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ONE DIMENSIONAL GROUPS DEFINABLE IN THE p-ADIC NUMBERS

JUAN PABLO ACOSTA LÓPEZ

Abstract. A complete list of one dimensional groups definable in the p-adic numbers is given, up to a

finite index subgroup and a quotient by a finite subgroup.

§1. Introduction. The main result of the following is Proposition 8.1. There we
give a complete list of all one dimensional groups definable in the p-adic numbers,
up to finite index and quotient by finite kernel. This is similar to the list of all groups
definable in a real closed field which are connected and one dimensional obtained
in [6].
The starting point is the following result.

Proposition 1.1. Suppose T is a complete first order theory in a language extending
the language of rings, such that T extends the theory of fields. Suppose T is algebraically
bounded and dependent. Let G be a definable group. If G is definably amenable then
there is an algebraic group H and a type-definable subgroup T ⊂ G of bounded index
and a type-definable group morphism T →H with finite kernel.
This is found in Theorem 2.19 of [7]. We just note that algebraic boundedness is

seen in greater generality than needed in [14], and it can also be extracted from the
proofs in cell decomposition [4].
That one dimensional groups are definably amenable comes from the following

result.

Proposition 1.2. Suppose G is a definable group in Qp which is one dimensional.
Then G is abelian-by-finite, and so amenable.

This is found in [10]. One also finds there a review of the definition and some
properties of dimension. That an abelian-by-finite group is amenable can be found
for example in Theorem 449C of [5].
A one dimensional algebraic group over a field of characteristic 0 is the

additive group, the multiplicative group, the twisted one dimensional torus, or
an elliptic curve. Each of these cases is dealt separately in Sections 4, 5, 6, and
7, respectively. The general strategy is to describe the type-definable subgroups in
these concrete cases, and then by compactness extend the inverse of the morphism in
Proposition 1.1 to a definable or ∨-definable group.

§2. Logic topology. We take T a complete theory of first order logic andM � T
a monster model, which for definiteness will be taken to be a saturated model of
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cardinality κ, with κ an inaccessible cardinal such that κ > |T |+ℵ0. A bounded
cardinal is a cardinal smaller than κ.
A definable set is a set X ⊂M n defined by a formula with parameters. A type-

definable set is a set X ⊂M n which is an intersection of a bounded number of
definable sets. An ∨-definable set is the complement of a type-definable set, which is
to say a bounded union of definable sets. For a set A⊂M of bounded cardinality,
an A-invariant set is a set X ⊂M n such that X = ó(X ) for all ó ∈Aut(M/A). Here
Aut(M/A) denotes the set of all automorphisms ó of M such that ó(a) = a for
all a ∈ A. An invariant set X is a set for which there exists a bounded set A such
that X is A-invariant. This is equivalent to saying that X is a bounded union of
type-definable sets.
For an invariant set X we will call a set Y ⊂ X type-definable relative to X if

it is the intersection of a type-definable set with X. Similarly we have relatively
∨-definable and relatively definable sets.
Nextwedefine the logic topologyof a boundedquotient. This is usually defined for

type-definable sets and equivalence relations but in Section 3we give an isomorphism
O(a)/o(a) ∼= R, where O(a) is not type-definable. We give then definitions that
include this case.
Suppose given X an invariant set and E ⊂ X 2 an invariant equivalence relation

on X such that X/E is bounded. Then the logic topology on X/E is defined as the
topology given by closed sets, a setC ⊂X/E being closed if an only ifð–1(C )⊂X is a
type definable set relative toX.Hereð denotes the canonical projectionð :X →X/E.
As a bounded intersection and a finite union of type definable sets is type definable
this gives a topology on X/E.
Next we enumerate some basic properties of this definition, the next two

results are known for the logic topology on type-definable sets and the proofs
largely go through in this context. See [8]. I will present this proof for conve-
nience.
For the next statement recall that given a set X with an equivalence relation E

on X, a subset Y of X is called E-saturated if for any two elements a and b in X
which are equivalent by E, if a is in Y, then b is in Y. Equivalently Y = ð–1ð(Y )
for ð : X → X/E the canonical map. Similarly if f : X → Z is a function, then a
subset Y of X is f -saturated if for any two elements a and b of X with the same
image under f, if a is in Y then so is b. That is, Y is saturated with respect to the
equivalence relation of X that says that two elements are equivalent if they have the
same image under f.

Proposition 2.1.

1. The image of a type-definable set Y ⊂ X in X/E is compact.
2. If X is a type-definable set, E ⊂ X 2 is a type-definable equivalence relation, and
Y ⊂ X is an E-saturated invariant subset such that for EY = E ∩Y 2Y/EY is
bounded, thenY/EY is Hausdorff. Also, the map ð :Y →Y/EY has the property
that the image of a set type-definable relative to Y is closed.

3. If G is a type-definable topological group and K ⊂H ⊂ G are subgroups such
that H is invariant, K is type-definable, K is a normal subgroup of H, and such
that H/K is bounded, thenH/K is a Hausdorff topological group.
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Proof.

1) This is by compactness, in detail if {Ci}i∈I is a family of closed subsets ofX/E
such that {Ci ∩ð(Y )}i∈I has the finite intersection property then {ð–1(Ci)∩
Y}i∈I are a bounded family of type-definable sets with the finite intersection
property, and so it has non-empty intersection.

2) TakeZ a type-definable set. Then ð–1ð(Z∩Y ) =Y ∩{x ∈X | there exists x′ ∈
Z,(x,x′) ∈ E}, as Z and E are type-definable ð–1ð(Y ∩Z) is type-definable
relative to Y and ð(Y ∩Z) is closed as required.
Now to see thatY/EY isHausdorff takex,y ∈Y such thatð(x) 6= ð(y). Then

for Ez = {x′ ∈ X | (z,x′) ∈ E} we have Ex ∩Ey = ∅. As Ex and Ey are type-
definable then there are definable sets D1,D2 such that Ex ⊂D1 Ey ⊂D2 and
D1∩D2 = ∅. Then by the previous paragraph there are open setsU1,U2 ⊂X/E
such that ð–1(Ui)⊆Di .

