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Abstract

We explain some key challenges when dealing with a single- or multi-objective opti-
mization problem in practice. To overcome these challenges, we present a mathematical
program that optimizes the Nash social welfare function. We refer to this mathematical
program as the Nash social welfare program (NSWP). An interesting property of the
NSWP is that it can be constructed for any single- or multi-objective optimization
problem. We show that solving the NSWP could result in more desirable solutions
in practice than its single- or multi-objective counterpart. We also discuss several
promising approaches that could be employed to solve the NSWP in practice.

2020 Mathematics subject classification: primary 90C29; secondary 90B50, 91A12.
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1. Introduction

Without loss of generality, a single-objective optimization problem can be stated as

max
{ p′∑

i=1

wi fi(x) −
p∑

i=p′+1

wi fi(x) | x ∈ X
}
, (1.1)

where p ≥ p′ ≥ 0 and X ⊆ Rn represents the set of feasible solutions, and is assumed
to be bounded. Moreover, f (x) = ( f1(x), . . . , fp(x)) is a vector of arbitrary functions
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and w = (w1, . . . , wp) is a vector of weights with wi > 0 for all i ∈ {1, . . . , p} = [1, p]. In
the remainder of this paper, we refer to the objective function of equation (1.1) as the
(weighted) social welfare function and to equation (1.1) as the social welfare program
(SWP).

Similarly, a multi-objective optimization problem can be stated as

max { fi(x) | i ∈ S+},
min { fi(x) | i ∈ S−},

subject to x ∈ X,
(1.2)

where S+ and S− are the (index) sets of objective functions that need to be maximized
and minimized, respectively. Let S+ = [1, p′] and S− = [ p′ + 1, p] which implies that
S+ ∪ S− = [1, p]. In the remainder of this paper, we refer to equation (1.2) as the
multi-objective optimization program (MOOP).

The main goal of this paper is to introduce a different problem, the Nash social
welfare program (NSWP), that could result in solutions with desirable properties for
both equations (1.1) and (1.2). In other words, instead of solving the SWP or MOOP,
modellers and/or practitioners can solve the NSWP to obtain more practical solutions.
We show that for any single- or multi-objective optimization problem, the NSWP can
be easily constructed from its corresponding SWP or MOOP. We also show that the
NSWP can be solved in polynomial time if its corresponding SWP or MOOP is a
(continuous) convex optimization problem.

We would like to highlight that there are some studies in the literature addressing
variations of the NSWP. To the best of our knowledge, the first study regarding the
NSWP was conducted by Rao [15] in the context of multi-objective optimization.
However, there is no article in the literature that provides some insights as to why the
NSWP should be employed, how it can be generated for any single- or multi-objective
optimization problem, and more importantly, how it can be solved. The present work is
an attempt to fill this gap in the literature. We believe that the NSWP has not received
the attention it deserves from the operations research community. We hope that this
article will attract more researchers and practitioners to study and employ the NSWP
as a promising approach to model many real-world problems.

The rest of this paper is organized as follows. In Section 2, we discuss the motivation
for writing this paper by providing some reasons as to why solving the SWP and
MOOP can be problematic in practice. In Section 3, the NSWP is explained in detail.
In Section 4, our proposed solution approaches for solving the NSWP are introduced.
Finally, in Section 5, some concluding remarks are given.

2. Motivation

In this section, we will explain the main weaknesses of the SWP and MOOP. The
main motivation for developing the NSWP is to overcome these weaknesses.
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(4.25, 2.5)

FIGURE 1. An illustration of a Pareto-optimal frontier with two (maximization) objective functions in the
criterion space.

2.1. The multi-objective optimization program In general, when solving the
MOOP, decision makers are only interested in the so-called Pareto-optimal solutions
(see Definition 2.1).

DEFINITION 2.1. A feasible solution x ∈ X is called Pareto-optimal if there is no other
x′ ∈ X such that

fi(x) ≤ fi(x′) for all i ∈ S+,
fi(x) ≥ fi(x′) for all i ∈ S−,
fi(x) � fi(x′) there exists i ∈ S+ ∪ S−.

