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Non-Gaussianity in turbulent relative dispersion
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We present an extension of Thomson’s (J. Fluid Mech., vol. 210, 1990, pp. 113–153)
two-particle Lagrangian stochastic model that is constructed to be consistent with the
4/5 law of turbulence. The rate of separation in the new model is reduced relative
to the original model with zero skewness in the Eulerian longitudinal relative velocity
distribution and is close to recent measurements from direct numerical simulations of
homogeneous isotropic turbulence. The rate of separation in the equivalent backwards
dispersion model is approximately a factor of 2.9 larger than the forwards dispersion
model, a result that is consistent with previous work.
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1. Introduction
The dispersion of pairs of particles remains an active field of research in the study

of turbulence. Not only does it continue to hold much theoretical interest, it has
important practical applications through the connection between relative dispersion
and both concentration fluctuations and mixing.

Simple models of relative dispersion play an important role in understanding the
physical processes involved. One such model is a Lagrangian stochastic model (LSM):
the central assumption of such models is that the position and velocity of a pair of
marked particles can be treated jointly as a continuous Markov process (Thomson
1987; Wilson & Sawford 1996). This is a reasonable assumption for the inertial
subrange of turbulence. Thomson (1990) developed an LSM for relative dispersion
assuming that the two-point velocity distribution is Gaussian; here we extend it to
the non-Gaussian case.

The celebrated Kolmogorov four-fifths law is arguably the simplest manifestation
of the non-Gaussian nature of turbulence. It is also one of the few exact results in
three-dimensional (3-D) isotropic turbulence and is strongly linked to the cascade of
energy from large to small scales. It should therefore be part of any model of turbulent
relative dispersion.

A non-zero third-order moment has been incorporated into quasi-one-dimensional
(Q1D) models of relative dispersion (Kurbanmuradov 1997; Borgas & Yeung 2004).
These models represent the longitudinal relative velocity, u‖, of a pair of particles but
assume that the transverse velocity component plays no role in the evolution of u‖
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and hence no role in the evolution of the distance between the two particles. Pagnini
(2008) has shown that the longitudinal and transverse velocity components are not
statistically independent, which would also be inconsistent with the Navier–Stokes
equations. This drawback of Q1D models is the reason these models predict much
larger rates of separation than are commonly found experimentally, from direct
numerical simulations (DNS) of homogeneous isotropic turbulence or indeed from a
Gaussian two-particle LSM such as that of Thomson (1990).

The limitations of Q1D models have been addressed by the development of quasi-
two-dimensional (Q2D) models of relative dispersion (Pagnini 2008; Sawford & Yeung
2010) which include the transverse component of the relative velocity as well as the
longitudinal one. These models have successfully shown that the rate of separation
is slower compared with Q1D models. However, unlike Q1D models, Q2D models
are not unique (even if, as here, we only consider models with position and velocity
evolving jointly as a diffusion process with specified random forcing).

In this study we restrict attention to relative dispersion in the inertial subrange
of 3-D isotropic turbulence. We also assume that the flow is incompressible and
quasi-stationary (with any non-stationarity being on a slow time scale compared to
the time scales of interest). In the next section we introduce the LSM and show
that, by transforming to spherical polar coordinates, the 3-D model reduces to a
Q2D model (if knowledge of the absolute separation is all that is required). We
propose an analytical form of the probability density function (p.d.f.) of the Eulerian
longitudinal velocity difference that satisfies Kolmogorov’s four-fifths law and use
this to derive an analytical form of the model. This model is formulated to have an
infinite inertial subrange. The solution of the LSM is investigated numerically for
both forwards and backwards dispersion. Finally, in § 6, we consider the differences
that occur when the analytical non-Gaussian longitudinal relative velocity p.d.f. is
replaced with a numerical one (with a finite inertial subrange) taken from a DNS of
relative dispersion.

2. Lagrangian stochastic model
Since we are primarily interested in the relative dispersion statistics, we consider

only the relative velocity, u, and separation, x, of a pair of particles. The evolution
of (x, u) is assumed to be governed by

dui = ai(x, u, t) dt+
√

2C0ε dWi(t), i= 1, . . . , 3
dxi = ui dt,

}
(2.1)

where dW is the increment of a vector-valued Wiener process, ε is the mean
dissipation rate and C0 is the constant of proportionality in the second-order
Lagrangian velocity structure function. The well-mixed condition (Thomson 1987)
constrains the model to be consistent with the Eulerian velocity statistics and leads
to an appropriate form for the drift term a. In more than one dimension, however,
the well-mixed condition does not constrain the drift term uniquely.

For an ensemble of pairs with a given distribution of x and u at time t′, the joint
p.d.f. of (x,u) at time t, p(u, x, t), satisfies the Fokker–Planck equation corresponding
to (2.1):

∂p
∂t
+
∂uip
∂xi
+
∂aip
∂ui
=C0ε

∂2p
∂u2

i
. (2.2)

By considering the ensemble of all pairs and noting that, for this ensemble, p(u, x, t)
is proportional to the Eulerian relative velocity p.d.f. pE(u, x, t), it follows that the
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value of a in the model should be such that pE(u, x, t) satisfies (2.2). Following
Thomson (1987, 1990) and Sawford & Yeung (2010), we write a = a(1) + a(2) and
partition (2.2) for p= pE so that

a(1)i =C0ε
∂ ln pE

∂ui
(2.3)

and a(2) satisfies
∂pE

∂t
+
∂uipE

∂xi
+
∂a(2)i pE

∂ui
= 0. (2.4)

If we write a(2)i = 〈Dui/Dt|u, x, t〉 where D/Dt is the material derivative, equation
(2.4) is the exact transport equation for pE (see e.g. Pope 2000, p. 704). (Despite
(2.4) not determining a(2) uniquely, it is correct to identify a(2) with the conditional
mean acceleration. This can be seen by noting that, in the (forwards) model and
the equivalent backwards model (see Thomson (1987), § 3.4), a(2) is the average of
the mean accelerations in the forwards and backwards models for pairs at (x, u, t),
that is, for a well-mixed distribution of pairs, a(2) is the average of the model
mean accelerations at t− and t+. However a(2) is not the model mean conditional
acceleration at t+. This is an artefact of the non-differentiability of the velocity in
the model.) Specifying either pE or 〈Dui/Dt|u, x, t〉 constrains the form of a(x, u, t),
with a uniquely determined in the latter case but not in the former. Here, we will
specify the form of pE to constrain a.

2.1. LSM in spherical polar coordinates
From here on, it is more convenient to work in terms of spherical polar coordinates.
The transformation of (2.1) is given by Ito’s formula

df (x̃)=
(

ãi
∂f
∂ x̃i
+

1
2
(b̃b̃

T
)ij

∂2f
∂ x̃i∂ x̃j

)
dt+ b̃ij

∂f
∂ x̃i

dWj i, j= 1, . . . , 6 (2.5)

for any function f (x̃) where x̃= (x1, x2, x3, u1, u2, u3), ã= (u1, u2, u3, a1, a2, a3) and
b̃=
√

2C0ε diag(0, 0, 0, 1, 1, 1). Specifying the basis vectors as

er =
x
r
, eθ = cos θ cos φi+ cos θ sin φj− sin θk, eφ =−sin φi+ cos φj, (2.6a−c)

where θ = arccos(x3/r) and φ = arctan(x2/x1) are the polar and azimuthal angles
respectively, we define the components of u in spherical polar coordinates as

u‖ = u · er, u⊥ = u · eθ , u` = u · eφ, (2.7a−c)

where u‖ is the longitudinal component and u⊥ and u` are the transverse components.
Using (2.5), we can obtain a stochastic differential equation (SDE) for any function
of x̃. The SDEs for u‖, u⊥ and u` are given by

du‖ = a‖dt+
√

2C0ε dW‖, (2.8)
du⊥ = a⊥ dt+

√
2C0ε dW⊥, (2.9)

and
du` = a` dt+

√
2C0ε dW`, (2.10)
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where

a‖ = a · er + u · ėr =
a · x

r
+

u2
⊥
+ u2

`

r
, (2.11)

a⊥ = a · eθ + u · ėθ = a · eθ +
u2
`

cos θ
r sin θ

−
u‖u⊥

r
, (2.12)

and
a` = a · eφ + u · ėφ = a · eφ −

u‖u`
r
−

u⊥u` cos θ
r sin θ

, (2.13)

with dW‖ = dW · er, dW⊥ = dW · eθ and dW` = dW · eφ . We see that a‖, a⊥ and a`
are equal to the component of a in the relevant direction plus a ‘metric’ term arising
from the curved coordinate system. The SDE for the absolute perpendicular velocity,
up =

√
u2
⊥ + u2

`, is given by

dup = ap dt+
√

2C0ε dWp, (2.14)

where
ap = a ·

u− u‖x/r
up

+
C0ε

up
−

u‖up

r
(2.15)

and dWp = dW · (u − u‖x/r)/up. The SDEs for r, θ and φ are simply dr = u‖ dt,
dθ = (u⊥/r) dt and dφ = (u`/r sin θ) dt. Because of our assumption of isotropy, pE
depends only on u‖, up and r and, to ensure a is consistent with our assumption of
isotropy, a‖ and ap must be chosen to depend only on u‖, up and r. Thus, in isotropic
turbulence, equations (2.8), (2.14) and dr = u‖ dt are sufficient for determining the
relative dispersion statistics. In effect, the 3-D model has been reduced to a Q2D
model.