3) By 2) this space is Hausdorff. Denote ð :H →H/K . IfC is type-definable and
C ∩H is ð-saturated, then (C ∩H )–1 = C –1 ∩H is type-definable relative to
H and ð-saturated, so inversion is continuous in H/K . Similarly one obtains
that left and right translations are continuous.
Finally one has to see that the product is continuous at the identity, let

1 ⊂ U ⊂ H/K be an open set, and let Z ⊂ G be type-definable such that
H \Z = ð–1(U ). Then K ∩Z = ∅. As K =K2 one also has K2∩Z = ∅. Now
by compactness there is K ⊂ V definable such that (V ∩G)2 ∩Z = ∅. Now
by 2) there exists 1 ⊂ V ′ ⊂ ð(V ∩H ) open such that ð–1(V ′) ⊂ V ∩H , so
(V ′)2 ⊂U as required. ⊣

Proposition 2.2. If f :X →Y is a map between a set X which is a bounded union
of type-definable sets Xi , such that Xi are definable relative to X, and Y is a union of
type-definable sets Yi such that f(Xi)⊂Yi and f|Xi ⊂Xi ×Yi is type-definable, then
the inverse image of a set type-definable relative to Y by f is type-definable relative to X.
So if E ⊂X 2 and F ⊂Y 2 are invariant equivalence relations such that f is compatible
with respect to them and X/E,Y/F are bounded, then f̄ :X/E→ Y/F is continuous.
The proof is straightforward and omitted.
The next result is well known.

Proposition 2.3. If f : G →H is a surjective morphism of topological groups, G
is ó-compact, and H is locally compact Hausdorff, then f is open.

Proposition 2.4. Suppose given L a language and L′ an extension of L. Suppose
G is an L-definable group and O is set which is a countable union of L′-definable
sets. Suppose O is a commutative group with L′-definable product and inverse and
there is an L′-definable surjective group morphism O→ G . Suppose that O contains
an L′-type-definable group o of bounded index such that o injects in G, with image
L-type-definable. Then there existsO′ a disjoint union of denumerable L-definable sets
which is a group with an L-definable product and inverse, and there is an L′-definable
isomorphism O→O′ such that the map O′ →G is L-definable, and the image of o in
O′ is L-type-definable.

Before starting the proofwe clarify that disjoint unions of infinitelymanydefinable
sets may not be a subset of the monster model under consideration, however when
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the theory has two 0-definable elements then finite disjoint unions can always be
considered to be a definable set. For ∨-definable sets or disjoint unions of definable
sets, a definable mapping means that the restriction to a definable set has definable
image and graph. This applies to the group morphisms and the product and inverse
in O and O′.

Proof. Let o ⊂U ⊂O be an L′-definable symmetric set such that the restriction
of f :O→G toU is injective. Then f(o)⊂f(U ), is such that f(U ) isL′-definable
and f(o) is L-type-definable. By compactness there is f(o)⊂ R ⊂ f(U ) such that
R is L-definable. Replacing U by f–1(R)∩U we may assume f(U ) is L-definable.
Now take V a symmetric L′-definable set such that o ⊂ V and V 4 ⊂ U . Similarly
replacing V by f–1(R′)∩V for a suitable R′, we may further assume that f(V ) is
L-definable. A bounded number of translates of V cover O, so by compactness, a
denumerable number also cover it say O =

⋃

i<ù aiV .
Take X =

⊔

i<ùf(V ), with canonical injections ôi : f(V )→ X . Define a map
g :X →O by gôif(x) = aix for x ∈V . This is a surjectiveL′-definable map. Define
Wi =f(V )\(gôi)–1

⋃

r<i(gôr)f(V ). ThenWi isL-definable.WehaveO
′=

⊔

i<ùWi
a disjoint union of L-definable sets and the restriction of g to O′ is a bijective
L′-definable map, denoted also by g, g : O′ → O. We also have that fgôi(Wi) is
L-definable, and the restriction of fgôi to Wi is translation by f(ai) which is L-
definable. We conclude that fg is L-definable.
Now we transfer the group structure of O to O′ using the bijection g. Finally

we have to prove that this group structure on O′ is L-definable. Now g(Wi)
–1 is

contained in a finite number of translates ajV so W
–1
i is contained in a finite

number of Wj . Similarly WiWi′ is contained in a finite number of Wj . So it is
enough to see that product and inverse are relatively definable. We do the product
as the inverse is similar. Suppose (x,y,z) ∈Wi ×Wj ×Wr , then ôr(z) = ôi(x)ôj(y)
in O′ if and only if arz

′ = aix
′ajy

′ in O for x′,y′,z ′ ∈ V which have images under
f equal to x,y, and z. In this case ara

–1
i a

–j
j ∈ V 3 (here we use the hypothesis of

commutativity), so as f is injective in V 4 we get that this happens if and only if
f(ara

–1
i a

–1
j )z = xy in G. This last condition is L-definable. ⊣

§3. Subgroups ofZ. WedenoteZ a saturatedmodel of inaccessible cardinal of the
theory of the ordered abelian group Z. That is, Z is a monster model of Presburger
arithmetic.
Here we determine the type-definable subgroups of Z. We shall use cell

decomposition in dimension one, here is the statement.

Proposition 3.1. If X ⊂ Z is a definable set then there exists X = S1 ∪ ··· ∪Sn
with Si pairwise disjoint sets of the form Si = (ai,bi)∩ (niZ+ ri) with ai,bi ∈ Z or
ai =–∞ or bi =∞, andni,ri ∈Z, and (ai,bi) infinite, orSi = {ai}. Such decomposition
is called a cell decomposition. If f : X → Z is a definable function then there exists a
cell decomposition of X = S1∪ ···∪Sn such that f(x) = pi

ni
(x – ri)+ si for x ∈ Si in

an infinite cell as before and pi ∈ Z,si ∈ Z.

See for example [2] for a proof.
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Given a ∈ Z such that a > n for all n ∈ N we denote OZ(a) = {b ∈ Z |
there exists n ∈ N,|b| < na}. We denote oZ(a) = {b ∈ Z | for all n ∈ N,n|b| < a}.
These are subgroups of the additive group (Z,+).

Proposition 3.2. With the above notation OZ(a)/oZ(a) ∼= (R,+) as topological
groups.

Proof. First we note that oZ(a) is a convex subgroup of the ordered group
OZ(a), so OZ(a)/oZ(a) is an ordered abelian group.
Define a function Q → OZ(a) by nm 7→ n

m (a – rm), where n,m ∈ Z, (n,m) = 1,
m > 0, rm ∈ N is such that 0 ≤ rm < m, and a ≡ rm modmZ. A straightforward
check shows that the composition of this function with the canonical projection
OZ(a)→ OZ(a)/oZ(a) is an ordered group morphism, and that this morphism
extends in a unique way to an ordered group morphism R → OZ(a)/oZ(a). This
morphismR→OZ(a)/oZ(a) is an isomorphism of topological groups. Indeed if we
define F :OZ(a)→ R as F (b) = Sup{ nm | n,m ∈ Z,m > 0,na < mb}, then F factors
through OZ(a)/oZ(a) as F̄ : OZ(a)/oZ(a)→ R and F̄ is the inverse to the map
R→OZ(a)/oZ(a) described before.
It is easy to verify that F̄ is continuous if we giveOZ(a)/oZ(a) the logic topology

and R the usual topology. Now notice that oZ(a) is type-definable, soOZ(a)/oZ(a)
is a Hausdorff topological group. Also, OZ(a) is a denumerable union of definable
sets, soOZ(a)/oZ(a) is ó-compact. AsR is a locally compact Hausdorff topological
group, F̄ is open by Proposition 2.3 as required. ⊣
Lemma 3.3. If G ⊂ Z is a definable subgroup of Z, then it is of the form G = nZ

for an n ∈ Z.

