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Abstract. In this paper we prove a multifractal formalism of Birkhoff averages for
interval maps with countably many branches. Furthermore, we prove that under certain
assumptions the Birkhoff spectrum is real analytic. We also show that new phenomena
occur; indeed, the spectrum can be constant or it can have points where it is not analytic.
Conditions for these to happen are obtained. Applications of these results to number theory
are also given. Finally, we compute the Hausdorff dimension of the set of points for which
the Birkhoff average is infinite.

1. Introduction
The Birkhoff average of a regular function with respect to an hyperbolic dynamical system
can take a wide range of values. This paper is devoted to a study of the fine structure of
level sets determined by Birkhoff averages. The class of dynamical systems we consider
are interval maps with countably many branches. These maps can be modelled by the
(non-compact) full-shift on a countable alphabet. The lack of compactness of this model,
and the associated convergence problems, is one of the major difficulties that has to be
overcome in order to obtain a precise description of the level sets.

Let us be more precise: denote by I = [0, 1] the unit interval. We consider the class
of expanding-Markov–Renyi (EMR) interval maps. This class was considered by Pollicott
and Weiss in [25] when studying multifractal analysis of pointwise dimension.

Definition 1.1. A map T : I → I is an EMR map if there exists a countable family {Ii }i of
closed intervals (with disjoint interiors int In) with Ii ⊂ I , for every i ∈ N, satisfying:
(1) the map is C2 on

⋃
∞

i=1 int Ii ;
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(2) there exists ξ > 1 and N ∈ N such that, for every x ∈
⋃
∞

i=1 Ii and n ≥ N , we have
|(T n)′(x)|> ξn ;

(3) the map T is Markov and it can be coded by a full-shift on a countable alphabet;
(4) the map satisfies the Renyi condition, that is, there exists a positive number K > 0

such that

sup
n∈N

sup
x,y,z∈In

|T ′′(x)|
|T ′(y)||T ′(z)|

≤ K .

The repeller of such a map is defined by

3 :=

{
x ∈

∞⋃
i=1

Ii : T n(x) is well defined for every n ∈ N
}
.

We also assume throughout the paper that zero is the unique accumulation point of the set
of endpoints of {Ii }.

Example 1.2. The Gauss map G : (0, 1] → (0, 1] defined by

G(x)=
1
x
−

[
1
x

]
,

where [·] is the integer part, is an EMR map.

The ergodic theory of EMR maps can be studied using its symbolic model and the
available results for countable Markov shifts. We follow this strategy in order to describe
the thermodynamic formalism for EMR maps for a large class of potentials (see §2).

Let φ :3→ R be a continuous function. We will be interested in the level sets
determined by the Birkhoff averages of φ. Let

αm = inf
{

lim
n→∞

1
n

n−1∑
i=0

φ(T i x) : x ∈3
}

and

αM = sup
{

lim
n→∞

1
n

n−1∑
i=0

φ(T i x) : x ∈3
}
.

Note that, since the space 3 is not compact, it is possible for αm and αM to be minus
infinity and infinity respectively. For α ∈ [αm, αM ] we define the level set of points having
Birkhoff average equal to α by

J (α) :=
{

x ∈3 : lim
n→∞

1
n

n−1∑
i=0

φ(T i x)= α
}
.

Note that these sets induce the so-called multifractal decomposition of the repeller,

3=

αM⋃
α=αm

J (α)
⋃

J ′,

where J ′ is the irregular set defined by

J ′ :=
{

x ∈3 : the limit lim
n→∞

1
n

n−1∑
i=0

φ(T i x) does not exist
}
.
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The multifractal spectrum is the function that encodes this decomposition and it is defined
by

b(α)= dimH (J (α)),

where dimH (·) denotes the Hausdorff dimension (see §2.3).
The function b(α) has been studied in the context of hyperbolic dynamical systems (for

instance EMR maps with a finite Markov partition) for potentials with different degrees
of regularity. Initially, this was studied in the symbolic space for Hölder potentials by
Pesin and Weiss [27] and for general continuous potentials by Fan et al [6]. Feng et al [9],
then studied the case of continuous potentials for conformal expanding maps. Barreira
and Saussol [2] showed that the multifractal spectrum for Hölder continuous functions
is real analytic in the setting of conformal expanding maps. They stated their results in
terms of variational formulae. Olsen [24], in a similar setting, obtained more general
variational formulae for families of continuous potentials. The multifractal analysis for
Birkhoff averages for some non-uniformly hyperbolic maps (such as Manneville Pomeau)
was studied by Johansson et al in [18]. There have also been several articles on multifractal
analysis in the countable state case, see for example [7, 11, 13, 20]. However, these papers
look at the local dimension spectra or the Birkhoff spectra for very specific potentials
(e.g. the Lyapunov spectrum).

Our main result is that in the context of EMR maps we can make a variational
characterization of the multifractal spectrum.

THEOREM 1.3. Let φ ∈R be a potential, then, for α ∈ (−∞, αM ), we have that

b(α)= sup
{

h(µ)
λ(µ)

: µ ∈MT ,

∫
φ dµ= α and λ(µ) <∞

}
, (1)

where the class R is defined in §2.2, MT denotes the set of T -invariant probability
measures, h(µ) denotes the measure theoretic entropy and λ(µ) is the Lyapunov exponent
(see §2).

The other major result, which we prove in §4, is that when φ is sufficiently regular
and satisfies certain asymptotic behaviour as x→ 0 the multifractal spectrum has strong
regularity properties.

THEOREM 1.4. Let φ ∈ R̄ be a potential. The following statements hold.
(1) If limx→0 (φ(x)/−log |T ′(x)|)=∞ and there exists an ergodic measure of full

dimension µ then b(α) is real analytic on (
∫
φ dµ, αM ) and b(α)= dim3 for all

α ≤
∫
φ dµ.

(2) If limx→0 (φ(x)/−log |T ′(x)|)=∞ and there does not exist an ergodic measure of
full dimension then b(α) is real analytic for all α ∈ (−∞, αM ).

(3) If limx→0 (φ(x)/−log |T ′(x)|)= 0 then there are at most two points when b(α) is
non-analytic.

Note that in a sequel to this paper, [14], similar results were obtained in the case
of the quotients of functions. In [5, Theorem 7.2] it was shown that in the case where
limx→0 (φ(x)/−log |T ′(x)|)= 0 it is possible to find an example where there are two
points for which b(α) is not analytic.
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Without the assumptions made in Theorem 1.4 it is hard to say anything in general but
it is possible to say things in specific cases. We investigate this further in §§5 and 6. In
particular in §5 we look at the case when φ(x)=−log |T ′| and we also look at the shapes
b(α) can take.

In §6 we apply the above two theorems to the Gauss map and obtain results relating
to the continued fraction expansion. Our results relate to classical ones by Khinchin [21]
regarding the size of sets determined by averaging values of the digits in the continued
fraction expansion of irrational numbers. We not only consider the behaviour of the limit

lim
n→∞

n
√

a1 · a2 · · · · · an,

where the continued fraction expansion of x is given by [a1a2 · · · ], but we generalize it to
a wide range of other functions. For example, we are able to describe level sets determined
by the arithmetic averages of the digits in the continued fraction

lim
n→∞

1
n
(a1 + a2 + · · · + an).

Note that there is related work in [8] where they look at the dimension of the sets where
the frequencies of values the ai can take are prescribed.

Since the potentials we consider are unbounded, their Birkhoff average can be infinite.
In §7 we compute the Hausdorff dimension of the set of points for which the Birkhoff
average is infinite.

2. Symbolic model and thermodynamic formalism
In this section we describe the thermodynamic formalism for EMR maps. In order to do
so, we will first recall results describing the thermodynamic formalism in the symbolic
setting.

2.1. Thermodynamic formalism for countable Markov shifts. The full-shift on the
countable alphabet N is the pair (6, σ ), where

6 = {(xi )i≥1 : xi ∈ N},

and σ :6→6 is the shift map defined by σ(x1x2 · · · )= (x2x3 · · · ). We equip 6 with
the topology generated by the cylinders sets

Ci1···in = {x ∈6 : x j = i j for 1≤ j ≤ n}.

The n-variation of a function φ :6→ R is defined by

Vn(φ) := sup{|φ(x)− φ(y)| : x, y ∈6, xi = yi for 0≤ i ≤ n − 1}.

We say that a function φ :6→ R has summable variation if
∑
∞

n=2 Vn(φ) <∞. If φ has
summable variation then it is continuous. A function φ :6→ R is called weakly Hölder
if there exist A > 0 and θ ∈ (0, 1) such that, for all n ≥ 1, we have Vn(φ)≤ Aθn . The
thermodynamic formalism is well understood for the full-shift on a countable alphabet.
The following definition of pressure is due to Mauldin and Urbański [23].
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Definition 2.1. Let φ :6→ R be a potential of summable variations; the pressure of φ is
defined by

P(φ)= lim
n→∞

1
n

log
∑

σ n(x)=x

exp
(n−1∑

i=0

φ(σ i x)
)
. (2)

The above limit always exits, but it can be infinity. This notion of pressure satisfies the
following results (see [23, 28–30]).

