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In this paper, we describe three distinct monoids over domains, each with a commutative

analog, which define bag domain monoids. Our results were inspired by work by

Varacca (Varacca 2003), and they lead to a constructive approach to his Hoare indexed

valuations over a continuous poset P . We use our constructive approach to describe an

analog of the probabilistic power domain, and the laws that characterise it, that forms a

Scott-closed subset of Varacca’s construct. We call these the Hoare random variables over P .

1. Introduction

Adding probabilistic choice as an operator has long been a goal of those working in

process algebras. Despite numerous attempts (Morgan et al. (1994) and Lowe (1993),

to cite only two) it has been difficult to identify an approach to modelling probabilistic

choice that melds well with the established operators in process algebra – nondeterministic

choice has proved to be particularly difficult, as has the hiding operator of CSP (Roscoe

1997), the theory of communicating sequential processes first proposed by C. A. R. Hoare.

The approach to adding probabilistic choice to CSP taken in Morgan et al. (1994) has

been one of the most successful to date, but it requires sacrificing the idempotence of

nondeterministic choice. Some progress towards a general denotational model supporting

both forms of choice and retaining the idempotence of nondeterminism (an approach

hinted at in Morgan et al. (1994)) was presented in Mislove (2000), with a more elaborate

mathematical presentation in Tix (1999); a limited operational justification of the model

was presented in Mislove et al. (2003). In this approach, one first forms the probabilistic

power domain over a domain, then applies one of the standard nondeterministic power

domains, finally extracting the order-convex and geometrically convex subsets to achieve

the model. Even though both forms of choice exist in the model and all the expected

laws for each are retained, the model itself has proved less than persuasive in practice.

In particular, the resulting model imposes a relation between probabilistic choice and

nondeterministic choice; for example, in the case of the upper power domain, the

nondeterministic choice of two processes is below any probabilistic choice of these

processes. So even though the constructions are monadic, they introduce new inequations

not originally specified in the construction.

† The author gratefully acknowledges the support of the US Office of Naval Research and the US National

Science Foundation during the preparation of this work.
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Another approach to the interaction of nondeterminism and probabilistic choice was

taken up by Varacca (Varacca 2003), who sought a model by weakening the laws for

probabilistic choice. The motivation was a result of Plotkin and Varacca that showed

there is no distributive law between the probabilistic power domain monad and any

of the standard nondeterministic choice power domain monads; this result implies that

the composition of the associated monads would not yield a monad. Varacca called

his construction ‘indexed valuations’ because they distinguish simple valuations with the

same support according to the number of times a given point mass is used and the

individual assignments of mass to each point. Varacca was able to show that the indexed

valuation monad analogous to each power domain monad enjoys a distributive law over

that power domain monad. This means the composition forms a monad, resulting in a

model that supports both his version of probabilistic choice and the analogous version of

nondeterministic choice. However, his construction proceeds by writing down an abstract

basis for each of his constructs in terms of a basis for the underlying domain, and then

imposing identifications between the resulting basis elements. This makes it difficult to

unravel the constructions and to penetrate the internal structure of the model. On the

other hand, Varacca does establish equational characterisations for his constructs.

In this paper we present a construction of one of Varacca’s models from first principles,

showing how it can be built up incrementally. This allows a better understanding of the

structure of the model. One of the results we obtain using this approach is an analog of

the probabilistic power domain that arises as a Scott-closed subset of his construction.

We call this construct the Hoare random variables over the continuous poset P , and we

provide a characterisation of the construct in terms of the inequations they satisfy.

Our approach to Varacca’s indexed valuations is via monoids, and especially commut-

ative monoids over posets. It is well known that the free commutative monoid over a set

can be obtained as a quotient of the free semigroup of words over the set by the family

of symmetric groups S(n), where S(n) acts on the set of n-letter words by permuting

the letters. What had not been realised before is that this same construction can be

applied to ordered sets, and to domains. Indeed, we show that the free commutative poset

(continuous poset, dcpo, domain) monoid over a poset (continuous poset, dcpo, domain)

is obtained in the same way. We also show that, in the continuous case, the way-below

relation on the commutative monoid is the quotient of the way-below on the monoid. We

also discover that, in analogy to the three free ordered semilattices over a poset, there are

three ordered commutative monoids over a poset, and each of these constructs extends

to continuous posets, dcpos and domains. We also investigate the closure of various

cartesian closed categories of domains under the formation of n-bags, the family of bags

having n members. Ultimately, though, our results for commutative monoids are aimed

at providing an alternative approach to constructing Varacca’s indexed valuations, but as

we show in the case we focus on – that of the Hoare indexed valuations – there is a novel,

added twist from domain theory that enters the picture.

The rest of the paper is organised as follows. In the next section we recall some basic

facts about domains. In Section 3, we present new results on ordered monoids, including

commutative ordered monoids over various categories of dcpos and domains. In Section 4,

we outline Varacca’s construction of indexed valuations, and recall his main results. We
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present the main results of the paper in Section 5. We use our results for free commutative

monoids over domains, extended to include the action of the non-negative reals, to derive

an alternative presentation of Varacca’s Hoare indexed valuations construction. Having

recaptured his construction, we then single out the Hoare random variables over a domain

P , which are an analog of the probabilistic power domain over P , and we characterise

them by the inequations they satisfy. We conclude the paper with some ideas for further

work.

2. Preliminaries

In this section we recall some basic definitions that we will find useful. A standard

reference for this material is Keimel et al. (2003) or Abramsky and Jung (1994). To begin,

a partially ordered set, or poset for short, is a set equipped with a reflexive, antisymmetric

and transitive relation. We use Pos to denote the category of posets and monotone maps.

A subset A ⊆ P of a partially ordered set is directed if each finite subset of A has an

upper bound in A. A poset in which every directed subset has a least upper bound is

called directed complete or a dcpo for short. A cpo is a dcpo that also has a least element.

If P is a poset and x, y ∈ P , we write x � y, and say x is way-below y if for every

directed subset A ⊆ P , if �A exists and y � �A, then x � a for some a ∈ A. P is a

continuous poset if ↓↓y = {x ∈ P | x � y} is directed and y = �↓↓y holds for all y ∈ P . A

continuous dcpo is called a domain.

An abstract basis is a pair (P ,�) where � is a transitive relation on P satisfying the

interpolation property:

F � x & F ⊆ P finite ⇒ (∃y ∈ P ) F � y � x.

We write F � x to mean z � x ∀z ∈ F . If (P ,�) is an abstract basis, then I ⊆ P is a

round ideal if I is a directed �-lower set, and x ∈ I ⇒ (∃y ∈ I) x � y. The round-ideal

completion of an abstract basis (P ,�) is the family of round ideals, under inclusion. This

forms a domain.

If f : P → Q is a monotone map between posets, then f is Scott continuous if for all

A ⊆ P directed, for which �A exists, f(�A) = �f(A). (Note that the monotonicity of f

implies that f(A) is directed if A is.) We use DCPO to denote the category of dcpos and

Scott-continuous maps, and CPO to denote the subcategory of cpos and strict maps: ones

that preserve least elements. We also use ConPos to denote the category of continuous

posets and Scott-continuous maps, and DOM to denote the full subcategory of domains.

One of the fundamental results for dcpos is that the family of Scott-continuous maps

between two dcpos is another dcpo in the pointwise order. Since it is easy to show that

the finite product of a family of dcpos or continuous posets is another such, and the

one-point poset is a terminal object in each of the relevant categories, a central question

is which categories of dcpos or domains are cartesian closed. This is true for DCPO, and

there are several categories of domains and Scott-continuous maps between them that are

ccc’s. These include:

— RB domains, which are retracts of bifinite domains, and themselves limits of families

of finite posets under embedding-projection pairs of maps. Bifinite domains can also
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be described as those domains P for which the identity 1P is the directed supremum

of a family {fk}k∈K ⊆ DCPO[P , P ] satisfying the condition that fk(P ) is finite and

fk ◦ fk = fk , while the identity map of an RB domain is the directed supremum of a

family {fk}k∈K ⊆ DCPO[P , P ] satisfying the condition that fk(P ) is finite.

