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Abstract. In this paper we prove a multifractal formalism of Birkhoff averages for
interval maps with countably many branches. Furthermore, we prove that under certain
assumptions the Birkhoff spectrum is real analytic. We also show that new phenomena
occur; indeed, the spectrum can be constant or it can have points where it is not analytic.
Conditions for these to happen are obtained. Applications of these results to number theory
are also given. Finally, we compute the Hausdorff dimension of the set of points for which
the Birkhoff average is infinite.

1. Introduction
The Birkhoff average of a regular function with respect to an hyperbolic dynamical system
can take a wide range of values. This paper is devoted to a study of the fine structure of
level sets determined by Birkhoff averages. The class of dynamical systems we consider
are interval maps with countably many branches. These maps can be modelled by the
(non-compact) full-shift on a countable alphabet. The lack of compactness of this model,
and the associated convergence problems, is one of the major difficulties that has to be
overcome in order to obtain a precise description of the level sets.

Let us be more precise: denote by I = [0, 1] the unit interval. We consider the class
of expanding-Markov—Renyi (EMR) interval maps. This class was considered by Pollicott
and Weiss in [25] when studying multifractal analysis of pointwise dimension.

Definition 1.1. Amap T : I — I is an EMR map if there exists a countable family {/;}; of
closed intervals (with disjoint interiors int /,,) with I; C I, for every i € N, satisfying:
(1) the mapis C? on | J32, int I;;
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(2) there exists £ > 1 and N € N such that, for every x € Ufi] I; and n > N, we have
[(T") (x)| > &";

(3) the map T is Markov and it can be coded by a full-shift on a countable alphabet;

(4) the map satisfies the Renyi condition, that is, there exists a positive number K > 0
such that

IT"(x)]
sup  sup  ——————— <
neN x,y,zel, [T WIT'(2)]

The repeller of such a map is defined by

o0
A= {x € U I; - T"(x) is well defined for every n € N}.
i=1
We also assume throughout the paper that zero is the unique accumulation point of the set
of endpoints of {/;}.

Example 1.2. The Gauss map G : (0, 1] — (0, 1] defined by

1 1
Gx)=—— [;}

where [-] is the integer part, is an EMR map.

The ergodic theory of EMR maps can be studied using its symbolic model and the
available results for countable Markov shifts. We follow this strategy in order to describe
the thermodynamic formalism for EMR maps for a large class of potentials (see §2).

Let ¢ : A — R be a continuous function. We will be interested in the level sets
determined by the Birkhoff averages of ¢. Let

1 n—1 '
U :inf{ lim — qu(T’x) ‘x € A} and
n—oon o

n—1

1 .
apy =supi lim — E ¢(T'x):x € Ay.
n—oo n 4 5
=

Note that, since the space A is not compact, it is possible for «;, and ops to be minus
infinity and infinity respectively. For « € [o,,, opr] we define the level set of points having
Birkhoff average equal to o by

n—1

. .
J(@) = {xeA.nlggo;;mT x)_a}.

Note that these sets induce the so-called multifractal decomposition of the repeller,

apm

A= U J(a)UJ’,

A=y
where J' is the irregular set defined by

n—1

J = {x € A :thelimit lim — Z (])(Tix) does not exist}.
n—>oo n =
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The multifractal spectrum is the function that encodes this decomposition and it is defined
by
b(a) = dimg (J (@),

where dimg (-) denotes the Hausdorff dimension (see §2.3).

The function b(«r) has been studied in the context of hyperbolic dynamical systems (for
instance EMR maps with a finite Markov partition) for potentials with different degrees
of regularity. Initially, this was studied in the symbolic space for Holder potentials by
Pesin and Weiss [27] and for general continuous potentials by Fan et al [6]. Feng et al [9],
then studied the case of continuous potentials for conformal expanding maps. Barreira
and Saussol [2] showed that the multifractal spectrum for Holder continuous functions
is real analytic in the setting of conformal expanding maps. They stated their results in
terms of variational formulae. Olsen [24], in a similar setting, obtained more general
variational formulae for families of continuous potentials. The multifractal analysis for
Birkhoff averages for some non-uniformly hyperbolic maps (such as Manneville Pomeau)
was studied by Johansson et al in [18]. There have also been several articles on multifractal
analysis in the countable state case, see for example [7, 11, 13, 20]. However, these papers
look at the local dimension spectra or the Birkhoff spectra for very specific potentials
(e.g. the Lyapunov spectrum).

Our main result is that in the context of EMR maps we can make a variational
characterization of the multifractal spectrum.

THEOREM 1.3. Let ¢ € R be a potential, then, for o € (—o0o, apr), we have that

b(a):sup{%:MEMT,/¢dM:aandA(u)<oo}, (D

where the class R is defined in §2.2, Mt denotes the set of T-invariant probability
measures, h() denotes the measure theoretic entropy and A(jL) is the Lyapunov exponent
(see §2).

The other major result, which we prove in §4, is that when ¢ is sufficiently regular
and satisfies certain asymptotic behaviour as x — 0 the multifractal spectrum has strong
regularity properties.

THEOREM 1.4. Let ¢ € R be a potential. The following statements hold.

(1) If limy_q (¢ (x)/—log |T'(x)|) = 0o and there exists an ergodic measure of full
dimension u then b(a) is real analytic on (f¢ du, o) and b(a) =dim A for all
a<[pdu.

(2) Iflimy_ (¢ (x)/—log |T'(x)|) = oo and there does not exist an ergodic measure of
full dimension then b(w) is real analytic for all @ € (—o0, apy).

3) Iflimy_g (¢p(x)/—log |T'(x)|) = O then there are at most two points when b(a) is
non-analytic.

Note that in a sequel to this paper, [14], similar results were obtained in the case
of the quotients of functions. In [5, Theorem 7.2] it was shown that in the case where
lim, ¢ (¢ (x)/—log |T'(x)|) =0 it is possible to find an example where there are two
points for which b(«) is not analytic.
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Without the assumptions made in Theorem 1.4 it is hard to say anything in general but
it is possible to say things in specific cases. We investigate this further in §§5 and 6. In
particular in §5 we look at the case when ¢ (x) = —log |T’| and we also look at the shapes
b(x) can take.

In §6 we apply the above two theorems to the Gauss map and obtain results relating
to the continued fraction expansion. Our results relate to classical ones by Khinchin [21]
regarding the size of sets determined by averaging values of the digits in the continued
fraction expansion of irrational numbers. We not only consider the behaviour of the limit

hm n ay-ay----- ay,
n—oo

where the continued fraction expansion of x is given by [a1a; - - - ], but we generalize it to
a wide range of other functions. For example, we are able to describe level sets determined
by the arithmetic averages of the digits in the continued fraction

.1
lim —(a; +ax+---+ay).
n—-oo n

Note that there is related work in [8] where they look at the dimension of the sets where
the frequencies of values the a; can take are prescribed.

Since the potentials we consider are unbounded, their Birkhoff average can be infinite.
In §7 we compute the Hausdorff dimension of the set of points for which the Birkhoff
average is infinite.

2. Symbolic model and thermodynamic formalism

In this section we describe the thermodynamic formalism for EMR maps. In order to do
so, we will first recall results describing the thermodynamic formalism in the symbolic
setting.

2.1. Thermodynamic formalism for countable Markov shifts. The full-shift on the
countable alphabet N is the pair (X, o), where
Y ={(xi)i>1:x €N},

and o : ¥ — X is the shift map defined by o (x1x3 - - - ) = (xpx3 - - - ). We equip X with
the topology generated by the cylinders sets

Cijiy, ={xeX:xj=ijforl <j<nj.
The n-variation of a function ¢ : ¥ — R is defined by
Va(@) :=sup{lo(x) —p ()| :x,ye X, xj =y for0<i <n—1}.

