,k =

q̇
∑
j<k ah+1,j

h+1 , then

ah+1,k−1∑
p=0

q̇
`(wp)
h+1 TwpTd =Qh+1,kTλ̃h

T
λ̃h−1

· · · T
λ̃h−

∑
j>k ah,j+1

Td+

·(1 + q̇h+1Tãh,k+1 + · · ·+ q̇
ah+1,k−1
h+1 Tãh,k+1 · · · Tãh,k+ah+1,k−1).

Thus,∑
w∈Dν′∩Wλ

[xy]ξ(q̇
`(w)
h+1TwTd)[xy]µ

=
∑

k∈[1,m+n]
ah+1,k>1

Qh+1,k[xy]ξTλ̃h
T
λ̃h−1

· · · T
λ̃h−

∑
j>k ah,j+1

Td+

· (1 + (q̇h+1)Tãh,k+1 + · · ·+ (q̇h+1)ah+1,k−1Tãh,k+1 · · · Tãh,k+ah+1,k−1)

· [xy]µ.
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Since

(1 + (q̇h+1)Tãh,k+1 + · · ·+ (q̇h+1)ah+1,k−1Tãh,k+1 · · · Tãh,k+ah+1,k−1)[xy]µ

= (1 + q̇h+1q̈k + · · ·+ (q̇h+1q̈k)
ah+1,k−1)[xy]µ

= Jah+1,kKq̇h+1q̈k [xy]µ

and

[xy]ξTλ̃h
T
λ̃h−1

· · · T
λ̃h−

∑
j>k ah,j+1

= q̈
∑
j>k ah,j

h [xy]ξ,

it follows that

φD+
h
φA([xy]µ) = P−1

Wν

∑
ah+1,k>1

Qh+1,kq̈
∑
j>k ah,j

h Jah+1,kKq̇h+1q̈k [xy]ξTd+ [xy]µ

=
∑

ah+1,k>1

PWν′′

PWν

Qh+1,kq̈
∑
j>k ah,j

h Jah+1,kKq̇h+1q̈kTWξd+Wµ

=
∑

ah+1,k>1

PWν′′

PWν

Qh+1,kq̈
∑
j>k ah,j

h Jah+1,kKq̇h+1q̈kφA+
h,k

([xy]µ),

where ν ′′ = νM with M =A+
h,k or Wν′′ =W d+

ξ ∩Wµ. Hence, noting

PWν′′

PWν

=
Jah,k + 1K!

qk
Jah+1,k − 1K!

qk

Jah,kK!
qk

Jah+1,kK!
qk

=
Jah,k + 1Kqk
Jah+1,kKqk

,

we obtain

(4.1.2)

φD+
h
φA =

∑
k

ah+1,k>1

q̇
∑
j<k ah+1,j

h+1 q̈
∑
j>k ah,j

h

Jah,k + 1KqkJah+1,kKq̇h+1q̈k

Jah+1,kKqk
φA+

h,k
.

It remains to prove that

Jah,k + 1KqkJah+1,kKq̇h+1q̈k

Jah+1,kKqk
= Jah,k + 1Kqh .(4.1.3)

This can be seen in cases. For example, if h <m and k 6m (resp., h >m

and k >m), then q̇h+1 = 1, q̈k = q (resp., q̇h+1 =−q−1, q̈k =−1), and so

qk = qh (resp., q̇h+1q̈k = qh). Hence,

Jah,k + 1KqkJah+1,kKq̇h+1q̈k

Jah+1,kKqk
= Jah,k + 1Kqh .
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When h6m and k >m, or h >m and k 6m, we must have

ah,k + 1 = ah+1,k = 1. Thus, Jah,k + 1Kqk = Jah,k + 1Kq̇h+1q̈k = Jah+1,kKqk =

1 = Jah,k + 1Kqh . Finally, when h=m and k 6m, we have qh = qk and

q̇h+1q̈k =−q−1q =−1. But ah+1,k = am+1,k = 1, forcing Jah+1,kKq̇h+1q̈k =

Jah+1,kKqk = 1. Hence,

Jah,k + 1KqkJah+1,kKq̇h+1q̈k

Jah+1,kKqk
= Jah,k + 1Kqh ,

proving (4.1.3) and, hence, formula (1).

If n= 0, then S(m|0, r) is the usual q-Schur algebra, which is defined

in [1] as a convolution algebra of the m-step flags of an r-dimensional space.