The image of each Pareto-optimal solution in the criterion space is called a
Pareto-optimal point. The set of all Pareto-optimal points, also known as the
Pareto-optimal frontier, shows the trade-off between the objectives. An illustration of
the trade-off of the MOOP involving only two objectives (in the form of maximization)
can be found in Figure 1.

A typical challenge when dealing with the MOOP is to answer “how should a
Pareto-optimal solution be selected for implementation in practice?” A natural answer
to this question is that modellers have no responsibility in identifying a desirable
solution and the decision makers (or managers) are expected to do that in practice.
In other words, modellers need to compute the trade-off (between Pareto-optimal
solutions) and ask the decision makers to select the one which is suitable. Such a
process is typically implemented using either a two-phase approach or a step-by-step
approach. In the two-phase approach, the complete trade-off will be computed in the
first phase and then the entire information will be sent to the decision makers. However,
the step-by-step approach is interactive in the sense that at each iteration, one (or some)
Pareto-optimal solutions will be computed by the modellers and then the opinions
of the decision makers will be obtained. If the decision makers are happy with the
provided solution(s), then the search terminates, otherwise the search will be modified
for finding some other Pareto-optimal solutions (if any). This process repeats until a
desirable solution is found.
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Although the approaches described above are useful in many practical situations
for selecting a desirable Pareto-optimal solution, they do not work in many other
situations, because they suffer from two main weaknesses described in the following.

WEAKNESS 2.2. In some practical situations, computing even a single Pareto-optimal
solution is computationally infeasible (or expensive). So, selecting a desirable
Pareto-optimal solution using the existing approaches will be infeasible.

WEAKNESS 2.3. In some practical situations, either there is no decision maker or the
decision maker(s) do not know how to select a desirable solution [8]. So, selecting a
desirable Pareto-optimal solution using the existing approaches will be infeasible.

For Weakness 2.2, a possible remedy is to employ heuristic or evolutionary solution
methods. However, inexact methods do not guarantee optimality and may perform
poorly. More importantly, they still do not address Weakness 2.3. Our proposed
technique in this study, that is, the NSWP, addresses both weaknesses at the same time,
because it is designed to directly generate a Pareto-optimal solution (see Proposition
3.3) that can create a desirable balance between the objectives.

2.2. The social welfare program To explain the main weaknesses of the SWP, we
first show that the SWP itself is trying to solve the MOOP. Observe that the MOOP
can be written in the following form:

max { fi(x) | i ∈ S+},
max {−fi(x) | i ∈ S−},

subject to x ∈ X.

Now, a popular solution technique to deal with the MOOP is to aggregate
its objective functions with some positive weights, and then solve the following
single-objective optimization problem instead:

max
{∑

i∈S+
wi fi(x) −

∑
i∈S−

wi fi(x)
∣∣∣∣∣ x ∈ X

}
. (2.1)

Equation (2.1) is sometimes called the weighted sum optimization in the literature
of multi-objective optimization [7]. We can observe that the weighted sum optimiza-
tion is precisely equation (1.1), because S+ = [1, p′] and S− = [ p′ + 1, p]. Therefore,
when modellers are trying to solve the SWP, they are basically trying to find a desirable
Pareto-optimal solution for equation (1.2) by setting the weight of fi(x) to wi for all
i ∈ [1, p]. In other words, they implicitly have p criteria in their mind, that is, f1(x), . . .,
fp(x) with w1, . . . , wp as their corresponding degrees of importance.

Given that the SWP can be viewed as an approach for computing a desirable
Pareto-optimal solution for the MOOP, it is natural to ask whether it actually results in
finding a desirable solution in practice. Note that one may argue that the SWP can
remove Weaknesses 2.2 and 2.3 that the MOOP causes. While for many practical
situations this can be indeed true, we will argue in the rest of this section that the SWP
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should be generally avoided, because it may not generate a desirable Pareto-optimal
solution, that is, it may not provide a good balance between the values of different
objectives in practice.