We say that a function ¢ : ¥ — R has summable variation if Z?ziz Va(¢) < oo. If ¢ has
summable variation then it is continuous. A function ¢ : ¥ — R is called weakly Holder
if there exist A > 0 and 6 € (0, 1) such that, for all n > 1, we have V,(¢) < A6". The
thermodynamic formalism is well understood for the full-shift on a countable alphabet.
The following definition of pressure is due to Mauldin and Urbarski [23].
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Definition 2.1. Let ¢ : ¥ — R be a potential of summable variations; the pressure of ¢ is
defined by

n—1
P(¢) = lim %log > exp(gqs(a"x)). 2)

o (x)=x

The above limit always exits, but it can be infinity. This notion of pressure satisfies the
following results (see [23, 28-30]).

PROPOSITION 2.2. (Variational principle) If ¢ : ¥ — R has summable variations and
P(¢) < oo then

P(¢)=Sup{h(ﬂ)+/¢du:—/¢du<ooandu,€/\/la},

where M is the space of shift invariant probability measures and h(w) is the measure
theoretic entropy (see [32, Ch. 4]).

Definition 2.3. Let ¢ : ¥ — R be a potential of summable variations. A measure u € M,
is called an equilibrium measure for ¢ if

P(¢) = h(w) + /¢ dp.

PROPOSITION 2.4. (Approximation property) If¢ : ¥ — R has summable variations then
P(¢) =sup{Py |k (¢p) : K C X : K # 0 compact and o -invariant},

where Py |k (¢) is the classical topological pressure on K (for a precise definition see [32,
Ch. 9]).

Definition 2.5. A probability measure u is called a Gibbs measure for the potential ¢ if
there exists two constants M and P such that, for every cylinder C;, ;, and every x €
C;,...i,» we have that

1 m(Ci i)

— <

< b <M.
M "~ exp(—nP + >0 P (07 x))

PROPOSITION 2.6. (Gibbs measures) Let ¢: X — R be a potential such that
Zsil V() < 0o and P(¢) < oo, then ¢ has a unique Gibbs measure.

PROPOSITION 2.7. (Regularity of the pressure function) Let ¢ : ¥ — R be a weakly
Holder potential such that P(¢p) < 00, there exists a critical value s* € (0, 1] such that, for
every s < s*, we have that P(s¢) = 0o and, for every s > s*, we have that P(s¢) < 0.
Moreover, if s > s* then the function s — P(s¢) is real analytic and every potential s¢
has a unique equilibrium measure.
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2.2. Symbolic model. 1t is a direct consequence of the Markov structure assumed
on an EMR map T that 7T : A — A can be represented by a full-shift on a countable
alphabet (X, o). Indeed, there exists a continuous map 7 : ¥ — A such that 7 oo =
T o . Moreover, if we denote by E the set of end points of the partition {/;}, the map
7 :% — A\U,cy T7"E is an homeomorphism. Denote by (i1, ..., i,) =7(Cj,..i,)
the cylinder of length n for 7. We will make use of the relation between the symbolic
model and the repeller in order to describe the thermodynamic formalism for the map 7.
We first define the two classes of potentials that we will consider.

Definition 2.8. The class of regular potentials is defined by
R = {(p :A—> R:¢ <0, ¢ o has summable variations and lir% P(x) = —oo}.
xX—>

Note that if we have a potential ¥ : A — R such that ayy + b € R for some a, b € R
then, since we can compute the Birkhoff spectrum for ayy + b € R, we can compute the
Birkhoff spectrum for .

Definition 2.9. The class of strongly regular potentials is defined by
R:={¢p:A—R:¢ecRand ¢ o is weakly Holder}.

Example 2.10. Let {a,}, be a sequence of real numbers such that a, — —oo. The locally
constant potential ¢ : A — R defined by ¢ (x) = ay, if x € I (n), is such that ¢ € R.

The fopological pressure of a potential ¢ € R is defined by

PT(¢)=Sup{h(,u)+f¢d,u:—/¢du<ooand,ue/\/lr},

where M7 denotes the space of T-invariant probability measures. Since there exists a
bijection between the space of o-invariant measures M, and the space of T-invariant
measures M7 we have that

Pr(¢) = P(7 0 ¢). 3)

Therefore, all the properties described in §2.1 can be translated into properties of the
topological pressure of the map 7. Since both pressures have exactly the same behaviour,
for simplicity, we will denote them both by P(-).

Remark 2.11. Since we are assuming that the set E of end points of the partition has only
one accumulation point and it is zero, we have that if ¢ € R then lim,_,¢ ¢ (x) = —o0, and
if a € A\{0} then lim,_,, ¢ (x) < o0.

Remark 2.12. Note that if T is an EMR map then the potential —log |T'| € R.If u € Mp
then the integral

A) = / log |T'| dpt

will be called the Lyapunov exponent of .

https://doi.org/10.1017/etds.2015.44 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2015.44

Multifractal analysis of Birkhoff averages 2565

2.3. Hausdorff dimension. 1In this subsection we recall basic definitions from
dimension theory. We refer to the books [1, 4, 26] for further details. A countable collection
of sets {U;}ien is called a §-cover of F C Rif F C UieN Ui, and, for every i € N, the sets
U; have diameter |U;| at most §. Let s > 0; we define

Hj(F):= inf{i |U;|* : {U;}; is a 8-cover of F}
i=1
and
H'(F):= 611_{% Hj (F).
The Hausdorff dimension of the set F is defined by
dimy (F) :=inf{s > 0: H*(F) = 0}.
We will also define the Hausdorff dimension of a probability measure p by
dimg (u) :=inf{dimg (Z) : u(Z) = 1}.

A measure u € M7 is called a measure of maximal dimension if dimg u = dimg A.

3. Variational principle for the Hausdorff dimension
In this section we prove our main result. That is, we establish that the Hausdorff dimension
of the level sets J («) satisfies a conditional variational principle.

THEOREM 3.1. Let ¢ € R, then, for a € (—00, ayy),

h
dimH(J(a))zsup{%:MGMT,/¢du=aandA(u)<oo}. )
n
Proof of the lower bound. In order to prove the lower bound first note that if u € My
is ergodic and fqb du = a then w(J(a)) = 1. Moreover, if A(u) < oo then dimy(u) =
h(u)/A(un) and we can conclude that

dimg (J(@)) > dimp (1) = M
M)
Thus we can deduce that
dimg (J(a)) > sup{% 1 i € Mt and ergodic, /qb diu=oand () < oo}
u

To complete the proof of the lower bound we need the following lemma.

LEMMA 3.2. Let o € (—00, apg). If p € My, [¢pdp =0 and () < oo then, for any
& > 0, we can find v € Mt which is ergodic and:

1) [epdv=a;

(2) |h) —h(w| <e;

3) ) =) <e

Proof. Letu e Mrp, fqb dp = a and A(u) < 0o. We can then find a sequence of invariant
measures {{,} supported on finite subsystems such that f ddu, = o, im0 A(y) =
A(w) and lim,,_, oo A (1t,) =h(w). Since these measures are supported on finite subsystems,
we can apply [18, Lemmas 2 and 3] to complete the proof. O
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We can now immediately deduce that

sup{M ‘e Mr, /q&du:a and A(u) < oo}
M)

h(w)

= sup{ﬁ : i € Mt and ergodic, /(l) du=aand A(u) < oo},
I

which completes the proof of the lower bound.

3.1. Upper bound. In this section we prove the upper bound of our main result. We
adapt to our setting the method used in [18].

LEMMA 3.3. The function

F(x) ::sup{%:MEMT,/¢du:aandA(u)<oo}

is continuous in the domain (—o0, ayy).