Similar multiplication formulas are obtained in [1, Lemma 3.4] by counting

intersections of certain orbits. Observe that, for h <m,

q̇
∑
j<k ah+1,j

h+1 q̈
∑
j>k ah,j

h = q
∑
j>k ah,j , q̇

∑
j>k ah,j

h q̈
∑
j<k ah+1,j

h+1 = q
∑
j<k ah+1,j .

Corollary 4.2. The multiplication formulas in Theorem 4.1 for

S(m|0, r) coincide with the ones in [1, Lemma 3.4].

We now make a comparison of these new formulas with ones given in [12,

Lemma 3.1], derived through the relative norm method.

The H-module T(m|n, r) is isomorphic to the tensor superspace

V (m|n)⊗r (over Z!) with an H-action defined in [12, (1.0.10)]; see [16,

Proposition 8.3]. In fact, the endomorphism algebra of V (m|n)⊗r has a

relative norm basis {NA}A∈M(m|n,r) acting on the right. Matrix transposing

may turn the right action to a left action and result in a basis denoted

by {ζA}A∈M(m|n,r). The H-module isomorphism induces an algebra isomor-

phism (cf. [16, Corollary 8.4] and [13, Lemma 2.3])

EndH(V (m|n)⊗r)op −→S(m|n, r), ζA 7−→ (−1)ÂφA,

where Â=
∑

m<k<i6m+n,16j<l6m+n ai,jak,l.

Corollary 4.3. Let

f+
h,k(q, A) = q̇

∑
j<k ah+1,j

h+1 q̈
∑
j>k ah,j

h , f−h,k(q, A) = q̇
∑
j>k ah,j

h q̈
∑
j<k ah+1,j

h+1 .

Then

(−1)D̂
+
h +Â+Â+

h,kf+
h,k(q, A) = fk(q, A, h) and

(−1)D̂
−
h +Â+Â−h,kf−h,k(q, A) = gk(q, A, h),
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where fk(q, A, h) and gk(q, A, h) are defined in [12, (3.0.1-2)]. In particular,

rewriting the multiplication formulas in Theorem 4.1 in terms of the ζ-basis

results in the formulas in [12, Lemma 3.1].

Proof. We have

(4.3.1)

f+
h,k(q, A) =


q
∑
j>k ah,j , if h <m;

(−1)
∑
j<k am+1,jq−

∑
j<k am+1,j+

∑
j>k am,j , if h=m;

(−1)
∑
j<k ah+1,j+

∑
j>k ah,jq−

∑
j<k ah+1,j , if h >m.

On the other hand (cf. [12, Lemma 5.1]), for the choice of + or −,

D̂±h + Â+ Â±h,k =



2Â if h <m;

∓
∑

i>m+1,j<k

ai,j + 2Â if h=m;

∓
∑
j>k

ah,j ±
∑
j<k

ah+1,j + 2Â if h >m.

Adjusting the right-hand side of (4.3.1) by the corresponding sign for the

“+” case gives fk(q, A, h). The “−” case is similar.

Theorem 4.1 and Corollary 4.3 give a new method to derive the key

fundamental multiplication formulas given in [12, Lemma 3.1].

By introducing the normalized basis {[A]}A∈M(m|n,r), where1

[A] = (−1)Âυ−d(A)φA with d(A) =
∑

i>k,j<l

ai,jak,l +
∑
j<l

(−1)̂iai,jai,l,

we may modify the formulas given in Theorem 4.1 to obtain further multi-

plication formulas for the [ ]-basis; cf. (the p= 1 case of) [12, Propositions

4.4 and 4.5].

Corollary 4.4. Maintain the notation above and let εh,k = 0 for h 6=
m, and εm,k =

∑
i>m,j<k ai,j. The following multiplication formulas hold in

SR(m|n, r):

(1) [D+
h ][A] =

∑
k∈[1,m+n]
ah+1,k>1

(−1)εh,kυ
f+
h,k

h Jah,k + 1Kυ2
h
[A+

h,k],

where f+
h,k =

∑
j>k ah,j − (−1)ĥ+ĥ+1

∑
j>k ah+1,j;

1The element [A] is denoted by ξA in [12, (4.2.1)].
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(2) [D−h ][A] =
∑

k∈[1,m+n]
ah,k>1

(−1)εh,kυ
f−h,k
h+1Jah+1,k + 1Kυ2

h+1
[A−h,k],

where f−h,k =
∑

j6k ah+1,j − (−1)ĥ+ĥ+1
∑

j<k ah,j.