— FS domains, which are those domains D satisfying the property that the identity map

is the directed supremum of selfmaps f : D → D, with each finitely separated from the

identity: that is, for each selfmap f there is a finite subset Mf ⊆ D with the property

that, for each x ∈ D, there is some m ∈ Mf with f(x) � m � x.

The category FS clearly contains RB and is known to be a maximal ccc of domains.

Containing both of these is the category Coh of coherent domains, whose objects are

compact in the so-called Lawson topology. This category is not cartesian closed, but it

plays a central role in the theory, especially for the probabilistic power domain.

We also recall some facts about categories; see Mac Lane (1969) for more details. A

monad or triple on a category A is a 3-tuple 〈T , µ, η〉 where T : A → A is an endofunctor,

and µ : T 2 .−→ T and η : 1A
.−→ T are natural transformations satisfying the laws

µ ◦ Tµ = µ ◦ µT and µ ◦ ηT = T = µ ◦ Tη.

Equivalently, if F : A → B is left adjoint to G : B → A with unit η : 1A
·−→ GF and counit

ε : FG
·−→ 1B, then 〈GF,GεF, η〉 forms a monad on A, and every monad arises in this

way.

If 〈T , µ, η〉 is a monad, then a T -algebra is a pair (a, h), where a ∈ A and h : Ta → a is

an A-morphism satisfying h ◦ ηa = 1a and h ◦ Th = h ◦ µa.
For example, each of the power domains PL, PU and PC defines monads on DCPO (cf.

Hennessy and Plotkin (1979)), whose algebras are ordered semilattices; another example

is the probabilistic power domain, �, whose algebras satisfy equations that characterise the

probability measures over P (cf. Jones (1989)).

One of the principle impetuses for Varacca’s work was to find a model supporting

both nondeterministic choice and probabilistic choice so that the laws characterising

each of these constructs hold. To accomplish this, one needs to combine the appropriate

nondeterminism monad with the probabilistic power domain monad so that the laws of

each constructor are preserved in the resulting model. This can be done using a distributive

law, which is a natural transformation d : ST
.−→ TS between monads S and T on A

satisfying several identities – cf. Beck (1969). The significance of distributive laws is the

following theorem due to Beck.

Theorem 2.1 (Beck 1969). Let (T , ηT , µT ) and (S, ηS , µS ) be monads on the category A.

Then there is a one-to-one correspondence between:

(i) Distributive laws d : ST
.−→ TS .

(ii) Multiplications µ : TSTS
.−→ TS , satisfying:

— (TS, ηT ηS , µ) is a monad;

— the natural transformations ηTS : S
.−→ TS and TηS : T

.−→ TS are monad

morphisms;
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— the following middle unit law holds

TS
TηSηT S ��

IdTS

���������������� TSTS

µ

��
TS

(iii) Liftings T̃ of the monad T to AS , the category of S-algebras in A.

So, one way to know that the combination of the probabilistic power domain and one of

the power domains for nondeterminism provides a model satisfying all the required laws

would be to show there is a distributive law of one of these monads over the probabilistic

power domain monad. Unfortunately, it was shown by Plotkin and Varacca (Varacca

2003) that there is no distributive law of � over PX , or of PX over � for any of the

nondeterminism monads PX . However, Varacca discovered that weakening one of the

laws for probabilistic choice would allow him to find such a distributive law for the

resulting constructs and the nondeterminism monads. We return to this point near the

end of Section 4.

3. Ordered monoids

In this section we present some results about monoids over posets, dcpos and domains.

We begin with the following definition.

Definition 3.1. Let P� =̂
·
∪n�0P

n denote the union of the finite powers of the poset P .

For p ∈ P�, we let |p| = n iff p ∈ Pn, and for i � |p|, we let pi denote the ith component

of p. We also use ε to denote the empty tuple, the sole member of P 0.

We define an order on P� by p �C q iff |p| = |q| and pi � qi for all i � |p|. This defines

an ordered monoid over P where

p ∗ q = r with |r| = |p| + |q| and rk =

{
pk if k � |p|,
qk−p if k > |p|.

Proposition 3.1. The mapping P �→ P� is the object level of an endofunctor on each of

the categories POS, ConPos, DCPO and DOM, and in each case it is left adjoint to the

forgetful functor from the category of ordered monoid posets (dcpos, continuous posets,

domains) to the underlying category.

Proof. It is well known that each of the categories under consideration is closed

under finite products, and from this it is easy to show that P� is in POS (respectively,

ConPos, DCPO, Dom) if P is. It is also routine to show that ∗ is Scott continuous, and

straightforward to show the initiality of P�.

We call �C the Convex Order on P�. Actually, �C is just one of three ordered monoids

one can define over posets and dcpos. Note that in the following, we often identify a

natural number n ∈ � with the set {0, . . . , n− 1}; the following definition gives the other

two orders.
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Definition 3.2. Let P be a poset, and let P� =̂
⋃
n�0 P

n. We define the partial orders:

Lower Order:

p �L q iff

{
p = ε, the empty word, or

(∃ monotone f : k ⊆ |q| � |p|) pf(j) � qj (∀j ∈ k).

where f : k ⊆ |q| � |p| denotes a surjective map from a subset k ⊆ |q| onto |p|.

Upper Order:

p �U q iff

{
q = ε, the empty word, or

(∃ monotone g : k ⊆ |p| � |q|) pi � qg(i) (∀i ∈ k).

Proposition 3.2.

(i) The Lower Order is a partial order on P�. Concatenation is a Scott-continuous monoid

operation with respect to �L satisfying p, q �L p ∗ q. Moreover, if P is continuous, so

is (P�,�L).

(ii) The Upper Order is a partial order on P�. Concatenation is a Scott-continuous

monoid operation with �U satisfying p ∗ q �U p, q. If P is a dcpo or domain, so is P�.

Proof. It is routine to show that both the Lower Order and Upper Order are partial

orders, that p ∗ q �U p, q �L p ∗ q and that ∗ : P� × P� → P� is monotone with respect

to both orders. We also note that, since the only monotone map f : k ⊆ m � m is the

identity, it follows that �L |Pn is the usual product order on Pn, and the same is true of

�U |Pn .
To show the Scott continuity of ∗ on (P�,�L), we first investigate how to compute

suprema of directed sets, when they exist. Let A ⊆ P� be �L-directed and suppose A has an

upper bound x ∈ P�. Clearly, a ∈ A implies |a| � |x|. So, m = max{n ∈ � | A ∩ Pn �= �}
exists, and we let A0 = A ∩ Pm and b ∈ A0. If a ∈ A, because A is directed, there is c ∈ A

with a, b �L c, so |a|, |b| � |c|, which implies |c| = m. It follows that A0 is directed and

cofinal in A. This implies �A = �A0 if either of these suprema exists. But since �L |Pm is

the usual product order, we know �A0 exists in Pm, so the same is true of �A.

Now, we know ∗ : P� × P� → P� is monotone with respect to �L, and we also know

∗ : Pm×Pn → Pm+n is Scott continuous by Proposition 3.1. Since we know �A = �A0 and

the latter is computed in Pm0 , these results imply ∗ : P� × P� → P� is �L-continuous.

Next we investigate � on (P�,�L). Suppose that p �L �A ∈ Pm. Then we know that

�A is (eventually) computed coordinatewise in Pm, so (�A0)j = �{aj | a ∈ A0} for j � m.

Since p �L �A0, there is some monotone f : k ⊆ m � |p| satisfying pf(i) � (�Ao)i for each

i � k. If we choose qi � pi for each i � n, then qf(i) � (�Ao)i for each i � k. Since A0 is

directed, we can find a(i) ∈ A0 with qf(i) � a(i)i for each i � k. Since k is finite and A0 is

directed, it follows that there is some a ∈ A0 with qf(i) � ai for all i � k, which implies

q �L a. This implies q �L p.