The Fokker–Planck equation corresponding to (2.8)–(2.10) and the equations for dr,
dθ and dφ is

∂ p̂
∂t
+
∂u‖p̂
∂r
+
∂(u⊥/r)p̂
∂θ

+
∂(u`/r sin θ)p̂

∂φ
+
∂a‖p̂
∂u‖
+
∂a⊥p̂
∂u⊥
+
∂a`p̂
∂u`
=C0ε∇

2
u p̂. (2.16)

Here p̂ is the density function of the distribution of all pairs in (r, θ, φ, u‖, u⊥, u`)-
space and equals r2 sin θ p(u, x, t), with r2 sin θ being the Jacobian of the
transformation between the two coordinate systems, while ∇2

u denotes ∂2/∂u2
‖
+

∂2/∂u2
⊥
+ ∂2/∂u2

`
. This can also be derived by transforming (2.2) to the new coordinate

system (Risken 1989, pp. 88–91). Note that, if we regard the (x1, x2, x3, u1, u2, u3)-
coordinate system as orthogonal, then the (r, θ, φ, u‖,u⊥,u`)-coordinate system is non-
orthogonal. This is because if we consider a vector along a trajectory with either θ or
φ changing and with the remaining coordinates in the (r, θ, φ, u‖, u⊥, u`)-coordinate
system held constant (i.e. what one might call a vector in the θ or φ direction), then
this vector has components in some of the (u1, u2, u3) directions as well as in the
(x1, x2, x3) directions (i.e. (u1, u2, u3) changes along the trajectory). Hence we cannot
use results for orthogonal coordinate systems to make the transformation. As with
(2.2), the model should be such that (2.16) is satisfied by p̂E = r2 sin θpE. Because of
isotropy, pE has no dependence on θ and φ (for fixed r, u‖, u⊥ and u`) and so, for
stationary turbulence, we obtain

∂u‖p̂E

∂r
+

u⊥p̂E cos θ
r sin θ

+
∂a‖p̂E

∂u‖
+
∂a⊥p̂E

∂u⊥
+
∂a`p̂E

∂u`
=C0ε∇

2
u p̂E. (2.17)
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It is convenient, in our new coordinate system, to follow the split a = a(1) + a(2)
introduced above and to split a‖, a⊥ and a` into (i) terms proportional to C0 which
balance the right-hand side of (2.17), (ii) metric terms arising from ėr, ėθ and ėφ
and (iii) terms related to the conditional mean accelerations (the metric terms have
no equivalent in the Cartesian coordinate system used above), giving

a‖ =C0ε
∂ ln pE

∂u‖
+

u2
⊥
+ u2

`

r
+ a′

‖
, (2.18)

a⊥ =C0ε
∂ ln pE

∂u⊥
+

u2
`

cos θ
r sin θ

−
u‖u⊥

r
+ a′

⊥
(2.19)

and

a` =C0ε
∂ ln pE

∂u`
−

u‖u`
r
−

u⊥u` cos θ
r sin θ

+ a′
`
. (2.20)

Conceptually, in Cartesian coordinates, a is both the conditional mean acceleration
vector in the immediate future and the deterministic term in the SDE, with a(2)
corresponding to the conditional mean acceleration at the current time and a(1) being
the difference between that and the conditional mean acceleration in the immediate
future. In the non-Cartesian coordinates, the conditional mean acceleration vector in
the immediate future and the deterministic term in the SDE are no longer equal, with
the metric terms reflecting this difference, and with the C0 terms and (a′

‖
, a′
⊥
, a′
`
)

being the vectors a(1) and a(2) re-expressed in terms of er, eθ and eφ .
Because of isotropy, pE and a′

‖
must depend only on u‖, up and r (as noted above).

Isotropy also implies that (a′
⊥
, a′
`
) = (u⊥, u`)A′ for some A′ (since (u⊥, u`) defines

the only possible direction for (a′
⊥
, a′
`
)) with A′ depending only on u‖, up and r. We

note that A′= a′p/up where a′p is the non-C0 and non-metric part of ap. It follows that
a′
‖

and A′ should satisfy

∂u‖r2uppE

∂r
+

∂

∂u‖

(
a′
‖
+

u2
p

r

)
r2uppE +

∂

∂up
up

(
A′ −

u‖
r

)
r2uppE = 0 (2.21)

(here r2uppE is the density function of the well-mixed distribution in (r, u‖, up)-space).
Our approach to designing the model is to choose a form for pE and then select a′

‖

and A′ to be consistent with (2.21). We can choose either A′ or a′
‖

and then calculate
the other quantity by integrating (2.21). We assume that pE is well behaved in the
sense of tending to zero sufficiently rapidly as u‖ or up→∞ and remaining bounded
as up→ 0. We also assume that the chosen value of a′

‖
(or of A′) gives zero fluxes

at infinite velocity (and, for A′, across the boundary at up = 0). However this also
needs to be true for the calculated quantities, that is, if a′

‖
is calculated, we require

that a′
‖
pE tends to zero at both u‖ =−∞ and u‖ =∞ while, if A′ is calculated, we

require that u2
pA′pE tends to zero at both up= 0 and up=∞. One of these limits can

be satisfied by adjusting the constant of integration, but satisfying both limits imposes
a restriction on the initial choice of A′ (or a′

‖
). A′ needs to satisfy

∂

∂r

∫
∞

−∞

u‖r2uppE du‖ +
∂

∂up

∫
∞

−∞

up

(
A′ −

u‖
r

)
r2uppE du‖ = 0, (2.22)
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while a′
‖

needs to satisfy

∂

∂r

∫
∞

0
u‖r2uppE dup +

∂

∂u‖

∫
∞

0

(
a′
‖
+

u2
p

r

)
r2uppE dup = 0. (2.23)

We note that the second of these constraints amounts to saying that the model must
satisfy the well-mixed condition for a Q1D model when averaged over up.

2.2. The Eulerian p.d.f. pE and the model functions a′
‖

and A′

There is considerable freedom in designing the model, both in the choice of pE and
the choice of a′

‖
and A′. Although these choices could be based on experimental data,

as investigated by Sawford & Yeung (2010), our main aim here is to investigate the
usefulness of relatively simple idealised model formulations. We discuss a range of
idealisations, including cases where pE is separable, either in terms of u‖ and up or
in terms of u‖, u⊥ and u`; cases with Gaussian velocity distributions, either just for
u⊥ and u` or for u‖, u⊥ and u`; cases where a′

⊥
and a′

`
are quadratic functions of

velocity; and cases where the model reduces to a Q1D model. We then describe a
particular set of choices to be used for the model simulations presented below.

A natural simplification is to assume that pE is separable in u‖ and up and can be
written as

pE(u‖, u⊥, u`)=
pu‖(u‖)pup(up)

2πup
. (2.24)

A consequence of this assumption is that any dependence of the transverse and
longitudinal velocity components on each other that may exist in reality cannot be
taken into account. This cannot be an exact assumption because it implies that the
fixed-point moment 〈u‖u2

p〉 is zero, while, in the inertial subrange, Kolmogorov’s
four-fifths law 〈u3

‖
〉 = −(4/5)εr combined with incompressibility implies otherwise

(Pagnini 2008, p. 365). In addition, evidence from DNS indicates that the p.d.f.
of up conditional on u‖ depends strongly on u‖ (Sawford & Yeung 2010). These
results imply that pE(u) is not separable. However, we assume (2.24) in order
to make the model tractable; it will be of interest to see how well the model
performs despite this limitation. A consequence of this assumption is that because
〈u · Du/Dt〉 = 3(〈u3

‖
〉 + 〈u‖u2

p〉)/(2r) in the inertial subrange of turbulence (for both
reality and LSMs of the type considered here), our model cannot satisfy both the
four-fifths law and the result that in the inertial subrange 〈u · Du/Dt〉 = −2ε (Mann,
Ott & Andersen 1999).