WEAKNESS 2.4. For nonconvex multi-objective optimization problems, there can
exist many (and possibly infinite) Pareto-optimal points that cannot be obtained by
optimizing a (positive) weighted summation of all objective functions over the feasible
set (even by testing all possible positive weights). Such points are called unsupported
Pareto-optimal points [7]. So, a weakness of the SWP is that it completely ignores
the existence of unsupported Pareto-optimal points that can possibly better balance
different objectives.

To better understand Weakness 2.4, consider Figure 1 again. In the figure, we have
p = 2 and S− = ∅, that is, there are two objectives in the form of maximization. It is
not hard to see that if we use the SWP, then we will find either the point (2,5.5) or
point (5.5,2) for any possible values of w1 and w2 (note that w1, w2 > 0). So, none of
the three middle points can be obtained using the SWP because they are unsupported
Pareto-optimal points. Observe that this can be problematic (in some practical cases)
because from the view point of multi-objective optimization, those middle points
balance the conflicting objectives better than the endpoints.

WEAKNESS 2.5. In many practical situations, f1(x), . . . , fp(x) represent the objective
functions of p independent players (or components) of an environment (or system).
So, by developing the SWP for such cases, a modeller is basically trying to coordinate
these players with respect to their powers, denoted by w1, . . . , wp, and make sure that
the benefit of the system is distributed (almost) fairly among players with respect to
their powers. However, a weakness of the SWP is that it does not necessarily ensure
the fairness.

By fairness, we mean less extreme solutions in which the total cost (or gain) of the
system is distributed among the players according to their powers (or contributions).
To explain Weakness 2.5 better, consider Figure 1 again where p = 2 and S− = ∅.
We know that in this example, we will find either the point (2,5.5) or (5.5,2) for any
possible values of w1 and w2. So, suppose that w1 = w2 = 1. In this case, both (2,5.5)
and (5.5,2) are optimal, and so the SWP returns one of them randomly. However, the
powers of the players are exactly the same. So no matter which point is returned by
the SWP, it will not be fair and make (one of) the players unhappy. For this particular
example, we can easily see that the point (3.25,3) is indeed the only fair point that
can make both players happy at the same time. Overall, our proposed technique in this
study, that is, the NSWP, addresses both Weaknesses 2.4 and 2.5 at the same time,
because it is designed to directly generate a Pareto-optimal solution that can create a
desirable balance between the objectives.

2.3. A practical example To better illustrate the weaknesses mentioned earlier,
we now provide a (simplified) real-world problem (or scenario). In the field
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of conservation planning, one of the most important problems is the so-called
reserve selection problem [20]. Suppose that there are n parcels of land, and
parcel j ∈ [1, n] has an associated cost denoted by cj. As a modeller, you have
a budget, denoted by b, to spend on buying some of these parcels and you
want to develop an optimization model that can help natural resource managers
to identify which parcels should be selected to be reserved. Suppose that there
are (in total) p species where S+ represents the index set of engendered (or
important species) and S− represents the index set of invasive species. Accruing
parcel j ∈ [1, n] has an impact on species i ∈ [1, p], for example, increases its
population size, which is denoted by parameter uij ≥ 0. Observe that for this problem,
we have

X =
{
x ∈ {0, 1}n

∣∣∣∣∣
n∑

j=1

cjxj ≤ b
}
,

where xj is a binary variable that shows whether parcel j should be bought or not. Also,
for each species i ∈ [1, p], we have

fi(x) =
n∑

j=1

uijxj.

Modellers in the field of conservation planning address the problem mentioned above
by either using the SWP or the MOOP [20]. However, it is easy to see that if they use
the MOOP, Weaknesses 2.2 and 2.3 can arise when n and p are large, respectively.
Also, if they use the SWP, Weakness 2.4 can arise because this problem is nonconvex.
Moreover, Weakness 2.5 can arise because the modeller is indeed working on a system
where each species is a player on its own.