From the preceding paragraph we conclude that, if P is continuous, then ↓↓Pnp is cofinal

in ↓↓�L
p, so (P�,�L) is continuous.

The arguments for the Upper Order are similar to those for the Lower Order, and,

in particular, we have (P�,�U) is continuous if P is, and ↓↓Pnp is cofinal in ↓↓�U
p in this

https://doi.org/10.1017/S0960129506005159 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005159


Monoids over domains 261

case. The last point – that (P�,�U) is a dcpo if P is one – follows from the definition of

the order: indeed, the definition of the order implies that | | : P� → � is antitone, so if

A ⊆ P� is �U-directed, there is some n with A ∩ Pn cofinal in A. And, as with the Lower

Order, �U |Pn is the usual product order on Pn, from which the result follows.

Theorem 3.1. Each of the assignments P �→ (P�,�C ), P �→ (P�,�L) and P �→ (P�, �U)

defines the object level of an endofunctor on Pos whose image categories are ordered

monoids, and ordered monoids satisfying p, q �l p ∗ q, and ordered monoids satisfying

p ∗ q �U p, q, respectively. In fact, each gives rise to a left adjoint to the inclusion functor.

Moreover, ConPos is invariant under the lower order endofunctor, while each of

ConPos, DCPO and DOM is invariant under the upper order endofunctor. In each of

these cases, we have a left adjoint to the forgetful functor from the appropriate category

of ordered monoids and continuous ordered monoid morphisms.

Proof. Consider the case of the lower order, �L. Let (S,�S , ∗) be an ordered monoid

satisfying s, t �S s ∗ t for all s, t ∈ S , and suppose that g : P → S is monotone. Define

G : P� → S by G(ε) = 1S , and G(p) = g(p1)∗ · · · ∗g(p|p|) if n > 0. If p � q ∈ P�, then there

is some f : k ⊆ |q| � |p| with pf(j) � qj for every j ∈ k. Then g(pf(j)) �S g(qj) for each

j ∈ k, so G(p) = g(p1) ∗ · · · ∗ g(p|p|) �S g(qj1 ) ∗ · · · ∗ g(qjk ) �S g(q1) ∗ · · · ∗ g(q|q|) = G(q), and

thus G is monotone. It is obvious that G preserves the multiplication on P�, and that G

is unique.

Now suppose that g : P → S is Scott continuous and that S is an ordered monoid for

which ∗ : S × S → S is continuous. If A ⊆ P� is directed and �A exists, then there is

some n ∈ � for which A0 ∩ Pn is cofinal in A and �A = �A0. But then we can restrict G

to Pn, and the order �L restricted to Pn is simply the product order. Now gn : Pn → Sn

is continuous from the continuity of g, so (∗n−1 ◦ g) : Pn → S is a composition of

continuous maps, and hence also is continuous. So, G(�A) = G(�A0) = (∗n−1 ◦gn)(�A0) =

�((∗n−1 ◦ gn)(A0)) = �G(A0). Thus G is continuous.

Similar arguments apply in the other cases.

Remark 3.1. The names for each of these orders was inspired by the results from Hennessy

and Plotkin (1979) where the three power domain monads were first presented. As we

shall see in the next section, each of these ordered monoids has a commutative version,

which is closer still to the semilattices defined in Hennessy and Plotkin (1979).

In the case of the convex order, we also have a result about pointed domains.

Corollary 3.1. Let P� ⊥ denote the dcpo P� lifted (that is, with a least element added),

and define � to be the extension of �C on P� ⊥ so that ⊥� p for all p. Moreover, extend

∗ from P� to P� ⊥ by ⊥ ∗ p = p ∗ ⊥ = ⊥ Then (P� ⊥,�, ∗, ε) is the object level of the

left adjoint to the forgetful functor from the category of ordered monoids (respectively,

monoid cpos, monoid cpo domains) with least element a zero and strict maps.

Proof. Given Proposition 3.1, the result follows straightforwardly.
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Remark 3.2. An unpublished result of Gordon Plotkin’s states that the free cpo monoid

over a poset has a much more complicated structure; in particular, none of the cartesian

closed categories of continuous domains is closed under its formation.

3.1. Bag domains

A bag or multiset is a collection of objects in which the same object can appear more

than once. The term ‘bag’ stems from the analogy with shopping, where one can place

several copies of the same item in the bag; once objects are placed in the bag, the order

in which they were placed there is irrelevant. Bags are determined by the objects that are

in them, with only the number of copies of an object being important: two bags are equal

if they have the same number of copies of each object either contains. A bag domain is a

domain that also is a bag or multiset of objects from an underlying domain. The question

is how to order such an object so that it is again a domain. The key to this is to realise

bag domains as free commutative monoids,

The investigation of bag domains originated in the work of Vickers (Vickers 1992),

and bags have also been considered by Johnstone (Johnstone (1992; 1994). These works

were inspired by problems arising in database theory, and the goal of their work was

to capture the abstract categorical nature of the construction. Here we present results

along the same line, but we provide a more direct construction, since it allows us to

analyse the internal structure of the objects more closely. It also allows us to capture the

constructions of Varacca (Varacca 2003) more concretely and to understand better their

internal structure†.

Definition 3.3. Let P be a poset and n ∈ �, and let S(n) denote the permutation group

of n.

For φ ∈ S(n), define a mapping φ : Pn → Pn by φ(d)i = dφ−1(i). Then φ permutes the

components of d according to φ’s permutation of the indices 1 = 1, . . . , n.

Next, define a preorder �n on Pn by

d �n e iff (∃φ ∈ S(n)) φ(d) � e iff dφ−1(i) � ei (∀i = 1 . . . , n). (1)

Finally, we define the equivalence relation ≡ on Pn by

≡ = �n ∩ (�n)
−1. (2)

We also define �n = �n /≡ and note that (Pn/≡,�n) is a partial order. We use [d] to

denote the image of d ∈ Pn in Pn/≡.

Lemma 3.1. Let P be a poset, n ∈ �, and d, e ∈ Pn. Then the following are equivalent:

(i) [d] �n [e] in Pn/≡.

(ii) (∃φ ∈ S(n))(∀i = 1, . . . , n) di � eφ(i), for i = 1, . . . , n.

(iii) ↑{φ(d) | φ ∈ S(n)} ⊇ ↑{φ(e) | φ ∈ S(n)}.

† It was only as this paper was going to press that the author learned of Heckmann (1995), which considers

issues very close to those investigated in this section.
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Proof. For (i) implies (ii), we note that if φ ∈ S(n) satisfies dφ−1(i) � ei, then di � eφ(i)

for each i = 1, . . . , n, so (ii) holds. Next, (ii) implies φ−1(e) ∈ ↑ d, and then ψ(e) ∈ ↑{(φ(d) |
φ ∈ S(n)} for each ψ ∈ S(n) by composing permutations, from which (iii) follows. Finally,

it is clear that (iii) implies (i).

We also need a classic result due to M.-E. Rudin (Keimel et al. 2003, Lemma III-3.3)

Lemma 3.2 (Rudin). Let P be a poset and {↑Fi | i ∈ I} be a filter basis of non-empty,

finitely generated upper sets. Then there is a directed subset A ⊆ ∪iFi with A ∩ Fi �= �
for all i ∈ I .

Next, let P be a dcpo and let n > 0. We can apply Rudin’s Lemma to derive the

following proposition.

Proposition 3.3. Let P be a poset, and let n > 0.

— If A ⊆ Pn/≡ is directed, then there is a directed subset B ⊆
⋃

[a]∈A{φ(a) | φ ∈ S(n)} ⊆
Pn satisfying ⋂

b∈B
↑{φ(b) | φ ∈ S(n)} =

⋂
[a]∈A

↑{φ(a) | φ ∈ S(n)}, (3)

and if �B exists, then so does �A, in which case [�B] = �A.