Proof. Let {1, } be a sequence of measures in M satisfying A(u,) < oo and converging
to a measure p where fd) dp=a.Letp, p € M such that

f¢dﬁ<a</¢dﬁ

and A(11), (i) < oo. By considering convex combinations of w, with i or u we can find
a sequence of measures v,, where f ¢ dv, = a for each n and

‘h(ﬂn) h(vp)
m —
n—00| A (i) A(vn)

It then follows that
F(a) = lim sup F (o).

n—oo

In the other direction we fix u, v € M7, with [¢dv=8 <a = [pdu. Letv, = pv +
(1 — p)u and note that

lim inf F(x) > lim 02 = P00
x—a~ p—0 A(vp) Au)

and

liminf F(x) > lim M = @
x—>pt p—1 )\(Up) A(v)

We can use this to deduce that

F (o) <liminf F(ay,). O
n—oo

Denote Si¢(x) := Zf:é ¢(T'x). Let «€R, NeN and ¢>0 and consider the
following set:

J(a,N,s)::{xeA:@e

(a—s,oe—i—s),foreverykzN}. 5
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Note that
o0

J@c | J@N.e).

N=1

In order to obtain an upper bound on the dimension of J(«) we will compute upper
bounds on the dimension of J («, N, ¢). Denote by Cy, the cover of J («, N, ¢) by cylinders
of length k € N, that is

Cr :={IGy,...,0x):1(y,...,ix)NJ(x, N, &) #0}.

LEMMA 3.4. For every k € N the cardinality of Cy, is finite.
Proof. Since ¢ € R we can deduce that lim;_, o infy (i) ¢ (x) = —o0 and hence we can
find an i € N such that, for all x € I(j) with j > i, we have that |¢p(x)| > k(Ja| +¢). It

then follows that Cy only contains cylinders 7 (iy, ..., ix) where each i; <i. There is
clearly only a finite number of such cylinders. O

Let s; € R denote the unique real number such that

Yo MG i =1

I(iy,...,ix)€Ck

We define the following number:

s := lim sup s. (6)
k—o00

LEMMA 3.5. The following bound holds:
dimp (J(a, N, €)) <,
and there exists a sequence of T -invariant probability measures {1} such that
h
lim (sk - (“")> =0
k— 00 A(uk)

and [¢ duk € (@ — 2¢, a + 2¢).

Proof. To see that dimy (J (o, N, €)) < s, we note that, for k sufficiently large and ¢ > 0,
HIJ@Nen< ) ... il <1
I1(iy,....ix)€Cy
This means that H57¢(J(a, N, €)) <1 and so dim J(«, N, &) <s + ¢.
For the second part, let n; be the T*-invariant Bernoulli measure which assigns each
cylinder in Cy, denoted by I(iy, . .., i), the probability | (i, ..., ix)|*. Note that the
entropy of this measure with respect to 7% will be

how, T ==si Y G, .., i)* log | Gn, - ., i)
I1(iy,...,ig)eC

and there will exist C > 0 such that, for all k € N, the Lyapunov exponent A(n;, T¥*1)
satisfies

A TH = Y G, i log |G, . i)l < C.
I(iy,..., ix)eCx
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This then gives that

Sk, T =€) _ h(u. T _ i G, TH) + €)
Ao, TFY T a0, T = Mk, T
and, since A(ng, TX) > &K, it follows that limg_ oo (h(nk, TX)/A(nk, T)) — s = 0.
Moreover, for k sufficiently large, each cylinder in Cy; will only contain points x
where Si¢(x) € (o — 2¢, o 4+ 2¢). This means that f((Squ)/k) dn € (@ — 2¢, a + 2¢).
To complete the proof we simply let ;. = (1/k) Zf;(} ko T O

Thus, we can deduce that

dimy J(o) < lim sup F(y).
e—>0 ye(a—e,a+e)
The fact that
dimyg J(x) < F (@)

now follows by Lemma 3.3. This completes the proof of Theorem 3.1.

Remark 3.6. ltis a direct consequence of the work of Barreira and Schmeling [3], together
with the approximation property of the pressure (Proposition 2.4), that the irregular set has
full Hausdorff dimension,

dimyg J' =dimy A.

4. Regularity of the multifractal spectrum

This section is devoted to the study of the regularity properties of the multifractal spectrum.
We relate the conditional variational principle to thermodynamic properties and as a result
prove Theorem 1.4. Our proof is based on ideas developed by Barreira and Saussol [2]
in the uniformly hyperbolic (Markov with finitely many branches) setting. Nevertheless,
most of their arguments cannot be translated into the non-compact (Markov with countably
many branches) setting. It should be pointed out that the behaviour of the multifractal
spectrum in this setting is much richer than in the compact setting. New phenomena occur,
in particular the multifractal spectrum can be constant and it can have points where it is
not analytic. We obtain conditions ensuring these new phenomena happen.

The following proposition is a direct consequence of results by Mauldin and
Urbanski [23], Sarig [29] and Stratmann and Urbanski [31]. We will use it to deduce
certain regularity properties of the multifractal spectrum. Throughout this section we will
let ¢ € R and «rps to be as in the introduction. Some of the results will need additionally
that ¢ € R.

PROPOSITION 4.1. (Regularity) If ¢ € R, 8 € (0, 1] and o € (—o0, apy) then the function
qr> P(q(¢p —a) —8log |T']),

when finite, is real analytic, and in this case

d
7P —a)—dlog IT'1)
q

= /¢ dfigy,s — a, (7
4=

where [1q, s is the equilibrium state of the potential qo(¢ — o) — 8 log |T'|.
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For o € (—o0, ayy) we will let

h
() = sup{M ‘e Mr, /q’) dp=aand A(pn) < oo}
A(p)
We wish to relate §(a) to the function g — P(g(¢ —a) — 8 log |T’|). To do this we
introduce the value §*, which is defined by
8* :=inf{8 € [0, 1]: P(q¢ — 8 log |T'|) < oo for some g > 0}.
This quantity will always give a lower bound for 8 («).

LEMMA 4.2. For all ¢ € (—00, apy) we have that §(a) > 8*.

Proof. If §* =0 then this statement is obvious so we will assume that §* > 0. Let 0 <
s < 8% and o € (—o0, apy). In order to show that §(«) > §* we will exhibit a sequence of
invariant measures (v,,) such that, for every n € N, we have f ¢ dv, =« and

h(vy
1 (V)zs.
100 A(Vn)

First note that we can find a sequence of invariant measures (it,) such that, for all n, we
have sA(u,) < h(u,) < oo and lim,_ o (h(,un)/—f(j) duy,) = oo. Indeed, note that, for
every g > 0, we have that P(g¢ — s log |T'|) = 0o. Letg > 0 and A > 0 with A > gayy.
Because of the approximation property of the pressure, we can choose an invariant measure
v satisfying

h(v)—i—q/qbdv—s)»(v)zA. ®)
That is
h(v) > (A — gay) + sa(v).
From this we can deduce that
sA(v) < h(v) < oo.
Since [¢ dv < 0 then, from equation (8), we have
h(v) A A(v)
> — -5
—[¢dv fodv  [pdv

Since we can do this for every positive g € R, let ¢ =n and denote by u, an invariant
measure satisfying equations (8) and (9). The sequence (u,) complies with the required
conditions.

+q>gq. (€))

Passing to a subsequence if necessary, we can assume that the sequence [¢ dpu, is
monotone and that the following limit exists: y = lim,_, f ¢ du, (note that y can be
—00).

For sufficiently large values of n € N the integral f ¢ du, is close to y. Therefore, there
exists 8 € R and an invariant measure p satisfying:

() [¢dp=p:
2) h(u) <ooand A(u) < 00;
(3) aeB [¢pdun)orae[[¢du,, B) for n € N large enough.
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For n sufficiently large we can also find constants p, € [0, 1] such that o« = p,8 +
(1= pn)[¢ duy. If p, =0, for all n sufficiently large, then there is nothing to prove.
Consider the following sequence of invariant measures (v,) defined by

Vp = pppt + (1 — pp)idn.