A further possible assumption is that the p.d.f. of (u⊥, u`) is separable with u⊥ and
u` being independent:

pup(up)= 2πuppu⊥(u⊥)pu`(u`). (2.25)

Because of isotropy and the circular symmetry of u⊥ and u`, a consequence of the
assumption that u⊥ and u` are independent is that pu⊥ and pu` are Gaussian (e.g.
Papoulis 1991, p. 134). It is, of course, equivalent to assume directly that pu⊥ and
pu` are Gaussian. We denote the common variance of u⊥ and u` by σ 2

⊥
.

Even once pE is specified, there is still a lot of freedom in choosing a′
‖

and A′. We
consider choices where the transverse terms a′

⊥
and a′

`
are quadratic in the velocity

components. This implies A′ is equal to u‖ times a function of r i.e.

(a′
⊥
, a′
`
)= (u⊥, u`)A′ = (u⊥, u`)u‖φ(r) (2.26)
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(although, as for the Gaussian case, this still does not imply a unique model, with
φ still to be determined). This choice is often made in models where pE is assumed
to be Gaussian (Thomson 1987; Borgas & Sawford 1994). It includes a broad class
of Q1D models (see discussion below), and is, when combined with the (u‖, up)-
separability assumption, a convenient way of ensuring that (2.22) is satisfied. When
(2.26) is combined with the (u‖, up)-separability assumption, equation (2.21) implies

a′
‖
=−

u2
p

r
−

1
pu‖

(
∂ ln p̃up

∂r
+
∂

∂r
+ 2φ(r)+ up

(
φ(r)−

1
r

)
∂ ln p̃up

∂up

) ∫ u‖

−∞

u′
‖
pu‖(u

′

‖
) du′

‖
,

(2.27)
where p̃up = pup/2πup and we have used the condition that the flux a′

‖
pu‖ must tend to

zero as u‖→−∞. Note that, if we had chosen a′
⊥

or a′
`

to contain a term which is
linear in the velocity components, then A′ would have a term which is a function of
r only, which would give rise to a term in a′

‖
that increases rapidly as u‖→∞ with

the flux a′
‖
pu‖ not tending to zero in this limit. Also, because (a′

⊥
, a′
`
)= (u⊥, u`)A′, it

is impossible to include a constant term in a′
⊥

or a′
`
. We remark that, with the choice

(2.26) and with a′
‖
pu‖→ 0 as u‖→−∞, the flux also tends to zero as u‖→∞. If we

had chosen to assume a′
‖
pu‖→ 0 as u‖→∞, then the integral on the right-hand side

of (2.27) would be replaced by −
∫
∞

u‖
. This is equivalent because pu‖ has mean zero.

In the case of Gaussian transverse velocity components, or equivalently with the
assumption of (u‖, u⊥, u`)-separability, equation (2.27) becomes

a′
‖
=−

u2
p

r
−

1
pu‖

(
∂

∂r
+

u2
p

σ 2
⊥r
+

(
φ(r)−

1
2σ 2
⊥

dσ 2
⊥

dr

)(
2−

u2
p

σ 2
⊥

))∫ u‖

−∞

u′
‖
pu‖(u

′

‖
) du′

‖
.

(2.28)
If we further assume that pu‖ is Gaussian with variance σ 2

‖
, equation (2.28) becomes

a′
‖
=−

u2
p

r

(
σ 2
⊥
− σ 2

‖

σ 2
⊥

)
+

dσ‖
dr

(σ 2
‖
+ u2

‖
)

σ‖
+

(
φ(r)−

1
2σ 2
⊥

dσ 2
⊥

dr

)
σ 2
‖

(
2−

u2
p

σ 2
⊥

)
. (2.29)

In this case, the model of Thomson (1990) corresponds to

φ(r)=−
σ 2
⊥
− σ 2

‖

2σ 2
‖ r
+

1
2σ 2
⊥

dσ 2
⊥

dr
=−

1
2σ‖

dσ‖
dr
+

1
2σ 2
⊥

dσ 2
⊥

dr
, (2.30)

where the last equality is a consequence of incompressibility. This form of φ(r) also
ensures that a′

⊥
and a′

`
agree with Thomson (1990) regardless of whether the model

is Gaussian or not. We note that the form of φ(r) that corresponds to the model of
Borgas (Sawford & Guest 1988; Borgas & Sawford 1994, equation (4.2a)) is given
by

φ(r)=−
σ 2
⊥
− σ 2

‖

σ 2
‖ r
=−

1
σ‖

dσ‖
dr
. (2.31)

For the (u‖, u⊥, u`)-separable case, and also for the (u‖, up)-separable case with the
restriction that the shape of pup is independent of r, we note that, with the quadratic
assumption (2.26) and the choice

φ(r)=
1

2σ 2
⊥

dσ 2
⊥

dr
+

1
r
, (2.32)
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we have

a′
‖
=−

u2
p

r
−

1
pu‖

(
∂

∂r
+

2
r

) ∫ u‖

−∞

u′
‖
pu‖(u

′

‖
) du′

‖
(2.33)

(from (2.28) or (2.27)). In the case where pu‖ is Gaussian, we then have

a′
‖
=−

u2
p

r
+

dσ‖
dr

(σ 2
‖
+ u2

‖
)

σ‖
+

2σ 2
‖

r
(2.34)

(from (2.29)). It follows that, for these cases, a‖ does not depend on up. In effect,
the separation process has become one-dimensional. Indeed, in this case the model
reduces to the Q1D model of Kurbanmuradov (1997, equations (3.1), (4.7) and (4.8)).
It can be shown that, provided pE is separable in u‖ and up, then, for Q1D models, the
quadratic assumption (2.26) holds if and only if the shape of pup(up) is independent of
r, and in such cases (2.32) is satisfied. The Q1D model is known to overestimate the
growth rate of an ensemble of particle pairs in the inertial subrange of homogeneous
isotropic turbulence (Kurbanmuradov 1997; Sawford & Yeung 2010; Devenish &
Thomson 2011) and, along with the limitations of Q1D models discussed in § 1,
suggests (2.32) is not an appropriate choice for formulating quantitatively realistic
LSMs.

We note that, for models based on (2.25) and (2.26) in the classical self-similar
inertial subrange, we have φ(r)= φ̂/r for some constant φ̂. Together with pu‖ and C0,
the value of φ̂ characterises the model and is equal to −1/3, 1/6 and 4/3 for the
Borgas, Thomson and Q1D models respectively.

2.3. Model formulation
We now describe the model configuration chosen for our numerical simulations. We
assume (u‖, u⊥, u`)-separability of pE with the quadratic assumption (2.26) and we
choose φ(r) to take the form given in (2.30) so that the non-Gaussian model reduces
to that of Thomson (1990) in the case that pu‖ is Gaussian. This avoids the Q1D
assumption and allows us to include the important skewness in the longitudinal
velocity distribution, while providing a modelling framework without too many
remaining degrees of freedom (pu‖ remains to be specified). The (u‖, up)-separability
of pE is probably the weakest assumption here as this is known not to be exact.

The approach we follow in constructing an analytical form for pu‖ is that developed
for modelling single-particle dispersion in the convective atmospheric boundary layer.
For the convective atmospheric boundary layer the p.d.f. is positively skewed, i.e.
there is a relatively low probability of strong updraughts versus a high probability
of weak downdraughts, while for our application pu‖ is negatively skewed. Following
Baerentsen & Berkowicz (1984), Luhar & Britter (1989) and Hudson & Thomson
(1994) we superimpose two Gaussian distributions

pu‖ =

2∑
i=1

Ai
√

2πσu‖i
exp

(
−
(u‖ − u‖i)2

2σ 2
u‖i

)
, (2.35)

where Ai, σu‖i and u‖i are as yet unspecified functions of r. In order to determine these
unknowns and to construct a p.d.f. that gives the correct first three moments, pu‖ must
satisfy ∫

∞

−∞

du‖ pu‖(u‖)= 1, (2.36)
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∞

−∞

du‖u‖ pu‖(u‖)= 0, (2.37)∫
∞

−∞

du‖u2
‖

pu‖(u‖)= σ
2
‖

(2.38)

and ∫
∞

−∞

du‖ u3
‖
pu‖(u‖)=m3, (2.39)

where m3 is the third moment of u‖. This method is simply a way of fixing the first
three moments and is not expected to be accurate for higher-order moments.