Proof. Let G = (a1+S1)∪ ··· ∪ (an +Sn) be a cell decomposition of G, where
for each iSi = 0 or Si = (– bi,ci)∩miZ for bi,ci ∈ Z>0 and mi ∈ Z or Si =miZ or
Si = (– bi,∞)∩miZ or Si = (–∞,ci)∩miZ. Note that if Si is unbounded, then
〈ai +Si〉 = aiZ+miZ so miZ ⊂ G . We note that there is at least one index r such
that Sr is unbounded, otherwise G is bounded and so as it is definable it has a
maximum, butG is a group so this cannot happen unlessG is trivial. ThenmrZ ⊂G
and as Z/mrZ ∼= Z/mrZ is finite cyclic we see that any intermediate group is of the
form nZ for an n|mr . ⊣
Lemma 3.4. If H ⊂ Z is a type-definable convex subgroup, then H = 0 or H = Z

or H = oZ(a) or H = ∩i∈I oZ(ai) where I is a bounded net such that i < j implies
aj ∈ oZ(ai).
Proof. LetH ⊂D, withD a definable set.We need to see that there is a ∈Z such

that H ⊂ oZ(a) ⊂D. By compactness there is H ⊂ S ⊂D such that S is definable
symmetric and convex. If S = H then H = Z or H = 0 by Lemma 3.3. Assume
otherwise and take a ∈ S \H positive. As H is convex h < a for all h ∈H . As H is
a group, H ⊂ oZ(a)⊂ [– a,a]⊂D, as required. ⊣
If n is a supernatural number then denote nZ = ∩m∈N,m|nmZ.

Proposition 3.5. IfH ⊂Z is a type-definable group then it is of the formH =C ∩
nZ for C its convex hull, which is a type-definable convex group, and n a supernatural
number.
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Proof. Take C the convex hull and H ⊂ D a definable set. We have to show
that there is a natural number k such that H ⊂ kZ ∩C ⊂ D. Indeed because H is
a bounded intersection of definable sets this would imply that H is an intersection
of groups of the form kZ ∩C . If n is the supernatural number which is the smallest
commonmultiple of all the natural numbers k such thatH ⊂ kZ, thenH = nZ∩C .
Take H ⊂ D2 ⊂ D1 symmetric sets such that D1+D1 ⊂ D, and D2+D2 ⊂ D1.

Take a cell decomposition of D2, say D2 = E1 ∪ ··· ∪ En. Then, as in the
proof of Lemma 3.3 we conclude that if H is nontrivial then for one of the cells,
say E1, E1∩H is unbounded above in H, and for this cell E1 we have that E1 – E1
contains a group of the formmZ∩C , so that in particularmZ∩C ⊂D1; and finally
we also have that H +mZ ∩C = kZ ∩C for some natural number k, because it is
an intermediate group of mZ ∩C and C which have quotient C/mZ ∩C ∼= Z/mZ
which is cyclic. As H +mZ ∩C = kZ ∩C ⊂D1+D1 ⊂D we conclude. ⊣

§4. Subgroups ofQp. We denoteQp a saturated model of inaccessible cardinal of
the theory of the valued field Qp. Its valuation group is denoted Z and its valuation
v. We remark that Z is a saturated model of Presburger arithmetic of the same
cardinal as Qp. Here we determine the type-definable groups of Qp.
For Qp there is a cell decomposition due to Denef which we will state in

dimension 1.

Proposition 4.1. If Qp is a p-adically closed field and if X ⊂Qp is definable then
there exists pairwise disjoint Di with X =D1∪ ···∪Dm such that Di are of the form
{ai} or infinite and of the form {x ∈ Qp | αi < v(x – ai) < âi,x – ai ∈ ciQnip }, or of
the form {x ∈ Qp | αi < v(x – ai),x – ai ∈ ciQnip }. For some αi,âi ∈ Z ∪{–∞,∞},
ci ∈Qp and ni ∈ Z>0.

See [4] for a proof.
We will also use the analytic language. This is a language obtained by adding to

the valued field language one function symbol for each function Znp→Qp given by
a power series

∑

α aαx̄
α where the sum is over the multi-indices α ∈Nn and aα ∈Qp

are such that aα → 0. This function symbol is interpreted as Qnp →Qp which is the
given function in Znp and 0 outside. A model of this theory will be denoted Q

an
p . In

Qanp there is also a cell decomposition due to Cluckers which in dimension 1 is as
follows:

Proposition 4.2. If X ⊂ Qanp is definable then it is definable in the algebraic
language.

See [3]
In the next couple of sections we will use the following well known consequence

of henselianity.

Lemma 4.3. Suppose K is a henselian valued field with valuation v. Suppose a is
an element of K× and n ∈ Z>0. Suppose b is an element of K such that v(b – a) >
v(a)+2v(n). Then there is x ∈K such that b = axn. In other words a and b map to
the same coset in K×/(K×)n.

We include a proof for convenience.
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Proof. Take the polynomial P(T ) = T n – ba–1. If R is the valuation ring of K,
we have that P(T ) ∈R[T ]. We also have that v(P(1))> 2v(P′(1)). We conclude by
Hensel’s lemma that there is a unique solution x ∈R of P(T ) such that v(x – 1)>
v(n), as required. ⊣
For the next few lemmas we denote for an α ∈ Z, Dα = {c ∈Qp | v(c)≥ α}.
The next two lemmas examine the set S – S for S a cell which contains 0.