The first important application of the multiplication formulas above is a

new realization of the quantum supergroup Uυ(glm|n); see the argument

from [12, Section 5] onwards and, in particular, see [12, Definition 6.1,

Theorem 8.4].

We now seek further applications of these multiplication formulas.

We will show below that the formulas provide enough information for

the regular representation of the integral q-Schur superalgebra SR(m|n, r).
We then use such a representation to determine the semisimplicity of q-

Schur superalgebras and to construct infinitesimal and little ones without

involving the quantum supergroup or quantum coordinate superalgebra.

We return to the general setting for SR(m|n, r) defined relative to a

commutative ring R and an invertible parameter υ ∈R or q = υ2. Base

change via Z →R, υ 7→ υ, we may turn the multiplication formulas in

S(m|n, r) into similar formulas in SR(m|n, r). In fact, these formulas can be

interpreted as the matrix representation of certain generators for SR(m|n, r)
relative to the basis {[A]}A∈M(m|n,r).

Let

M(m|n)± = {A= (ai,j) ∈M(m|n) | ai,i = 0, 1 6 i6m+ n}.

For A ∈M(m|n)± and j = (j1, j2, . . . , jm+n) ∈ Zm+n, define

A(j, r) =


∑

λ∈Λ(m|n,r−|A|)

(−1)A+λυλ∗j[A+ λ], if |A|6 r;

0, otherwise,

(4.4.1)

where λ ∗ j =
∑m+n

i=1 (−1)̂iλiji is the super (or signed) “dot product”, A+

λ=A+ diag(λ) and M =
∑

m+n>i>m>k>1
m<j<l6m+n

mi,jmk,l for a matrix M . We also

let 1λ = [diag(λ)] for all λ ∈ Λ(m|n, r), the identity map on [xy]λHR. Then

1λ[A] = δλ,ro(A)[A]. For the zero matrix O, ei ∈ Λ(m|n, 1) and p> 1, set

ki =O(ei, r), e
(p)
h = (pEh,h+1)(0, r), f

(p)
h = (pEh+1,h)(0, r).

Note that ki =
∑

λ∈Λ(m|n,r) υ
(−1)̂iλi1λ and e2

m = 0 = f2
m.
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Let S−R , S+
R be the subsuperalgebra of SR(m|n, r) generated respectively

by f
(p)
h , e

(p)
h for all 1 6 h <m+ n, p> 1, and S0

R the subsuperalgebra

spanned by all 1λ.

The first assertion of the following is [12, Corollary 8.5].

Theorem 4.5. The q-Schur superalgebra SR = SR(m|n, r) is generated

by ki, 1λ, e
(p)
h , f

(p)
h for all 1 6 h, i6m+ n, h 6=m+ n, λ ∈ Λ(m|n, r), 1 6

p6 r, and SR = S+
RS0

RS
−
R . These generators have the following matrix

representations relative to the basis {[A]}A∈M(m|n,r):

(0) ki[A] = υ(−1)̂iro(A)i [A], 1λ[A] = δλ,ro(A)[A];

(1) e
(p)
h [A] =

∑
ν∈Λ(m|n,p)
ν6rowh+1(A)

υ
f+
h (ν,A)

h

m+n∏
k=1

[[
ah,k + νk

νk

]]
υ2
h

[A+
∑
l

νl(Eh,l −

Eh+1,l)],

where h 6=m, f+
h (ν, A) =

∑
j>t ah,jνt −

∑
j>t ah+1,jνt +

∑
t<t′ νtνt′

and ν 6 ν ′ means that νi 6 ν ′i for all i;

(2) f
(p)
h [A] =

∑
ν∈Λ(m|n,p)
ν6rowh(A)

υ
f−h (ν,A)

h+1

m+n∏
k=1

[[
ah+1,k + νk

νk

]]
υ2
h+1

[A−
∑
l

νl(Eh,l −

Eh+1,l)],

where h 6=m and f−h (ν, A) =
∑

j6t ah+1,jνt −
∑

j<t ah,jνt +∑
t<t′ νtνt′;

(3) em[A] =
∑
k

am+1,k>1

(−1)
∑
i>m,j<k ai,jυ

f+
m,k(A)
m Jam,k + 1Kυ2

m
[A+

m,k],

where f+
m,k(A) =

∑
j>k am,j +

∑
j>k am+1,j;

(4) fm[A] =
∑
k

am,k>1

(−1)
∑
i>m,j<k ai,jυ

f−m,k(A)

m+1 Jam+1,k + 1Kυ2
m+1

[A−m,k],

where f−m,k(A) =
∑

j6k am+1,j +
∑

j<k am,j.