With pu‖(u‖) given by (2.35), (2.28) becomes

a′
‖
pu‖ = −

u2
p

r
pu‖

+

2∑
i=1

{[
u2

p

σ 2
⊥r
+

1
Ai

dAi

dr
+

(
u2
‖

σ 2
u‖i
+ 1

)
1
σu‖i

dσu‖i

dr
+

u‖
σu‖i

d u‖i/σu‖i

dr

+

(
φ(r)−

1
2σ 2
⊥

dσ 2
⊥

dr

)(
2−

u2
p

σ 2
⊥

)]
σu‖iAiG

(
u‖ − u‖i
σu‖i

)

−

[
u2

p

rσ 2
⊥

+
1
Ai

dAi

dr
+

1
u‖i

du‖i
dr
+

(
φ(r)−

1
2σ 2
⊥

dσ 2
⊥

dr

)(
2−

u2
p

σ 2
⊥

)]

× u‖iAiΦ

(
u‖ − u‖i
σu‖i

)}
, (2.40)

where G is the p.d.f. of the normal distribution with unit variance and Φ(x) = (1 +
erf(x/

√
2))/2 is the corresponding cumulative distribution function. Note that the term

of the form 1 + erf on the right-hand side of (2.40) would become −1 + erf if the
integral on the right-hand side of (2.28) were replaced by −

∫
∞

u‖
. This is equivalent

because of (2.37). The term can also of course be written simply as erf. The use of
these different expressions in combination with asymptotic expansions of 1+ erf and
−1+ erf can be useful to get good numerical behaviour as u‖→±∞. As a check we
note this reduces to the Gaussian result (2.29) when we make pu‖ Gaussian by putting
u‖i = 0 and σu‖1 = σu‖2.

As is appropriate for the inertial subrange of 3-D (incompressible) turbulence we
take σ 2

‖
=C(εr)2/3 and σ 2

⊥
= (4/3)σ 2

‖
(e.g. Pope 2000, p. 193) with C, the Kolmogorov

constant, equal to 2 (e.g. Ishihara, Gotoh & Kaneda 2009). The third-order moment
follows Kolmogorov’s four-fifths law m3 = −(4/5)εr (e.g. Pope 2000, p. 204). It is
also assumed, following Baerentsen & Berkowicz (1984) and Luhar & Britter (1989),
that u‖1= σu‖1 and u‖2=−σu‖2. Analytical forms of Ai and σu‖i can then be found by
substituting (2.35) into (2.36)–(2.39) and solving for Ai and σu‖i. This gives

A1=
σu‖2

σu‖1 + σu‖2
, A2=

σu‖1

σu‖1 + σu‖2
, σu‖1=σu‖2+

γ

β
, σu‖2=

1
2

(√
γ 2

β2
+ 4β −

γ

β

)
,

(2.41a−d)
where

β = 1
2 C(εr)2/3, γ =− 1

5εr. (2.42a,b)
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3. Forwards dispersion model
The equations to be solved are

du‖ = a′
‖

dt+
u2

p

r
dt+C0ε

d ln pu‖

du‖
dt+

√
2C0ε dW‖, (3.1)

where a′
‖

is given by (2.40), with φ(r) given by (2.30), and

dup = φ(r)u‖up dt−
u‖up

r
dt+C0ε

(
1
up
−

up

σ 2
⊥

)
dt+

√
2C0ε dWp. (3.2)

DNS results suggest 5.C0 . 7 (e.g. Yeung 2002; Sawford & Yeung 2011). An Euler–
Maruyama method is used to integrate the equations numerically. The time step is
chosen adaptively according to

1t=min
[

C1
Cr2/3

C0ε1/3
,C2

r2/3

C1/2ε1/3
,C3

r
|u‖|

,C4
r
up
,C5

C1/2r1/3ε1/3

|a‖|
,C6

√
8C/3r1/3ε1/3

|ap|

]
.

(3.3)
The choice of time step comes from the following considerations (1x here indicates
the change in a quantity x over 1t with 1r meaning distance travelled, not necessarily
in the radial direction). For large C0, the eddy decorrelation time scale, τ(r), can be
defined precisely and is of order σ 2

‖
/C0ε ∼ Cr2/3/C0ε

1/3 (Thomson 1987; Sawford
2006). For the change in u‖,p due to the C0 terms to be adequately resolved, i.e.
1u‖,p� σ‖, we require 1t� τ and hence 1t�Cr2/3/C0ε

1/3. We also require 1r/r∼
σ‖1t/r ∼ C1/2ε1/31t/r2/3

� 1. The third and fourth terms on the right-hand side of
(3.3) come from similar considerations but using the actual velocity rather than the
velocity scale, with 1r∼ |u‖|1t or 1r∼ up1t. We also require 1u‖� σ‖. Thus, since
the change in u‖ due to a‖ is 1u‖∼ a‖1t, we obtain the fifth term on the right-hand
side of (3.3). Similarly, we require 1up �

√
2σ⊥ which gives rise to the final term

on the right-hand side of (3.3). We find that C1 = C2 = C3 = C4 = C5 = C6 = 10−2

produces adequate results including higher-order statistics such as the skewness and
kurtosis of r. The initial value of u‖ is chosen from the distribution (2.35) and the
initial value of up is chosen to be the square root of the sum of the squares of
two independent Gaussian random variables with zero mean and variance σ⊥. Model
statistics are computed with 106 pairs.

The mean conditional longitudinal acceleration, 〈du‖/dt|u‖, up; r〉 = a′
‖
+ u2

p/r, is
shown in figure 1 for both the non-Gaussian form of pu‖(u‖), given by (2.35), and the
Gaussian form of pu‖(u‖). Note that, as in Sawford & Yeung (2010), we do not include
the first term (proportional to C0) on the right-hand side of (2.18) in the calculation
of 〈du‖/dt|u‖, up; r〉 but we do include the metric term. Figure 1(b) clearly shows the
impact of superposing two Gaussian distributions to allow for non-zero skewness (see
(2.35)–(2.39)).

Once the initial separation, r0, is forgotten, the mean-square separation, 〈r2
〉, is

expected to grow like 〈r2
〉 = gεt3 where g is a constant. The value of g is much

sought after: both DNS and experimental values are subject to considerable uncertainty
due largely to the lack of a sufficiently long inertial subrange. To date, g≈0.5 is often
taken to be the best available estimate (e.g. Salazar & Collins 2009, and references
therein). Figure 2 shows results from the Gaussian and non-Gaussian versions of
the model for C0 = 6. We see that the effect of non-zero skewness in the Eulerian
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FIGURE 1. The mean longitudinal acceleration conditional on u‖ and up,
〈du‖/dt|u‖, up; r〉/(σ 2

‖
/r): (a) Gaussian pu‖(u‖); (b) non-Gaussian pu‖(u‖) as given

by (2.35).

102

101

100

101 103100

¯r
2 ˘/

Ót
3

102 10410-1

t/(r2/3/Ó1/3)0

FIGURE 2. The evolution of the mean-square separation, 〈r2
〉, compensated by εt3 for

C0 = 6: non-Gaussian forwards model (red solid line); non-Gaussian backwards model
(blue dashed line); Gaussian model (green dotted line). The horizontal black lines are the
values of g for each model: 0.425, 1.25 and 1.075 respectively.

velocity distribution is to reduce the value of g by approximately a factor of two.
(Figure 2 also shows results of the backwards dispersion model which are discussed
below.)