— In particular, the mapping x �→ [x] : Pn → Pn/≡ is Scott continuous, and (Pn/≡,�n)

is a dcpo if P is.

Proof. We first show the claim about directed subsets of A ⊆ Pn/≡ and B ⊆ Pn.

Indeed, if A ⊆ Pn/≡ is directed, then Lemma 3.1 implies that {∪φ∈S (n) ↑φ(a) | [a] ∈ A} is

a filter basis of finitely generated upper sets, and so, by Lemma 3.2, there is a directed set

B ⊆
⋃

[a]∈A{φ(a) | φ ∈ S(n)} with B ∩ {φ(a) | φ ∈ S(n)} �= � for each [a] ∈ A.

Now, let x ∈
⋂
b∈B ↑{φ(b) | φ ∈ S(n)}. If [a] ∈ A, then B ∩ {φ(a) | φ ∈ S(n)} �= � means

there is some φ ∈ S(n) with φ(a) ∈ B, so φ(a) � x. Hence x ∈
⋂

[a]∈A ↑{φ(a) | [a] ∈ A}.
Conversely, if x ∈

⋂
[a]∈A ↑{φ(a) | φ ∈ S(n)}, then for b ∈ B, [b] ∈ A, so x ∈ ↑{φ(b) |

φ ∈ S(n)}. This shows Equation 3 holds.

We now show the claims about �B and �A. Suppose x = �B exists. If [a] ∈ A, then

B ∩ {φ(a) | φ ∈ S(n)} �= � means there is some φ ∈ S(n) with φ(a) ∈ B, so φ(a) � x by

Lemma 3.1. Hence [a] �n [x] for each [a] ∈ A, and thus [x] is an upper bound for A.

We also note that, since �B = x,⋂
b∈B

↑{φ(b) | φ ∈ S(n)} = ↑{φ(x) | φ ∈ S(n)}.

Indeed, the right-hand side is clearly contained in the left-hand side since b � x for all

b ∈ B. On the other hand, if y is in the left-hand side, then b � y for each b ∈ B. Now,

since S(n) is finite, there is some φ ∈ S(n) and some cofinal subset B′ ⊆ B with φ(b) � y

for each b ∈ B′. But then �B′ = �B, and thus �{φ(b) | b ∈ B′} = φ(x), from which we

conclude that φ(x) � y. Thus y is in the right-hand side, so the sets are equal.

Now, if y ∈ Pn satisfies [a] �n [y] for each [a] ∈ A, since B ⊆
⋃

[a]∈A{φ(a) | φ ∈ S(n)},
it follows that [b] �n [y] for each b ∈ B. Then y ∈

⋂
b∈B ↑{φ(b) | φ ∈ S(n)} = ↑{φ(x) |
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φ ∈ S(n)}, so [x] �n [y]. Therefore, [x] = �A in Pn/≡, which concludes the proof of the

claims about �B and �A.

Finally, for the second itemised claim, what we have just proved shows that directed

sets B ⊆ Pn satisfy [�B] = �b∈B[b], which means the quotient map is Scott continuous.

Moreover, the argument also shows that Pn/≡ is a dcpo if P is.

Proposition 3.4. Let P be a domain and let n ∈ �. Then

(i) (Pn/≡,�n) is a domain.

(ii) If P is RB or FS, then so is Pn/≡.

(iii) If P is coherent, then so is Pn/≡.

Proof.

— Pn/≡ is a domain. Proposition 3.3 shows that (Pn/≡,�n) is directed complete. To

characterise the way-below relation on Pn/≡, let x, y ∈ Pn with x � y. Then xi � yi
for each i = 1, . . . , n, and it follows that φ(x) � φ(y) for each φ ∈ S(n). If A ⊆ Pn/≡
is directed and [y] �n �A, then there is some φ ∈ S(n) with φ(y) � z, where [z] = �A.

Then Proposition 3.3 shows there is a directed set B ⊆ ∪[a]∈A ↑{φ(a) | φ ∈ S(n)} with

�B ≡ z. Hence, there is some ψ ∈ S(n) with ψ(y) � �B. Since ψ(x) � ψ(y), it follows

that there is some b ∈ B with ψ(x) � b, so [x] �n [b]. Hence [x] � [y] in Pn/≡ .

We have just shown that x � y in Pn implies that [x] � [y] in Pn/≡. Since Pn is a

domain, ↓↓y is directed with y = �↓↓y, so the same is true for ↓↓[y] ∈ Pn/≡. Thus Pn/≡
is a domain.

— Pn/≡ is RB if P is. Now suppose the P is in RB. Then, by Jung (1989, Theorem 4.1),

there is a directed family fk : P → P of Scott continuous maps with 1P = �kfk and

fk(P ) finite for each k ∈ K . Then the mappings (fk)
n : Pn → Pn also form such a

family, showing Pn is in RB.

Next, given k ∈ K, x ∈ Pn and φ ∈ S(n), we have φ(fnk (x)) = fnk (φ(x)) since fnk
is fk acting on each component of x. It follows that there is an induced map

[fnk ] : P
n/≡ → Pn/≡ satisfying [fnk ]([x]) = [fnk (x)], and this map is continuous since [ ]

is a quotient map. Finally, [fnk ](P
n/≡) is finite since fnk (P

n) is finite, and �k[f
n
k ] = 1Pn/≡

follows from �kf
n
k = 1Pn . Thus, Pn/≡ is RB if P is.

— Pn/≡ is FS if P is. The domain P is FS if there is a directed family of selfmaps

fk : P → P satisfying �kfk = 1P , and for each k ∈ K , there is some finite Mk ⊆ P

with fk(x) � mx � x for some mx ∈ Mk , for each x ∈ P . As in the case of RB, the

mappings [fnk ] are a directed family of continuous selfmaps of Pn/≡ whose supremum

is the identity, and the subset [Mn
k ] is finite and separates [fnk ] from the identity for

each k ∈ K. It follows that Pn/≡ are FS domains if P is.

— Pn/≡ is coherent if P is. Finally, we consider coherent domains. Recall that a domain

is coherent if the Lawson topology is compact, where the Lawson topology has for

a basis the family {U \ ↑F | F ⊆ P finite & U Scott open}. Now, if x ∈ Pn, we

have {φ(x) | φ ∈ S(n)} is finite, and thus if F ⊆ Pn/≡ is finite, we have [↑F]−1 =

∪[x]∈F ↑{φ(x) | φ ∈ S(n)} is finitely generated. It follows that [ ] : Pn → Pn/≡ is

Lawson continuous, so if P is coherent, then so are Pn and Pn/≡.
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3.2. Bag domain monoids

We now investigate commutative monoids over domains, which we call bag domain

monoids. This also requires us to consider how to relate bags of different cardinalities. As

we found for the case of ordered monoids, there are three possible ways to do this.

Definition 3.4. Let P be a poset and P� denote the disjoint sum of the Pn. We regard P�

as a poset in the convex order defined earlier. We also recall the rank function | | : P� → �
by |d| = n if and only if d ∈ Pn. We now define three ‘commutative’ pre-orders on P�.

Let d, e ∈ P�.

Commutative lower order. Define

d �CL e iff (∃f : k ⊆ |e| � |d|) df(i) � ei, i ∈ k.

We let ≡L = �CL ∩ �−1
CL and �CL = �CL /≡.

Commutative upper order. Define

d �CU e iff (∃f : k ⊆ |d| � |e|) di � ef(i), i ∈ k.

We let ≡U = �CU ∩ �−1
CU and �CU = �CU /≡.

Commutative convex order. Define

d �CC e iff |d| = |e| & (∃φ ∈ S(n)) dφ(i) � ei, i = 1, . . . , |d|.

We let ≡C = �CC ∩ �−1
CC and �CC = �CC /≡.

Remark 3.3.

— Note that in the above definition, the functions f : k ⊆ |e| � |d| are not required

to be monotone. This is a reflection of the commutativity of the operation of the

concatenation operation.