Proof. The first assertion follows from [12, Corollary 8.5] (cf. [12,

Theorem 6.3]). Now the relations in (0) are clear. Since e
(p)
h [A] =

e
(p)
h 1ro(A)[A], f

(p)
h [A] = f

(p)
h 1ro(A)[A], and e

(p)
h 1ro(A) = (−1)D

+
h,p [D+

h,p],

f
(p)
h 1ro(A) = (−1)D

−
h,p [D−h,p], where the matrices D±h,p ∈M(m|n, r) are

defined by the conditions that co(D±h,p) = ro(A) and D+
h,p − pEh,h+1,
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D−h,p − pEh+1,h are diagonal, (1) and (2) follow from [12, Proposition 4.4]2

and [12, Lemma 5.1(1)] which tells D±h,p = 0. The remaining (3) and (4)

follow from the h=m case of Corollary 4.4; see [12, Proposition 4.5].

Note that we have in SF (m|n, r)

ehfk − (−1)ĥk̂fkeh = δh,k
khk

−1
h+1 − k−1

h kh+1

υh − υ−1
h

.(4.5.1)

§5. Semisimple q-Schur superalgebras

The most fabulous application of the multiplication formulas is the

realizations of quantum gln [1] and quantum super glm|n [12]. We now

use these formulas to construct certain modules from which we obtain a

semisimplicity criterion of q-Schur superalgebras. From now on, let F be a

field of characteristic 6= 2 and assume that υ ∈ F× and q = υ2 6= 1. Since

every simple SF (m|n, r)-supermodule is also a simple SF (m|n, r)-module

(see e.g., [15, Proposition 4.1]), we will drop the prefix “super” in the sequel

for simplicity.

We first determine the semisimplicity for SF (1|1, r) (see [25] for the q = 1

case).

Lemma 5.1. Assume that q 6= 1 is a primitive l-th root of unity.

(1) If l - r then SF (1|1, r) is semisimple and has exact r nonisomorphic

irreducible modules which are all two dimensional.

(2) If l | r then SF (1|1, r) is not semisimple and has exact r + 1 noniso-

morphic irreducible modules which are all one dimensional.

Proof. Let SF = SF (1|1, r). We first observe that

M(1|1, r) = {Aa, A+
b , A

−
c , A

±
d | a ∈ [0, r], b, c ∈ [0, r − 1], d ∈ [0, r − 2]},

where Aa, A
+
b , A

−
c , A

±
d denote respectively the following matrices(

a 0
0 r − a

)
,

(
b 1
0 r − b− 1

)
,

(
c 0
1 r − c− 1

)
,

(
d 1
1 r − d− 2

)
.

Note that 1a := 1(a,r−a) = [Aa] and
∑r

a=0 1a is the identity element. So

SF =

r⊕
a=0

SF 1a and dim SF = 4r.

2D+
h,p, D

−
h,p are denoted there by Up, Lp.
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Since SF 1a is spanned by [A] with co(A) = (a, r − a), it follows that

SF 10 = span{10, [A
+
0 ]}, SF 1r = span{1r, [A−r−1]},

SF 1a = span{1a, [A+
a ], [A−a−1], [A±a−1]}, ∀a ∈ [1, r − 1].

By Theorem 4.5(3) and (4), we have

e1[A+
0 ] = 0, f1[A+

0 ] = υ−(r−1)JrKq10, e110 = [A+
0 ], f110 = 0,

f1[A−r−1] = 0, e1[A−r−1] = υr−1JrKq−11r, e11r = 0, f11r = [A−r−1].

If l - r, then υ−(r−1)JrKq = υr−1JrKq−1 6= 0 in F , and we see easily that L(1) :=

SF 10 is irreducible. Similarly, L(r) := SF 1r is irreducible if l - r.
If l | r, then L(1) is indecomposable and [A+

0 ] spans a submodule L(1) of

L(1). Let L(0) = L(1)/L(1). Similarly, [A−r−1] spans a submodule L(r − 1).