PROPOSITION 2.2. (Variational principle) If φ :6→ R has summable variations and
P(φ) <∞ then

P(φ)= sup
{

h(µ)+
∫
φ dµ : −

∫
φ dµ <∞ and µ ∈Mσ

}
,

where Mσ is the space of shift invariant probability measures and h(µ) is the measure
theoretic entropy (see [32, Ch. 4]).

Definition 2.3. Let φ :6→ R be a potential of summable variations. A measure µ ∈Mσ

is called an equilibrium measure for φ if

P(φ)= h(µ)+
∫
φ dµ.

PROPOSITION 2.4. (Approximation property) If φ :6→ R has summable variations then

P(φ)= sup{Pσ |K (φ) : K ⊂6 : K 6= ∅ compact and σ -invariant},

where Pσ |K (φ) is the classical topological pressure on K (for a precise definition see [32,
Ch. 9]).

Definition 2.5. A probability measure µ is called a Gibbs measure for the potential φ if
there exists two constants M and P such that, for every cylinder Ci1...in and every x ∈
Ci1...in , we have that

1
M
≤

µ(Ci1...in )

exp
(
−n P +

∑n−1
j=0 φ(σ

j x)
) ≤ M.

PROPOSITION 2.6. (Gibbs measures) Let φ :6→ R be a potential such that∑
∞

n=1 Vn(φ) <∞ and P(φ) <∞, then φ has a unique Gibbs measure.

PROPOSITION 2.7. (Regularity of the pressure function) Let φ :6→ R be a weakly
Hölder potential such that P(φ) <∞; there exists a critical value s∗ ∈ (0, 1] such that, for
every s < s∗, we have that P(sφ)=∞ and, for every s > s∗, we have that P(sφ) <∞.
Moreover, if s > s∗ then the function s→ P(sφ) is real analytic and every potential sφ
has a unique equilibrium measure.
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2.2. Symbolic model. It is a direct consequence of the Markov structure assumed
on an EMR map T that T :3→3 can be represented by a full-shift on a countable
alphabet (6, σ ). Indeed, there exists a continuous map π :6→3 such that π ◦ σ =
T ◦ π . Moreover, if we denote by E the set of end points of the partition {Ii }, the map
π :6→3\

⋃
n∈N T−n E is an homeomorphism. Denote by I (i1, . . . , in)= π(Ci1...in )

the cylinder of length n for T . We will make use of the relation between the symbolic
model and the repeller in order to describe the thermodynamic formalism for the map T .
We first define the two classes of potentials that we will consider.

Definition 2.8. The class of regular potentials is defined by

R :=
{
φ :3→ R : φ < 0, φ ◦ π has summable variations and lim

x→0
φ(x)=−∞

}
.

Note that if we have a potential ψ :3→ R such that aψ + b ∈R for some a, b ∈ R
then, since we can compute the Birkhoff spectrum for aψ + b ∈R, we can compute the
Birkhoff spectrum for ψ .

Definition 2.9. The class of strongly regular potentials is defined by

R̄ := {φ :3→ R : φ ∈R and φ ◦ π is weakly Hölder}.

Example 2.10. Let {an}n be a sequence of real numbers such that an→−∞. The locally
constant potential φ :3→ R defined by φ(x)= an , if x ∈ I (n), is such that φ ∈ R̄.

The topological pressure of a potential φ ∈R is defined by

PT (φ)= sup
{

h(µ)+
∫
φ dµ : −

∫
φ dµ <∞ and µ ∈MT

}
,

where MT denotes the space of T -invariant probability measures. Since there exists a
bijection between the space of σ -invariant measures Mσ and the space of T -invariant
measures MT we have that

PT (φ)= P(π ◦ φ). (3)

Therefore, all the properties described in §2.1 can be translated into properties of the
topological pressure of the map T . Since both pressures have exactly the same behaviour,
for simplicity, we will denote them both by P(·).

Remark 2.11. Since we are assuming that the set E of end points of the partition has only
one accumulation point and it is zero, we have that if φ ∈R then limx→0 φ(x)=−∞, and
if a ∈3\{0} then limx→a φ(x) <∞.

Remark 2.12. Note that if T is an EMR map then the potential −log |T ′| ∈R. If µ ∈MT

then the integral

λ(µ) :=

∫
log |T ′| dµ

will be called the Lyapunov exponent of µ.
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2.3. Hausdorff dimension. In this subsection we recall basic definitions from
dimension theory. We refer to the books [1, 4, 26] for further details. A countable collection
of sets {Ui }i∈N is called a δ-cover of F ⊂ R if F ⊂

⋃
i∈N Ui , and, for every i ∈ N, the sets

Ui have diameter |Ui | at most δ. Let s > 0; we define

H s
δ (F) := inf

{ ∞∑
i=1

|Ui |
s
: {Ui }i is a δ-cover of F

}
and

H s(F) := lim
δ→0

H s
δ (F).

The Hausdorff dimension of the set F is defined by

dimH (F) := inf{s > 0 : H s(F)= 0}.

We will also define the Hausdorff dimension of a probability measure µ by

dimH (µ) := inf{dimH (Z) : µ(Z)= 1}.

A measure µ ∈MT is called a measure of maximal dimension if dimH µ= dimH 3.

3. Variational principle for the Hausdorff dimension
In this section we prove our main result. That is, we establish that the Hausdorff dimension
of the level sets J (α) satisfies a conditional variational principle.

THEOREM 3.1. Let φ ∈R, then, for α ∈ (−∞, αM ),

dimH (J (α))= sup
{

h(µ)
λ(µ)

: µ ∈MT ,

∫
φ dµ= α and λ(µ) <∞

}
. (4)

Proof of the lower bound. In order to prove the lower bound first note that if µ ∈MT

is ergodic and
∫
φ dµ= α then µ(J (α))= 1. Moreover, if λ(µ) <∞ then dimH (µ)=

h(µ)/λ(µ) and we can conclude that

dimH (J (α))≥ dimH (µ)=
h(µ)
λ(µ)

.

Thus we can deduce that

dimH (J (α))≥ sup
{

h(µ)
λ(µ)

: µ ∈MT and ergodic,
∫
φ dµ= α and λ(µ) <∞

}
.

To complete the proof of the lower bound we need the following lemma.

LEMMA 3.2. Let α ∈ (−∞, αM ). If µ ∈MT ,
∫
φ dµ= α and λ(µ) <∞ then, for any

ε > 0, we can find ν ∈MT which is ergodic and:
(1)

∫
φ dν = α;

(2) |h(ν)− h(µ)| ≤ ε;
(3) |λ(ν)− λ(µ)| ≤ ε.

Proof. Let µ ∈MT ,
∫
φ dµ= α and λ(µ) <∞. We can then find a sequence of invariant

measures {µn} supported on finite subsystems such that
∫
φ dµn = α, limn→∞ λ(µn)=

λ(µ) and limn→∞ h(µn)=h(µ). Since these measures are supported on finite subsystems,
we can apply [18, Lemmas 2 and 3] to complete the proof. �
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We can now immediately deduce that

sup
{

h(µ)
λ(µ)

: µ ∈MT ,

∫
φ dµ= α and λ(µ) <∞

}
= sup

{
h(µ)
λ(µ)

: µ ∈MT and ergodic,
∫
φ dµ= α and λ(µ) <∞

}
,

which completes the proof of the lower bound.

3.1. Upper bound. In this section we prove the upper bound of our main result. We
adapt to our setting the method used in [18].

LEMMA 3.3. The function

F(α) := sup
{

h(µ)
λ(µ)

: µ ∈MT ,

∫
φ dµ= α and λ(µ) <∞

}
is continuous in the domain (−∞, αM ).

Proof. Let {µn} be a sequence of measures in MT satisfying λ(µn) <∞ and converging
to a measure µ where

∫
φ dµ= α. Let µ, µ ∈MT such that∫

φ dµ < α <
∫
φ dµ

and λ(µ), λ(µ) <∞. By considering convex combinations of µn with µ or µ we can find
a sequence of measures νn where

∫
φ dνn = α for each n and

lim
n→∞

∣∣∣∣h(µn)

λ(µn)
−

h(νn)

λ(νn)

∣∣∣∣= 0.

It then follows that
F(α)≥ lim sup

n→∞
F(αn).