The skewness of r, Skr = 〈(r − r)3〉/〈(r − r)2〉3/2 where r is the mean separation,
and the normalised third-order moment of r, 〈̃r3〉 = 〈r3

〉/〈r2
〉

3/2, are shown in figure 3.
Since r can never decrease below zero, in both the Gaussian and non-Gaussian
cases the p.d.f. of r becomes positively skewed. In addition, in the non-Gaussian
case there is an increased probability of particles moving towards each other
with large velocities (compared with the Gaussian case). Hence, the skewness is
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FIGURE 3. As figure 2 but for the evolution of (a) the skewness of r, Skr, and (b)
the normalised third-order moment, 〈̃r3〉. The horizontal black lines in (a) are Skr =

±(4/5)/C3/2
≈±0.28.
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FIGURE 4. As figure 2 but for the evolution of (a) the kurtosis of r, Kur, and (b) the
normalised fourth-order moment, 〈̃r4〉.

reduced in the non-Gaussian case. Figure 4 shows the evolution of the kurtosis
of r, Kur = 〈(r − r)4〉/〈(r − r)2〉2, and the normalised fourth-order moment of r,
〈̃r4〉= 〈r4

〉/〈r2
〉

2. As with Skr and 〈̃r3〉, Kur and 〈̃r4〉 are reduced for the non-Gaussian
model relative to the Gaussian case.

4. Backwards dispersion model
Turbulent mixing occurs when material from two different locations, with different

scalar concentrations, comes together by means of turbulent fluctuations. The
coalescence of their trajectories can be regarded, with time reversed, as the dispersion
at earlier times of a pair of particles whose position is known at some later time.
This is known as backwards dispersion and has been extensively studied (Thomson
1987, 1990; Sawford, Yeung & Borgas 2005; Berg et al. 2006; Sawford & Yeung
2010; Buaria, Sawford & Yeung 2015; Bragg, Ireland & Collins 2016).

Corresponding to the forwards model, equation (2.1), is an equivalent backwards
dispersion model. Backwards dispersion is most easily considered in terms of t̃=−t
and ũ=−u so that t̃ increases as we go back in time. By considering a well-mixed
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ensemble of trajectories, the forwards dispersion model, as well as having a forward
transition density, gives rise to a certain backward transition density. For the two
models to be equivalent, Thomson (1987) showed that the forward transition density
of the backwards model, with t̃ increasing, must equal the backward transition density
of the forwards model. It can then be shown (Thomson 1987) that the drift term in
the backwards model takes the form

ãi =−C0ε
d ln pE

dui
+ ametric

i + a′i (4.1)

for i = 1, 2, 3 or i =‖, ⊥, `. The terms on the right-hand side are all evaluated at
(x,−ũ,−t̃). The coefficient of the Wiener process remains unchanged. The equation
for up can be determined by considering the expressions for ã⊥ and ã⊥ and then
deriving the equation for up afresh. For our model the equation for up is unchanged
in form from (3.2) but with u‖ and t replaced by ũ‖ and t̃. Note this is not correct in
general, for example it is not true unless A′ is an odd function of u‖.

As in § 3 we confine our initial presentation and discussion of the model to results
with C0 = 6. Figure 2 shows the compensated mean-square separation for both the
backwards and forwards models with C0 = 6. We see that, as expected, the value of
Richardson’s constant calculated from the backwards model, indicated by the subscript
b, is larger than that calculated from the forwards model, indicated by a subscript f .
The ratio of the two constants, gb/gf ≈ 2.9, is consistent with previous experimental
and numerical results (Berg et al. 2006; Sawford & Yeung 2010; Buaria et al. 2015;
Bragg et al. 2016).

In the forwards dispersion model, the negative skewness of pu‖(u‖) means that
there is a greater chance of particles moving towards each other with large velocities
compared with the backwards model in which the skewness of pu‖(u‖) is positive.
Similarly there is a higher probability of particles separating with large velocities in
the backwards model compared with the forwards model. It seems intuitively likely
that this will lead to the rate of separation being larger in the backwards model
compared with the forwards model, as is observed.

Figures 3 and 4 show Skr, Kur, 〈̃r3〉 and 〈̃r4〉. The kurtosis of the backwards model
is very similar to that of the forwards model for all times. However, Skr, 〈̃r3〉 and
〈̃r4〉 are larger for the backwards model than for the forwards model. This is perhaps
expected because of the larger mean-square separation in the backwards model. The
value of the 3-D separation p.d.f., pr(r)= pr(r)/4πr2, at r= 0 must, for initially close
particles, be the same for the forwards and backwards models (Egbert & Baker 1984)
and so the larger mean-square separation in the backwards model implies the p.d.f.
must be more peaked at the origin (relative to 1/〈r2

〉
3/2). While there is no exact

connection between the ‘peakiness’ at the origin and the quantities Skr, Kur, 〈̃r3〉 and
〈̃r4〉, it is likely that an increase in the ‘peakiness’ at the origin will be reflected in
an increase in the latter quantities (especially for 〈̃r3〉 and 〈̃r4〉). Of course one can
also present this argument in reverse as a reason why gb is larger than gf . Because
the skewness is likely to be higher for the backwards model (this is certainly true for
Skr at small times and this probably influences later values of Skr and 〈̃r3〉), then,
to maintain the same value for the p.d.f. at the origin, gb is likely to be larger than
gf . The equality of the forwards and backwards p.d.f.s at the origin in the model is
demonstrated in figure 5.
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FIGURE 5. The p.d.f., pr(r), for C0 = 6 for both the forwards (dashed) and backwards
(solid) models at t= 340r2/3

0 /ε1/3 where r∗ = ε1/2t3/2.

Another explanation for the differences between gf and gb was provided by Berg
et al. (2006) who considered the eigenvalues of the strain-rate tensor and argued that
the difference between gf and gb arose because the magnitude of the mean most
negative eigenvalue 〈Λ3〉 is larger than that of the mean most positive eigenvalue 〈Λ1〉.
They also commented that the behaviour of the eigenvalues is similar for the coarse-
grained strain-rate tensor which is what two separated particles would ‘see’. They
argued that gb/gf could be estimated as (〈Λ3〉/〈Λ1〉)

3 and, from their experimental
results, they estimated the latter quantity to be 1.75. However, Berg et al. (2006)
caution against using this ratio as an accurate value of the ratio gb/gf since it is well
known that the material line elements are not aligned with the largest eigenvalue and
also that the stretching of material lines is not exactly self-similar.

5. Variation with C0

In this section we investigate the variation of the model properties with C0. We start
by considering some theoretical results for large and small C0 before discussing the
numerical results. For large C0 we expect that the model should reduce to a diffusion
equation while for small C0 the particle motions should be more ballistic.

5.1. Analytical results for large C0

Following the empirical studies of Richardson (1926), Obukhov (1941) proposed that
the relative dispersion of a pair of particles be governed by an eddy diffusivity, K, of
the form K(r)= k0ε

1/3r4/3. We expect this to be valid for large C0. When the initial
separation is small, i.e. it can effectively be taken as zero, then it can be shown (e.g.
Monin & Yaglom 1975, p. 574) that the p.d.f. of the separation distance, r, is given
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by

pr(r)=
32

315
√

π

(
1287

8

)3/2 r2

σ 3
r

exp

[(
−

1287r2

8σ 2
r

)1/3
]
, (5.1)

where σ 2
r ≡ 〈r

2
〉 = (1144/81)k3

0εt
3. The values of the skewness and kurtosis are Skr =

1.70 and Kur = 7.81 respectively. The values of the normalised third and fourth-order
moments are 〈̃r3〉 = 1.70 and 〈̃r4〉 = 3.77 respectively. Note that the values of Skr and
〈̃r3〉 are not identical but differ by less than 0.003.

When the initial separation is finite, the p.d.f. takes the form

pr(r, t)=
3r2

2πk0ε1/3t(rr0)7/6
exp

[
−

9(r2/3
+ r2/3

0 )

4k0ε1/3t

]
I7/2

(
9(rr0)

1/3

2k0ε1/3t

)
, (5.2)

where Iν(x) is the modified Bessel function of order ν. This problem takes the same
mathematical form as the 2-D steady diffusion problem for an elevated point source
with a horizontal mean wind and vertical eddy diffusivity which are both power law
functions of height (e.g. Thomson & Devenish 2003; Monin & Yaglom 1971, p. 661).
Although this expression is derived using a scalar K, it can be shown that the diffusion
equation for a tensor K ij reduces to the diffusion equation with scalar K in the case
of spherically symmetric solutions, provided that the scalar K is interpreted as the
longitudinal diffusivity. The second moment of the p.d.f. given by (5.2) takes the form

〈r2
〉 =

Γ (15/2)
Γ (9/2)

(
4
9

k0

)3

εt3 exp

[
−

9r2/3
0

4k0ε1/3t

]
1F1

(
15
2
;

9
2
;

9r2/3
0

4k0ε1/3t

)
, (5.3)

where Γ (x) is the gamma function and 1F1(a; b; x) is the confluent hypergeometric
function (or Kummer) function. At small times, it can be shown that the second
moment becomes

〈r2
〉 − r2

0 =
26
3 k0ε

1/3r4/3
0 t= 26

3 K(r0)t. (5.4)

If ∂K ij(r)/∂rj= 0 (which is needed to ensure 〈r〉= r0) then (26/3)K can be interpreted
as 2K ii.