Lemma 4.4. Let b ∈ Q×
p and α,ã ∈ Z be such that α ≤ v(b) < ã. Let n ∈ Z such

that n > 0. Denote S = {c | v(c) ≥ α,v(c – b) < ã, and there exists y,c = b – byn}.
Then there exists a â ∈ Z and m ∈ N such that Dâ+m ⊂ S – S and S ⊂Dâ
Proof. Note that by Hensel’s lemma Dv(b)+2v(n)+1 ⊂ S, see Lemma 4.3. If α =

v(b)+N for some N ∈ Z then we are done. Now take the setM = v(S \{0})⊂ Z.
This is a definable subset of Z, bounded below by α, so it has a minimum â . Now it
is clear that we may replace α by â and assume α < v(b)+m for allm ∈ Z. Now let
a ∈ S be such that v(a) = α. Then by Lemma 4.3 {c ∈Qp | v(c – a)>α+2v(n)} ⊂
S. But then Dα+2v(n)+1 ⊂ S – S which finishes the proof. ⊣
Lemma 4.5. Let a ∈ Q×

p and ã ∈ Z be such that v(a) < ã. Let n ∈ Z, n > 0. Let
S = {b ∈Qp | v(a – b)< ã and there exists y,b = a – ayn}. Then Qp = S – S or S is
as in the previous Lemma.

Proof. TakeM = v(S \{0}). If this set is not bounded below, then the argument
of the previous proof shows Dâ+2v(n)+1 ⊂ S – S for all â ∈M so S – S =Qp. IfM
is bounded below, then we are in the situation of the previous Lemma. ⊣
The previous two lemmas work also with ã = ∞ or where the condition

v(c – b)< ã does not appear, with the same or simpler proofs.

Lemma 4.6. Let S ⊂Qp be a definable set. Then either S is finite or S – S =Qp or
there existsα ∈Z and n ∈N andX ⊂S finite such thatS ⊂X +Dα andDα+n ⊂S –S.
Proof. S decomposes as a finite union of cells ai +Si where Si are as in the

previous two Lemmas or are 0. If all the Si are 0 or there is i such that Qp = Si – Si
then we are done. Otherwise take αi as in the previous lemmas for every i such that
Si 6= 0. Then for α =miniαi we obtain the result. ⊣
Proposition 4.7. If G is a definable subgroup of Qp then it is of the form Dα , 0 or

Qp. A type-definable subgroup of Qp is a bounded intersection of definable subgroups
of Qp.

Proof. LetL be a type-definable subgroup ofQp, andL⊂S ⊂Qp a definable set.
We prove that eitherQp =S orL=0or there existsα ∈Z such thatL⊂Dα ⊂S. Let
T be a symmetric definable set withL⊂T and 3T ⊂ S. If T is finite thenL is a finite
group, and asQp is torsion free, it is trivial. If T – T =Qp then S =Qp as required.
So assume by the previous Lemma thatT ⊂Dα+X andDα+n ⊂ 2T . NowL+Dα+n
is a type-definable group and satisfies L+Dα+n ⊂Dα+X and L+Dα+n ⊂ S.
Now we claim that the group generated by Dα+X is of the form Dα+m⊕⊕iZai

where every nonzero element in ΣiZai has valuation < α+n for all n ∈ Z. Indeed
if this group is denoted A then for B = A∩ (⋃n∈Z

Dα+n) we have that A/B is
finitely generated and torsion free so it is finite free and 0→ B → A→ A/B → 0 is
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split exact. This then implies that 0→ B/Dα → A/Dα → A/B → 0 is split exact so
B/Dα is finitely generated. This implies that B ⊂Dα–M for anM ∈ Z and because
Dα–M/Dα ∼= Z/pMZ is cyclic every intermediate group is of the form Dα+m, as
required.
By compactness a type-definable subgroup ofDα+X is then a subgroup ofDα+m

and as Dα+m/Dα+n ∼= Z/pn–mZ we see that every intermediate subgroup is of the
form Dα+k , so L+Dα+n =Dα+k as required. ⊣
Proposition 4.8. Let G be an interpretable group, such that there exists L⊂ G a

type-definable group of bounded index and a type-definable injective group morphism
φ : L→ (Qp,+). Then there exists a definable group H ⊂ G containing L and an
extension of φ to an injective definable group morphism φ :H →Qp with image 0,Qp
or Dα .

Proof. By compactness there exists a definable sets L⊂U1 ⊂U0 such that U1 –
U1 ⊂U0, and a definable extension of φ to φ :U0→Qp, such that φ is injective and
such that if a,b ∈U1 then φ(a – b) = φ(a) – φ(b). Now by the previous proposition
φ(L) is trivial or an intersection of balls around the origin, so by compactness there
is a definable group φ(L)⊂A⊂ φ(U1), withA=0,Dα orQp. ThenH = φ–1(A)∩U1
works. ⊣

§5. Subgroups of Q×

p . Now we determine the type-definable subgroups of Q
×
p . I

shall assume at times, for simplicity, that p 6= 2.
For α ∈ Z>0 denote Uα = {b ∈Qp | v(b – 1)≥ α}.
Lemma 5.1. Let L ⊂ Q×

p be a type-definable subgroup, if v(L) is nontrivial, and
L⊂ S and S definable, then there exists n ∈ Z>0 such that Un ⊂ S.
Proof. Let C be the convex hull of v(L). Let L ⊂ S be a definable set. Let

L ⊂ T be a symmetric definable set such that T 2 ⊂ S. Let T = S0 ∪ ··· ∪Sm be a
cell decomposition of T. Then there exists one of them, say S0, such that v(S0)∩C
is unbounded below in C. If S0 = {b ∈ Qp | α ≤ v(b – a) < â,b – a ∈ cQnp} we
distinguish two cases, so assume first that v(a)< ô for all ô ∈ C .
If b ∈ S0 ∩ v–1(C ) then v(b) ∈ C , so v(a) < v(b) and v(b – a) = v(a). Now

if b′ ∈ v–1(C ) , then v((b′ – a) – (b – a)) = v(b′ – b) ≥ min(v(b′),v(b)) > v(a)+
2v(n) = v(b – a)+2v(n), so by Lemma 4.3 we get b′ – a ∈ cQnp, and we see then
that b′ ∈ S0 and v–1(C )⊂ S0, and this case is done.
Assume now that ô ≤ v(a) for one ô ∈ C . Then by compactness we may obtain

ô ∈C such that ô < v(a)+m for allm ∈Z. Nowwe choose b ∈ S0∩v–1(C ) such that
v(b)<ô. Now if d ∈U2v(n)+1, then v((bd – a) – (b – a))= v(b(d – 1))= v(b)+v(d –
1)> v(b)+2v(n) = v(b – a)+2v(n) so bd ∈ S0. Then d ∈ T 2 ⊂ S, as required. ⊣
For the next Lemma I remark that in the standard model Qp and for p 6= 2 we

have an isomorphism (Zp,+)∼=U1(Qp) given by the exponential z 7→ (1+p)z . This
map is not likely to be definable inQp however it is locally analytic, so it is definable
in Qanp . In this language there is also cell decomposition so Proposition 4.7 remains
true and produces the following lemma.