In the other direction we fix µ, ν ∈MT , with
∫
φ dν = β < α =

∫
φ dµ. Let νp = pν +

(1− p)µ and note that

lim inf
x→α−

F(x)≥ lim
p→0

h(νp)

λ(νp)
=

h(µ)
λ(µ)

and

lim inf
x→β+

F(x)≥ lim
p→1

h(νp)

λ(νp)
=

h(ν)
λ(ν)

.

We can use this to deduce that

F(α)≤ lim inf
n→∞

F(αn). �

Denote Skφ(x) :=
∑k−1

i=0 φ(T
i x). Let α ∈ R, N ∈ N and ε > 0 and consider the

following set:

J (α, N , ε) :=
{

x ∈3 :
Skφ(x)

k
∈ (α − ε, α + ε), for every k ≥ N

}
. (5)
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Note that

J (α)⊂
∞⋃

N=1

J (α, N , ε).

In order to obtain an upper bound on the dimension of J (α) we will compute upper
bounds on the dimension of J (α, N , ε). Denote by Ck the cover of J (α, N , ε) by cylinders
of length k ∈ N, that is

Ck := {I (i1, . . . , ik) : I (i1, . . . , ik) ∩ J (α, N , ε) 6= ∅}.

LEMMA 3.4. For every k ∈ N the cardinality of Ck is finite.

Proof. Since φ ∈R we can deduce that limi→∞ infx∈I (i) φ(x)=−∞ and hence we can
find an i ∈ N such that, for all x ∈ I ( j) with j ≥ i , we have that |φ(x)|> k(|α| + ε). It
then follows that Ck only contains cylinders I (i1, . . . , ik) where each il < i . There is
clearly only a finite number of such cylinders. �

Let sk ∈ R denote the unique real number such that∑
I (i1,...,ik )∈Ck

|I (i1, . . . , ik)|
sk = 1.

We define the following number:

s := lim sup
k→∞

sk . (6)

LEMMA 3.5. The following bound holds:

dimH (J (α, N , ε))≤ s,

and there exists a sequence of T -invariant probability measures {µk} such that

lim
k→∞

(
sk −

h(µk)

λ(µk)

)
= 0

and
∫
φ dµk ∈ (α − 2ε, α + 2ε).

Proof. To see that dimH (J (α, N , ε))≤ s, we note that, for k sufficiently large and ε > 0,

H s+ε
ξ−k (J (α, N , ε))≤

∑
I (i1,...,ik )∈Ck

|I (i1, . . . , ik)|
s+ε
≤ 1.

This means that H s+ε(J (α, N , ε))≤ 1 and so dim J (α, N , ε)≤ s + ε.
For the second part, let ηk be the T k-invariant Bernoulli measure which assigns each

cylinder in Ck , denoted by I (i1, . . . , ik), the probability |I (i1, . . . , ik)|
sk . Note that the

entropy of this measure with respect to T k will be

h(ηk, T k)=−sk
∑

I (i1,...,ik )∈Ck

|I (i1, . . . , ik)|
sk log |I (i1, . . . , ik)|

and there will exist C > 0 such that, for all k ∈ N, the Lyapunov exponent λ(ηk, T k+1)

satisfies ∣∣∣∣−λ(ηk, T k)−
∑

I (i1,...,ik )∈Ck

|I (i1, . . . , ik)|
sk log |I (i1, . . . , ik)|

∣∣∣∣≤ C.
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This then gives that

sk(λ(ηk, T k)− C)
λ(ηk, T k)

≤
h(µ, T k)

λ(ηk, T k)
≤

sk(λ(ηk, T k)+ C)
λ(ηk, T k)

and, since λ(ηk, T k)≥ ξ k , it follows that limk→∞ (h(ηk, T k)/λ(ηk, T k))− sk = 0.
Moreover, for k sufficiently large, each cylinder in Ck will only contain points x
where Skφ(x) ∈ (α − 2ε, α + 2ε). This means that

∫
((Skφ)/k) dηk ∈ (α − 2ε, α + 2ε).

To complete the proof we simply let µk = (1/k)
∑k−1

i=0 ηk ◦ T−i . �

Thus, we can deduce that

dimH J (α)≤ lim
ε→0

sup
γ∈(α−ε,α+ε)

F(γ ).

The fact that
dimH J (α)≤ F(α)

now follows by Lemma 3.3. This completes the proof of Theorem 3.1.

Remark 3.6. It is a direct consequence of the work of Barreira and Schmeling [3], together
with the approximation property of the pressure (Proposition 2.4), that the irregular set has
full Hausdorff dimension,

dimH J ′ = dimH 3.

4. Regularity of the multifractal spectrum
This section is devoted to the study of the regularity properties of the multifractal spectrum.
We relate the conditional variational principle to thermodynamic properties and as a result
prove Theorem 1.4. Our proof is based on ideas developed by Barreira and Saussol [2]
in the uniformly hyperbolic (Markov with finitely many branches) setting. Nevertheless,
most of their arguments cannot be translated into the non-compact (Markov with countably
many branches) setting. It should be pointed out that the behaviour of the multifractal
spectrum in this setting is much richer than in the compact setting. New phenomena occur,
in particular the multifractal spectrum can be constant and it can have points where it is
not analytic. We obtain conditions ensuring these new phenomena happen.

The following proposition is a direct consequence of results by Mauldin and
Urbański [23], Sarig [29] and Stratmann and Urbański [31]. We will use it to deduce
certain regularity properties of the multifractal spectrum. Throughout this section we will
let φ ∈R and αM to be as in the introduction. Some of the results will need additionally
that φ ∈ R̄.

PROPOSITION 4.1. (Regularity) If φ ∈ R̄, δ ∈ (0, 1] and α ∈ (−∞, αM ) then the function

q 7→ P(q(φ − α)− δ log |T ′|),

when finite, is real analytic, and in this case

d
dq

P(q(φ − α)− δ log |T ′|)
∣∣∣∣
q=q0

=

∫
φ dµq0,δ − α, (7)

where µq0,δ is the equilibrium state of the potential q0(φ − α)− δ log |T ′|.
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For α ∈ (−∞, αM ) we will let

δ(α)= sup
{

h(µ)
λ(µ)

: µ ∈MT ,

∫
φ dµ= α and λ(µ) <∞

}
.

We wish to relate δ(α) to the function q 7→ P(q(φ − α)− δ log |T ′|). To do this we
introduce the value δ∗, which is defined by

δ∗ := inf{δ ∈ [0, 1] : P(qφ − δ log |T ′|) <∞ for some q > 0}.

This quantity will always give a lower bound for δ(α).

LEMMA 4.2. For all α ∈ (−∞, αM ) we have that δ(α)≥ δ∗.

Proof. If δ∗ = 0 then this statement is obvious so we will assume that δ∗ > 0. Let 0<
s < δ∗ and α ∈ (−∞, αM ). In order to show that δ(α) > δ∗ we will exhibit a sequence of
invariant measures (νn) such that, for every n ∈ N, we have

∫
φ dνn = α and

lim
n→∞

h(νn)

λ(νn)
≥ s.

First note that we can find a sequence of invariant measures (µn) such that, for all n, we
have sλ(µn) < h(µn) <∞ and limn→∞ (h(µn)/−

∫
φ dµn)=∞. Indeed, note that, for

every q > 0, we have that P(qφ − s log |T ′|)=∞. Let q > 0 and A > 0 with A > qαM .
Because of the approximation property of the pressure, we can choose an invariant measure
ν satisfying

h(ν)+ q
∫
φ dν − sλ(ν)≥ A. (8)

That is
h(ν) > (A − qαM )+ sλ(ν).

From this we can deduce that
sλ(ν) < h(ν) <∞.

Since
∫
φ dν < 0 then, from equation (8), we have

h(ν)
−
∫
φ dν

>−
A∫
φ dν

− s
λ(ν)∫
φ dν

+ q > q. (9)

Since we can do this for every positive q ∈ R, let q = n and denote by µn an invariant
measure satisfying equations (8) and (9). The sequence (µn) complies with the required
conditions.

Passing to a subsequence if necessary, we can assume that the sequence
∫
φ dµn is

monotone and that the following limit exists: γ = limn→
∫
φ dµn (note that γ can be

−∞).
For sufficiently large values of n ∈ N the integral

∫
φ dµn is close to γ . Therefore, there

exists β ∈ R and an invariant measure µ satisfying:
(1)

∫
φ dµ= β;

(2) h(µ) <∞ and λ(µ) <∞;
(3) α ∈ (β,

∫
φ dµn] or α ∈ [

∫
φ dµn, β) for n ∈ N large enough.
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For n sufficiently large we can also find constants pn ∈ [0, 1] such that α = pnβ +

(1− pn)
∫
φ dµn . If pn = 0, for all n sufficiently large, then there is nothing to prove.

Consider the following sequence of invariant measures (νn) defined by

νn = pnµ+ (1− pn)µn .