3. The Nash social welfare program

The underlying idea of the NSWP comes from the field of cooperative game
theory. A well-known problem in the field of cooperative game theory is the so-called
bargaining problem. The bargaining problem is a game in which all (competing)
players agree to create a grand coalition, instead of competing with each other to
get a higher payoff [5, 19]. To be able to create a grand coalition, the agreement of
all players is necessary. Therefore, the main concern when dealing with a bargaining
problem is what the payoff for each player should be in a grand coalition (and
how it should be computed). One of the well-known solution techniques to this
problem, introduced by Nash [14] and extended further by Kalai [9], is what we use
in this paper. Specifically, we assume that there are p number of (imaginary) players
and each player i ∈ S+ ∪ S− has an objective function fi(x). Note that |S+ ∪ S−| = p.
Hence, we try to create a coalition between these players by solving the following
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optimization problem:

max
∏
i∈S+

( fi(x) − di)
wi ×
∏
i∈S−

(di − fi(x))wi

subject to x ∈ X,
fi(x) ≥ di for all i ∈ S+,
fi(x) ≤ di for all i ∈ S−,

(3.1)

where d ∈ Rp is the reference point, an input parameter for the NSWP. The reference
point in the literature of the bargaining problem is sometimes referred to as the
disagreement point and it basically indicates the payoff of each player under no
coalition. We will later in Section 3.1 explain some natural choices for the reference
point (if it is unknown to modellers). The following remark is helpful.

REMARK 3.1. For changing the MOOP to the NSWP, one can assume wi = 1 for
all i ∈ S+ ∪ S− unless it is known that the objective functions do not have the same
preference/power.

The objective function of equation (3.1) is basically the (weighted) Nash social
welfare function which is why we refer to equation (3.1) as the NSWP. Note that since
player i ∈ S+ is interested in maximizing its objective function, ( fi(x) − di) captures
the benefit that it will obtain as the result of creating a coalition (with respect to
the reference point). Similarly, since player i ∈ S− is interested in minimizing its
objective function, (di − fi(x)) captures the benefit that it obtains as the result of
creating a coalition (with respect to the reference point). So, the (weighted) Nash social
welfare function is the product of benefits of players (considering their negotiating
powers/weights) and the goal of the NSWP is to maximize the value of this function.

ASSUMPTION 3.2. In the remainder of this paper, we assume that the optimal
objective value of the NSWP is nonzero, that is, strictly positive. This implies that
X � ∅ and the disagreement point is selected such that there exists a feasible solution
x ∈ X with fi(x) > di for all i ∈ S+ and fi(x) < di for all i ∈ S−.

PROPOSITION 3.3. The NSWP returns a Pareto-optimal solution.

PROOF. Suppose that x∗ is an optimal solution of the NSWP, but it is not a
Pareto-optimal solution. By definition of Pareto-optimality (Definition 2.1), this
implies that there must exist a feasible solution denoted by x ∈ X that dominatesx∗,
that is,

fi(x∗) ≤ fi(x) for all i ∈ S+,
fi(x∗) ≥ fi(x) for all i ∈ S−,
fi(x∗) � fi(x) there exists i ∈ S+ ∪ S−.
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(4.25, 2.5)

d = (2, 2)

FIGURE 2. Selection of the Pareto-optimal point by the NSWP. (Colour available online.)

In addition, by assumptions, we have wi > 0 for all i ∈ [1, p]. This, combined with
Assumption 3.2, implies that

0 <
∏
i∈S+

( fi(x∗) − di)
wi ×
∏
i∈S−

(di − fi(x∗))wi <
∏
i∈S+

( fi(x) − di)
wi ×
∏
i∈S−

(di − fi(x))wi .