Then fqb dv, =«a. By construction we have that lim,_.~ h(u,) =00. Since, by
assumption, & # B we have that lim,,—, oo (1 — p,) € (0, 1]. Therefore,

lim (1 — pp)h(pu,) =00
n—0o0

This implies that

lim h(va) _ — lim prh(u) + (1 — pp)h(in) - -

n=00 A(vy)  n=>00 pua() + (1 — p)A(ttn) ~

For notational ease we will allow P(q(¢ — o) — 8 log|T’|) >0 to include the case
when it is infinite.

LEMMA 4.3. Ifp € R, a € (—00, apyy) and () > 8* then, for all g € R, we have
P(q(¢ —a) — () log |T']) = 0.

Proof. Recall that

h
S(a) = sup{% neMr, /qb dp=aand A(p) < oo}

Denote by (u,,), a sequence of T-invariant measures such that, for every n € N, we have:
) [pdun=a;
(2)  h(un) <ooand A(u,) < 005
(3) A

lim ) _ — s,

100 1(1tn)

If we choose §* <51 <52 < 8(a) and go > O such that P(go¢p — s1log |T']) = K < 00
then, by the variational principle, for all n, we have

610/¢ dun — s1A(pn) + h(un) <K
and thus
h(pn) — s12(un) < K — gocr. (10)
Since for n sufficiently large we have

(Mn)
B )»( n) -
we obtain that soA () < h(u,). Thus, for n sufficiently large we have that

(),

h(pn) — s1A(pn) > (52 — s)A(Un)-
Substituting this into inequality (10) we get that for n sufficiently large

K — qox

An) < .
§2 — 8
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Furthermore by the variational principle we have that, for all g € R,

P(q(¢ — &) = 8(c) log [T"]) = h(pen) +61(/¢ dpn — 0{) — 8(e)A(1an)

h(jtn
= () — 8()A (1) zmm( (Z ) —a(a>>.

The result then follows since A(u,) is bounded above and lim,_ oo (2 () /A (pn) —
8(a)) = 0, which means that

o (23 m

We can now describe the function ¢ — P(q(¢p — @) — 8(a) log |T’|) in more detail.

LEMMA 4.4. For any o € (—00, apy] one of the following three statements will hold:
(1) 3(e) =057
(2) there exists qo € R such that P(qo(¢ — a) — 8(a) log |T'|) = 0 and

0
a—P(q(fb—a)—b‘(a) log |T")) =0;
q q9=q0

(3)  there exists q. € R such that P(q.(¢ — a) — §(a) log |T'|) =0 and
P(q(¢ — ) — 8(a) log |T'|) = o0
forall g < q..

Proof. We will assume throughout that § () > §* since otherwise (1) is satisfied.
We know that when finite the function ¢ — P(g(¢ —a) — 8(a) log |T'|) is real
analytic. Moreover, by virtue of Lemma 4.3, for all ¢ € R we have

P(q(¢ —a) — 8(a) log [T']) > 0.
We will show that if the derivative of the pressure is zero then the pressure itself is also

zero. Indeed, assume that there exists ¢g € R such that

0
32 7@ —a) =) log |T']) =0.
q a=4o
Denote by ji4, the equilibrium measure corresponding to the potential go(¢ — o) — §(a).
Then, Ruelle’s formula for the derivative of pressure gives that [¢ djig, = o. Thus

P(q(¢ — &) = 8(a) log |T']) = —8()A(1gy) + h(pgy) < 0.

So, P(qo(¢p — ) — 8(x) log |T’|) = 0 and statement (2) holds. Note that if the pressure
function ¢ — P(q(¢ — a) — 8(a) log |T']) is finite, for every g € R then there must exist
qo € R such that the derivative of P(g(¢ — o) — 8(a) log |T’|) at g = qo is equal to zero.
This follows from Ruelle’s formula for the derivative of pressure and the fact that o €
(—OO, OtM).
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Let us assume now that the derivative of the pressure does not vanish at any point
and let g. = inf{q : P(q(¢ — a) — 8(a) log |T’|) < oo}. It follows from standard ergodic
optimization arguments [17, 22] that

lim iP(q(qb—o:)—a(oz) log |T']) > 0.
gx—>00 0q q=g*
If P(g.(¢p — ) — 8() log |T’|) = oo then, by considering compact approximations to the
pressure, we can see that
lim P(g(¢ —a) — 8(a) log |T']) = oo.
q—>q
But recall that, for ¢ > g, the pressure is finite. This means that, for small ¢ > 0,
the derivative of the pressure for g € (¢, gc + ¢) will be negative. This, in turn, will
imply that there is a zero for the derivative and so cannot happen. Thus P(g.(¢ — o) —
8(a) log |T'|) < oo and
L Pel¢ — ) — 5@ logIT'D | >0.
dq q=qc

If P(qc(¢p —a) —8(a)log|T’|) =C > 0 then there exists a compact invariant set K
on which the pressure restricted to K satisfy Pk (q(¢ — a) — 8(a) log |T’|) > 0 for all
q € R. By considering the behaviour as ¢ — oo and ¢ — —o0, this function must have a
critical point that we denote by gg . Denote by wx the equilibrium measure corresponding
to gx (¢ — a) — 8(a) log |T’|. We can conclude that fqb dug = o and so

0 < Px(qk (¢ —a) — 8() log |T'|) = h(pug) — 8(a)r (k).
This means that h(ug)/A(ug) > §(a), which contradicts the definition of §(«). So we
can conclude that
P(ge(¢ —a) — () log [T']) =0
and property (3) is satisfied. O

Denote by A(w) the set of values o € (—o0, arpy) where Case (2) of Lemma 4.4 is
satisfied.

LEMMA 4.5. Let I C A() be an interval. The function « — b(a) = §(«) is real analytic
onl

Proof. Recall that

b(a)zsup{ig—z;:MEMT,f¢dM:aandA(u)<w}.

By virtue of the definition of / we have that, for « € I, there exists g(«) € R such that
P(q(a)(¢ —a) — b(a) log |T']) =0.
Recall that the function (g, 8) — P(q(¢ —a) — 8 log|T’|) is real analytic on each

variable. In order to obtain the regularity of b(«) we will apply the implicit function
theorem. Proceeding as in [1, Lemma 9.2.4], if

P(q(¢ —a) —8log|T"|)
G(g.8,a):=| dP(q(¢ —a) — 8log |T"])

dq
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we just need to show that

det[(aG ac)] _ 3P(q(¢p —a) —8log |T')) 9*P(q(¢p — ) — 8 log |T"])

FYMED dq 380q
_ 3*P(q(¢p —a) —8log |T']) dP(q(¢ — ) — S log |T'])
9q? 98

is not equal to zero for § = b(a) and g = g(a). Since dP(q(¢p —a) — 8log|T’])/dg =0
at ¢ =q(a), it is sufficient to show that 8%(P(g(¢ — ) —§ log IT']))/3g> and
9(P(q(¢p —a) —8log|T’]))/d8 are non-zero. Since the function P (g (¢ — a) — 8 log |T'|)
is strictly convex as a function of the variable ¢, we have that

2 _ o /
0°(P(q(¢ —a) —dlog |T'))) £0.
9q?

Since there exists an ergodic equilibrium measure p, such that

IP(g(p —a) —8log|T'])
EH) -

/ log |T'| dpe,
then we have .
dP(q(¢ —a) —dlog |T7]) -
a8
Therefore the function b(«) is real analytic on 1. O

0.

Let soo = inf{s € R: P(—slog |T’|) < 0o}. We are now ready to complete the proof of
Theorem 1.4 with the following more general proposition.