Lemma 5.2. Let p 6= 2. If L ⊂ U1 is a type-definable subgroup of Q×
p then L is

trivial or a bounded intersection of groups of the form Uα .
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Given a ∈ Q×
p such that v(a) > n for all n ∈ N, we define a group H = Ha

with underlying set {b ∈ Q×
p | 0 ≤ v(b) < v(a)} and product b1 ·H b2 = b1b2 if

v(b1)+v(b2)< v(a) and b1 ·H b2 = b1b2a–1 if v(b1)+v(b2)≥ v(a).
We note that H ∼= O(a)/〈a〉 where O(a) = {b ∈ Q×

p | there exists n ∈
N such that |v(b)| ≤ nv(a)}. O(a) is considered as a subgroup of the multiplicative
group Q×

p and 〈a〉 is the group generated by a. The isomorphism is given by the
morphism O(a)→H that takes b ∈ O to ba–n where n is the unique element of Z
such that nv(a)≤ v(b)< (n+1)v(a).
We will denote o(a) the type-definable subgroup ofQ×

p defined by x ∈ o(a) if and
only if n|v(x)|< v(a) for all n ∈ Z>0.
In other words O(a) and o(a) are the inverse images under the valuation map

v : Q×
p → Z of OZ(v(a)) and oZ(v(a)). The valuation map produces a group

isomorphismO(a)/o(a)∼=OZ(v(a))/oZ(v(a)), and so, by Proposition 3.2 we have
O(a)/o(a)∼= R.
In the next proof we shall make use of the following map. Suppose 0→ A→

B → C → 0 is a split exact sequence of abelian groups with section s : C → B .
Denote i : A→ B and f : B → C . Suppose D ⊂ B is a subgroup. Then there is a
map d : f(D)→ A/A∩D which we call the connecting morphism. This is defined
as follows: d takes an element of the form f(x) to the image under the canonical
projectionA→A/A∩D of an element y ∈A satisfying i(y) = x – sf(x). This does
not depend on the choice of x. It is straightforward to check that if this map is trivial
the sequence 0→ A∩D → D → f(D)→ 0 is split, as the image of f(D) under s
belongs to D.

Proposition 5.3. Let p 6= 2. If L ⊂ Q×
p is a type-definable subgroup then either

v(L) is nontrivial in which case for every natural number n, the definable group Gn =
(Q×
p )
nL and the convex hull C of v(L) satisfy L = ∩nGn ∩ v–1(C ); or there exists a

root or unity ç ∈ Z×
p such that L is in direct product L = 〈ç〉L′, with L′ = L∩U1

trivial or a bounded intersection of groups of the form Uα .

Proof. Embed Qp → Q∗
p, where Q

∗
p is a monster model of Qp as a valued field

together with the exponentiation map Z→Qp, x 7→ px ; the map Qp→Q∗
p is taken

to be elementary from Qp into the valued field reduct of Q
∗
p. Replacing Qp by Q

∗
p

we may assume that there exists a map Z → Q×
p elementary equivalent to x 7→ px

in Qp. We define then acx = xp
–v(x) the projection Q×

p → Z×
p associated with the

short exact sequence 1→ Z×
p → Q×

p → Z → 0 and the section Z → Q×
p ,x 7→ px .

In the rest of the proof we shall have definable mean definable in the valued field
language, and say ac-definable to mean definable in the language including ac.
Assume first that v(L) is nontrivial and takeC andGn as in the statement. LetL⊂

S be a definable set. LetL⊂T , withT a symmetric definable set such thatT 3⊂S. By
Lemma5.1we get that there exists n such thatUn ⊂T .DefineA=(L∩Z×

p )Un, this is
a definable groupbecause it contains the groupUn which is of finite index inZ

×
p .Now

take the v(L)→Z×
p /A the composition of the connecting homomorphism v(L)→

Z×
p /L∩Z×

p with the canonical projection. This is an ac-type-definable morphism.
By compactness there exists r ∈Z such that v(L)⊂C ∩rZ and an ac-type-definable
group morphism extension C ∩ rZ→Z×

p /A, see Proposition 3.5. As the codomain
is finite we see m(C ∩ rZ) = mrC = C ∩mrZ is a subgroup of the kernel of
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C ∩ rZ → Z×
p /A, (here m = Card(Zp/A)). So if we denote L1 = v

–1(mrZ)∩LUn
we get that the connecting homomorphism in the short exact sequence 1→ A→
L1→ v(L)∩mrZ → 0 is trivial, so the sequence is split with splitting given by the
restriction of the section Z → Q×

p to v(L)∩mrZ. This is to say x ∈ L1 if an only
if v(x) ∈ v(L)∩mrZ and xp–v(x) ∈ A. By compactness there is s ∈ Z such that if
v(x) ∈ C ∩ sZ and xp–v(x) ∈ A then x ∈ T 2. But the set of such x forms the kernel
of a group morphism v–1(C )→ Z/sZ×Zp/A with finite codomain, so it contains
v–1(C )k = (Q×

p )
k ∩v–1(C ), so S contains Gk ∩v–1(C ) as required.

Assume now that v(L) is trivial. Then L ⊂ Z×
p . If L

′ = L∩U1 then we get a
short exact sequence 1→ L′ → L→ ð(L)→ 1. Where ð : Z×

p → F×
p
∼= Z/(p – 1)Z.

Recall that above a primitive root in F×
p lies a primitive p – 1th root of Qp (by

Hensel’s lemma), so the sequence 1→ U1 → Z×
p → F×

p → 1 is split. Then we get
the connecting homomorphism ð(L)→ U1/L′ and from the description of L′ in
Lemma 5.2 we see that U1/L

′ only has pn torsion, so as it has no p – 1-torsion we
conclude that ð(L)→U1/L′ is trivial, so L is as required. ⊣
Now in the case p = 2, we have that U2 ∼= p2Zp in Qanp with an isomorphism that

sends Uα toDα , and the group U1/U2 is cyclic of order 2. In this case we get in fact
a split exact sequence 1→U2→U1→U1/U2→ 1. It is possible to say with greater
precision the effect the groupU1/U2 has on a type-definable subgroup ofQp but we
shall be satisfied with ignoring the contribution of it, in the following version of the
previous proposition which works in p = 2.

Proposition 5.4. L⊂Q×
p is a type-definable subgroup then either v(L) is nontrivial

in which case for every natural number n, the definable group Gn = (Q
×
p )
nL and the

convex hull C of v(L) satisfy L = ∩nGn ∩ v–1(C ); or L ⊂ Z×
p and L∩U2 is a finite

index subgroup of L which is a bounded intersection of groups of the form Uα .

The last proof goes through.