Consequently, x∗ cannot be an optimal solution, which is a contradiction. �

To illustrate what the NSWP actually does, consider the same example described in
Figure 1 where S−i = ∅ and S+i = {1, 2}. Suppose that w1 = w2 = 1 and d = (2, 2). The
Pareto-optimal point that NSWP selects for this example is (3.25, 3.5), as shown in
Figure 2, which is not only an unsupported Pareto-optimal point, but also the only fair
Pareto-optimal point from the view point of both players. Note that since w1 = w2 = 1,
we observe that, geometrically, the NSWP attempts to find a Pareto-optimal point such
that the area of the box between this point and d is maximized. In other words, the
objective function of the NSWP captures the area of the box. The green box (online)
in Figure 2 shows the box with the maximum area. The following propositions and
remark are also helpful.

PROPOSITION 3.4. The NSWP is global-power-scale-free, that is, the NSWP with
negotiation powers w1, . . . , wp is equivalent to the NSWP with powers αw1, . . . ,αwp,
where α is an arbitrary positive constant.

PROOF. Using the notation presented in Section 4, we just need to show that

max
y∈Y

∏
i∈S+∪S−

yαwi
i

is equivalent to equation (4.1). This immediately follows from two observations: first,
equation (4.1) is equivalent to equation (4.2). Second, by multiplying the objective
function of equation (4.2) by a positive constant, that is, α, an equivalent problem can
be constructed. �
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Note that from Proposition 3.4, one can also infer that the NSWP with equal
negotiating powers, that is, wi = wj for all i, j ∈ S+ ∪ S−, is equivalent to the NSWP
with unit negotiating powers, that is, wi = 1 for all i ∈ S+ ∪ S−.

PROPOSITION 3.5. The NSWP is local-benefit-scale-free, that is, by replacing the
objective function of the NSWP with the following function:

max
∏
i∈S+

(αi fi(x) − αidi)
wi ×
∏
i∈S−

(αidi − αi fi(x))wi , (3.2)

an equivalent problem will be constructed where α1, . . . ,αp are arbitrary positive
constants.

PROOF. Observe that equation (3.2) is equivalent to

max
p∏

i=1

αwi
i ×
∏
i∈S+

( fi(x) − di)
wi ×
∏
i∈S−

(di − fi(x))wi .

Since
∏p

i=1 α
wi
i is a positive constant, it has no impact on the optimization and can be

dropped. �

Again note that in the NSWP, the term ( fi(x) − di) captures the benefit of player
i ∈ S+ and the term (di − fi(x)) captures the benefit of player i ∈ S− with respect to the
reference point. In Proposition 3.5, if we set

αi =
1

maxx∈X′ fi(x) − di
for all i ∈ S+,

αi =
1

maxx∈X′ di − fi(x)
for all i ∈ S−,

where

X′ = {x ∈ X | fi(x) ≥ di for all i ∈ S+, and fi(x) ≤ di for all i ∈ S−},

then the maximum benefit that each player can obtain will be precisely one in the
equivalent problem. This implies that from any NSWP, an equivalent NSWP with
unit-maximum-benefit can be constructed, because for each i ∈ [1, p], αifi(x) and αidi

can be viewed as the new fi(x) and the new di, respectively.

REMARK 3.6. From Propositions 3.4 and 3.5, we know that the NSWP with equal
negotiating powers/weights can be rewritten as the NSWP with unit-weights and
unit-maximum-benefits. When solving the latter, the NSWP attempts to find a
Pareto-optimal point where the area of the box between the reference point and the
Pareto-optimal point is maximized. The area of the box cannot be more than one
because the length of each side of the box indicates the benefit obtained by a player
and the maximum benefit of each player is one. So, the NSWP with equal negotiating
powers basically attempts to not only make the benefit of each player equal to one but
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also make them relatively the same. So, the NSWP with equal negotiating powers is
naturally designed to create equity in benefits or fairness [3, 6, 10, 13].