PROPOSITION 4.6. Let ¢ € R. We have that:
(1) if6* =dimyg A then b(a) = §* forall @ € (—o0, apyl;
(2) if 8* <s0o < dimpy A then there exists a non-empty interval I for which I C A(a)
and thus b(«) is analytic for a region of values of o;
3)  iflimy_g (—¢(x)/log |T'(x)|) = oo then either:
(@) A(x) = (—o00, apy] and thus b(x) is analytic for a € (—o0, ay) or
(b)  there exists an ergodic measure of full dimension v witha = [¢ dv > —o0 and
then I(a) = [a, ay], b(a) is analytic for « € (—a, apy] and b(a) = dimy A
Jora <oy
@ iflimy_g (—¢p(x)/log |T'(x)|) = 0 then b(a) is analytic on (—oo, a ] except for at
most two points.

Proof. Each part will be proved separately.

Part (1) can be immediately deduced from Lemma 4.2.

To prove part (2) we let s =dimgy A and note that §* < s, < 5. Since s < s then
P(—slog|T’|) =0 and P(—tlog|T’|) >0 for soo <t <s and P(—tlog|T’|) = oo for
8* <t < 500. Denote by v the equilibrium state corresponding to —s log |T’| and o =
f ¢ dv (this can be —oo, but if finite then b(a) = s). Since §(«) is a continuous function
of o we can define

o = supf{a : §(a) > Seo}-
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Now we assume that @ € (¢, @) and so, in particular, §(x) > §*. Since §(x) > 8*, we
are in either Case (2) or (3) of Lemma 4.4. Therefore, there exist go € R such that
P(qo(¢p —a) — 8(a) log |T’|) =0.Let g < 0and note that there exists a compact invariant
set K C A and a T-invariant measure v, such that dimg v, > §(a) and f ¢ dvy < a. We
have that

P(q(¢ —a) — () log |T']) = h(ve) +61(/¢ dve —Ol> — 8(e)A(va)

=q</¢>dua —oz) +)»(va)(% —6(a)> >0

and so gp > 0. We also have that P(—8() log |T’|) > 0 with equality if and only if ¢ = «.
By the definition of §* and noticing that §(«) > 8*, there exists ¢* > 0 such that, if g €
(0, g*), then

P(q(¢ —a) — () log |T"]) < o0.

Thus if §(a) < 8* then g — P(g(¢ — a) — 8(a) log |T']) is decreasing for g sufficiently
close to 0 and we can only be in Case (2) from Lemma 4.4. If o =« then
P(=8() log |T’|) =0 and (8/9q)P(q(¢ — a) — s log |T/|)|q:o =0, which means we
are also in Case (2) from Lemma 4.4.
To prove part (3) we first note that §* = 0 . Indeed, given A > 1 there exists ¢ > 0 such
that, if x € (0, &), then
—¢(x)
log |T(0)|

that is, ¢ (x) < —A log |T'(x)|. If we denote by P.(-) the pressure of T restricted to the
maximal T-invariant set in (0, €), we have that P,(¢) < P.(—A log |T’|) < co. Since the
entropy of T restricted to (0, 1)\ (0, &) is finite and the potential ¢ restricted to this set is
bounded, we can deduce that P(¢) < oo. In particular, we obtain that §* = 0.

)

Let us consider first the case where s < s. In this setting the potential —s log |T”|
has an associated equilibrium state v with 2(v)/A(v) = s. If we have f ¢ dv = —o0 then
we can just apply the techniques from the previous part. If [¢ dv := @ > —o0, then for
o € (a, apy) we can see that b(«) = §(«) will be analytic by applying part (2). For o < o
we know, for 0 < § <s:

(1) P(g(¢p —a)—38log|T'|) =ooforallg <0;

(2) P(=8log|T'|) > 0;

3) Plg(p —a)—8log|T']) > g(a —a) —8A(v) + h(v) > 0forallg > 0.

Note that the first statement follows from the assumption lim,_.o (—¢(x)/log |T’(x)|)
= 00. Therefore, we cannot be in Cases (1) or (2) from Lemma 4.4. This means that we
must be in Case (3) from Lemma 4.4 with ¢, = 0 and thus § () = s.

We now assume that s =so,. We start with the case where P(—slog|T’|) <O.
This means that if {u,},eny iS a sequence of T-invariant measures such that
lim, 00 (B(tn)/A(y)) =s then lim,_ o0 A(,) =00. Indeed, assume by way of
contradiction that lim sup,,_, ., A(n) = L < 00. Given ¢ > 0 there exists N € N such that

h(un) -
AluUn)
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that is A(upy) — sA(un) = —eL. Since this holds for arbitrary values of &, we obtain that
P(—slog |T’|) > 0. This contradiction proves the statement. Now, since by assumption
limy_o (—¢(x)/log |T'(x)|) = oo we have that lim,,_, f¢ du, = —oc. Therefore, for
a € (—o0, ayr) we must have §(«) < s. This means that P(—68(«) log |T'|) = oo and, for
all ¢ > 0, we have P(q(¢ — a) — 8(a) log |T’|) < oo. Thus we must be in Case (2) from
Lemma 4.4 and the proof is complete.

We now assume that P(—slog|7’|) =0 and that v is the equilibrium state for
—slog |T’|. For any o < [¢ dv we can argue exactly as when s, <s to show that
() =s. For a > f¢ dv we first need to show that §(«) < s. To prove this, note that the
function ¢ — P(q(¢ — @) — s log |T’|) has a one sided derivative at ¢ = O with derivative
f(q) — o) dv < 0. Thus by Lemma 4.4 it is not possible that § (o) = 5. So § () < s and we
can use the same arguments as when P(—s log |T’|) < 0.

We now turn to part (4) of the Lemma. In this case §* = 5. Indeed, given t > 0
there exist & > 0 such that if x € (0, &) then —zlog |T’(x)| < ¢(x). If we denote by
P.(-) the pressure of T restricted to the maximal T-invariant set in (0, ), we have
that P.(—(t + 8) log |T’]) < P:(q¢ — 8 log |T’|). Since the entropy of T restricted to
(0, D\(0, &) is finite and the potentials ¢ and log |T”| restricted to this set are bounded,
we can deduce that, for ¢ > 0 and any positive ¢ > 0, we have

P(=(t +8)log |T') < P(qg¢ — 8 log |T)).

Therefore §* = 5.

This implies that if s = s then §(o) = s for all o € (—o0, apr). So we will assume
that soo <s. If 6(«) > 5o then by our assumption on ¢ we have P(q(¢p — o) —
8(a) log |T'|) < oo for all g € R and

lim P(g(¢p — ) — (@) log |T']) = oo,

q—too

and so we must be in Case (2) from Lemma 4.4. So we need to show that the set
J={a:6(a) > s}

is a single interval. Denote by v the equilibrium measure corresponding to —s log |7T”|
and o = [¢dv. Let @ € J; we know that there is an equilibrium measure w, with
fd) dug =o and h(uy)/A(y) =8(e). Let B € R be real number bounded by « and
«. By considering convex combinations of w, and v we can see that §(8) > 6(c). It
therefore follows that J is a single interval and the only possible points of non-analycity
for (o) = b(w) are the endpoints of J. O

5. The Lyapunov spectrum
A special case of the Birkhoff spectrum, which has received a great deal of attention,
is the Lyapunov spectrum. This can be included in our setting by considering ¢ (x) =
—log |T’(x)| and then the Lyapunov spectrum is given by L(«) = b(—a). The present
section is devoted not only to showing how previous work on the Lyapunov spectrum can
be deduced from ours, but also to present new results on the subject.