Proposition 5.5. If G is an interpretable group, L⊂G is a type-definable bounded
index group, and φ :L→Q×

p is an injective type-definable group homomorphism, then
G has a finite index interpretable subgroup H ⊂ G which is definably isomorphic to 0
or (Q×

p )
n or Uα or O(a)

n/〈an〉.
Proof. Consider the type-definable group φ(L)⊂Q×

p , it is of the form described
in the statement of Proposition 5.4.
By compactness ø = φ–1 : φ(L)→ L extends to a type-definable injective group

homomorphism ø : L′ → G and after a restriction to a finite index subgroup L′

is either Uα or 1 or (Q
×
p )
n or o(a)n (here we use Lemma 3.4), so without loss of

generality φ(L) =L′. In the first three cases L′ is definable of the kind required, the
image is a definable bounded index group, so it is finite index by compactness so we
are done. Assume now the remaining case.
If we denote rm ∈ Z the element such that 0 ≤ rm < m and v(a) – rm ∈ mZ,

and Im = v
–1([– 1m (a – rm),

1
m (a – rm)]) then ∩mIm ∩ (Q×

p )
n = o(a)n, so ø extends

to an injective map ø1 : Im ∩O(a)n → G . We also may find an m′ > m such that
ø1(ab

–1) =ø1(a)ø1(b)
–1 for all a,b ∈ Im′ ∩O(a)n. Remembering thatO(a)/o(a)∼=

(R,+), from which we obtainO(a)n/o(a)n ∼=R, we see that the mapø1 restricted to
Im′ ∩O(a)n extends to a definable group homomorphism ø2 :O(a)n → G . The set
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A= ø2(Im′ ∩O(a)n) is definable and a bounded number of translates cover G, so a
finite number of translates cover G, so the group generated by it can be generated
in a finite number of steps and is definable, indeed the number of translates of A
in Ar stabilizes, and for such an r, Ar is the group generated by A. We see then
that H = ø2(O(a)

n) is a definable subgroup of G of finite index. The kernel of
ø2 is a definable subgroup K of O(a)

n such that K ∩ o(a)n = 1. The image of K
to R ∼= O(a)n/o(a)n is a subgroup f(K) such that f(K)∩ [– 1,1] is compact and
f(K)∩[– å,å] = 0.The subgroupsofR are either dense or of the formf(K)=f(b)Z,
or trivial. K cannot be trivial as in this case ø2 is injective to a definable set, which
cannot happen by compactness. So K = 〈b〉 and we are done. ⊣

§6. Subgroups of the one dimensional twisted torus. Given d ∈Qp \Q2p, such that
v(d )≥ 0, G =G(d ) = {x+y

√
d | x2 – dy2 = 1} ⊂Qp(

√
d )× is what we call a one

dimensional twisted torus. In this section we give the type-definable subgroups of
G(d ).
This group G(d ) is affine, so it is a subgroup of a general linear group. Explicitly

this can be seen as follows, an element a ∈ G(d ) produces a multiplication map
La : Qp(

√
d )→ Qp(

√
d ), and as Qp(

√
d ) is two dimensional Qp-vector space this

produces an injective group morphism G(d )→GL2(Qp). If one takes as a basis of
Qp(

√
d ){1,

√
d} this map is given by (x,y) 7→

[

x dy
y x

]

, the norm is precisely the

determinant of this matrix.

Proposition 6.1. If L is a type-definable group of (G(d ),·) for d ∈ Q×
p \ (Q×

p )
2

with v(d )≥ 0, then L∩F2 is a bounded intersection of groups of the form Fα . Where
Fα = {

[

x dy
y x

]

| v(1 – x)≥ α,v(y)≥ α,x2 – dy2 = 1} and F2 is finite index inG(d ).

Proof. Observe that F2(Qp)⊂GL2(Zp) has the topology given by a p-valuation
in the group G(Qp). See [11, Example 23.2]. As this is a one-dimensional compact
Lie group then this p-valuation has rank 1, see Theorem 27.1 and (the proof of)
Proposition 26.15 of [11]. Then by [11, Proposition 26.6] this group is isomorphic
to (p2Zp,+). By [11, Theorem 29.8] this isomorphism is locally analytic. So this
isomorphism extends to an isomorphism p2Zp→ F2 in Qanp . From the definition of
the morphism it follows that it transforms the filtration Dα = {x ∈ Zp | v(x)≥ α}
into Fα . So Proposition 4.7 finishes the proof. ⊣
From this proposition we get the following as a consequence.

Proposition 6.2. If G is an interpretable group and L ⊂ G is a bounded index
type-definable group with an injective type-definable isomorphism L→ G(d ) then G
contains a finite index definable subgroup isomorphic to Fα for some α. Here d and Fα
are as in the previous proposition.

Weend this section by remarking that in the cases analysed the description of type-
definable p-adic groups shows in particular that G00 is the group of infinitesimals.
Were the group of infinitesimals is defined as the kernel of the standard part map
st :G(d )→G(d )(Qp) which sends (x,y) to a point (x′,y′)∈Z2p such that v(x – x

′),
v(y – y′)>Z. This was already shown in [9, Section 2], in the more general case of a
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definably compact group definable with parameters in Qp. There one sees also that
G0 =G00. In this generality this equality is also seen alternatively as a consequence
of [11, Proposition 26.15].

§7. Subgroups of elliptic curves. In this section we calculate the type-definable
subgroups of an elliptic curve. We will use [12] and [13] as general references. We
start with a review of properties of elliptic curves.
Here we shall be interested in the Qp-points of an elliptic curve defined over Qp.

For convenience we will takeQp to be a monster model of the analytic language. We
will say definable to mean definable in the valued field language and Qanp -definable
to mean definable in the analytic language.
So assume one is given an equation of the form

y2+a1xy+a3y = x
3+a2x

2+a4x+a6 (1)

with a1, ...,a6 ∈Qp, such that it has nonzero discriminant ∆ 6= 0. See [12, p. 42] for
the definition of ∆. It is a polynomial with integer coefficients on the ai . Note also
the definition of the j-invariant as a quotient of another such polynomial and ∆.
Then one takes E(Qp) to be the set of pairs (x,y) ∈Q2p that satisfy this equation

and an additional point O (the point at the infinity). This is in bijection with the
projective closure of the variety defined by the equation in the plane, and this
is E(Qp) ⊂ P2(Qp), [X : Y : Z] ∈ E(Qp) if an only if Y 2Z + a1XYZ + a3YZ2 =
X 3+a2X

2Z+a4XZ
2+a6Z

3. This set E(Qp) has the structure of a commutative
algebraic group, in particular E(Qp) forms a group definable in Qp. See the Group
Law Algorithim III.2.3 of [12] for explicit formulas for the group law.
Now a change of variables x = u2x′+ r and y = u3y′+ u2sx′+ t for u,r,s,t ∈