— We call these preorders and their associated partial orders commutative because they

define partial orders on P� relative to which concatenation is a commutative monoid

operation. These three orders are inspired by the work of Varacca (Varacca 2003), who

in turn was inspired by the results of Hennessy and Plotkin (Hennessy and Plotkin

1979).

Lemma 3.3. Let P be a poset. Then

≡L = ≡U = ≡C = {(p, q) | |p| = |q| & p ≡|p| q}.

Proof. If p �L q �L p, then |p| � |q| � |p|, so they are equal, and the hypothesised

surjections f : |q| � |p| and f′ : |q| � |p| are in fact bijections, and hence permutations.

Hence, pf(i) = qi for all i � |q|. A similar analysis applies to the other cases.

Notation. We use ≡ to denote the equivalence relations ≡L = ≡U = ≡C .

Remark 3.4. We recall that for a continuous poset P , a round ideal of P is a directed

lower set I ⊆ P satisfying x ∈ I ⇒ (∃y ∈ I) x � y. The round ideal completion of P is
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formed by taking the family RId(P ) = {I ⊆ P | I round ideal} in the containment order;

it is a standard result of domain theory that this family is a domain. This construction

also can be realised topologically as the sobrification of P in the Scott topology. So, we

can also use Sob(P ) to denote the round-ideal completion of P .

Theorem 3.2. Let P be a dcpo.

(i) (P�/≡,�CU) and (P�/≡,�CC ) are dcpos.

(ii) If P is continuous, then (P�/≡,�CL), (P�/≡,�CU) and (P�/≡,�CC ) are continuous

posets. Hence, if P is a domain, then so are (P�/≡U,�CU) and (P�/≡,�CC ).

(iii) If P is a continuous poset, then Sob(P�,�CL), (P�/≡,�CU) and (P�/≡,�CC ) each

define the object level of a left adjoint of the forgetful functor from the category

of commutative ordered monoid domains satisfying the appropriate inequation and

Scott continuous monoid morphisms.

Proof.

(i) To begin, note that �CL,�CU and �CC all yield �n when restricted to Pn for any

n ∈ �. Since directed sets in (P�,�CC ) are within Pn/≡n for some n, and since Pn is

a dcpo, it follows that (P�/≡,�CC ) is one also.

Now, suppose that A ⊆ P�/ ≡ is �CU-directed. Then the definition of the order

implies there is some n with A ∩ Pn/≡ cofinal in A. Since Pn/≡n is a dcpo, A0 has a

supremum in Pn/≡n, and this is the supremum of A. Hence (P�,�CU) is a dcpo if P is.

(ii) Suppose A ⊆ P� is �CL-directed with a least upper bound, �A. Then |[a]| � | �A| for

each [a] ∈ A. Since | | is clearly monotone, there is some n ∈ � and some [a0] ∈ A

with |[a]| = n for [a0] �CL [a]. And since Pn/≡ is a dcpo, it follows that �A ∈ Pn/≡.

Now suppose that d, e ∈ Pn and that [d] � [e] in Pn/≡, and let A ⊆ P� is �CL-directed

with [e] �CL �A. Then |[e]| � | �A|, and there is some k ⊆ | �A|, that is, some f : k �
|[e]| with ef(i) � (�A)i for i ∈ k. We can assume that |[a]| = |�A| for each [a] ∈ A, and

we know there is a directed set B ⊆
⋃

{φ(a) | [a] ∈ A} with [�B] = �A. Then df(i) �
(�B)i for each i ∈ k, so there is some b ∈ B with df(i) � bi for each i ∈ k. It follows that

[d] �CL [b], so [d] � [e] in P�. Now ↓↓Pn/≡[e] is directed and satisfies �↓↓Pn/≡[e] = [e],

and since this is a subset of ↓↓P�
[e], it follows that ↓↓P�

[e] is directed and satisfies [e] =

�↓↓P�
[e]. Since [e] ∈ P� is arbitrary, it follows that (P�,�CL) is a continuous poset.

A similar argument applies to (P�,�CU), and since (P�,�CC ) is a disjoint sum of

continuous posets, it is a continuous poset.

The fact that (P�,�CC ) and (P�,�CU) are domains if P is one now follows from (i).

(iii) The arguments here are analogous to those given in the proof of Theorem 3.1.

3.3. Making ε the least element

So far we have not mentioned cpos in the context of monoids over dcpos. If P is a cpo,

each component Pn/≡n has a least element, the tuple [⊥] that has every entry ⊥. But P�

has no least element. An obvious way to create one is to identify the elements [⊥] ∈ PN/≡
for all n – this works, and it is what is called the coalesced sum of the cpos Pn/≡n. But

we take another approach, which is to note that P 0 = {ε} has only one element, and we

can refine the order on P� so that this is the least element, which has the effect of making
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⊥P� the identity for the monoid structure on P�. The fact that this defines a monad is

the content of the following proposition.

Proposition 3.5. Let P be a continuous poset. We define P�L to be the domain Sob(P�/≡,
�CL) with

x � y iff x = ε or x �CL y.

Then P�L is a commutative domain monoid satisfying x, y � x ∗ y and ε � x for all

x, y ∈ P�L. In fact, this defines the object level of a left adjoint to the forgetful functor

from the category of commutative domain monoids satisfying these laws.

Proof. The element ε is both minimal and maximal in Sob(P�/ ≡,�CL). From this

it follows that Sob(P�/≡,�CL) \ {ε} is a subdomain and also a Scott-closed subset of

Sob(P�/≡,�CL). The structure we have defined is the lift of Sob(P�/≡,�CL) \ {ε} (cf.

Abramsky and Jung (1994)), which is again a domain, and in which we have extended

the semigroup operation to make the least element an identity.

Remark 3.5.

— We could also define P�C to be the domain Sob(P�/≡,�CC ) with

x � y iff x = ε or x �CC y.

Then P�C is a commutative domain monoid satisfying ε � x for all x, y ∈ P�,C . But

this also implies that y = ε ∗ y � x ∗ y, so we have the same theory as for P�L.

— The above construct fails in the case of the upper order because ε � x and x∗y � x, y

would imply x = x∗ε � x, ε, collapsing the order. On the other hand, we could achieve

a result if we were to define ε to be the largest element of the construction.

4. Indexed valuations over domains

We now review Varacca’s constructions from Varacca (2003). Varacca was motived by the

fact that there is no distributive law for the probabilistic power domain over any of the

power domains for nondeterminism, which implies the composition of the probabilistic

power domain monad and any of the monads for nondeterminism would not be a monad,

so some law satisfied by one of the components would be broken by such a composition.

However, he found that by weakening one of the laws of the probabilistic power domain,

namely, the law

pA+ (1 − p)A = A, (4)

he could find monads that do satisfy a distributive law with the analogous power domain.

We focus on his construction of the so-called Hoare indexed valuations over a domain,

because this fits within our theory, and it is also the construction he exploits most

extensively in his work. We show how to reconstruct this family using our theory of

commutative monoid domains, and in the process we discover a remarkable construction

relating two monads over domains.

https://doi.org/10.1017/S0960129506005159 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005159


M. W. Mislove 268

4.1. Hoare indexed valuations

To begin, we recall Varacca’s construction. First, an indexed valuation over the poset P is

a tuple x ∈ (��0 × P )n where π��0
(x) � 0 is an extended, non-negative real number and

πP (x) ∈ P for each i � n. If x is an indexed valuation, we let |x| = n if x ∈ (��0 × P )n.

Two indexed valuations x and y satisfy x �1 y if |x| = |y| and there is a permutation

φ ∈ S(|x|) with π��0
(x)

φ(i)
= π��0

(y)
i

and πP (p)φ(i) = πP (q)i for each i � |x|. If we let

x denote the subtuple of x consisting of only those pairs (π��0
(x)

i
, πP (x)i) for which

π��0
(x)

i
�= 0, then x �2 y if x �1 y. Varacca then identifies indexed valuations modulo

the equivalence relation � generated by �1 ∪ �2, so we let 〈x〉 denote the �-equivalence

class of x ∈
⋃
n�0(��0 × P )n.