Then
∫
φ dνn = α. By construction we have that limn→∞ h(µn)=∞. Since, by

assumption, α 6= β we have that limn→∞(1− pn) ∈ (0, 1]. Therefore,

lim
n→∞

(1− pn)h(µn)=∞.

This implies that

lim
n→∞

h(νn)

λ(νn)
= lim

n→∞

pnh(µ)+ (1− pn)h(µn)

pnλ(µ)+ (1− pn)λ(µn)
≥ s. �

For notational ease we will allow P(q(φ − α)− δ log |T ′|)≥ 0 to include the case
when it is infinite.

LEMMA 4.3. If φ ∈R, α ∈ (−∞, αM ) and δ(α) > δ∗ then, for all q ∈ R, we have

P(q(φ − α)− δ(α) log |T ′|)≥ 0.

Proof. Recall that

δ(α)= sup
{

h(µ)
λ(µ)

: µ ∈MT ,

∫
φ dµ= α and λ(µ) <∞

}
.

Denote by (µn)n a sequence of T -invariant measures such that, for every n ∈ N, we have:
(1)

∫
φ dµn = α;

(2) h(µn) <∞ and λ(µn) <∞;
(3)

lim
n→∞

h(µn)

λ(µn)
= δ(α).

If we choose δ∗ < s1 < s2 < δ(α) and q0 > 0 such that P(q0φ − s1 log |T ′|)= K <∞

then, by the variational principle, for all n, we have

q0

∫
φ dµn − s1λ(µn)+ h(µn)≤ K

and thus
h(µn)− s1λ(µn)≤ K − q0α. (10)

Since for n sufficiently large we have

s2 ≤
h(µn)

λ(µn)
≤ δ(α),

we obtain that s2λ(µn)≤ h(µn). Thus, for n sufficiently large we have that

h(µn)− s1λ(µn)≥ (s2 − s1)λ(µn).

Substituting this into inequality (10) we get that for n sufficiently large

λ(µn)≤
K − q0α

s2 − s1
.
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Furthermore by the variational principle we have that, for all q ∈ R,

P(q(φ − α)− δ(α) log |T ′|)≥ h(µn)+ q
(∫

φ dµn − α

)
− δ(α)λ(µn)

= h(µn)− δ(α)λ(µn)≥ λ(µn)

(
h(µn)

λ(µn)
− δ(α)

)
.

The result then follows since λ(µn) is bounded above and limn→∞(h(µn)/λ(µn)−

δ(α))= 0, which means that

lim
n→∞

(
λ(µn)

(
h(µn)

λ(µn)
− δ(α)

))
= 0. �

We can now describe the function q→ P(q(φ − α)− δ(α) log |T ′|) in more detail.

LEMMA 4.4. For any α ∈ (−∞, αM ] one of the following three statements will hold:
(1) δ(α)= δ∗;
(2) there exists q0 ∈ R such that P(q0(φ − α)− δ(α) log |T ′|)= 0 and

∂

∂q
P(q(φ − α)− δ(α) log |T ′|)

∣∣∣∣
q=q0

= 0;

(3) there exists qc ∈ R such that P(qc(φ − α)− δ(α) log |T ′|)= 0 and

P(q(φ − α)− δ(α) log |T ′|)=∞

for all q < qc.

Proof. We will assume throughout that δ(α) > δ∗ since otherwise (1) is satisfied.
We know that when finite the function q→ P(q(φ − α)− δ(α) log |T ′|) is real

analytic. Moreover, by virtue of Lemma 4.3, for all q ∈ R we have

P(q(φ − α)− δ(α) log |T ′|)≥ 0.

We will show that if the derivative of the pressure is zero then the pressure itself is also
zero. Indeed, assume that there exists q0 ∈ R such that

∂

∂q
P(q(φ − α)− δ(α) log |T ′|)

∣∣∣∣
q=q0

= 0.

Denote by µq0 the equilibrium measure corresponding to the potential q0(φ − α)− δ(α).
Then, Ruelle’s formula for the derivative of pressure gives that

∫
φ dµq0 = α. Thus

P(q(φ − α)− δ(α) log |T ′|)=−δ(α)λ(µq0)+ h(µq0)≤ 0.

So, P(q0(φ − α)− δ(α) log |T ′|)= 0 and statement (2) holds. Note that if the pressure
function q→ P(q(φ − α)− δ(α) log |T ′|) is finite, for every q ∈ R then there must exist
q0 ∈ R such that the derivative of P(q(φ − α)− δ(α) log |T ′|) at q = q0 is equal to zero.
This follows from Ruelle’s formula for the derivative of pressure and the fact that α ∈
(−∞, αM ).
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Let us assume now that the derivative of the pressure does not vanish at any point
and let qc = inf{q : P(q(φ − α)− δ(α) log |T ′|) <∞}. It follows from standard ergodic
optimization arguments [17, 22] that

lim
q∗→∞

∂

∂q
P(q(φ − α)− δ(α) log |T ′|)

∣∣∣∣
q=q∗

> 0.

If P(qc(φ − α)− δ(α) log |T ′|)=∞ then, by considering compact approximations to the
pressure, we can see that

lim
q→q+c

P(q(φ − α)− δ(α) log |T ′|)=∞.

But recall that, for q > qc, the pressure is finite. This means that, for small ε > 0,
the derivative of the pressure for q ∈ (qc, qc + ε) will be negative. This, in turn, will
imply that there is a zero for the derivative and so cannot happen. Thus P(qc(φ − α)−

δ(α) log |T ′|) <∞ and
∂

∂q
P(qc(φ − α)− δ(α) log |T ′|)

∣∣∣∣
q=qc

> 0.

If P(qc(φ − α)− δ(α) log |T ′|)= C > 0 then there exists a compact invariant set K
on which the pressure restricted to K satisfy PK (q(φ − α)− δ(α) log |T ′|) > 0 for all
q ∈ R. By considering the behaviour as q→∞ and q→−∞, this function must have a
critical point that we denote by qK . Denote by µK the equilibrium measure corresponding
to qK (φ − α)− δ(α) log |T ′|. We can conclude that

∫
φ dµK = α and so

0< PK (qK (φ − α)− δ(α) log |T ′|)= h(µK )− δ(α)λ(µK ).

This means that h(µK )/λ(µK ) > δ(α), which contradicts the definition of δ(α). So we
can conclude that

P(qc(φ − α)− δ(α) log |T ′|)= 0

and property (3) is satisfied. �

Denote by A(α) the set of values α ∈ (−∞, αM ) where Case (2) of Lemma 4.4 is
satisfied.

LEMMA 4.5. Let I ⊂ A(α) be an interval. The function α→ b(α)= δ(α) is real analytic
on I.

Proof. Recall that

b(α)= sup
{

h(µ)
λ(µ)

: µ ∈MT ,

∫
φ dµ= α and λ(µ) <∞

}
.

By virtue of the definition of I we have that, for α ∈ I , there exists q(α) ∈ R such that

P(q(α)(φ − α)− b(α) log |T ′|)= 0.

Recall that the function (q, δ)→ P(q(φ − α)− δ log |T ′|) is real analytic on each
variable. In order to obtain the regularity of b(α) we will apply the implicit function
theorem. Proceeding as in [1, Lemma 9.2.4], if

G(q, δ, α) :=

 P(q(φ − α)− δ log |T ′|)
∂P(q(φ − α)− δ log |T ′|)

∂q
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we just need to show that

det
[(
∂G
∂q
,
∂G
∂δ

)]
=
∂P(q(φ − α)− δ log |T ′|)

∂q
∂2 P(q(φ − α)− δ log |T ′|)

∂δ∂q

−
∂2 P(q(φ − α)− δ log |T ′|)

∂q2
∂P(q(φ − α)− δ log |T ′|)

∂δ

is not equal to zero for δ = b(α) and q = q(α). Since ∂P(q(φ − α)− δ log |T ′|)/∂q = 0
at q = q(α), it is sufficient to show that ∂2(P(q(φ − α)− δ log |T ′|))/∂q2 and
∂(P(q(φ − α)− δ log |T ′|))/∂δ are non-zero. Since the function P(q(φ − α)− δ log |T ′|)
is strictly convex as a function of the variable q , we have that

∂2(P(q(φ − α)− δ log |T ′|))
∂q2 6= 0.

Since there exists an ergodic equilibrium measure µe such that

∂P(q(φ − α)− δ log |T ′|)
∂δ

=−

∫
log |T ′| dµe,

then we have
∂P(q(φ − α)− δ log |T ′|)

∂δ
< 0.

Therefore the function b(α) is real analytic on I . �

Let s∞ = inf{s ∈ R : P(−s log |T ′|) <∞}. We are now ready to complete the proof of
Theorem 1.4 with the following more general proposition.