In summary, the NSWP is a single-objective optimization problem. It resolves
Weakness 2.2, because it returns a single Pareto-optimal solution (just like the SWP)
if being solved to optimality (see Proposition 3.3). Evidently, generating only a
single Pareto-optimal solution can decrease the computational time significantly. Even
for the cases where the NSWP is computationally expensive, one can develop a
heuristic method for finding high-quality feasible solutions for it. The NSWP resolves
Weakness 2.3, because it generally tries to avoid the endpoints of the Pareto-optimal
frontier and generates a good balance between objectives (which is generally for
what decision makers look). The NSWP resolves Weakness 2.4 because it does not
ignore unsupported Pareto-optimal points and its output can be even an unsupported
Pareto-optimal point. Finally, the NSWP resolves Weakness 2.5 because it attempts
to ensure that the benefits are distributed fairly (based on Remark 3.6) with respect
to the power of players. Specifically, if the negotiating powers are equal, then the
NSWP attempts to create equality in benefits. Otherwise, it attempts to deviate from
the equality based on the power of players.

3.1. The reference point As mentioned earlier, in the context of game theory, the
reference point should denote the payoff of each player under no coalition, that is, the
status quo of the game. While in many applications the reference point can be identified
easily, in some cases, it is not clear how the reference point should be determined. For
such cases, one natural choice for the reference point can be the so-called nadir point,
that is, a point in the criterion space that denotes the worst value for each objective
function in the Pareto-optimal frontier. Note that the nadir point is not necessarily a
feasible point, that is, it may lie outside the feasible region in the criterion space. For
example, in Figure 2, both objectives are in the form of maximization. So, the worst
value for both f1(x) and f2(x) in the Pareto-optimal frontier is 2. Hence, the nadir point
is (2,2).

However, computing the nadir point could be computationally expensive, especially
for cases with p > 2. For cases with p = 2, the nadir point can be generated by
computing the two endpoints of the Pareto-optimal frontier (see Figure 2). However,
for cases with p > 2, this is not necessarily true in general [7]. Hence, alternatively,
one can set the reference point to an approximation of the nadir point. For example,
for each i ∈ S+, one can set

di = min { fi(x) | x ∈ X} or di = min { fi(x) | x ∈ XR},

where XR is a relaxation of X, for example, linear programming relaxation. Similarly,
for each i ∈ S−, one can set

di = max { fi(x) | x ∈ X} or di = max { fi(x) | x ∈ XR}.

We complete this section by emphasizing that the reference point is an input
parameter for the NSWP. The choice of this point does highly impact the solution
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obtained by solving the problem. In particular, a poor choice of the reference point
could result in a solution which does not necessarily resolve all the weaknesses
mentioned in this paper. Therefore, the reference point should be selected with care
and by considering the particular problem to which it is applied.

4. Solution methods for the Nash social welfare program

Observe that, in the NSWP, we have fi(x) − di ≥ 0 for all i ∈ S+, because fi(x) ≥ di.
Similarly, we have di − fi(x) ≥ 0 for all i ∈ S−, because fi(x) ≤ di. Hence, for notational
convenience, let

Y = { y ∈ Rp | x ∈ X,
yi = fi(x) − di and yi ≥ 0 for all i ∈ S+,
yi = di − fi(x) and yi ≥ 0 for all i ∈ S−

}
,

be the feasible set of the NSWP in the criterion space. Using this notation, the NSWP
can be rewritten as

max
y∈Y

∏
i∈S+∪S−

ywi
i . (4.1)

ASSUMPTION 4.1. In the rest of this paper, we assume that Y can be represented
by only convex (and ideally linear) constraints involving continuous and/or integer
decision variables.

We now describe a few solution approaches for solving the NSWP using Assump-
tion 4.1. The first approach is straightforward. It applies the log-transformation to the
objective function of the NSWP. So, the NSWP can be rewritten as follows:

max
y∈Y

∑
i∈S+∪S−

wi log(yi). (4.2)

Observe that equation (4.2) is basically maximizing a concave function over a mixed
integer convex set (due to Assumption 4.1). So, the first approach calls a mixed integer
convex programming solver to solve equation (4.2).

REMARK 4.2. Two advantages of the first approach are that (1) it can handle fractional
weights directly and (2) it does not increase the size of the problem. However, a
weakness of the first approach is that it involves log functions and (in practice) solvers
generally perform better when dealing with problems involving linear/quadratic
functions than log functions [21].