Next, for a domain P , Varacca defines a relation on (
⋃
n�0(��0 × P )n)/� by

〈x〉 �L 〈y〉 iff (∃f : k ⊆ |y| � |x|)(
π��0

(x)
i
= 0

)
∨

π��0
(x)

i
<

∑
f(j)=i

π��0
(y)

j

 (5)

& πP (x)f(j) �P πP (y)j (∀j ∈ k).

Remark 4.1. Note that although the relation �L is defined on (
⋃
n�0(��0 × P )n)/�, it

actually involves representatives of the equivalence classes in this family. As Varacca

points out, it should be read as saying, ‘〈x〉 �L 〈y〉 iff there are representatives of 〈x〉 and

of 〈y〉’ satisfying the condition (5). Like Varacca, we have overloaded notation here by

assuming that the representatives are x and y themselves. But regardless, the definition of

(5) requires us to deal with representatives of these equivalences classes, rather than with

the equivalence classes themselves. We believe that avoiding this is the main contribution

of our approach to Varacca’s construction.

Varacca’s main result for the family of Hoare indexed valuations is the following:

Theorem 4.1 (Varacca 2003).

(i) If P is a continuous poset, the family (
⋃
n�0(��0 × P )n)/� endowed with the relation

�L as defined in (5) is an abstract basis. The family IVL(P ), the domain of lower

indexed valuations, is the round ideal completion of the lower indexed valuations, and

it satisfies the following family of inequations:

(1) A⊕ B = B ⊕ A (2) A⊕ (B ⊕ C) = (A⊕ B) ⊕ C

(3) A⊕ 0 = A (4) 0A = 0

(5) 1A = A (6) p(A⊕ B) = pA⊕ pB

(7) p(qA) = (pq)A (HV) (p+ q)A �L pA⊕ qA,

where p, q ∈ �+, A,B ∈ IVL(P ) and 0 denotes the equivalence class of ε, the empty

word over ��0 × P .

(ii) The family of lower indexed valuations IVL defines the object level of a functor that

is monadic over Dom; the lower power domain monad satisfies a distributive law with

respect to the lower indexed valuations monad.
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A corollary of this result is that the composition PL ◦ IVL defines a monad on Dom

whose algebras satisfy the laws listed in Theorem 4.1 and the laws of the lower power

domain:

(1) X ∗ Y = Y ∗X (2) X ∗X = X

(3) X ∗ (Y ∗ Z) = (X ∗ Y ) ∗ Z (4) X,Y � X ∗ Y
In other words, PL(IV (P )) is the initial sup-semilattice algebra over P that also satisfies

the laws listed in Theorem 4.1.

4.2. A special structure on �+�L

To construct Varacca’s lower indexed valuations using our approach, we begin with

(��0,�), which is a commutative monoid satisfying 0 � r, s � r+ s. Recalling that �+�L

is Sob(�+�,�LC) with ε made the least element, we have, by Proposition 3.5, that �+�L

is the initial such monoid over �+. Since the identity 1�+
: �+ → ��0 is continuous, it

has a continuous monoid extension 1̂�+
: �+�L → ��0 by 1̂�+

([r]) =
∑

i�|r| ri. We use

this morphism to refine the order �L 0 on �+�L by

[r] �+ [s] iff [r] = [ε] ∨ (∃f : k ⊆ |s| � |r|) ri �
∑
f(j)=i

sj ∀j ∈ k.

Lemma 4.1. (�+�L,�+) is a commutative monoid with [ε] �+ [r], [sj] �+ [r] ∗ [s] and a

continuous poset with

[r] �+ [s] iff [r] = [ε] ∨ (∃f : k ⊆ |s| � |r|) ri <
∑
f(j)=i

sj ∀j ∈ k.

Proof. It is routine to check that �+ is a partial order, and it is important to note that

�+ ∩ (�+
m
/≡ × �+

m
/≡) is the quotient of the usual product order on �+

m
for m > 0.

Now, to see that �+ makes �+�L into a continuous poset, we proceed as in the proof of

Theorem 3.2 to see how directed suprema are calculated. Indeed, it is clear that [r] �+ [s]

implies |r| � |s|, so if A ⊆ �+�L is directed and bounded, then there is some m0 for which

A0 ≡ A ∩ �+
m0

is cofinal in A. Then A0 has a supremum in �+
m0
/≡ by Proposition 3.3

and our comment above that the restriction of �+ to �+
m0
/ ≡ is the quotient of the

product order. The cofinality of A0 in A implies this is also the supremum of A in �+�L.

Next, we note that if [r] �+ �A = [x] for some directed set A, then, assuming [r] �= 0,

there is some f : k ⊆ |x| � |r| with ri �
∑

f(j)=i xj for j ∈ k. Since �+ |�+
n is the quotient

of the product order and since + is continuous on �+, if [r′] � [r] in �+
|r|

, there is some

[x′] � [x] in �+
|x|

and r′
i <

∑
f(j)=i x

′
j . Then [x] = �A implies there is some a0 ∈ A with

[x′] � a for a0 � a, so [r′] �+ a0. It follows that the way-below relation on �+�/≡ is

generated by the way-below relations on �+
n
/≡ so that �+ is given by

[r] �+ [s] iff [r] = [ε] ∨ (∃f : k ⊆ |s| � |r|) ri <
∑
f(j)=i

sj ∀j ∈ k. (6)

Thus, �+ defines a continuous partial order on �+�L, so (�+�L,�+) is a domain.

It is also clear that ∗ : �+�L × �+�L → �+�L is commutative and continuous, and

that [ε] �+ [r], [s] �+ [r] ∗ [s] and [ε] ∗ [r] = [r] hold.
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Theorem 4.2.

(i) The identity map Id: Sob(�+�/≡,�CL) → (�+�L,�+) is Scott continuous, but is

not an order isomorphism.

(ii) The mapping Îd�+
: (�+�/≡,�+) → �+ by Îd�+

([r]) =
∑

i�|r| ri is a projection whose

associated embedding is the unit η�+
: �+ → �+�/≡ .

Proof. The statements follow from the results derived in the proof of Lemma 4.1.

(i) In particular, ≡L=�L ∩ �L= ∪n ≡n, and ≡+=�+ ∩ �+= ∪n ≡n, and the identity map

Id: Sob(�+�/≡,�CL) → (�+�L,�+) is well-defined. The above proof characterising

�+ and the proof of Theorem 3.2, where the characterisation of �CL was given, show

Id preserves this relation. The fact that the identity map is Scott continuous is now

clear. For the claim that the identity map is not an order isomorphism, we note that,

for example, [1] �+ [1/2, 1/2], but [1] ��CL [1/2, 1/2]. This concludes the proof of (i).

(ii) It is a matter of routine to show that Îd�+
is a Scott-continuous monoid morphism

of Sob(�+�/≡,�CL) to �+�L satisfying Îd�+
◦ η�+

= 1�+
. On the other hand, the

definition of �+ implies that Îd�+
([r]) �+ [r], so η�+

◦ Îd�+
� 1�+�/≡.

Remark 4.2.

— It may seem surprising that the quotient map is continuous but not an order

isomorphism from Sob(�+�/≡,�CL) to �+�L. But the same phenomenon occurs in

a much simpler setting: just consider the flat natural numbers �� with a top element

adjoined, and the identity map onto the ideal completion of (�,�).

— The property that distinguishes �+ from �CL on �+�/≡ is part (ii) above, namely,

that Îd�+
and η�+

form an embedding–projection pair with respect to this order. This

is not true of �CL, even though Îd�+
is the (grounding of the) counit of the adjunction

defined by �+ �→ (�+�/≡,�CL). The point here is that it is just the order �CL that

needs to be refined to �+, without changing the mappings, for the unit and counit to

form an e–p pair.