PROPOSITION 4.6. Let φ ∈R. We have that:
(1) if δ∗ = dimH 3 then b(α)= δ∗ for all α ∈ (−∞, αM ];
(2) if δ∗ ≤ s∞ < dimH 3 then there exists a non-empty interval I for which I ⊂ A(α)

and thus b(α) is analytic for a region of values of α;
(3) if limx→0 (−φ(x)/log |T ′(x)|)=∞ then either:

(a) A(α)= (−∞, αM ] and thus b(α) is analytic for α ∈ (−∞, αM ) or
(b) there exists an ergodic measure of full dimension ν with α =

∫
φ dν >−∞ and

then I (α)= [α, αM ], b(α) is analytic for α ∈ (−α, αM ] and b(α)= dimH 3

for α ≤ α;
(4) if limx→0 (−φ(x)/log |T ′(x)|)= 0 then b(α) is analytic on (−∞, αM ] except for at

most two points.

Proof. Each part will be proved separately.
Part (1) can be immediately deduced from Lemma 4.2.
To prove part (2) we let s = dimH 3 and note that δ∗ ≤ s∞ < s. Since s∞ < s then

P(−s log |T ′|)= 0 and P(−t log |T ′|) > 0 for s∞ < t < s and P(−t log |T ′|)=∞ for
δ∗ < t < s∞. Denote by ν the equilibrium state corresponding to −s log |T ′| and α =∫
φ dν (this can be −∞, but if finite then b(α)= s). Since δ(α) is a continuous function

of α we can define
α = sup{α : δ(α) > s∞}.
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Now we assume that α ∈ (α, α) and so, in particular, δ(α) > δ∗. Since δ(α) > δ∗, we
are in either Case (2) or (3) of Lemma 4.4. Therefore, there exist q0 ∈ R such that
P(q0(φ − α)− δ(α) log |T ′|)= 0. Let q < 0 and note that there exists a compact invariant
set K ⊂3 and a T -invariant measure να such that dimH να > δ(α) and

∫
φ dνα < α. We

have that

P(q(φ − α)− δ(α) log |T ′|)≥ h(να)+ q
(∫

φ dνα − α
)
− δ(α)λ(να)

= q
(∫

φ dνα − α
)
+ λ(να)

(
h(να)
λ(να)

− δ(α)

)
≥ 0

and so q0 ≥ 0. We also have that P(−δ(α) log |T ′|)≥ 0 with equality if and only if α = α.
By the definition of δ∗ and noticing that δ(α) > δ∗, there exists q∗ > 0 such that, if q ∈
(0, q∗), then

P(q(φ − α)− δ(α) log |T ′|) <∞.

Thus if δ(α) < δ∗ then q→ P(q(φ − α)− δ(α) log |T ′|) is decreasing for q sufficiently
close to 0 and we can only be in Case (2) from Lemma 4.4. If α = α then
P(−δ(α) log |T ′|)= 0 and (∂/∂q)P(q(φ − α)− s log |T ′|)|q=0 = 0, which means we
are also in Case (2) from Lemma 4.4.

To prove part (3) we first note that δ∗ = 0 . Indeed, given A > 1 there exists ε > 0 such
that, if x ∈ (0, ε), then

−φ(x)
log |T ′(x)|

> A,

that is, φ(x) <−A log |T ′(x)|. If we denote by Pε(·) the pressure of T restricted to the
maximal T -invariant set in (0, ε), we have that Pε(φ)≤ Pε(−A log |T ′|) <∞. Since the
entropy of T restricted to (0, 1)\(0, ε) is finite and the potential φ restricted to this set is
bounded, we can deduce that P(φ) <∞. In particular, we obtain that δ∗ = 0.

Let us consider first the case where s∞ < s. In this setting the potential −s log |T ′|
has an associated equilibrium state ν with h(ν)/λ(ν)= s. If we have

∫
φ dν =−∞ then

we can just apply the techniques from the previous part. If
∫
φ dν := α >−∞, then for

α ∈ (α, αM ) we can see that b(α)= δ(α) will be analytic by applying part (2). For α < α
we know, for 0< δ ≤ s:
(1) P(q(φ − α)− δ log |T ′|)=∞ for all q < 0;
(2) P(−δ log |T ′|) > 0;
(3) P(q(φ − α)− δ log |T ′|)≥ q(α − α)− δλ(ν)+ h(ν) > 0 for all q > 0.
Note that the first statement follows from the assumption limx→0 (−φ(x)/log |T ′(x)|)
=∞. Therefore, we cannot be in Cases (1) or (2) from Lemma 4.4. This means that we
must be in Case (3) from Lemma 4.4 with qc = 0 and thus δ(α)= s.

We now assume that s = s∞. We start with the case where P(−s log |T ′|) < 0.
This means that if {µn}n∈N is a sequence of T -invariant measures such that
limn→∞ (h(µn)/λ(µn))= s then limn→∞ λ(µn)=∞. Indeed, assume by way of
contradiction that lim supn→∞ λ(µn)= L <∞. Given ε > 0 there exists N ∈ N such that

h(µN )

λ(µN )
> s − ε,
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that is h(µN )− sλ(µN )≥−εL . Since this holds for arbitrary values of ε, we obtain that
P(−s log |T ′|)≥ 0. This contradiction proves the statement. Now, since by assumption
limx→0 (−φ(x)/log |T ′(x)|)=∞ we have that limn→∞

∫
φ dµn =−∞. Therefore, for

α ∈ (−∞, αM ) we must have δ(α) < s. This means that P(−δ(α) log |T ′|)=∞ and, for
all q > 0, we have P(q(φ − α)− δ(α) log |T ′|) <∞. Thus we must be in Case (2) from
Lemma 4.4 and the proof is complete.

We now assume that P(−s log |T ′|)= 0 and that ν is the equilibrium state for
−s log |T ′|. For any α ≤

∫
φ dν we can argue exactly as when s∞ < s to show that

δ(α)= s. For α >
∫
φ dν we first need to show that δ(α) < s. To prove this, note that the

function q→ P(q(φ − α)− s log |T ′|) has a one sided derivative at q = 0 with derivative∫
(φ − α) dν < 0. Thus by Lemma 4.4 it is not possible that δ(α)= s. So δ(α) < s and we

can use the same arguments as when P(−s log |T ′|) < 0.
We now turn to part (4) of the Lemma. In this case δ∗ = s∞. Indeed, given t > 0

there exist ε > 0 such that if x ∈ (0, ε) then −t log |T ′(x)|< φ(x). If we denote by
Pε(·) the pressure of T restricted to the maximal T -invariant set in (0, ε), we have
that Pε(−(t + δ) log |T ′|)≤ Pε(qφ − δ log |T ′|). Since the entropy of T restricted to
(0, 1)\(0, ε) is finite and the potentials φ and log |T ′| restricted to this set are bounded,
we can deduce that, for q > 0 and any positive t > 0, we have

P(−(t + δ) log |T ′|)≤ P(qφ − δ log |T ′|).

Therefore δ∗ = s∞.
This implies that if s = s∞ then δ(α)= s for all α ∈ (−∞, αM ). So we will assume

that s∞ < s. If δ(α) > s∞ then by our assumption on φ we have P(q(φ − α)−
δ(α) log |T ′|) <∞ for all q ∈ R and

lim
q→±∞

P(q(φ − α)− δ(α) log |T ′|)=∞,

and so we must be in Case (2) from Lemma 4.4. So we need to show that the set

J = {α : δ(α) > s∞}

is a single interval. Denote by ν the equilibrium measure corresponding to −s log |T ′|
and α =

∫
φ dν. Let α ∈ J ; we know that there is an equilibrium measure µα , with∫

φ dµα = α and h(µα)/λ(µα)= δ(α). Let β ∈ R be real number bounded by α and
α. By considering convex combinations of µα and ν we can see that δ(β) > δ(α). It
therefore follows that J is a single interval and the only possible points of non-analycity
for δ(α)= b(α) are the endpoints of J . �

5. The Lyapunov spectrum
A special case of the Birkhoff spectrum, which has received a great deal of attention,
is the Lyapunov spectrum. This can be included in our setting by considering φ(x)=
−log |T ′(x)| and then the Lyapunov spectrum is given by L(α)= b(−α). The present
section is devoted not only to showing how previous work on the Lyapunov spectrum can
be deduced from ours, but also to present new results on the subject.

In a related setting there has been work on the Gauss map in [20, 25]; for fairly general
piecewise linear systems see [19], and in [16] the spectra for ratios of functions are studied
where one of the functions is −log |T ′(x)|.
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If T denotes an EMR map then the variational formula proved in Theorem 1.3 holds for
the Lyapunov spectrum. On the other hand, neither of the assumptions for Theorem 1.4 are
satisfied. However, it is still possible to describe in great detail the Lyapunov spectrum.