Let L(r) = L(r)/L(r − 1).

For a ∈ [1, r − 1], applying Theorem 4.5 again yields

(1) e1[A+
a ] = 0, f1[A+

a ] = υ−(r−1)Jr − aKq1a + [A±a−1],

(2) f1[A−a−1] = 0, e1[A−a−1] = υr−1JaKq−11a − [A±a−1],

(3) e1[A±a−1] = υr−1JaKq−1 [A+
a ], e11a = [A+

a ],

(4) f1[A±a−1] =−υ−(r−1)Jr − aKq[A−a−1], f11a = [A−a−1].

(5.1.1)

Let

L(a+ 1) = span{[A+
a ], f1[A+

a ]} and L(a) = span{[A−a−1], e1[A−a−1]}.

If l - r, we claim that SF 1a = L(a+ 1)⊕ L(a) is a direct sum of irreducible

submodules. Indeed, JaKq−1 and Jr − aKq cannot be both zero in this case. So

L(a+ 1) ∩ L(a) = 0, forcing SF 1a = L(a+ 1)⊕ L(a) as vector spaces. Since,

by (4.5.1),

(5.1.2)

e1f1[A+
a ] = (e1f1 + f1e1)[A+

a ] =
k1k

−1
2 − k−1

1 k2

υ − υ−1
[A+

a ] =
υr − υ−r

υ − υ−1
[A+

a ],

and (υr − υ−r)/(υ − υ−1) 6= 0, every nonzero element in L(a+ 1) generates

L(a+ 1). Hence, L(a+ 1) is an irreducible submodule. Likewise, L(a) is a

submodule. This proves that SF 1a is semisimple for all a ∈ [1, r − 1]. Hence,

SF is semisimple.

Assume now l | r. Then, by (5.1.2), e1(f1[A+
a ]) = 0. On the other hand,

f2
1 = 0 implies f1(f1[A+

a ]) = 0. Thus, f1[A+
a ] spans a submodule L(a) of
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L(a+ 1). Similarly, e1[A−a−1] spans a submodule L(a)′(∼= L(a)) of L(a).

Moreover, (cf. [25, Theorem 1])

L(a+ 1)∼= L(a+ 1)/L(a), L(a− 1)∼= L(a)/L(a)′.

Hence, L(a), 0 6 a6 r, form a complete set of all irreducible SF -modules.

Remark 5.2. The classification of irreducible modules for Sk(1|1, r) in

the semisimple case is consistent with a classification given in [16, Theorem

7.5].

Lemma 5.3. With the same assumption on l as in Lemma 5.1, the

superalgebras SF (2|1, r) and SF (1|2, r) are not semisimple for all r > l.

Proof. By Lemma 2.1, it suffices to consider SF = SF (2|1, r). Let e=

1(r,0,0). Then, for P = SF e, EndSF (P )∼= F and so P is an indecomposable

SF -module. We now show the existence of a proper submodule of P if r > l.

Observe that P is spanned by all [A] with co(A) = (r, 0, 0). Such A will be

written as Aa,b,c where (a, b, c)t is the first column of A. We have two cases

to consider.

Case 1. If r = al + b with 0 6 b6 l − 2 (i.e., l - r + 1), then b+ 1< l and

f
(b+1)
1 e= [Aal−1,b+1,0] ∈ P . We now claim that [Aal−1,b+1,0] is a maximal

vector in the sense that e
(p)
h [Aal−1,b+1,0] = 0 for all h= 1, 2 and p> 1. This

is clear if h= 2 since all ah+1,k = a3,k = 0. Also, by Theorem 4.5(1), we have

e
(p)
1 [Aal−1,b+1,0] = 0 for p > b+ 1 and, for p6 b+ 1< l,

e
(p)
1 [Aal−1,b+1,0] =

ep−1
1

[p]!υ
e1[Aal−1,b+1,0] =

υal−1JalKq−1

[p]!υ
ep−1

1 [Aal,b,0] = 0.

By the claim, we see that P ′ := SF [Aal−1,b+1,0] = S−F [Aal−1,b+1,0] is a proper

submodule of P since e 6∈ P ′.
Case 2. If r = al − 1 (and so a> 2), then by Theorem 4.5,

f2(f
(l)
1 e) = f2[Ar−l,l,0] = [Ar−l,l−1,1] ∈ P. Now, since r − l + 1 = (a− 1)l, we

have e1[Ar−l,l−1,1] = υr−lJr − l + 1Kq−1 [Ar−l+1,l−2,1] = 0 and e2[Ar−l,l−1,1] =

υl−1JlKq−1 [Ar−l,l,0] = 0. Hence, e
(p)
h [Ar−l,l−1,1] = 0 for all h= 1, 2 and p < l.