The second approach applies piecewise linearization techniques to first linearize
the log functions in equation (4.2), and then call a (mixed) integer convex/linear
programming solver to solve the linearized problem [3]. In general, the piecewise
linear function is an approximation of

∑
i∈S+∪S− wi log(yi). However, if yi can only

take integer values in the interval [li, ui] for all i ∈ S+ ∪ S−, where li, ui ∈ Z+ and
are nonnegative, then the piecewise linear function can be an exact representation of
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∑
i∈S+∪S− wi log(yi). This is because one can set the breakpoints of the piecewise linear

function for yi where i ∈ S+ ∪ S− is to be all integer values in the interval [li, ui]. For
example, if yi can only take integer values for all i ∈ S+ ∪ S−, then an exact piecewise
linearized reformulation of equation (4.2) can be stated as follows:

max
y∈Y

∑
i∈S+∪S−

wi

ui−li+1∑
j=1

bij log(li + j − 1),

subject to yi =

ui−li+1∑
j=1

bij(li + j − 1) for all i ∈ S+ ∪ S−,

ui−li+1∑
j=1

bij = 1 for all i ∈ S+ ∪ S−,

bij ∈ {0, 1} for all i ∈ S+ ∪ S− and
for all j ∈ [1, ui − li + 1].

(4.3)

Observe that the interval [li, ui] consists of ui − li + 1 integer values for any
i ∈ S+ ∪ S−. Hence, in equation (4.3), bij is a binary decision variable that takes the
value of one if the value of yi is equal to the jth smallest integer value in the interval
[li, ui], that is, li + j − 1, and zero otherwise. The constraints of equation (4.3) ensure
that bij follows its definition for all i ∈ S+ ∪ S− and j ∈ [1, ui − li + 1]. In addition, the
terms

ui−li+1∑
j=1

bij log(li + j − 1)

in the objective function of equation (4.3) capture the value of log(yi) for all
i ∈ S+ ∪ S−. Note that the term log(li + j − 1) is a parameter and can be computed in
advance. The following remark is helpful.

REMARK 4.3. Two advantages of the second approach is that it can handle fractional
weights and it can use the power of commercial integer linear programming solvers
such as CPLEX or Gurobi, if Y is represented by linear constraints involving
continuous and/or integer decision variables. However, two weaknesses of the second
approach include: (1) it introduces additional binary decision variables which can
increase the size of the problem; (2) it can be an approximation approach if yi is
continuous for i ∈ S+ ∪ S−.

The third approach assumes that wi is a positive integer value for all i ∈ S+ ∪ S−.
Of course this is not an unreasonable assumption because, by Proposition 3.4, one
can multiply the objective function of equation (4.2) by a sufficiently large (positive)
number to change all fractional (rational) weights to integer values. So, we can assume
that wi ∈ Z for all i ∈ S+ ∪ S−. The third approach is motivated by this observation
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that the NSWP can be reformulated as a geometric-mean optimization problem as
follows:

max
y∈Y

γ,

subject to 0 ≤ γ ≤ W

√ ∏
i∈S+∪S−

ywi
i ,

where W =
∑p

i=1 wi and γ is a nonnegative decision variable that captures the value
of the geometric mean (for optimal solutions). Note that because the problem is in
the form of maximization, we must have γW =

∏
i∈S+∪S− ywi

i for any optimal solution.
However, the main question is how equation (4.3) should be solved. The underlying
idea of the third approach is that equation (4.3) should be reformulated in a form
that can be solved by commercial solvers. As stated by Chrakhgard et al. [4], based
on the work of Ben-Tal and Nemirovski [2], a geometric-mean constraint can be
replaced by some linear constraints and second-order cone constraints (and introducing
some additional continuous variables). To do so, in the geometric-mean constraint, ywi

i
should be first replaced by the multiplication of wi copies of yi for each i ∈ S+ ∪ S−. In
other words, for each i ∈ S+ ∪ S−, we can replace ywi