Let φ(x)=−log |T ′(x)| and, as in the previous section, let

s∞ = inf{δ ∈ R : P(δφ) <∞}.

The following theorem shows how our results fit in with the results in [16, 19, 20].

THEOREM 5.1. For all α ∈ (−∞, αM ) we have that

b(α)= inf
u

{
u +

P(uφ)
−α

}
. (11)

Furthermore:
(1) if P(s∞φ)=∞ then b(α) is real analytic on (−∞, αM );
(2) if P(s∞φ)= k <∞ and µc is the equilibrium state for s∞φ then b(α) is analytic

except at αc =
∫
φ dµc. For α ≤ αc we have that b(α)= s∞ − k/α.

Proof. The formula for b(α) given in equation (11) was shown in a slightly different
setting in [19]. We show how it can also be derived from the methods in this paper. For
each δ ∈ R we will denote the function fδ : R→ R by

fδ(q)= P(qφ + δφ)= P((q + δ)φ).

We first assume that P(s∞φ)=∞. Thus, we have

fδ(q)=

{
∞ if q ≤ s∞ − δ,

finite if q > s∞ − δ.

Therefore, for each α ∈ (−∞, αM ) and for each δ ∈ R, there exist q(δ) > s∞ − δ such
that f ′δ(q(δ))= α. Denote by q(δ(α)) ∈ R the corresponding value for δ(α). We have that

d
dq

P(qφ + δ(α)φ)
∣∣∣∣
q=q(δ(α))

= α.

Moreover,
P(q(δ(α))φ + δ(α)φ)= q(δ(α))α.

Thus, for all α ∈ (−∞, αM ] we are in Case (2) from Lemma 4.4. Therefore, the Lyapunov
spectrum is real analytic on (−∞, αM ].

Now let P : R→ R be defined by P(u) := u + P(uφ)/(−α). We can then deduce
that P(q(δ(α))+ δ(α))= δ(α) and P ′(q(δ(α))+ δ(α))= 0. Finally, since the pressure
is convex we must have that P ′′(q(δ(α))) > 0 and that q(δ(α)) will be the only minimum
point for P . Thus

δ(α)= inf
u

{
u +

P(−u log |T ′|)
α

}
.

We will now assume that P(−s∞φ)= k. Let µc be the equilibrium measure associated
with −s∞φ. If α ≥

∫
φ dµc then we can argue exactly as in the previous case. For α < αc

we let q = k/α and note that

P(q(φ − α)+ (s∞ − q)φ)= P(s∞φ)− αq = k − k = 0.
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Note that if q < k/α then

P
(

q(φ − α)+
(

s∞ −
k
α

)
φ

)
=∞.

Therefore, we are in Case (3) from Lemma 4.4. Thus b(α)= s∞ − K/α. We again define
P : R→ R by P(u) := u + P(−uφ)/α. If q ∈ R is such that P(q) <∞ then we denote by
µq the equilibrium measure associated with qφ. Note that P ′(q)= 1+−λ(µq)− α > 0.
Thus the infimum of P will be achieved at s∞. We can then calculate

inf
u
{P(u)} = P(s∞)= s∞ −

k
α
. �

We now turn our attention to the shapes the Lyapunov spectrum can take. We start by
giving a result which holds for all potentials φ ∈R.

THEOREM 5.2. Let T be an EMR map with dimH 3= s and φ ∈R, then:
(1) if there exists a T -ergodic measure of maximal dimension µ and α∗ =

∫
φ dµ then

b(α) is non-increasing on [α∗, αM ] and non-decreasing on (−∞, α∗] (note that it is
possible that α∗ =−∞);

(2) if there exists no ergodic measure of maximal dimension then b(α) is non-decreasing
on (−∞, αM ].

Proof. For the first part, let α1 > α2 > α
∗ >−∞. For any ε > 0 there exists an invariant

measure µ1 such that
∫
φ dµ1 = α1 and h(µ1)≥ λ(µ1)(b(α1)− ε). If α∗ >−∞ we can

then find p ∈ (0, 1) such that α2 = pα∗ + (1− p)α1. Now let ν1 = pµ+ (1− p)µ1.
Thus

∫
φ dν1 = α2 and

h(ν1)≥ psλ(µ1)+ (1− p)(b(α1)− ε)λ(µ1)≥ (b(α1)− ε)λ(ν1).

Therefore, b(α2)≥ b(α1). The case where α1 < α2 < α
∗ is handled analogously. Now

assume that α∗ =∞ and α1 > α2. Let αM > α1 > α2 >−∞. By considering compact
approximations we can find an invariant measure µ such that

∫
φ dµ < α2 and ∞>

h(µ)≥ (b(α1)− ε)λ(µ). We can also find a measure µ1 such that
∫
φ dµ1 < α1 and

h(µ1)≥ (b(α1)− ε)λ(µ1). To complete the proof we take a suitable convex combination
of µ and µ1.

In the case where there is no ergodic measure of maximal dimension we know that
s = s∞. Again by considering compact approximations we can find a sequence of invariant
measuresµn such that limn→∞ φ dµn =−∞ and limn→∞ (h(µn)/λ(µn))= s. The proof
now simply follows the first part when α∗ =−∞. �

We now return to the Lyapunov spectrum. It was shown in [15] that in the hyperbolic
case it can have inflection points and it clearly has to have such points in the non-compact
case. An application of the methods used in Theorem 5.2 combined with results from
Theorem 5.1 allow us to prove in a simple way that, as long as s∞ < s = dimH (3), the
inflection points can only appear in the decreasing part of the spectrum. We present the
proof in the non-compact case; however, it also holds in the compact, hyperbolic case.

COROLLARY 5.3. Let T be an EMR map such that s∞ < s = dimH (3), then the
increasing part of the Lyapunov spectrum is concave.
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Proof. Again we will let φ =−log |T ′| and note that in this case the Lyapunov spectrum
satisfies L(α)= b(−α). Since s∞ < s there exists an ergodic measure of maximal
dimension that we denote by µ. Let

∫
φ dµ= α∗. By Theorem 5.2 we know that b(α)

is non-increasing on [α∗, αM ). Moreover, the proof of Theorem 5.1 implies that for all
α ∈ [α∗, αM ) there will exist a measure µα such that λ(µα)=−α and h(µα)/λ(µα)=
δ(α).

We now introduce variables λ1, λ2 such that

inf
{∫

log |T ′| dν : ν ∈MT

}
:= λm < λ1 < λ2 < λ

∗
:=

∫
log |T ′| dµ.

Thus we can find µ1, µ2 ∈MT such that L(λ1)= dimH µ1, L(λ2)= dimH µ2, λ(µ1)=

λ1 and λ(µ2)= λ2. Let

L(t) :=
th(µ2)+ (1− t)h(µ1)

tλ(µ2)+ (1− t)λ(µ1)

for t ∈ [0, 1]. In order to study the convexity properties of the Lyapunov spectrum L(α)
we compute the derivatives of the function L(t) and note that L(tλ1 + (1− t)λ2)≥ L(t),
with equality when t = 0, 1. The derivative of L(t) is

L ′(t)=
h(µ2)λ(µ1)− h(µ1)λ(µ2)

(tλ(µ2)+ (1− t)λ(µ1))2
. (12)

The second derivative is given by

L ′′(t)=
2(h(µ2)λ(µ1)− h(µ1)λ(µ2))

(tλ(µ2)+ (1− t)λ(µ1))3
(λ(µ1)− λ(µ2)). (13)

Note that all the Lyapunov exponents are positive, therefore the denominator of (13) is
positive. Since

h(µ1)

λ(µ1)
= dimH J (λ1) < dimH J (λ2)=

h(µ2)

λ(µ2)
,

we have that 2(h(µ2)λ(µ1)− h(µ1)λ(µ2)) > 0. Therefore the sign of (13) is determined
by the sign of λ(µ2)− λ(µ1), which by definition satisfies λ1 = λ(µ1) < λ(µ2)= λ2.
Therefore L ′′(t) < 0 and the function L(α) is concave on [λm, λ

∗
]. �

In the case where s = s∞ then if P(s∞φ)=∞ then the above proof can be easily
adapted to show the Lyapunov spectrum is concave.

6. Examples
An irrational number x ∈ (0, 1) can be written as a continued fraction of the form

x =
1

a1 +
1

a2 +
1

a3 + · · ·

= [a1a2a3 . . . ],

where ai ∈ N. For a general account on continued fractions see [12, 21]. The Gauss map
(see Example 1.2) G : (0, 1] → (0, 1] is the interval map defined by

G(x)=
1
x
−

[
1
x

]
.
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This map is closely related to the continued fraction expansion. Indeed, for 0< x < 1
with x = [a1a2a3 · · ·] we have that a1 = [1/x], a2 = [1/Gx], . . . , an = [1/Gn−1x]. In
particular, the Gauss map acts as the shift map on the continued fraction expansion,

an = [1/Gn−1x].