In a related setting there has been work on the Gauss map in [20, 25]; for fairly general
piecewise linear systems see [19], and in [16] the spectra for ratios of functions are studied
where one of the functions is —log | T’ (x)|.
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If T denotes an EMR map then the variational formula proved in Theorem 1.3 holds for
the Lyapunov spectrum. On the other hand, neither of the assumptions for Theorem 1.4 are
satisfied. However, it is still possible to describe in great detail the Lyapunov spectrum.

Let ¢ (x) = —log |T'(x)| and, as in the previous section, let

Soo = Inf{§ € R: P(§¢p) < 00}.
The following theorem shows how our results fit in with the results in [16, 19, 20].

THEOREM 5.1. Forall o € (—o0, ap) we have that

P(ug) }
— :

b(a) = inf{u + (11)

Furthermore:

(1) if P(s00o®) = 00 then b(w) is real analytic on (—oo, apy);

2) if P(sco®) =k < 00 and . is the equilibrium state for soo¢ then b(a) is analytic
except at o, = f¢ duc. For o < o we have that b(o) = 500 — k /.

Proof. The formula for b(«) given in equation (11) was shown in a slightly different
setting in [19]. We show how it can also be derived from the methods in this paper. For
each § € R we will denote the function f5 : R — R by

fs(q) = P(qp +5¢) = P((q + 8)¢).

We first assume that P (sx¢) = oo. Thus, we have

00 if g <s00 — 3,
o=y T

finite if g > 500 — 6.
Therefore, for each o € (—oo, arpr) and for each § € R, there exist g(§) > soo — & such
that fa/ (g(8)) = a. Denote by g (5(x)) € R the corresponding value for §(«). We have that

= .
q=q(8())

d
d—P(W +8()9)
q

Moreover,
P(q(6(a)¢ + d(x)p) = q(8(x))ax.

Thus, for all & € (—o0, aps] we are in Case (2) from Lemma 4.4. Therefore, the Lyapunov
spectrum is real analytic on (—oo, ap/].

Now let P:R — R be defined by P(u) :=u + P(u¢)/(—a). We can then deduce
that P(g(8(a)) + 8(a)) = 8(a) and P’(q(8(a)) + 8(a)) = 0. Finally, since the pressure
is convex we must have that P”(g(8(«))) > 0 and that ¢ (8()) will be the only minimum
point for P. Thus

() :inf{u + Log'”)}.
u (07

We will now assume that P(—sxo¢) = k. Let u. be the equilibrium measure associated
with —soc¢. If o > [ d . then we can argue exactly as in the previous case. For o < ot
we let ¢ = k /o and note that

P(q(¢ — o) + (Soo — q)¢) = P(socp) —aqg =k —k =0.
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Note that if ¢ < k/« then

k
P(q(¢ —o+ (soo - E)qﬁ) _ .

Therefore, we are in Case (3) from Lemma 4.4. Thus b(«) = s.c — K /. We again define
P:R— RbyP(u) :=u+ P(—up)/a.If g € Rissuch that P(g) < oo then we denote by
g the equilibrium measure associated with g¢. Note that Plg)=1+ —A(ug) — o > 0.
Thus the infimum of PP will be achieved at so,. We can then calculate

irulf{P(u)} =P(50) = S0 — S. |

We now turn our attention to the shapes the Lyapunov spectrum can take. We start by
giving a result which holds for all potentials ¢ € R.

THEOREM 5.2. Let T be an EMR map with dimyg A = s and ¢ € R, then:

(1) if there exists a T-ergodic measure of maximal dimension p and o* = [¢ du then
b(a) is non-increasing on [a*, ayr] and non-decreasing on (—oo, a*] (note that it is
possible that a* = —00);

(2) if there exists no ergodic measure of maximal dimension then b(«) is non-decreasing
on (—oo, ap.

Proof. For the first part, let &1 > ap > a* > —o0. For any ¢ > 0 there exists an invariant
measure /41 such that f¢ duy =aj and h(wy) > A(u) (b(ay) — ). If o™ > —o0 we can
then find p € (0, 1) such that oy = pa® + (1 — p)a;. Now let vi = pu + (1 — p)u;.
Thus [¢ dvi = o, and

h(vi) = psi(u1) + (I — p)(b(a1) — )A(u1) = (b(ar) — €)A(vy).

Therefore, b(ap) > b(c1). The case where o) < oy < o™ is handled analogously. Now
assume that o™ = 0o and o > ap. Let apy > ) > ap > —00. By considering compact
approximations we can find an invariant measure p such that f ¢du <az and oo >
h(pn) > (b(a;) — e)A (). We can also find a measure ) such that fq) du; <oy and
h(pr) = (b(ay) — e)A(u1). To complete the proof we take a suitable convex combination
of wand p.

In the case where there is no ergodic measure of maximal dimension we know that
§ = Sco- Again by considering compact approximations we can find a sequence of invariant
measures [, such that lim,_, oo ¢ du, = —oo and lim,,_, oo (A(1t,)/A (1)) = s. The proof
now simply follows the first part when o* = —o0. O

We now return to the Lyapunov spectrum. It was shown in [15] that in the hyperbolic
case it can have inflection points and it clearly has to have such points in the non-compact
case. An application of the methods used in Theorem 5.2 combined with results from
Theorem 5.1 allow us to prove in a simple way that, as long as ssc < s =dimpg(A), the
inflection points can only appear in the decreasing part of the spectrum. We present the
proof in the non-compact case; however, it also holds in the compact, hyperbolic case.

COROLLARY 5.3. Let T be an EMR map such that soo <s =dimg(A), then the
increasing part of the Lyapunov spectrum is concave.
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Proof. Again we will let ¢ = —log |T’| and note that in this case the Lyapunov spectrum
satisfies L(«) = b(—a). Since soo < s there exists an ergodic measure of maximal
dimension that we denote by u. Let f ¢ diu = o*. By Theorem 5.2 we know that b(«)
is non-increasing on [a*, aps). Moreover, the proof of Theorem 5.1 implies that for all
o € [a*, ayy) there will exist a measure py such that A(uy) = —a and A(ug)/A(e) =
(o).

We now introduce variables Aj, A, such that

inf{flog|T’|dv:ue./\/lT}:=Am<k1<A2<A*::flog|T/|du.

Thus we can find @1, uo € M7 such that L(A1) =dimg w1, L) =dimyg wo, A(u1) =
A1 and A(uo) = Ap. Let

_ th(p) + = h(u)

T th(p2) + (1= DA()

for ¢ € [0, 1]. In order to study the convexity properties of the Lyapunov spectrum L(«)
we compute the derivatives of the function L(¢) and note that L(tA; + (1 — #)A3) > L(¢),
with equality when r = 0, 1. The derivative of L(¢) is

_ h(u2)A(pr) — h(p)r(p2)

L(1)

L'(t) = . 12
D= ) + = a2 (42
The second derivative is given by
2(h A —h A
L) = (h(p2)A (1) — h(p)A(u2)) O(pt1) — A1) (13)

(tr(u2) + (1 = DA (1)’

Note that all the Lyapunov exponents are positive, therefore the denominator of (13) is

positive. Since
h h
WD) _ impy J0y) < dimy J () = P2
A(r) Ap2)
we have that 2(h(u2)A (1) — h(p1)A(e2)) > 0. Therefore the sign of (13) is determined
by the sign of A(u2) — A(u1), which by definition satisfies A1 = A(u1) < A(u2) = Aa.

Therefore L”(t) < 0 and the function L () is concave on [A,,, A*]. O

In the case where s = 5o then if P(sx¢) = 0o then the above proof can be easily
adapted to show the Lyapunov spectrum is concave.