A quantitative expression for the diffusivity can be derived from the LSM in the
limit of large C0. Following (Thomson 1987, p. 541), we have that

K ii =−

∫
∞

−∞

uipuigi dui, K i6=j = 0, (5.5a,b)

where gi is a solution of

C0ε
∂

∂ui
pui

∂

∂ui
gi = uipui . (5.6)

Here pE is assumed separable as in (2.24) and (2.25), there is no implied summation
over i, and i ∈ {‖,⊥,`}. Integration by parts of (5.5a) leads to

K ii =
1

C0ε

∫
∞

−∞

q2
i

pui

dui, (5.7)
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where qi =
∫ ui

−∞
u′ipui(u

′

i) du′i follows from (5.6). In the longitudinal direction with
Gaussian pu‖ we get KLL = (C2/C0)ε

1/3r4/3. For the non-Gaussian form of pu‖ given
by (2.35) it can be shown that

KLL =
1

C0ε

∫
∞

−∞

{
2∑

i=1

[
−Aiσu‖iG

(
u‖ − u‖i
σ‖i

)
+ Aiu‖iΦ

(
u‖ − u‖i
σ‖i

)]}2

2∑
i=1

Ai

σu‖i
G
(

u‖ − u‖i
σ‖i

) du‖. (5.8)

As with (2.40) above, Φ(x) can be written as erf(x/
√

2)/2 as a result of cancellation.
Numerical integration of the integral on the right-hand side gives KLL= (4.20/C0)ε

1/3

r4/3 with C= 2, a 5 % increase over the Gaussian case.

5.2. Analytical results for C0 = 0
We now consider the opposite extreme, namely the ballistic limit C0 = 0. We
emphasise that we do not expect this limit to be physically realistic and, indeed,
we will identify some unphysical aspects below. However understanding this limit
is useful for understanding how the behaviour of the model varies with C0. When
C0 = 0 and pu‖(u‖) is Gaussian, the model given by (3.1) and (3.2) becomes

du‖
dt
=

u2
‖

3r
+

7u2
p

8r
,

dup

dt
=−

5
6r

u‖up. (5.9a,b)

Since u‖= dr/dt it follows from (5.9b) that up∝ r−5/6. On substituting this into (5.9a),
and noting that du‖/dt= u‖du‖/dr, it is straightforward to show that

u2
‖
=

(
u2
‖0 +

3
4

u2
p0

)(
r
r0

)2/3

−
3
4

u2
p0

(
r
r0

)−5/3

, (5.10)

where a subscript ‘0’ indicates the initial value. This is like motion in a potential:
r may decrease initially but will eventually increase with u‖ returning to its initial
value but with opposite sign when r returns to r0. Once r� r0, the second term on
the right-hand side can be neglected and it can be shown that

r=
1

r1/2
0

(
2
3

(
u2
‖0 +

3
4

u2
p0

)1/2

(t+ c)

)3/2

, (5.11)

where c is a constant of integration reflecting the particle behaviour before r� r0. At
large times c will be unimportant and we have

r≈

(
u2
‖0 +

3
4 u2

p0

r2/3
0

)3/4 (
2
3

t
)3/2

, (5.12)

although some particles will take much longer than others to reach this regime. The
moments and p.d.f. of r at large times can be derived from (5.12) using the fact that
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(u2
‖0+ (3/4)u

2
p0)/r

2/3
0 is the sum of the squares of three independent Gaussian random

variables with mean zero and variance Cε2/3. We then get

〈rn
〉 =

(
8
9

Cε2/3t2

)3n/4 2
√

π
Γ (3/2+ 3n/4) (5.13)

and

pr(r)=
9πr

(2πCε2/3t2)3/2
exp

(
−

9r4/3/4
2Cε2/3t2

)
, (5.14)

although we only expect pr to be valid for r� r0. We note that (5.14) implies that
pr(r)/r2

→∞ as r→ 0 which seems somewhat unsatisfactory. The values of Skr and
Kur are respectively 1.05 and 4.44; the values of 〈̃r3〉 and 〈̃r4〉 are respectively 1.48
and 2.58.

It is possible to repeat parts of the above analysis for other models which differ
only in the value of φ̂ in order to investigate their behaviour as C0 → 0. For the
Borgas model (2.31) with Gaussian pu‖ , each trajectory remains bounded for C0 = 0,
suggesting that g→ 0 as C0 → 0, consistent with Borgas & Sawford (1994, figure
9). In contrast, for the Q1D model (2.32) with Gaussian pu‖ , the trajectories have a
logarithmic correction factor with (5.12) replaced by

r≈

(
u2
‖0

r2/3
0

+
14
3

Cε2/3 log
r
r0

)3/4 (
2
3

t
)3/2

, (5.15)

suggesting g→∞ as C0→ 0, consistent with Kurbanmuradov (1997, figure 1). These
differing behaviours as C0 → 0 exemplify contrasting intuitive views of the role of
C0 in relative dispersion, namely the view that larger velocity correlation times tend
to increase the diffusivity and hence the separation rate (a fairly standard diffusivity
scaling argument), and the view that velocities have to change in order for particles
to separate rapidly (as used for example in the argument of Novikov which is given
by Monin & Yaglom (1975, p. 547)).

Although completing a similar analysis for our non-Gaussian model seems
intractable, it is possible to obtain a result analogous to (5.10). This can be expressed
as conservation of

p̃∗up
(u∗p)

∣∣∣∣∣
∫ u∗

‖

−∞

u∗
′

‖
p∗u‖(u

∗
′

‖
) du∗

′

‖

∣∣∣∣∣ (5.16)

along trajectories, with ∗ indicating scaled quantities (i.e. u∗
‖
= u‖/σ‖, u∗p = up/σ⊥,

p∗u‖(u
∗

‖
) = σ‖pu‖(u‖), p̃∗up

(u∗p) = σ 2
⊥

p̃up(up) = σ 2
⊥

pup(up)/2πup = exp(−u∗2p /2)/2π) and
u∗p = u∗p0(r/r0)

−7/6. As r increases, u∗p decreases and u∗
‖

needs to increase to maintain
conservation. Equation (5.10) can be derived from this result for the special case of
Gaussian pu‖ by taking the log of the conserved quantity. Again similar results are
obtainable for the Borgas and Q1D models, with similar conclusions to those for the
Gaussian case above.

It is interesting to note that the relative velocity of separating particles at separation
r tends to be larger than a typical velocity selected from the Eulerian distribution of
u‖ at that r. This is clearest if we consider Q1D models: here we have deterministic
paths in (r, u‖)-space (because we are considering C0= 0) and a sketch of the possible
trajectories, consistent with the well-mixed condition, shows that the pairs with small
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FIGURE 6. The variation of g for different values of C0 for the non-Gaussian forwards
model (red +), the non-Gaussian backwards model (blue ∗) and the Gaussian model
(green ×). The solid black line is g = 1144k3

0/81 where k0 takes the value 4.20/C0
appropriate to our non-Gaussian model. The dashed black line is g= 2C0.

initial separation must end up in the extreme positive tail of the distribution and have
u‖� σ‖. This is less clear for our 3-D model where the separating velocities are not
much larger than σ‖. However because of the effect of up0 in (5.10) and (5.16), the
distribution of velocities will still be skewed towards the positive tail of pu‖ . The effect
is reversed in the Borgas model, with u‖ becoming zero and then negative, associated
with the boundedness of the trajectories.

5.3. Variation of Richardson’s constant with C0

Figure 6 shows the values of g calculated from the non-Gaussian forwards and
backwards models and from the Gaussian model for different values of C0. Also
shown in figure 6 is the diffusion-equation result g = 1144k3

0/81 (Monin & Yaglom
1975, p. 574) where k0 = 4.20/C0 as derived above. It can be seen that, for all
three LSMs, g decreases with increasing C0 with g reaching its diffusive value
for sufficiently large C0 (see also Kurbanmuradov 1997). The value of g from the
non-Gaussian backwards model is consistently larger than that for the non-Gaussian
forwards model though they both approach the same asymptote for large C0. For
C0 = 0 we believe this is explained by the tendency, identified above, for the particle
velocities to be skewed towards the positive tail of pu‖ , with this tail being longer for
the backwards model. This process remains active for non-zero C0 unless C0 is very
large, when the short velocity memory time scale causes the forwards and backwards
values to become equal in agreement with the analysis of § 5.1.