The following result was initially proved by Khinchin [21, p. 86] in the case where φ(n) <
Cn1/2−ρ .

THEOREM 6.1. (Khinchin) Let φ : N→ R be a non-negative potential. If there exist
constants C > 0 and ρ > 0 such that, for every n ∈ N,

φ(n) < Cn1−ρ,

then for Lebesgue almost every x ∈ (0, 1) we have that

lim
n→∞

1
n

n−1∑
i=0

φ(Gi x)=
∞∑

n=1

(
φ(n)

log(1+ 1/(n(n + 2)))
log 2

)
.

Remark 6.2. The above result directly follows from the ergodic theorem applied to the
(locally constant) potential φ with respect to the (ergodic) Gauss measure,

µG(A)=
1

log 2

∫
A

dx
1+ x

.

The Gauss measure is absolutely continuous with respect to the Lebesgue measure.
Moreover, it is the measure of maximal dimension for the map G.

As a direct consequence of Theorem 1.3 we can compute the Hausdorff dimension of
the level sets determined by the potential φ (strictly speaking we should apply our results
to the potential −φ, but clearly this does not make any difference). Indeed, first note that
potentials satisfying the assumptions of Khinchin’s theorem such that limn→∞ φ(n)=
∞ satisfy the assumptions of Theorem 1.3. That is, if φ : (0, 1)→ R is a non-negative
potential such that:
(1) if x ∈ (0, 1) and x = [a1, a2 . . .] then φ(x)= φ(a1);
(2) there exist constants C > 0 and ρ > 0 such that, for every n ∈ N and x ∈ (1/(n + 1),

1/n),
φ(x)= φ(n) < Cn1−ρ

;

(3) limx→0 φ(x)=∞;
then φ ∈R. Our first result in this setting is the following immediate corollary to
Theorem 1.3.

COROLLARY 6.3. Let φ ∈R. Then if we denote

K (α) :=
{

x ∈ (0, 1) : lim
n→∞

1
n

n−1∑
i=0

φ(Gi x)= α
}
,

we have that

dimH (K (α))= sup
{

h(µ)
λ(µ)

: µ ∈MG ,

∫
φ dµ= exp(α) and λ(µ) <∞

}
. (14)
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A particular case of the above theorem has received a great deal of attention. If φ(x)=
log a1 then the Birkhoff average can be written as the so-called Khinchin function:

k(x) := lim
n→∞

(
log n
√

a1 · a2 · · · · · an

)
.

This was first studied by Khinchin who proved the following.

PROPOSITION 6.4. (Khinchin) Lebesgue almost every number is such that

lim
n→∞

(
log n
√

a1 · a2 · · · · · an

)
= log

( ∞∏
n=1

(
1+

1
n(n + 2)

)log n/ log 2)
= 2.6 . . . .

Recently, Fan et al [7] computed the Hausdorff dimension of the level sets determined
by the Khinchin function. They obtained the following result:

∫
log a1 dµG := αS RB <

∞.

PROPOSITION 6.5. The function

b(α) := dimH

({
x ∈ (0, 1) : lim

n→∞
log
(

n
√

a1 · a2 · · · · · an

)
= α

})
is real analytic, it is strictly increasing and strictly concave in the interval [αm, αS RB),
and it is decreasing and has an inflection point in (αS RB,∞).

An interesting family of related examples is given by letting γ > 0 and considering the
locally constant potential φγ ([a1, a2, . . .])=−aγ1 . For this potential the Birkhoff average
is given by

lim
n→∞

1
n

n−1∑
i=0

φγ (Gi x)=− lim
n→∞

1
n
(aγ1 + aγ2 + · · · + aγn ), (15)

where x = [a1, a2, . . . , an, . . .]. Let us note that if γ ≥ 1 then for Lebesgue almost
every point x ∈ (0, 1) the limit defined in (15) is not finite. For γ < 1 we let G(γ ) :=∫
φγ dµG >−∞. Nevertheless, for any γ > 0 we have that φγ ∈R, so the following result

is a direct corollary of Theorem 1.3.

COROLLARY 6.6. Denote

A(α, γ ) :=
{

x ∈ (0, 1) : lim
n→∞

1
n
(aγ1 + aγ2 + · · · + aγn )= α

}
,

then we have that

dimH (A(α, γ ))= sup
{

h(µ)
λ(µ)

: µ ∈MG ,

∫
A dµ=−α and λ(µ) <∞

}
. (16)

We can also use Theorem 1.4 to give more detail about the function α→

dimH (A(α, γ )).

PROPOSITION 6.7. Let γ > 0 then:
(1) if γ ≥ 1 the function α→ dimH (A(α, γ )) is real analytic and it is strictly

increasing;
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(2) if 0< γ < 1 the function α→ dimH (A(α, γ )) is real analytic on [G(γ ), αM ) and
for α < G(γ ) we have dimH (A(α, γ ))= 1.

Proof. Since limx→0 (φγ (x)/−log |T ′(x)|)=∞ the Theorem immediately follows from
the first part of Theorem 1.4. �

The sets A(α, 1) are related to the sets where the frequency of digits in the continued
fraction is prescribed. The Hausdorff dimension of these sets was recently computed in [8].

We conclude this section by exhibiting explicit examples of dynamical systems and
potentials for which the behaviour of the Birkhoff spectra is complicated.

A version of following example appears in [29]. Consider the partition of the interval
[0, 1] given by the sequence of points of the form xn = 1/(n(log 2n)2) together with the
points {0, 1}. Let T be the EMR map defined on each of the intervals generated by this
sequence to be linear, of positive slope and onto. Then

P(−t log |T ′|)=

{
∞, t < 1,

finite, t ≥ 1.

Moreover, P(−log |T ′|)= 1 and for t > 1 we have P(−t log |T ′|) < 0. Therefore,
dimH 3= s = s∞ = 1. Choose now φ ∈R such that limx→0 (φ(x)/−log |T ′(x)|)= 0.
We can then see that for any δ < 1 we have P(qφ − δ log |T ′|)=∞ for all q ∈ R and so
δ∗ = 1. Therefore, it is a consequence of Lemma 4.2 that b(α)= 1 for all α ∈ (−∞, αM ].
Other examples of dynamical systems satisfying these assumptions can be found in [23].

7. Hausdorff dimension of the extreme level sets
This section is devoted to a study of the Hausdorff dimension of one of the two extreme
level sets. Since the potentials we have considered are not bounded, the level set

J (−∞) :=
{

x ∈ (0, 1) : lim
n→∞

1
n

n−1∑
i=0

φ(T i x)=−∞
}

can have positive Hausdorff dimension. In this section we compute it.

THEOREM 7.1. Let φ ∈R then

dimH (J (−∞))= lim
α→−∞

F(α). (17)

Proof of Theorem 7.1. To start we need a lemma showing that the limit on the right-hand
side of equation (17) does indeed exist.

LEMMA 7.2. There exists s ∈ [0, 1] such that limα→−∞ F(α)= s.

Proof. The limit clearly exists since by Theorem 5.2 the function α→ F(α) is monotone
when −α is sufficiently large. �

In order to prove the upper bound,

dimH (J (−∞))≤ lim
α→−∞

F(α),

we first give a uniform lower bound for limα→−∞ F(α).
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PROPOSITION 7.3. Let t∗ be the critical value for the pressure of the potential −log |T ′|.
We have that limα→−∞ F(α)≥ t∗.

Proof. Consider the sets 3n = π({n, n + 1, . . .}N). Note that dimH 3n ≥ t∗ by the
definition of t∗. However, for any ε > 0, the set 3n will support a T -invariant measure µn

with λ(µn) <∞, h(µn)/λ(µn)≥ dimH 3n − ε and
∫
φ dµn >−∞. We also have that

limn→∞
∫
φ dµn =−∞. The result now follows. �

We now fix α ∈ R and consider the set

J (α, N )=
{

x ∈3 :
Skφ(x)

k
≤ α, for every k ≥ N

}
.

It is clear that J (−∞)⊂
⋃

N∈N J (α, N ). Thus it suffices to show that, for all N ∈ N,

dimH J (α, N )≤ sup
β>α

F(β).

Fix N ∈ N and for k ∈ N let

Ck(α)= {I (i1, . . . , ik) : I (i1, . . . , ik) ∩ J (α, N ) 6= ∅}.

Let ε > 0 and note that if for infinitely many k we have∑
I (i1,...,ik )∈Ck (α)

|I (i1, . . . , ik)|
t∗+ε
≤ 1

then dimH J (α, N )≤ t∗ + ε ≤ limα→−∞ F(α)+ ε. So we may assume that there exists
K ∈ N such that, for k ≥ K ,

1<
∑

I (i1,...,ik )∈Ck (α)

|I (i1, . . . , ik)|
t∗+ε <∞.