Similarly, by Theorem 4.5(1), e
(p)
h [Ar−l,l−1,1] = 0 for h= 1, 2 and p> l. This

proves that SF [Ar−l,l−1,1] = S−F [Ar−l,l−1,1] is a proper submodule of P .

Combining the two cases, we conclude that SF is not semisimple whenever

r > l.
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The following result is the quantum analogue of a result of Marko and

Zubkov [26], which is stated in the abstract.

Theorem 5.4. Let F be a field containing elements q 6= 0, 1. Then the

q-Schur superalgebra SF (m|n, r) with m, n> 1 is semisimple if and only if

one of the following holds:

(1) q is not a root of unity;

(2) q is a primitive lth root of unity and r < l;

(3) m= n= 1 and q is an lth root of unity with l - r.

Proof. The first two conditions imply that HF is semisimple and so is

SF . The semisimplicity under (3) follows from Lemma 5.1. We now show

that, if all three conditions fail, then SF is not semisimple. By Lemmas 2.1

and 5.1, it suffices to look at the case for m> 2 and n> 1 and l 6 r.

Consider the subset

Λ(m|n, r)′ = {λ ∈ Λ(m|n, r) | λ(0) = (λ1, λ2, 0, . . . , 0), λ(1)

= (λm+1, 0, . . . , 0)}

and let f =
∑

λ∈Λ(m|n,r)′ 1λ and e= 1(r,0,...,0). Then ef = e= fe and it

is clear that there is an algebra isomorphism SF (2|1, r)∼= fSF (m|n, r)f .

By identifying the two algebras under this isomorphism, we see

that there is an fSF (m|n, r)f -module isomorphism SF (2|1, r)1(r,0,0)
∼=

fSF (m|n, r)e. This fSF (m|n, r)f -module is indecomposable, but not irre-

ducible, by Lemma 5.3. Since SF (m|n, r)e is indecomposable and its

image fSF (m|n, r)e under the “Schur functor” is indecomposable, but not

irreducible, we conclude that SF (m|n, r)e is not irreducible (see [22, (6.2g)]).

Hence, SF (m|n, r) is not semisimple.

Remark 5.5. Semisimple q-Schur algebras have been classified by

K. Erdmann and D. Nakano [18, Section 1.3, Theorem (A)]. By Corol-

lary 4.2, we may also use this new approach to get their result; see

appendix A.

§6. Infinitesimal and little q-Schur superalgebras

We now give another application of the multiplication formulas. We first

construct certain subsuperalgebras of the q-Schur superalgebra SR(m|n, r)
over the commutative ring R in which q = υ2 6= 1 is a primitive l-th root of

unity. (So l > 2.)
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Let sR(m|n, r) be the R-submodule spanned by all [A] with A ∈
M(m|n, r)l, where

M(m|n, r)l = {(ai,j) ∈M(m|n, r) | ai,j < l ∀i 6= j}.

We have the following super analogue of the infinitesimal q-Schur algebras

(cf. [3]).

Theorem 6.1. The R-submodule sR(m|n, r) is a subsuperalgebra gen-

erated by eh, fh, 1λ for all 1 6 h <m+ n, λ ∈ Λ(m|n, r).

Proof. Let s′R(m|n, r) be the subalgebra generated by [aEh,h+1 +D]

and [bEh+1,h +D′], where D, D′ are diagonal matrices with aEh,h+1 +

D, bEh+1,h +D′ ∈M(m|n, r)l and 0 6 a, b < l. Observe from the multi-

plication formulas in Theorem 4.5 that if A ∈M(m|n, r)l then e
(a)
h [A] =

[aEh,h+1 +D][A] and f
(b)
h [A] = [bEh+1,h +D′][A], for some D, D′, are linear

combinations of [B] with B ∈M(m|n, r)l. This implies that s′R(m|n, r)⊆
sR(m|n, r). Now, by the triangular relation [12, Theorem 7.4]:

(62)∏
i6h<j

[aj,iEh+1,h +Di,h,j ]

(61)∏
i6h<j

[ai,jEh,h+1 +Di,h,j ]

= (−1)A[A] + lower terms,(6.1.1)

an inductive argument on the Bruhat order on M(m|n, r) shows that

every [A] with A ∈M(m|n, r)l belongs to s′R(m|n, r). Hence, sR(m|n, r) =

s′R(m|n, r) is a subalgebra and, hence, a subsuperalgebra. From the argu-

ment above, we see easily that eh, fh, 1λ can be generators.