Qp,u 6= 0 gives an algebraic group isomorphism of E(Qp) and E ′(Qp), where E
′ is

given by coefficients a′i given in Chapter III Table 3.1 of [12] ( u
ia′i are polynomials

with integer coefficients on ai,s,t,r). Also included there is the relation on the
discriminants u12∆′ = ∆.
After a change of variables we can make ai ∈ Zp. Among all the equations

obtained by a change of variables there is one such that ai ∈Zp and v(∆) is minimal.
This is because the set of such v(∆) is a definable set of Z and so has a minimum.
An equation making v(∆) minimal is called a minimal Weierstrass equation.
Take now an elliptic curve given by aminimalWeierstrass equation. Then one can

reduce the coefficients of this minimal equation and obtain a projective algebraic
curve over Fp. We take the set of Fp-points to be Ẽ(Fp) the set of pairs (x,y) ∈ F2p
satisfying the reduced Weierstrass equation, together with a point at infinity. We
obtain a map E(Qp)→ Ẽ(Fp). If the minimal Weierstrass equation used to define
Ẽ is f(x,y) with discriminant ∆, then if v(∆) = 0 we conclude the Ẽ is an elliptic
curve defined over Fp and in this case the curve is said to have good reduction.

Otherwise set Ens(Fp) the set of pairs (x,y) ∈ F2p in E(Fp) such that
∂
∂x f̄(x,y) 6= 0

or ∂∂y f̄(x,y) 6= 0, together with the point at infinity. Then E(Fp)\Ens(Fp) consists
of a single point (x0,y0), see Proposition III.1.4 of [12]. Also Ens(Fp) is group.

If f̄(x – x0,y – y0) = y
2+ ā′1xy – ā

′
2x
2 – x3, then if d = (ā′1)

2+4ā′2 = 0, one gets
Ens(Fp) ∼= (Fp,+) and the curve is said to have additive reduction. If d 6= 0 and
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d is not a square, then Ens(Fp) ∼= {a ∈ F×

p2
| NF

p2
/Fp (a) = 1} is a one dimensional

twisted torus as in Section 6, andE is said to have non-split multiplicative reduction.
If d 6= 0 and d is a square then Ens(Fp) ∼= (F×

p ,×), and E is said to have split
multiplicative reduction. See proposition III.2.5 of [12] for the definition of this
group structure and the isomorphisms indicated (together with Exercise III.3.5 for
the non-split multiplicative case). Notice that the set of ai such that they form a
minimal Weierstrass equation of one of these reduction types, forms a definable set.
One defines in any case E0(Qp) to be the inverse image of Ẽns(Fp) under the

reductionmapE(Qp)→ Ẽ(Fp). ThenE0(Qp) is a subgroupofE(Qp) andE0(Qp)→
Ẽns(Fp) is a surjective group morphism. See Proposition VII.2.1 of [12]. There this
is proved forQp but the same proof works in this case also. One defines also E1(Qp)
to be the kernel of this map.
We have on E1(Qp) a filtration by subgroups E1,α(Qp) with α ∈ Z>0 defined by

{(x,y)∈E1(Qp) | y 6=0,v(xy )≥α} togetherwith the point at infinity. Forp 6=2 there
is an isomorphism inQanp fromE1(Qp) to (pZp,+), and this isomorphism sendsDα
to E1,α . For p = 2 the set E1,2(Q2) has index 2 in E1(Q2) and it is isomorphic inQ

an
2

to (4Z2,+), with an isomorphism which takesDα toE1,α for α ≥ 2. See Section IV.1
of [12] and Theorem IV.6.4 of [12]. We use here that Qp is elementarily equivalent
to Qanp to apply these results to Qp.
As a consequence of Tate’s algorithm we have that for any elliptic curve

defined over Qp with good, additive or non-split multiplicative reduction the group
E(Qp)/E0(Qp) is finite of order≤ 4, and if it has split multiplicative reduction then
v(j(E)) < 0, see Section IV.9 in [13]. As Qp is elementary equivalent to Qp we see
that this is also true of Qp. Finally if E(Qp) has split multiplicative reduction then
then there exists an isomorphism O/〈a〉 ∼= E(Qp) in Qanp where O = O(a) is as in
Section 5. See Chapter V.5 in [13].
Now we will give the type-definable subgroups of H =O/〈a〉, up to a subgroup

of bounded index. A more complete list can be found in [1].
We have O→H the canonical morphism, and its restriction to o(a) is injective

(see Section 5 for notation). Then we have the short exact sequence 1→ o(a)→
H → R/Z → 1. Let L ⊂ H be a type-definable subgroup. Taking the intersection
with o(a) we may assume L⊂ o(a). Now L is as in Section 5.
This is already enough to obtain an analogue of Proposition 5.5 for the language

Qanp . We end this section by showing that the groups obtained in this proposition
are already definable in Qp (up to isomorphism).
Take q ∈ Q×

p with v(q) > 0. Then the uniformization map (X,Y ) : Q
×
p → Eq of

Section V.3 of [13] is given by X (u,q) = u
(1–u)2

+
∑

d≥1(
∑

m|d m(u
m + u–m – 2)qd ,

and Y (u,q) = u2

(1–u)3
+

∑

d≥1(
∑

m|d (
1
2m(m – 1)u

m – 12m(m+1)u
–m +m))qd , for –

v(q) < v(u) < v(q) and u 6= 1. See page 426 of [13]. If u = 1+ t for v(t) > 0, then
v(X (u,q)) =– 2v(t) and V (Y (u,q)) =– 3v(t). Recalling that the uniformizing map
maps Z×

p onto E0(Qp) and U1 onto E1(Qp), see Section V.4 of [13], we conclude
that it maps Uα onto E1,α(Qp). Then the map O → E(Qp) does the same. We
return to Qp. If ad =

∑

m|d m(u
m+u–m – 2) then for u such that 1 ≤ v(u) ≤ r and

2r < v(q) we have v(ad ) ≥– dv(u) ≥– dr and v(adqd ) ≥ d (v(q) – r) > r ≥ v(u) =
v( u
(1–u)2