Note that the sum must be convergent because t∗ + ε is greater than the critical value t∗.
Thus, for each k ≥ K we can find tk such that∑

I (i1,...,ik )∈Ck (α)

|I (i1, . . . , ik)|
tk = 1.

It follows that dimH J (α, N )≤ lim supk→∞ tk . To complete the proof we need to relate
tk to the entropy and Lyapunov exponent of an appropriate T -invariant measure.

Since Ck(α) contains infinitely many cylinders, we need to consider a finite subset of
Ck(α), that we denote by Dk(α), where∑

I (i1,...,ik )∈Dk (α)

|I (i1, . . . , ik)|
tk = A ≥ 1− ε.

As in the proof of Lemma 3.5 we let ηk be the T k-invariant measure which assigns each
cylinder in Dk(α) the measure (1/A)|I (i1, . . . , ik)|

tk . Note that there will exist C > 0
such that, for all k ≥ K , the Lyapunov exponent λ(ηk, T k+1) satisfies∣∣∣∣−λ(ηk, Tk)−

1
A

∑
I (i1,...,ik )∈Dk (α)

|I (i1, . . . , ik)|
tk log |I (i1, . . . , ik)|

∣∣∣∣≤ C.
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Computing the entropy with respect to T k of ηk gives

h(ηk, T k)=
∑

I (i1,...,ik )∈Dk (α)

tk
A
|I (i1, . . . , ik)|

tk log |I (i1, . . . , ik)| + log A.

Since A ≥ 1− ε and λ(ηk, T k)≥ ξ k , it follows that limk→∞ (h(ηk, T k)/λ(ηk, T k))−

tk = 0. Since ηk is compactly supported, we know that
∫
φ dηk >−∞ and by the distortion

property lim supk→∞
∫
φ dηk ≤ α. To finish the proof we simply let µk =

∑k−1
i=0 ηk ◦ T−i .

To prove the lower bound we use the method of constructing a w-measure as done by
Gelfert and Rams in [10]. We will let limα→−∞ F(α)= s and start by observing that there
exists a sequence of ergodic measures {µn}n∈N where limn→∞

∫
φ dµn =−∞, λ(µn) <

∞, for all n ∈ N, λ(µn+1)/λ(µn)≤ 2 and limn→∞ (h(µn)/λ(µn))= s. We now let ε > 0
and assume that, for all n, h(µn)/λ(µn)≥ s − ε. For all i ∈ N by Egorov’s theorem we can
find δ > 0 and ni ∈ N such that there exists a set X i (δ)where, for all n ≥ ni and x ∈ X i (δ):
(1) Snφ(x)≤ n(αi + ε);
(2) (s + ε)(−log |Cn(x)|)≤−log µi (Cn(x))≥ (s − ε)(−log |Cn(x)|);
(3) −log |Cn(X)| ∈ (n(λ(µi )− ε), n(λ(µi )+ ε));
(4) µi (X i (δ))≥ 1− δ.
We can let k1 = n1 + [n2/δ] + 1 and ki =

[(( ∑i−1
l=1 kl

)
+ λ(µi+1)ni+i

)
/δ
]
+ 1. We let Yi

be all ki level cylinders with non-zero intersection with X i (δ). We then define Y to be

the space such that x ∈ Y if and only if T
∑ j−1

l=1 kl (x) ∈ Y j for all j ∈ N. We will need to
consider the size of nth level cylinders for points in Y . We get the following lemma.

LEMMA 7.4. There exists K (ε) > 0 such that limε→0 K (ε)= 0 and, for all x ∈ Y and n
sufficiently large,

ν(B(x, |Cn(x)|))≤ (1+ K (ε))nν(|Cn+1(x)|).

Proof. To prove this we use the condition in the definition of Y . For any x, y ∈ Y we need
to compare the diameter of Cn(x) and Cn+1(y) and the measure of Cn+1(y) and Cn+1(x).
We consider the case when ki ≤ n ≤ ki + ni − 1; we then have that, for all x, y ∈ Y ,

−log |Cn+1(y)| ≤
i∑

j=1

k j (λ(µ j )+ ε)+ ni+1(λ(µi+1)+ ε)+

n+1∑
j=2

vark(log |T ′|)

and

−log |Cn(x)| ≥
i∑

j=1

k j (λ(µ j )− ε)−

n+1∑
j=2

vark(log |T ′|).

In the case where ki + ni ≤ n ≤ ki+1 we simply have that, for all x, y ∈ Y ,

|log |Cn+1(y)| − log |Cn(x)|| ≤ nε +
n+1∑
j=2

vark(log |T ′|)+ λi+1.

We can thus deduce that there exists Z(ε) such that limε→0 Z(ε)= 0 and

ν(B(x, |Cn(x)|))≤ (1+ Z(εn))max
y∈Y

ν(B(y, |Cn+1(y)|)).

To complete the proof we need a uniform estimate of ν(B(y, |Cn+1(y)|))/
ν(B(x, |Cn+1(y)|)), for all x, y ∈ Y . This follows from the definition of Y . �
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We can then define a measure supported on Y as follows. Let νi be the measure which
gives each cylinder in Yi equal weight. We then take the measures

l⊗
j=1

σ
∑ j−1

m=1 kmν j

and note that this can be extended to a measure ν supported on Y .

LEMMA 7.5. For all x ∈ Y we have that limn→∞ ((Snφ(x))/n)=−∞ and

dimH Y ≥ dimH ν ≥ s − C(δ),

for some constant C(δ) > 0, where C(δ)→ 0 as δ→ 0.

Proof. For convenience we will let zi =
∑i

l=1 ki . By our definition of ki we will have that
(ni+1)/zi ≤ δ. If x ∈ Y then we have that, for n ∈ [zi , zi + ni+1],

Snφ(x)≤ (αi + ε)ki +

(
max
x∈3
{φ(x)}

)
(n − zi )+

∞∑
j=1

V j (φ).

Moreover, for n ∈ [zi + ni+1, zi+1] we have that

Snφ(x)≤ (αi + δ)zi + (n − zi )(αi+1 + δ)+

∞∑
j=1

V j (φ).

Combining these two estimates and the definition of ki we obtain that limn→∞

((Snφ(x))/n)=−∞. To find a lower bound for dim ν we need to find a lower bound
for limr→0 (log(ν(B(x, r)))/log r) for all x ∈ Y . To start we let x ∈ Y , n ∈ [zi , zi + ni+1]

and note that by the definition of ki this will mean that

log CZi (x)
Cn(x)

≥ (1− δ).

By the definition of ν we have that

log ν(Cn(x))≤−i log δ + (s − ε)
i∑

l=1

log |Ci ((T Zl (x)))|,

which then gives using distortion estimates that

log ν(Cn(x))≤−i log δ + (s − ε) log |Czi (x)| +
∞∑
j=1

V j (log |T ′|).

For n ∈
[∑i

l=1kl + ni+1,
∑i+1

l=1 kl
]

we have that

log ν(Cn(x))≤−i log δ + (s − ε)
(( i∑

l=1

(log |Ci (T zl (x))|)
)
+ |Cn−zi |(T

zi (x))
)
.

Again by applying distortion estimates we get that

log ν(Cn(x))≤−i log δ + (s − ε) log |Cn(x)| +
∞∑
j=1

V j (log |T ′|).
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Thus, for all n ∈ [zi , zi+1], we have that

log ν(Cn(x))
log |Cn(x)|

≥
−i log δ

log |Cn(x)|
+ (1− δ)(s − ε)+

∑
∞

j=1 V j

log |Cn(x)|

and taking the limit as i→∞ gives that

log ν(Cn(x))
log |Cn(x)|

≥ (1− δ)(s − ε).

Now fix r > 0 and n such that Cn(x)≥ r > Cn+1(x). We then have by the lemma that,
for n sufficiently large,

ν(B(x, r)) ≤ ν(B(x, |Cn(x)|))

≤ (1+ k(ε))nν(|Cn+1(x)|)

≤ (1+ k(ε))n|Cn+1(x)|s−ε ≤ (1+ k(ε))nr s−ε.

The proof is obtained by noting that log(1+ K (ε))n/ log r can be made arbitrarily small
by choosing ε sufficiently small. �

The proof of Theorem 7.1 is now finished. We finish this section by noting that
combining Theorem 7.1 and Proposition 7.3 gives that, for all φ ∈R, dim J (−∞)≥ t∗.
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[16] J. Jaerisch and M. Kesseböhmer. Regularity of multifractal spectra of conformal iterated function systems.

Trans. Amer. Math. Soc. 363(1) (2011), 313–330.
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