Remarks 6.2. By [14, Corollary 8.4], sR(m|n, r) is isomorphic to the

infinitesimal q-Schur superalgebra defined in [3, Section 3] by using quantum

coordinate superalgebra.

We now construct a subsuperalgebra uR(m|n, r). Let Zl := Z/lZ and let

¯: Z→ Zl be the quotient map. Extend this map to M(m|n, r), Λ(m|n, r)
by baring on the entries. Thus, we may identify the image M(m|n, r) with

the following set:

M(m|n, r) = {A± + diag(∂A) |A ∈M(m|n, r)l}=M(m|n, r)l,

where A± is obtained by replacing the diagonal of A with 0’s and ∂A ∈ Zm+n

is the diagonal of A (i.e., A=A± + diag(∂A)). For A=A± + diag(∂A) ∈
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M(m|n, r), define

ξA =
∑

λ∈Λ(m|n,r−|A±|)
λ=∂A

[A± + diag(λ)] =
∑

λ∈Λ(m|n,r−|A±|)
λ=∂A

ξA±+diag(λ),

and let 1λ = ξdiag(λ). Note that every ξA is a homogeneous element with

respect the super structure on SR(m|n, r).
We now have the super analogue of the little q-Schur algebra introduced

in [10].

Corollary 6.3. The subsuperspace uR(m|n, r) of sR(m|n, r) spanned

by ξA for all A ∈M(m|n, r) is a subsuperalgebra with identity∑
x∈Λ(m|n,r) 1diag(x) and generated by eh, fh, 1λ for all 1 6 h <m+ n, λ ∈

Λ(m|n, r).

Proof. In this case, with a proof similar to that for Theorem 6.1,

we see that uR(m|n, r) is the subalgebra generated by ξaEh,h+1+D and

ξbEh+1,h+D′ , where D, D′ are diagonal matrices with aEh,h+1 +D, bEh+1,h +

D′ ∈M(m|n, r). Note that by taking the sum of the triangular relations

(6.1.1) for every A± + diag(λ) with λ= ∂A, we obtain the required triangu-

lar relation for ξA’s (cf. the proof of [12, Theorem 8.1]). The last assertion

is clear as every ξaEh,h+1+D or ξbEh+1,h+D′ has the form e
(a)
h 1̄λ or f

(b)
h 1̄λ.

We end the paper with the following semisimplicity criteria for the

infinitesimal/little q-Schur superalgebras; compare the nonsuper case [11,

Section 7] and [21].

Theorem 6.4. The superalgebra sF (m|n, r) or uF (m|n, r) with m, n> 1

is semisimple if and only if one of the following holds:

(1) r < l;

(2) m= n= 1, l - r.

Proof. We first look at the “infinitesimal” case. We observe that, if

r < l or m= n= 1, then sF (m|n, r) = SF (m|n, r). The “if” part is clear.

Conversely, suppose sF (m|n, r) is semisimple. Since sF (1|1, r) = SF (1|1, r),
its semisimplicity forces l - r. Assume m> 2, n> 1 and l 6 r. By the

proof of Lemma 5.3, we see that sF (2|1, r)e (e= 1(r,0,0)) is indecom-

posable and contains the proper submodule sF (2|1, r)[Aal,b,0] if l - r + 1,

or sF (2|1, r)[Ar−l,l−1,1] if l | r + 1. Hence, we can use the Schur functor

argument to conclude sF (m|n, r) is not semisimple unless r < l.
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We now look at the “little” case. If r < l, then uF (m|n, r) = SF (m|n, r) is

semisimple. If m= n= 1 and l - r, then the simple module L(a) constructed

in the proof of Lemma 5.1 remains irreducible when restricted to uF (m|n, r).
This is seen from the last assertion of Corollary 6.3. Thus, sF (m|n, r) as an

uF (m|n, r)-module is semisimple. As a uF (m|n, r)-submodule of sF (m|n, r),
uF (m|n, r) is semisimple. Conversely, if conditions (1) and (2) both fail.