If one assumes that the two-particle acceleration covariance is negligible in the
inertial subrange, then it can be shown that g = 2C0 (Monin & Yaglom 1975, p.
547). This is unlikely to be the case for real turbulence. Nevertheless it serves as
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FIGURE 7. The evolution of 〈r2
− r2

0〉 for different values of C0 (top to bottom): C0 = 0
(black dotted); C0= 1 (green dot-dashed); C0= 6 (red solid); C0= 20 (cyan long-dashed);
C0= 50 (magenta short-dashed); C0= 100 (blue solid). The straight lines are proportional
to t, t2 and t3 as shown in the figure.

an upper bound on the value of g (Thomson 1990, appendix B). The mean-square
distance between a particle and the position it would have if it followed a straight line
trajectory is C0εt3 while the mean-square distance between a particle and the centroid
of the set of particles released close to the particle is (g/2)εt3. The former is equal
to the latter plus the mean-square displacement of the centroid from the straight line
trajectory and so g 6 2C0 with equality being implausible.

Figure 6 shows that, at C0 = 0, our model has a value of g which is greater
than zero. This exceeds the limit 2C0 and so implies that the model is behaving
unphysically. For the Gaussian case, the value of g from the simulations agrees well
with the theoretical value (8C/9)3/24/π1/2 (≈ 5.35 for C = 2) derived from (5.13).
We note that, as may be expected from the discussion in § 5.2, g calculated from
the Borgas model lies within the bound (see Borgas & Sawford 1994, figure 9) but
g calculated from the Q1D model does not (see Kurbanmuradov 1997, figure 1).
However it is not clear that it is advantageous for a model to respect the condition
g 6 2C0 for all C0 when small values of C0 are themselves unphysical.

5.4. Variation of moments of r with C0

Figure 7 shows the evolution of 〈r2
〉 calculated from the non-Gaussian forwards model

for different values of C0: once the particles are no longer in the ballistic regime, the
linear behaviour predicted by (5.4) can be observed for sufficiently large C0. Similar
results can be obtained from the non-Gaussian backwards and Gaussian models.

Figure 8 shows the variation with C0 of Skr, Kur, 〈̃r3〉 and 〈̃r4〉 calculated from the
non-Gaussian forwards and backwards models along with the Gaussian model. It can
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FIGURE 8. The variation with C0 of the skewness, kurtosis and normalised third- and
fourth-order moments. In each panel the non-Gaussian forwards model is indicated by
a red solid line (+), the backwards model by a dashed blue line (∗) and the Gaussian
model by a dotted green line (×). Simulations with C0 > 100 were performed with a
larger time step i.e. C1=C2=C3=C4=C5=C6= 10−1 in (3.3). The horizontal lines are
the appropriate values of the skewness, kurtosis and normalised third- and fourth-order
moments derived from (5.1): Skr = 1.70, 〈̃r3〉 = 1.70, Kur = 7.81 and 〈̃r4〉 = 3.77. The
equivalent values from a distribution with shape r2 exp(−r2) are Skr = 0.49, 〈̃r3〉 = 1.23,
Kur = 3.11 and 〈̃r4〉 = 1.67. The crosses on the vertical axes represent the appropriate
value of the statistics for C0 = 0 as derived from (5.13).

be seen that for C0= 0 the Gaussian model agrees well with the values derived from
(5.13). It can also be seen that all three models tend towards the diffusive limit as
C0 increases: the Gaussian model tends to the appropriate values faster than the non-
Gaussian forwards model while the non-Gaussian backwards model overshoots before
it approaches the large-C0 asymptote. The slower convergence of the non-Gaussian
model in the limit of large C0 was also noted by Sawford et al. (2005) for Q1D
models. For C0 > 100 we employed a larger time step to reduce the computational
cost. It is most likely that the slight discrepancy between the analytical and numerical
values for the Gaussian model for C0 > 100 is due to the larger time step; tests for
C0 = 200 with a smaller time step confirm this. For very large C0 there is some
indication that the non-Gaussian forwards model may oscillate as it approaches the
asymptote (but computational costs prevent us from exploring this behaviour for still
larger values of C0). It is not clear why the variation with C0 is non-monotonic for the
non-Gaussian model. We note that Skr and Kur, for both the forwards and backwards
models, and 〈̃r3〉 and 〈̃r4〉, for the forwards model only, reach minima close to values
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of C0 typically found in homogeneous isotropic turbulence. Moreover, these values are
closer to the values expected for a distribution with shape r2 exp(−r2), which describes
the p.d.f. of r once the particles have decorrelated, than either the equivalent values
for the Gaussian model or the values derived from (5.1).

5.5. Variation of the p.d.f. of r with C0

The p.d.f. of the pair separation is shown in figure 9 for the non-Gaussian and
Gaussian models. For realistic values of C0, the p.d.f. of all three models is less
peaked than the diffusive p.d.f. given by (5.1), with the Gaussian model closer to
(5.1) than the non-Gaussian models, which is consistent with figure 8. Only once
C0 becomes sufficiently large do the models agree well with (5.1): figure 9 clearly
shows that as C0 increases the Gaussian model tends more rapidly to the form given
by (5.1) than the non-Gaussian forwards model which is consistent with the results in
figure 8. It is also evident that the non-Gaussian backwards model approaches (5.1)
more rapidly than the forwards model.

The form of pr in (5.14) is confirmed in figure 10, including the somewhat
unsatisfactory blow up of pr(r)/r2 as r→ 0 (at least for r� r0). Similar behaviour
of pr is observed in the non-Gaussian model for C0 = 0. The singularity is however
absent for C0 > 0.

6. Numerical form of pu‖(u‖)
While the non-Gaussian p.d.f. of u‖ constructed in § 2.2 has the correct third-order

moment, it does not exhibit the long tails typically found for pu‖(u‖) from a DNS of
homogeneous isotropic turbulence (e.g. Sawford & Yeung 2010). The question remains
then as to what effect a more realistic form of pu‖(u‖) would have on the value of
Richardson’s constant and the relative dispersion process in general.

One possibility for generating a more realistic p.d.f. is to extend the approach
of § 2.2 to include information on moments higher than order three. For example,
the assumption that u‖i = ±σu‖i could be relaxed. With u‖i = αiσu‖i, the values of α1
and α2 could be determined from the extra information provided by higher-order
moments. More specifically, we could let α1 = −α2 = α, say, and specify the
fourth-order moment of pu‖(u‖). However, it transpires that simple analytical forms of
Ai, σu‖i (i= 1, 2) and α are not possible and these unknowns have to be determined
numerically with multiple solutions possible. Alternative analytic forms such as the
tri-Gaussian formulation of Kurbanmuradov (1997) are also possible and may be
more tractable.

Another approach is to specify the whole p.d.f. rather than a finite number of
moments. Although no analytical form of pu‖(u‖) is available that matches the typical
DNS form of pu‖(u‖), it is available numerically. In this section then we consider the
same model as that presented above but with the analytical form of pu‖(u‖) replaced
with a numerical form extracted from the DNS data of Sawford & Yeung (2010).
Since we now have a finite inertial subrange, rather than making a self-similarity
assumption, pu‖(u‖) is specified as a function of both u‖ and r with values interpolated
as appropriate. This model differs from the model presented by Sawford & Yeung
(2010) in that we continue to assume the decomposition (2.24) and (2.25) and that
pu⊥(u⊥) and pu`(u`) are Gaussian, and we derive the conditional mean accelerations
using (2.26) and (2.28); the Q2D model of Sawford & Yeung (2010) uses numerical
forms for the joint p.d.f. of u‖ and up and for the conditional mean accelerations. As
with the analytical model of §§ 3 and 4, we choose φ(r) as given by (2.30) so that the
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FIGURE 9. The p.d.f., pr/σr(r/σr), for (a) the non-Gaussian forwards model, (b) the non-
Gaussian backwards model and (c) the Gaussian model for different values of C0 at t=
350r2/3

0 /ε1/3: C0 = 0 (orange q); C0 = 1 (red +); C0 = 6 (green ×); C0 = 10 (blue ∗);
C0 = 50 (magenta@); C0 = 100 (cyanp). Equation (5.1) is indicated by a black line.

model reduces to that of (Thomson 1990) in the Gaussian limit. With pu‖(u‖) specified
numerically, the integral and derivative in (2.28) are also determined numerically. The
other terms in the SDE for u‖ remain as in (3.1); the equation for up is given by
(3.2). Numerical forms of σ‖ and σ⊥ taken from the DNS data of Sawford & Yeung
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FIGURE 10. The p.d.f., pr(r), for C0 = 0 at t= 350r2/3
0 /ε1/3 where r∗ = ε1/2t3/2: the non-

Gaussian forwards model (red +), the non-Gaussian backwards model (blue ∗) and the
Gaussian model (green ×). The solid black line is (5.14).