4.3. Reconstructing Varacca’s Hoare indexed valuations

Using Theorem 4.2, we can now describe Varacca’s Hoare indexed valuations IVL(P ) for

a continuous poset P . We begin with a definition.

Definition 4.1. Let P be a continuous poset. We define an order �+ on (�+ × P )�L by

[x] �+ [y] iff [x] = [ε] ∨ (∃f : k ⊆ |y| � |x|) with

π�+
(x)

i
�

∑
f(j)=i

π�+
(y)

j
& πP (x)f(j) �P πP (y)j ∀j ∈ k.

Lemma 4.2. Let P be a continuous poset. Then ((�+ × P )�L,�+) is a domain for which

the way below relation is given by

[x] �+ [y] iff [x] = [ε] ∨ (∃f : k ⊆ |y| � |x|) with (7)

π�+
(x)

i
<

∑
f(j)=i

π�+
(y)

j
& πP (x)f(j) �P πP (y)j ∀j ∈ k.
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Proof. This follows from the characterisation of the way-below relation on �+�L given

in Equation 6 and that of the way-below relation on Sob(P�,�CL) given in the proof of

Proposition 3.4 and Theorem 3.2.

Theorem 4.3. Let P be a continuous poset. Then ((�+ × P )�L,�+) is an initial continuous

algebra satisfying the laws of Theorem 4.1(i). It is also isomorphic to IVL(P ).

Proof. We offer two proofs of these claims. The first begins by showing the second claim,

and then relies on Varacca’s work to deduce that ((�+ × P )�L,�+) is an initial continuous

algebra of the indicated type. The second is a direct verification that ((�+ × P )�L,�+)

satisfies the indicated laws and that it is an initial such algebra, and then the proof that

it is isomorphic to IVL(P ) follows since IVL(P ) is initial also. The latter approach is also

useful for the result that follows this one.

For the first proof, an abstract basis for IVL(P ) consists of tuples x ∈
⋃
m(��0 × P )m,

where a tuple x is identified with the subtuple x′ whose real components are non-zero.

So the identity map takes [x] to [x′] ∈ (�+ × P )�L, and sends [0] to [ε]. The mapping is

an injection of the abstract basis for IVL(P ) into (�+ × P )�L. Moreover, the way-below

relation � on the abstract basis for IVL(P ) is the same as the way-below relation �+ on

(�+ × P )�L that we defined in Equation 7 above. Since the mapping is an isomorphism

of abstract bases, it extends to an isomorphism of their sobrifications. The rest of the

theorem now follows from Theorem 4.1.

For the second proof, one first verifies that (�+ × P )�L satisfies the laws of The-

orem 4.1(i). Most of the laws are straightforward to verify once the operations are defined.

To begin, we let ∗ denote addition in (�+ × P )�L, and let [ε] = 0. The action of �+ is

given by π�+
(r · x) = rπ�+

(x) and πP (r · x) = πP (x), for r ∈ �+ and x ∈ (�+ × P )�L.

Given these definitions, we first observe that these operations are continuous by our

construction method (in particular, scalar multiplication is monotone because we defined

[ε] to be the least element). Also, the laws (1) and (2) are satisfied because ∗ is a

commutative and associative operation, and (3) follows from the definition of [ε] as

the identity for ∗. The law (4) is obvious, as is (5), while (6) and (7) follow from our

above definition of scalar multiplication. Finally, (HV) follows from the construction of

(�+ × P )�L.

Now that the laws are verified, it is straightforward to show that (�+ × P )�L is initial:

indeed, if f : P → S is Scott-continuous, and S satisfies the laws of Theorem 4.1(i), we

define f̂ : (�+ × P )�L → S to be the continuous extension of the map that sends [ε] to

0S , and that satisfies f̂(x) = π��0
(x) ·S f(πP (x)). The unit of the adjunction sends x ∈ P to

ηP (x) where |x| = 1, π�+
(ηP (x)) = 1 and πP (ηP (x)) = x. It is routine to show f̂ ◦ ηP = f,

and that f̂ is the unique such map.

Since (�+ × P )�L is initial for the laws of Theorem 4.1(i), it is isomorphic to IVL(P ),

since the latter is initial too.

Notation. Since (�+ × P )�L is initial for the laws of Theorem 4.1(i), it defines the object

level of a left adjoint to the forgetful functor from continuous algebras satisfying those

laws. We use P�L to denote this functor, so P�L(P ) = (�+ × P )�L and, given f : P → Q,
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we define P�L(f) : (�+ × P )�L → (�+ × Q)�L by

— |P�L(f)(x)| = |x|,
— π�+

(P�L(f)(x)i) = π�+
(xi), and

— πQ(P�L(f)(x)i) = f(xi).

Corollary 4.1. If P is a continuous poset, the nondeterminism monad PL lifts to a monad

on the family of Hoare indexed valuations over P .

Proof. We can appeal to Varacca’s work to prove this, since we have already shown that

((�+ × P )�L,�+) is isomorphic to IVL(P ). For example, Varacca (2003, Theorem 4.4.4)

uses Beck’s Theorem 2.1 and exhibits the distributive law of IVL over PL to prove the

result. Alternatively, Varacca (2003, Theorem 4.4.2) gives a direct proof that PL(IVL(P ))

is a nondeterministic algebra that satisfies the laws enumerated in Theorem 4.1(i), and

again, since PL((�+ × P )�L,�+)) � PL(IVL(P )), we conclude our result.

There is another approach available. Since PL and P�L are left adjoints, and left

adjoints compose, we only need to show that if (S, h) is a P�L-algebra, then (PL(S), H) is

also a P�L-algebra for some mapping H : (�+ × PL(S))�L → PL(S). Furthermore, it is

sufficient to define H on a dense subset of (�+ × PL(S))�L so that it is Scott-continous

and satisfies the expected laws:

(i) H ◦ η = 1PL(S ), and

(ii) H ◦ µ = H ◦ P�LH : P2
�LPL(S) → PL(S),

where η is the unit of the P�L monad, and µ is its multiplication.

Now, let h : (�+ × S)�L → S be the structure map for S . Then

(i) h ◦ η = 1S , and

(ii) h ◦ µ = h ◦ P�Lh : P2
�LS → S ,

where η is the unit of the P�L monad, and µ is its multiplication.

We know the structure of (�+ × PL(S))�L to be Sob((�+ × PL(S))�,�+) with [ε] the

least element. So a dense subset of this is
⋃
n�0

(
(�+ × PL(S))n/≡

)
, where [ε] is the least

element. Furthermore, a dense subset of PL(S) is {↓F | � �= F ⊆ S finite} under the

usual containment. So, it is sufficient to define

H :
⋃
n�0

(
(�+ × {↓F | � �= F ⊆ S finite})n/≡

)
→ PL(S).

Now, since P�L forms a monad, we know that h = 1̂S = εP�L
is the counit of the

adjunction. Moreover, the structure of (�+ × S)�L means h has a restriction to (�+ ×
S)n/≡ for each n. This implies that we can define

H : (�+ × {↓F | � �= F ⊆ S finite})n/≡ → PL(S)

by

H[[r1, ↓F1], . . . , [rn, ↓Fn]] =
⋃
i�n

↓{ri ·S h(xi) | xi ∈ Fi}.

Then the restriction H |(�+×{↓F |� �=F⊆S finite})n/≡ is continuous for each n, and the rest of

the argument follows by a diagram chase using the properties of h. For example, since
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η(s) = [1, s], it follows that H ◦ η(↓F) = H[1, ↓F] = ↓ h(F) = ↓F , for each F ⊆ S finite.

Hence the first law is fulfilled.

5. Hoare random variables

We now show how to construct the power domain of Hoare random variables over a

domain. Recall that a random variable is a function f : (X, µ) → (Y ,Σ) where (X, µ) is

a probability space, (Y ,Σ) is a measure space, and f is a measurable function, which

means f−1(A) is measurable in X for every A ∈ Σ, the specified σ-algebra of subsets of Y .