Then r > l. If one of the m and n is great than 1, then uF (m|n, r) is not

semisimple. To see this, it is enough to show that M = sF (2|1, r)e as an

uF (2|1, r)-module is indecomposable. Indeed, suppose M =M1 ⊕M2 where

Mi are nonzero uF (2|1, r)-submodules. Then, for any λ ∈ Λ(m|n, r), 1λM1

and 1λM2 cannot be both nonzero since dim 1λM = 1. This shows that Mi

is a direct sum of some 1λM . Hence, Mi is an sF (2|1, r)-module, contrary

to the fact that M is an indecomposable sF (2|1, r)-module. If m= n= 1,

then l | r. In this case, uF (1|1, r) is clearly non-semsimple as uF (1|1, r)10 is

indecomposable, but not irreducible.

Acknowledgments. We thank the referee for several helpful comments.

Appendix A. A Theorem of Erdmann–Nakano

Theorem A.1. [18, Section 1.3, Theorem (A)] Let F be a field of char-

acteristic p> 0 containing elements q 6= 0, 1. Then the q-Schur algebra

SF (m, r) is semisimple if and only if one of the following holds:

(1) q is not a root of unity;

(2) q is a primitive lth root of unity and r < l;

(3) m= 2, p= 0, l = 2 and r is odd;

(4) m= 2, p> 3, l = 2 and r is odd with r < 2p+ 1.

Proof. If q satisfies (1) or (2), then SF (m, r) is clearly semisimple.

Suppose now that q is a primitive lth root of unity and r > l > 1.

By Corollary 4.2, an argument similar to those given in the proofs of

Lemma 5.3 and Theorem 5.4 shows that both SF (m, r)1(r,0,...,0), m> 3, and

SF (2, r)1(r,0), l - r + 1, are indecomposable but not irreducible. In particular,

both SF (2, l) and SF (2, l + 1) are not semisimple if l > 3. Since tensoring an

SF (2, r)-module with the determinant representation gives an SF (2, r + 2)-

module, we see that SF (2, r) is not semisimple for all r > l > 3. Hence, a

semisimple SF (m, r) forces m= 2, l = 2 and 2|r + 1. It remains to determine

the semisimplicity of SF (2, r) when r > l = 2 and r odd (and so 2|r + 1).

We claim that, for r > l = 2 with r odd, SF (2, r) is semisimple if and
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only if either p= 0 or p> 3 but r < 2p+ 1. Indeed, SF (2, r) is semisimple

if and only if all q-Weyl modules ∆(λ), λ ∈ Λ+(2, r), are irreducible. For

λ= (λ1, λ2) ∈ Λ+(2, r), if xλ ∈∆(λ) is a highest weight vector, then ∆(λ)

has a basis xλ, f1xλ, f
(2)
1 xλ, . . . , f

(λ1−λ2)
1 xλ and, for 1 6 a6 λ1 − λ2, we

have

e
(a)
1 f

(a)
1 xλ =

a∑
s=0

f
(a−s)
1

[
λ1 − λ2; 2s− 2a

s

]
υ

e
(a−s)
1 xλ =

[
λ1 − λ2

a

]
υ

xλ,

where υ =
√
q. Thus, the irreducibility of ∆(λ) is equivalent to

∏
06a6λ1−λ2

[
λ1 − λ2

a

]
υ

6= 0.

Since r = λ1 + λ2 is odd and l = 2, we see that λ1 − λ2 is also odd and[
λ1 − λ2

a

]
υ

=

(
λ1−λ2−1

2

a1

)[
1

a0

]
υ

,

where a= 2a1 + a0 with a0 = 0, 1. Obviously,
[

1
a0

]
υ

= 1. Thus, if p= 0 or

p> 3 but r < 2p+ 1 then
(
λ1−λ2−1

2
a1

)
6= 0 for all (λ1, λ2) ∈ Λ+(2, r) and 1 6

a6 λ1 − λ2. Hence, SF (2, r) is semisimple in this case. Conversely, if r >
2p+ 1, choose λ so that λ1 − λ2 = 2p+ 1 and a= 3. Then[

λ1 − λ2

3

]
υ

=

(
λ1−λ2−1

2

1

)
=
(p

1

)
= 0.

Hence, ∆(λ) is not simple in this case and so SF (2, r) is not semisimple.
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