). So v(X (u,q)) = v(u). Similarly from the power series for Y (u,q) one gets
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v(Y (u,q))= 2v(u), for 1≤ v(u)≤ r and 3r< q. If r ∈Z is such that 1≤ r,3r< q, then
the uniformizing map maps Sr = {x ∈ Q×

p | v(x) = r} into Vr = {(x,y) ∈ E(Qp) |
v(x+y) = v(x) = r < v(y)}. On the other hand we know that Vr is an E0(Qp)-
coset, see Lemma V.4.1.4 of [13] (and the discussion preceding it). We conclude
that Sr maps onto Vr . We see then that the image Tr = {x ∈Q×

p | 1≤ v(x)≤ r} in
E is definable (in r and q). So the same is true in Qp. We see then that the image
of v–1[– r,r] ⊂ O in E is definable as a union u(Tr)∪E0 ∪ u(Tr)–1. We conclude
that the image of o(a) ⊂ O is type-definable and Proposition 2.4 applies. I will
call the resulting group OE , and it is a disjoint union of definable sets with a Q

an
p -

isomorphism w :O→OE . Call the image of o(a) in OEoE , which is type-definable.
Then by compactness there is a definable set S which contains oE and which maps
injectively into E. By compactness S contains the image of a v–1[– r,r] for an r ∈ Z
with r /∈ o(v(a)) and 0≤ r,3r < v(a). Now by definability of u(v–1[0,s]) and u(Uα)
in E for 0 ≤ s ≤ r, we conclude that w(v–1[0,s]) and w(Uα) are definable in OE .
Now for any s,s ′ ∈ v(O) the set v–1[s ′,s] is a finite product of the sets v–1[0,t]
and their inverses, so wv–1[s ′,s] is also definable. We define the group HE(b) for
b ∈OE with vw–1(b)> Z as having underlying set wv–1[0,v(b)) and multiplication
c ·HE (b) c′ = cc′ if vw–1(cc′)<v(b) and cc′b–1 if vw–1(cc′)≥ v(b). This is a definable
group and w induces aQanp -definable isomorphismH (b)

∼=HE(w(b)). We have also
a definable group isomorphism OE(b)/〈b〉 ∼=HE(b).

Proposition 7.1. Let E be an elliptic curve with split multiplicative reduction, G
an interpretable group, and L ⊂ G a type-definable subgroup of bounded index. Let
φ : L→ E be an injective type-definable group morphism. Then G has a finite index
interpretable subgroupH ⊂G which is definably isomorphic to 0,E1,α orOE(b)n/〈bn〉.

Proof. φ(L) is a type-definable subgroup of E, so after restricting to a bounded
index type-definable subgroup φ(L)⊂ oE(a). So as in the proof of Proposition 5.5
we see that the restriction of the inverse of φ to a finite index type-definable subgroup
extends to a definable group morphism OE(b)

n→H with kernel 〈bn〉 or E1,α →H
with trivial kernel, onto a finite index subgroup H definable subgroup of G. ⊣

§8. One dimensional groups definable in Qp. Here we list the one dimensional
definable groups, up to finite index subgroups and quotient by finite kernel. This is
the main theorem of the document.

Proposition 8.1. If G is a one dimensional group definable in Qp, then there exist
subgroups K ⊂ G ′ ⊂ G such that G ′ is definable of finite index in G, K is finite, G ′ is
commutative, and G ′/K is definably isomorphic to one of the following groups :

1. (Qp,+).
2. (Zp,+).
3. ((Q×

p )
n,·).

4. (Uα,·). Where Uα = {x ∈Q×
p | v(1 – x)≥ α}.

5. O(a)n/〈an〉 as defined in Section 5.
6. Fα . Where Fα = {

[

x dy
y x

]

| x2 – dy2 = 1,v(1 – x) ≥ α,v(y) ≥ α} and d ∈
Q×
p \ (Q×

p )
2, and v(d )≥ 0.
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7. E1,α . For E an elliptic curve.
8. OE(b)

n/〈bn〉. For E a Tate Elliptic curve.
The definitions of E1,α and OE(b) are in Section 7.

Proof. By Proposition 1.2, we may assume G is commutative, and Theorem 1.1
applies. So we get a type-definable bounded index group T ⊂ G and an algebraic
groupH and a type-definable group morphism T →H with finite kernel. Replacing
H by the Zariski closure of the image of T → H we may assume H is a one-
dimensional algebraic group. Replacing H by the connected component of the
identity (which is a finite index algebraic subgroup) we assume thatH is a connected
algebraic group. Then H is isomorphic as an algebraic group to the additive group
or the multiplicative group or the one dimensional twisted torus or an elliptic
curve. These cases are dealt with in Propositions 4.8 5.5, and 6.2, Section 7, and
Proposition 7.1 for the Tate curve case. ⊣
We remark that Proposition 8.3 below implies that the finite kernel is unnecessary

in all cases except maybe the lattice ones 5) and 8). In these cases I do not know if
it is necessary.

Proposition 8.2. SupposeK ⊂G are abelian groups and consider the conditions :
1. G is a Hausdorff topological group and K is compact.
2. nG ∩K = nK .
If 1) occurs, then the injection of abstract groupsK→G splits if and only if condition

2) occurs.
If K is finite then 1) is true for the discrete topology in G. IfG/K is torsion free then

2) is true.

Proof. Assume 1). Suppose that 0→K→G→G/K→ 0 splits. Then tensoring
by Z/nZ remains exact, which is exactly 2).
Now assume 1) and 2). Choose a set theoretic section φ : G/K → G . Then the

set of all such sections is in bijective correspondence with the maps KG/K , and
the set of group sections is closed in the product topology. As KG/K is a compact
topological space it is then enough to show that for all finitely generated subgroups
A⊂G/K the map ð–1A→A splits, that is, without loss of generalityG/K is finitely
generated. Take Zn → G/K is a surjective group homomorphism and α : Zn → G
is a lift. Then after a base change one may assume that the kernel of Zn → G/K is
T = n1Z×···×nrZ. From the assumption we conclude that there exists â : Zn→K
such that α – â has kernel T. That is, α – â factors as a section G/K → G as
required. ⊣
We note that condition 2) is equivalent to universal injectivity of the map of Z-

modulesK→G , and replacing this condition for universal injectivity of topological
R-modules it remains true that it is equivalent to splitting. SimilarlyG/K is torsion-
free if and only if it is flat as a Z-module, and this implies condition 2) in the setting
of R-modules too.
We note also that if G is an invariant abelian group (or R-module) with relatively

type-definable product and K is a type-definable subgroup of bounded index the
proposition is also true using logic compactness in the proof.
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Proposition 8.3. Take L a definable abelian group in some language. Assume
A⊂ L is the torsion part of L and is finite. Assume that for every n [L : nL] is finite.
Then A→ L is split injective and any retraction L→ A is definable.
Proof. As A is the torsion part, L/A is torsion free. So by Proposition 8.2 we

obtain that A→ L is split injective. If L→ A is a retraction then it factors through
nL for n =CardA, so it is definable. ⊣
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