6. Examples
An irrational number x € (0, 1) can be written as a continued fraction of the form
1
X = I =larazasz .. .],
ap +
1
a+ —-
a3 + P

where a; € N. For a general account on continued fractions see [12, 21]. The Gauss map
(see Example 1.2) G : (0, 1] — (0, 1] is the interval map defined by

1 1
Gx)=—-— |:—:|
X X

https://doi.org/10.1017/etds.2015.44 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2015.44

Multifractal analysis of Birkhoff averages 2579

This map is closely related to the continued fraction expansion. Indeed, for 0 < x < 1
with x = [ajaza3 - - -] we have that a; =[1/x],a> =[1/Gx], ..., a, =[1/G" 'x]. In
particular, the Gauss map acts as the shift map on the continued fraction expansion,

a, =[1/G" 'x].

The following result was initially proved by Khinchin [21, p. 86] in the case where ¢ (n) <
cnl/>r,

THEOREM 6.1. (Khinchin) Let ¢ : N — R be a non-negative potential. If there exist
constants C > 0 and p > 0 such that, for everyn € N,

p(n) <Cn'P,

then for Lebesgue almost every x € (0, 1) we have that

e log(1+ 1 2
Z(d’(”) og( +lé;n2(n+ )))).

1 n—1
. i _
CE NS

=0 n=1
Remark 6.2. The above result directly follows from the ergodic theorem applied to the

(locally constant) potential ¢ with respect to the (ergodic) Gauss measure,

(A) = 1 /’ dx
o T log2 Ju 1 4x°

The Gauss measure is absolutely continuous with respect to the Lebesgue measure.
Moreover, it is the measure of maximal dimension for the map G.

As a direct consequence of Theorem 1.3 we can compute the Hausdorff dimension of
the level sets determined by the potential ¢ (strictly speaking we should apply our results
to the potential —¢, but clearly this does not make any difference). Indeed, first note that
potentials satisfying the assumptions of Khinchin’s theorem such that lim,_, o ¢ (n) =
oo satisfy the assumptions of Theorem 1.3. That is, if ¢ : (0, 1) — R is a non-negative
potential such that:

(1) ifxe(,1)andx =laj, az...]then ¢p(x) = (a1);
(2) there exist constants C > 0 and p > 0 such that, foreveryn e Nand x € (1/(n + 1),
1/n),
$()=¢(n) < Cn'"";

3) limy_0 ¢(x) =o00;
then ¢ € R. Our first result in this setting is the following immediate corollary to
Theorem 1.3.

COROLLARY 6.3. Let ¢ € R. Then if we denote

n—1

. —
K () .={xe(0, 1).n1£gozg¢(c x)_ot},

we have that

dimy (K (a)) = sup{% e Mg, /¢> du =exp(a) and A(n) < oo}. (14)
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A particular case of the above theorem has received a great deal of attention. If ¢ (x) =
log a; then the Birkhoff average can be written as the so-called Khinchin function:

k(x):= lim (log Yay-ap - - a,,).
n—o00
This was first studied by Khinchin who proved the following.
PROPOSITION 6.4. (Khinchin) Lebesgue almost every number is such that

oo 1 logn/log?2
li loe Ya; ~ar -~ -- =1 14+ — =26....
ninolo< 08 Va1 @ an> Og(“( + n(n + 2)) )

n=1

Recently, Fan et al [7] computed the Hausdorff dimension of the level sets determined
by the Khinchin function. They obtained the following result: f loga) dug :=asgrp <
0.

PROPOSITION 6.5. The function

b(a) = dimH<{x e (0,1 nl;ng() log( Yay-ap - - an) =oc}>

is real analytic, it is strictly increasing and strictly concave in the interval [oy,, ASRB),
and it is decreasing and has an inflection point in (dsrp, 00).

An interesting family of related examples is given by letting y > 0 and considering the
locally constant potential ¢, ([a1, az, . ..]) = —ai’. For this potential the Birkhoff average

is given by
n—1 1
L1 PN T Y Yoo, 14
Jim_ -~ ;¢y<c ¥ == lim —(a] +aj +--+ay), (15)
1=
where x =[aj, az, ..., ay, ...]. Let us note that if y > 1 then for Lebesgue almost

every point x € (0, 1) the limit defined in (15) is not finite. For y <1 we let G(y) :=
J#y dpug > —oo. Nevertheless, for any y > 0 we have that ¢,, € R, so the following result
is a direct corollary of Theorem 1.3.

COROLLARY 6.6. Denote
1
Ala, y) = {x €0, 1): lim —(ai/ —}—a%’ +-4a)) =a},
n—-oo n

then we have that

dimy (A(a, y)) = Sup{% ‘e Mg, /A du=—aand A(pn) < oo} (16)

We can also use Theorem 1.4 to give more detail about the function o —
dimp (A(e, ¥)).

PROPOSITION 6.7. Let y > O then:
(1) if y =1 the function o — dimg(A(a, y)) is real analytic and it is strictly
increasing;
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(2) if0<y <1 the function « — dimy (A(a, y)) is real analytic on [G(y), apy) and
fora < G(y) we have dimy (A(a, y)) = 1.

Proof. Since lim,_,¢ (¢, (x)/—log |T’(x)|) = oo the Theorem immediately follows from
the first part of Theorem 1.4. O

The sets A(w, 1) are related to the sets where the frequency of digits in the continued
fraction is prescribed. The Hausdorff dimension of these sets was recently computed in [8].

We conclude this section by exhibiting explicit examples of dynamical systems and
potentials for which the behaviour of the Birkhoff spectra is complicated.

A version of following example appears in [29]. Consider the partition of the interval
[0, 1] given by the sequence of points of the form x, = 1/(n(log 2n)?) together with the
points {0, 1}. Let T be the EMR map defined on each of the intervals generated by this
sequence to be linear, of positive slope and onto. Then
, 00, t<1,

P(—tlog|T'|) =
finite, > 1.
Moreover, P(—log|T’|)=1 and for t > 1 we have P(—tlog|T’|) <0. Therefore,
dimyg A =5 =500 = 1. Choose now ¢ € R such that limy_g (¢ (x)/—log |T'(x)|) = 0.
We can then see that for any § < 1 we have P(q¢ — 8 log |T’|) = oo for all ¢ € R and so
8* = 1. Therefore, it is a consequence of Lemma 4.2 that b(«) = 1 for all @ € (—o0, apy].
Other examples of dynamical systems satisfying these assumptions can be found in [23].

7. Hausdorff dimension of the extreme level sets
This section is devoted to a study of the Hausdorff dimension of one of the two extreme
level sets. Since the potentials we have considered are not bounded, the level set

n—1

.1 i
J(—00) = {xe(O, 1).nlggo;§¢(T x) = oo}

can have positive Hausdorff dimension. In this section we compute it.
THEOREM 7.1. Let ¢ € R then

dim(J(=00)) = lim F(a). (17)

Proof of Theorem 7.1. To start we need a lemma showing that the limit on the right-hand
side of equation (17) does indeed exist.

LEMMA 7.2. There exists s € [0, 1] such that limy,_, o, F () =s.

Proof. The limit clearly exists since by Theorem 5.2 the function @« — F (o) is monotone
when —« is sufficiently large. O

In order to prove the upper bound,
dimg(J(—o0)) < lim F(a),
o—>—0Q0

we first give a uniform lower bound for limgy,_, _ o F(x).
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PROPOSITION 7.3. Let t* be the critical value for the pressure of the potential —log |T’|.
We have that limy_, _oo F(a) > t*.

Proof. Consider the sets A, =n({n,n+1,...}Y). Note that dimgy A, > r* by the
definition of *. However, for any ¢ > 0, the set A,, will support a T-invariant measure (i,
with A(u,) < 0o, h(uy)/A(y,) > dimy A, — e and f¢ di, > —o0. We also have that
limy;— o0 f ¢ du, = —o0. The result now follows. O

We now fix o € R and consider the set

Sk (x)
B ¢

J(a,N):{xeA foe,foreverykZN}.