i by

Wi∏
j=Wi−1+1

τ0
j ,

Wi =
∑i

k=1 wk and τ0
j = yi for all j ∈ [Wi−1 + 1,Wi]. Note that the superscript of τ is

just an index and it does not indicate its power. With this in mind, let K be the smallest
positive integer value such that 2K ≥ W. By introducing some additional nonnegative
variables and constraints, equation (4.3) can be reformulated as follows:

max γ,

subject to 0 ≤ γ ≤
√
τK−1

1 τK−1
2 ,

0 ≤ τl
j ≤
√
τl−1

2j−1τ
l−1
2j for all j ∈ [1, 2K−l] and

for all l ∈ [1, K − 1],

0 ≤ τ0
j = yi for all i ∈ S+ ∪ S− and

for all j ∈ [Wi−1 + 1,Wi],

0 ≤ τ0
j = γ for all j ∈ [W + 1, 2K],

y ∈ Y.

(4.4)

Interested readers may refer to the work of Ben-Tal and Nemirovski [2] for details
regarding this transformation. Note that any constraint of the form {u, v, z≥0 | u≤√vz}
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is equivalent to

{
u, v, z ≥ 0

∣∣∣∣∣
√

u2 +

(v − z
2

)2
≤ v + z

2

}
,

which is a second-order cone constraint.

REMARK 4.4. An advantage of the third approach is that it can use the power of
commercial integer quadratic programming solvers such as CPLEX or Gurobi if
Y is represented by linear/quadratic constraints involving continuous and/or integer
decision variables. However, a weakness of the third approach is that it requires all
weights to be multiplied (at the same time) by a sufficiently large positive value to
become integer and this can result in introducing many second-order cone constraints
that can increase the size of the problem. For example, if p = 2, w1 = 0.01 and w2 = 1,
then the weights should be multiplied by 100, and we will have w1 = 1 and w2 = 100.
So, in that case, we will have K = 7 and, therefore, 127 second-order cone constraints
need to be added.

REMARK 4.5. Based on Assumption 4.1, if Y does not involve any integer decision
variables, then equation (4.4) can be solved in polynomial time, because it is a convex
program.

Finally, it is worth mentioning that some other effective (but sophisticated)
approaches have been developed for solving the NSWP in recent years. Those
approaches fall under the category of “solution methods for optimization over the
Pareto-optimal solutions,” because they are based on this observation that the NSWP
is trying to return a Pareto-optimal solution that maximizes the Nash social welfare
function. In other words, those approaches try to find a Pareto-optimal point in
each iteration and then check its optimality for the NSWP. If it is not optimal, then
they modify the search and find a different Pareto-optimal point. To the best of our
knowledge, those approaches are shown to be competitive with (and even better than)
all the approaches mentioned above when Y is represented by only linear constraints
involving continuous and/or integer decision variables. Interested readers may refer to
the papers by Charkhgard et al. [4], Saghand and Charkhgard [16, 17], Saghand et al.
[18] and Vazirani [21] to learn more about those approaches. Specifically, a detailed
computational study comparing different solution approaches was given by Saghand
and Charkhgard [17].

5. Final remarks

In this paper, we introduced four main challenges when dealing with single- or
multi-objective optimization problems including computational barrier, confusion (or
nonexistence) of decision makers, ignoring unsupported Pareto-optimal solutions and
fairness/equity. To overcome the challenges, we proposed to develop a game-theoretic
mathematical program, named as the NSWP, for any single- or multi-objective
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optimization problem. We showed that there are several effective techniques to solve
the NSWP. To see the effectiveness of the NSWP in different fields, interested
readers may refer to the works of Sierra-Altamiranda et al. [20] in conservation
planning/ecology, Acuna et al. [1] and Mendoza-Alonzo et al. [12] in healthcare, and
Melendez et al. [11] in energy. Overall, we hope that the simplicity and advantages of
the proposed approaches encourage more practitioners as well as researchers to use the
NSWP in practice.
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