(2010) are also used (with values interpolated in r as appropriate). Because the DNS
form of pu‖(u‖) is affected by separations in the viscous dissipation range, in the
numerical integration of the SDEs we replace C0ε by C0ε[1 − exp(−µr/(η

√
C0))]

2

as was done by Sawford & Yeung (2010). In this expression η is the Kolmogorov
length scale and µ is a tuneable parameter whose value is taken to be 4 (Sawford
& Yeung 2010). As stated by Sawford & Yeung (2010), this correction to C0ε has
no effect on the motion of particles in the inertial subrange but prevents spurious
effects for small r/η. Throughout this section we use C0= 6. We consider four values
of the initial separation and use a smaller time step than in §§ 3 and 4: time-step
sensitivity tests suggested C1 = C2 = C3 = C4 = C5 = C6 = 10−5 in (3.3) for r0/η = 8
and r0/η = 16 and C1 = C2 = C3 = C4 = C5 = C6 = 10−6 for r0/η = 2 and r0/η = 4.
Computational expense limited the number of pairs to 104. The Taylor-scale Reynolds
number associated with the DNS data of Sawford & Yeung (2010) that we use here
is Rλ = 390.

Figure 11 shows the mean conditional longitudinal acceleration (defined and
calculated in the same way as in § 3 but with pu‖(u‖), σ‖ and σ⊥ defined as described
above). Compared with figure 1(b), it has a more peaked profile at u‖/σ‖ = 0. It
is also more peaked when compared with the purely DNS generated values of
〈du‖/dt|u‖, up; r〉 shown in figure 4 of Sawford & Yeung (2010). Since we are using
the same data to determine the p.d.f. of u‖, the differences must arise from the
relationship that we assume here between 〈du‖/dt|u‖, up; r〉 and pu‖ , namely (2.28)
with (2.30). It is notable that the values of 〈du‖/dt|u‖, up; r〉/(σ 2

‖
/r) shown in figure 11

are significantly larger than those shown in figure 4 of Sawford & Yeung (2010); the
reasons for this are not clear.

Figure 12 shows the mean-square separation for the four different values of r0. It
is disappointing that the curves do not collapse into a single curve but the limited
inertial subrange of the DNS is the most likely explanation for this behaviour; indeed,
Sawford & Yeung (2010) present a similar plot to figure 12(b) (for their Q1D model
rather than their Q2D model) in which the curves also do not collapse. The curve with
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FIGURE 11. The mean longitudinal acceleration conditional on u‖ and up,
〈du‖/dt|u‖, up; r〉/(σ 2

‖
/r), for r/η = 64 calculated from (2.28) with (2.30) using the

DNS p.d.f. of u‖.

r0/η= 4 appears to be beginning to follow a t3 scaling giving gf ≈ 0.8; the curve with
r0/η= 2 also shows scaling close to t3 but with gf ≈ 0.38. For comparison, Sawford &
Yeung (2010) obtain a value of gf = 0.4 with their Q2D model for the same value of
Rλ. At small t there is a period when the growth of 〈r2

− r2
0〉 is slower than quadratic

in t. This could be a sign of an incipient regime proportional to t as in figure 7.
The results for the equivalent backwards dispersion model are presented in figure 13.

Compared with figure 12, 〈r2
〉 increases more rapidly in the nascent t3 regime (where

the growth is actually more rapid than t3); similar differences were observed for DNS
by Buaria et al. (2015, see figure 2) and Sawford et al. (2005, see figure 4). As in
figure 12, the curves with r0/η = 4 and r0/η = 2 show some indication of a nascent
inertial subrange with t3 scaling (though again disappointingly not at the same value of
r2/εt3 as each other). The values of gb for these two curves are respectively 2.85 and
1; For reference, Sawford & Yeung (2010) obtain a value of gb = 2 with their Q2D
model for the same value of Rλ. Compared with the forwards model (see figure 12b),
there is less indication of a period of slower than quadratic growth at small t in the
backwards case.

The ratio gb/gf is shown in figure 14 and shows that, for r0/η= 4 and r0/η= 2, it
is approximately 3. This is consistent with the analytical model presented above and
with previous results (Berg et al. 2006; Sawford & Yeung 2010; Buaria et al. 2015;
Bragg et al. 2016). The variation of this ratio with r0 is similar to that found by Bragg
et al. (2016, see figure 1).
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FIGURE 12. The mean-square separation (a) and its compensated form (b) using the form
of pu‖(u‖) extracted from the DNS data of Sawford & Yeung (2010): r0/η = 2 (solid);
r0/η= 4 (dashed); r0/η= 8 (dotted); r0/η= 16 (dot-dashed). The Kolmogorov time scale
is indicated by τη.

7. Conclusions

A non-Gaussian two-particle LSM has been developed that includes the effect
of non-zero skewness in the longitudinal relative velocity distribution. This has
been achieved by requiring the Eulerian p.d.f. of the longitudinal relative velocity
component to be consistent with the four-fifths law of turbulence. As may be expected,
the effect of a negative skewness in the Eulerian relative velocity p.d.f. is to reduce
the mean rate of separation of the pairs and to reduce the skewness of the separation.
Compared with the equivalent Gaussian model, the value of Richardson’s constant is
closer to that observed experimentally and in DNS. The value in the corresponding
non-Gaussian backwards dispersion model is approximately a factor of 2.9 larger
than the forwards model which is consistent with results obtained from DNS and
experimentally.

The model was formulated in spherical polar coordinates. We showed that in
isotropic turbulence, any 3-D model for the relative separation reduces to a Q2D
model regardless of the choice of the velocity distribution pE or the particular
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FIGURE 13. As figure 12 but for the backwards dispersion model using the DNS-based
form of pu‖(u‖).

modelling choices. In designing the model, we assumed for simplicity that pE can be
separated into the product of the p.d.f.s of the longitudinal and transverse velocities.
Although this separation is not well justified, it is difficult to do more than speculate
about the precise effects of this assumption. That the ratio gb/gf is consistent with
previous results is encouraging and suggests the model is behaving correctly. To test
this would require the development of a model which satisfies the incompressibility
constraints on pE. We also restricted attention to models in which the transverse
conditional mean accelerations are quadratic in velocity. The resulting model is
still non-unique but can be determined by choosing the longitudinal and transverse
velocity probability distributions and making a choice for the model parameter φ(r)
(described in § 2.2). For a particular choice of φ(r) we showed that the model reduces
to the Q1D model of Kurbanmuradov (1997) provided only that the shape of the
transverse velocity p.d.f. pup is independent of separation. To fix our model we used
Gaussian transverse velocity distributions, a particular choice of longitudinal velocity
distribution satisfying the four-fifths law, and chose φ(r) to match the model of
Thomson (1990).

The variation with C0 of our non-Gaussian model and the corresponding Gaussian
model was considered. We showed that, as expected, for large C0 the Gaussian
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FIGURE 14. The ratio of the DNS backwards (indicated by subscript b) to forwards ( f )
mean-square separation. The initial separations are the same as those in figure 12.

and non-Gaussian models tend to the analytical result from the associated diffusion
equation (although the rate of convergence is slower for the non-Gaussian model than
for the Gaussian model). Analytic results for C0= 0 were also obtained and, although
this value of C0 is not physically appropriate, the results for C0 = 0, together with
the diffusive large C0 results, help to explain the behaviour for intermediate values
of C0.

An equivalent model using a numerical form of the longitudinal relative velocity
p.d.f. obtained from DNS data was presented in § 6. The lack of a substantial inertial
subrange in the DNS data militates against a reliable estimate of Richardson’s constant.
Nonetheless the values of gf and gb that were found in § 6, though different from both
the analytical model and the results of Sawford & Yeung (2010), were still of the
same order of magnitude. In particular, the ratio gb/gf was similar to that obtained
with the analytical model and previous results. The differences with the analytical
model are likely to be due to the nature of the DNS data, principally the limited
inertial subrange and the shape of pu‖ , while the differences with the Q2D model
of Sawford & Yeung (2010) are most likely due to the relationship that we assume
between the conditional mean acceleration and pu‖ (as discussed in § 6).
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