Random variables usually take their values in �, which is equipped with the usual Borel

σ-algebra. For us, X will be a countable, discrete space, and Y will be a domain, where

Σ will be the Borel σ-algebra generated by the Scott-open subsets.

Given a random variable f : X → Y , the usual approach is to ‘push the probability

measure µ forward’ onto Y by defining fµ (A) = µ(f−1(A)) for each measurable subset A

of Y . But this defeats one of the features of random variables: there may be several points

x ∈ X that f takes to the same value y ∈ Y . Retaining this approach would allow the

random variable f to make distinctions that the probability measure fµ does not. Varacca

makes exactly this point in his work (Varacca 2003), a point he justifies by showing how

to distinguish the random variable f from the probability measure fµ operationally.

Definition 5.1. For a domain P , we define the Hoare power domain of random variables

over P to be the subdomain

��H (P ) = {x ∈ (�+ × P )�L |
∑
i�|x|

π�+
(x) � 1}.

In order to show that �� is a monad, we need an enumeration of the laws that a

random variable algebra should satisfy. These are adapted from the laws for probabilistic

algebras first defined by Graham (Graham 1985).

Definition 5.2. A Hoare random variable algebra is a domain P with 0, a least element

and with a Scott-continuous mapping +: [0, 1] × P × P → P satisfying:

— p+r 0 = p for all 0 < r � 1†,

— a+1 b = a,

— a+r b = b+1−r a,

— (a+r b) +s c = a+rs (b+ s(1−r)
1−sr

c),

— a � a+r a,

where r, s ∈ (0, 1) and a, b, c ∈ P . We use ��H (P ) to denote the family of Hoare random

variables over P , which is endowed with the order inherited from (�+ × P )�L.

A morphism of Hoare random variable algebras is a Scott-continuous map f : S → T

satisfying f(0S ) = 0T , f(⊥S ) =⊥T and f(s +r s
′) = f(s) +r f(s

′) for all s, s′ ∈ S and all

r ∈ (0, 1].

† We use a+r b as infix notation for +(r, a, b).

https://doi.org/10.1017/S0960129506005159 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005159


M. W. Mislove 274

The difference between our laws and those from Graham’s characterisation of probabilistic

algebras are that:

(i) We restrict the application of the laws involving +r to cases in which 0 < r < 1 (which

avoids some annoying side conditions in Graham’s listing).

(ii) The law a+r a = a is replaced by the last inequation. This is exactly the law Varacca

weakened to allow a distributive law to hold.

Proposition 5.1. Let P be a domain, and for x, y ∈ ��H (P ) and 0 � r � 1, define

x+r y = r · x ∗ (1 − r) · y. Then:

(i) ��H (P ) is a Hoare random variable algebra.

(ii) [(r, p)] = [(1, p)] +r 0 for all p ∈ P and all r ∈ (0, 1), and

[(r1, p1), . . . , (rm, pm)] = [(1, p1)] +r1

[(
r2

(1 − r1)
, p2

)
, . . . ,

(
rm

(1 − r1)
, pm

)]
for all [(r1, p1), . . . , (rm, pm)] ∈ ��H (P ).

Proof.

(i) Given a domain P , we can define

+: [0, 1] × (�+ × P )
2

�L → (�+ × P )�L

by

+(r, x, y) = r · x ∗ (1 − r) · y.
Because �+ acts continuously on (�+ × P )�L, and because ∗ is continuous, we have

+ is a continuous operation. ��H (P ) is the subfamily of (�+ × P )�L whose real

components are bounded by 1, and this family is clearly invariant under the action of

�+, so this defines a continuous mapping +: [0, 1] × ��H (P )2 → ��H (P ). It is now

routine to verify that the laws of Definition 5.2 are satisfied.

(ii) These results are simple calculations.

We now come to our main result.

Theorem 5.1.

(i) ��H defines a monad on DOM.

(ii) The lower power domain monad PL lifts to a monad on Hoare random variable

algebras.

Proof.

(i) For the first claim, we begin by noting that ��H (P ) is obtained by restricting

P�L(P ) in the ‘real components’ to ones whose sum is at most 1. This family is a

Scott-closed subset of P�L(P ). Hence ��H (P ) is a domain if P is. Continuous maps

f : P → Q extend to P�L(P ) by π��0
(P�L(f)(x)) = π��0

(x), and the elements in

��H (P ) are those in P�L(P ) whose real components sum to at most 1; it follows

that ��H (f)(P ) ⊆ ��H (Q).

https://doi.org/10.1017/S0960129506005159 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005159


Monoids over domains 275

Now, we show that ��H is left adjoint to the forgetful functor from Hoare random

variable algebras into DOM. To begin, we let η : P → ��(P ) by η(p) = [1, p] define

the unit of the adjunction.

Next, let S be a Hoare random variable domain algebra, P be a domain, and f : P → S

be a Scott continuous map. We define f̂ : ��H (P ) → S via f̂(x) by induction on |x|.
If x = [ε], then f̂([ε]) = 0S must hold. When x = [r, p], we have [r, p] = [1, p] +r 0 by

Proposition 5.1, so we define f̂([r, p]) = f(p) +r 0S . This mapping is clearly continuous

on P/≡1⊆ ��H (P ), since P/≡1 inherits its Scott topology from that of ��H (P ). This

is also the unique such function on P/≡1 satisfying f̂ ◦ η = f.

Continuing the inductive definition of f̂, we assume that we have defined f̂ on

∪k�m(Pk/≡k) uniquely so that it is continuous and satisfies f̂ ◦ η = f. Let x =

[(r1, p1), . . . , (rm+1, pm+1)] ∈ Pm+1/≡m+1, and then define

f̂([(r1, p1), . . . , (rm+1, pm+1)]) = f(p1) +r1 f̂

([(
r2

1 − r1
, p2

)
, . . . ,

(
rm+1

1 − r1
, pm+1

)]
.

This is well defined by Proposition 5.1(ii), and it is the composition of continuous

functions, so it is continuous. It also satisfies f̂ ◦ η = f because its restriction to P/≡1

satisfies it by definition. Finally, Proposition 5.1(ii) again shows it is the unique such

function.

This shows that ��H is left adjoint to the forgetful functor from Hoare random

variable algebras into DOM, so it defines a monad on DOM.

(ii) The second claim follows from the above and from Corollary 4.1, since the lower

power domain of a Scott-closed subset A of a domain consists of Scott-closed subsets

of A.

6. Summary and future work

We have presented a construction of ordered monoids and their commutative analogs over

domains, parallelling the construction of the three power domains for nondeterminism.

Our results were inspired by the results of Varacca, whose indexed valuations define

monads each of which enjoys a distributive law over the appropriate power domain monad.

We have also shown how to alter our construction of a lower commutative monoid over

�+ × P to achieve Varacca’s construction. We have shown how our approach allows us

to recapture Varacca’s in ways that avoid having to deal with the identifications between

various elements of indexed valuations. We believe this makes the proofs easier to follow.

We also believe that our approach reveals more information about the internal structure of

the domain of Hoare indexed valuations. In particular, our approach provides a mechanism

to define the continuous algebra of Hoare random variables over a continuous poset, and

to prove it defines a monad on DOM. This is a direct generalisation of the probabilistic

power domain, and enjoys a distributive law over the lower power domain.

There are some interesting questions yet to be explored in this area. The first is to

generalise our construction to accommodate Varacca’s other indexed valuation construc-

tions. Of course, this is motivated by the utility of Varacca’s construction, since it provides

a simple method for building models supporting both nondeterminism and Varacca’s
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version of probabilistic choice. Part of this was accomplished in Mislove (2005), but none

of the work so far on random variables over domains extends beyond the discrete case.

The main stumbling block in this regard is our reliance on Rudin’s Lemma 3.2.
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