It is clear that J(—00) C Uyey J (@, N). Thus it suffices to show that, for all N € N,

dimy J (o, N) < sup F(B).

B>a
Fix N € N and for k € N let
Cr(a)={I(1,...,0): 11, ..., i) NJ(a, N) # 0}
Let ¢ > 0 and note that if for infinitely many k& we have
Yoo MG il <

1(iy,...ik) €Cr ()
then dimy J(a, N) <t* + ¢ <limy_, _ F(a) + €. So we may assume that there exists
K e N such that, for k > K,

1< > (1, ... 0] 1 < oo,
I(i,..if)€Ck ()

Note that the sum must be convergent because ¢* + ¢ is greater than the critical value r*.
Thus, for each k > K we can find #; such that

S M=
I(y,....ik)eCr(a)

It follows that dimy J (o, N) <lim sup;_, o, t&. To complete the proof we need to relate
t; to the entropy and Lyapunov exponent of an appropriate 7'-invariant measure.

Since Ci(«) contains infinitely many cylinders, we need to consider a finite subset of
Ci (@), that we denote by Dy (), where

Z G, .. i =A>1—¢.

1(iy,..., ix)€Dp (@)

As in the proof of Lemma 3.5 we let 7 be the T*-invariant measure which assigns each
cylinder in Dy () the measure (1/A)|I(i1, ..., i;)|*. Note that there will exist C > 0
such that, for all k > K, the Lyapunov exponent (7, TkH) satisfies

1
ST = 2 Mo Tog il £ C,
1(i1,.,ix) €Dk ()
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Computing the entropy with respect to 7% of 1, gives

h(ne, TF) = Z t—kll(il,...,ik)|tk log |1(i1, ..., ik)| +logA.
1(it,....it) €Dy (@)

Since A >1—¢ and A(ng, TF) > €K, it follows that limg_, o0 (h(nk, T5)/A(nk, T¥)) —
1 = 0. Since ny is compactly supported, we know that ¢ dnx > —oo and by the distortion
property lim sup, _, o, [¢ dni < . To finish the proof we simply let y; = Zi.:é nkoT™0.

To prove the lower bound we use the method of constructing a w-measure as done by
Gelfert and Rams in [10]. We will let limy—, o, F () = s and start by observing that there
exists a sequence of ergodic measures {{,},en Where lim,— oo f¢ diy, = —00, AMy) <
oo, forallm e N, A(upn+1)/A () <2 and limy,— oo (A () /A(Ln)) =s. We now let e > 0
and assume that, for all n, h(u,)/A(u,) = s — €. For alli € N by Egorov’s theorem we can
find § > 0 and n; € N such that there exists a set X; (§) where, for alln > n; and x € X;(5):
M) Suop(x) <n(o; +¢);
(2) (s +e)(—log|Cr(x)]) = —log i (Cp(x)) = (s — &)(—log |Cy(x)]);
(3)  —log [Cr(X)] € (n(A(1i) — &), n(A(1i) + €));
@) ni(Xi(8)=1-34. .
We can letky =ny + [n2/8] 4+ 1 and k; = [(( i ki) + A(uivDnivi) /8] + 1. We let ¥;
be all k; level cylinders with non-zero intersection with X;(§). We then define Y to be
the space such that x € Y if and only if TZ'!/:_II kix) e Y; for all j € N. We will need to
consider the size of nth level cylinders for points in Y. We get the following lemma.

LEMMA 7.4. There exists K (&) > 0 such that lim,_.o K(¢) =0 and, forall x € Y and n
sufficiently large,

V(B(x, [Ca(0)]) = (1 + K(e)"v(ICpt1(xX)]).
Proof. To prove this we use the condition in the definition of Y. For any x, y € Y we need

to compare the diameter of C,, (x) and C,,41(y) and the measure of C,,41(y) and C, 41 (x).
We consider the case when k; <n < k; + n; — 1; we then have that, forall x, y € Y,

i n+1
—log [Cop 1D < Y kj(A(j) + &) + nip1(Muir1) + &) + Y var(log |T'))
j=1 j=2
and
i n+1
—log |Ca(¥)| = D kj(A(uj) — &) — Y _ varg (log |T']).
j=1 j=2

In the case where k; + n; <n < k;;+1 we simply have that, forall x, y € Y,

n+1
llog |Cp41(»)| — log [Ca(x)|| < ne + > varg(log [T']) + Aig1.

j=2
We can thus deduce that there exists Z(¢g) such that lim,_,¢ Z(¢) = 0 and
v(B(x, [Ch(x)])) < (1+ Z(gn)) r}nea;ﬁ V(B(y, [Cp1(0)D)-

To complete the proof we need a uniform estimate of v(B(y, |Ch+1(¥)]))/
V(B(x, |Chy1(»)])), for all x, y € Y. This follows from the definition of Y. O
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We can then define a measure supported on Y as follows. Let v; be the measure which
gives each cylinder in Y; equal weight. We then take the measures

ég) o Tmet ko
j=1
and note that this can be extended to a measure v supported on Y.
LEMMA 7.5. For all x € Y we have that lim,_ o ((S,¢(x))/n) = —oco and
dimg Y > dimy v > s — C(6),
for some constant C(8) > 0, where C(§) - 0as 5 — 0.

Proof. For convenience we will let z; = Zle k;. By our definition of k; we will have that
(ni+1)/zi <8.If x € Y then we have that, for n € [z;, zi + nj+1],

Sng(x) = (i +e)ki + (Ecnea/ii{ﬂﬂ}) (n—zi) + Z Vi(@).

J=1

Moreover, for n € [z; + nj+1, zi+1] we have that

o0
Sup (X) < (i + 8)zi + (n — 2) (i1 +8) + Y Vi(@).
j=1
Combining these two estimates and the definition of k; we obtain that lim,—
((Spop(x))/n) = —oo. To find a lower bound for dim v we need to find a lower bound
for lim, .o (log(v(B(x, r)))/logr) forallx € Y. Tostart we letx € Y, n € [z;, zi + ni+1]
and note that by the definition of k; this will mean that

log Cz,(x)

Gy 2o

By the definition of v we have that

log v(Cy(x)) < —i log 8 + (s — &) Y_ log |C: (T (x)))],
=1

which then gives using distortion estimates that

o0
log v(Cp(x)) < —ilogd + (s — &) log |C;, (x)| + Z Vj(log [T']).
j=1

Forn € [Zlekz + i1, Z;:ll kl] we have that

i
log v(Cy(x)) < —ilogé + (s — 8)((2(1055 |Ci (T (X))|)> + 1Cp—z (T (X))>~
I=1
Again by applying distortion estimates we get that

o0
log v(Cy(x)) < —ilogd + (s — &) log |G ()] + Z V;(log |T']).
j=1
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Thus, for all n € [z;, zi+1], we have that

1 C —ilogé LV
ogv(Cu(x)  _—ilogd o 2=t Vi
log |G (x)| ™ log |Cr(x)] log |G, ()]
and taking the limit as i — oo gives that
1 C
0gV(Crt))
log [Cp (x)]

Now fix r > 0 and n such that C,,(x) > r > C,,4+1(x). We then have by the lemma that,
for n sufficiently large,
V(B(x, r)) < v(B(x, [Ch(x)])
(1 +k(@)"v(|Cpt1 (X))
< (L +k@E)"[Crp1 (O™ < (1 4 k()" r°7*.

IA

The proof is obtained by noting that log(1 4+ K (¢))"/ log r can be made arbitrarily small
by choosing ¢ sufficiently small. O

The proof of Theorem 7.1 is now finished. We finish this section by noting that
combining Theorem 7.1 and Proposition 7.3 gives that, for all ¢ € R, dim J(—o00) > t*.
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