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The present paper reports on our effort to characterize vortical interactions in complex
fluid flows through the use of network analysis. In particular, we examine the
vortex interactions in two-dimensional decaying isotropic turbulence and find that the
vortical-interaction network can be characterized by a weighted scale-free network.
It is found that the turbulent flow network retains its scale-free behaviour until the
characteristic value of circulation reaches a critical value. Furthermore, we show
that the two-dimensional turbulence network is resilient against random perturbations,
but can be greatly influenced when forcing is focused towards the vortical structures,
which are categorized as network hubs. These findings can serve as a network-analytic
foundation to examine complex geophysical and thin-film flows and take advantage of
the rapidly growing field of network theory, which complements ongoing turbulence
research based on vortex dynamics, hydrodynamic stability, and statistics. While
additional work is essential to extend the mathematical tools from network analysis
to extract deeper physical insights of turbulence, an understanding of turbulence based
on the interaction-based network-theoretic framework presents a promising alternative
in turbulence modelling and control efforts.
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1. Introduction

Recent advances in the field of network analysis have revealed the structures
of internet, technological, social and biological networks (Albert & Barabási 2002;
Newman 2003, 2010; Barrat et al. 2004a). Having characterized these networks, we
are able to study dynamics such as disease outbreak and information propagation
on networks, and analyse the resilience of network-based activities (Albert, Jeong &
Barabási 2000; Barrat, Barthélemy & Vespignani 2008). These analysis techniques are
founded on graph theory, dynamical systems, and operator theory, but place unique
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emphasis on interactions and connectivity amongst the elements that establish a
network. Thus far, most of the applications of network analysis have been concerned
with discrete settings in which nodes are individualized quantities, such as people,
organisms, equipment, or stations (Caldarelli 2007; Newman 2010). In this paper, we
extend the network analysis to continuous representation of physical phenomena, in
particular two-dimensional turbulence.

The chaotic motion of a large number of vortices in turbulent flows is caused
by the induced velocities of the vortices themselves. What makes turbulence rich
and complex are the vortical interactions in the flow field, which take place over
a wide range of length scales (Tennekes & Lumley 1972; Hinze 1975; Frisch
1995; Pope 2000; Davidson 2004; Lesieur 2008). Thus, complete understanding
of turbulence has remained a challenge to this day because of its high-dimensionality,
multiscale interactions, nonlinearity and the resulting chaos. Network science provides
an alternative view of complex fluid flows in terms of a network of vortex interactions
(Nair & Taira 2015), and this perspective illuminates the underlying structure and
organization of turbulent flows. In this work, we show that two-dimensional isotropic
turbulence (Kraichnan & Montgomery 1980; McWilliams 1984; Benzi, Paladin &
Vulpiani 1990; Benzi & Colella 1992; Davidson 2004; Boffetta & Ecke 2012)
has a scale-free network structure reminiscent of other networks found in nature
(Barabási & Albert 1999; Caldarelli 2007). While most of the attention has been
placed on unweighted scale-free networks, we consider the use of weighted scale-free
networks to describe the variations in the strength of interactions or connectivities
(Barrat, Barthélemy & Vespignani 2004b). Upon identifying the network structure
of turbulence, physical insights can be obtained as to which vortical interactions are
important in capturing the overall physics and how it may be possible to control the
dynamics of turbulent vortices (Farazmand, Kevlahan & Protas 2011; Liu, Slotine &
Barabási 2011; Brunton & Noack 2015).

2. Problem description and approach

To extract the network structure of the flow, we quantify the interactions between
fluid elements based on the vortical interactions. The velocity u at position x induced
by the vorticity distribution ω of the flow is

u(x, t)= 1
4π

∫
ω(x̃, t)× (x− x̃)
|x− x̃|3 dx̃. (2.1)

In this study, we focus on unforced two-dimensional isotropic turbulence in a periodic
box and assess the influence of the vorticity distribution over a Cartesian domain.
Here, the two-dimensional vorticity field reduces to ω(x, t) = ω(x, y, t)êz, with êz
denoting the unit normal plane vector. Modelling the vortical component for each
discrete Cartesian element as a line vortex, we can evaluate how fluid elements
influence each other, as depicted in figure 1. Here, the magnitude of the induced
velocity from fluid element i on another element j reduces from (2.1) to

ui→j = |γi|
2π|xi − xj| , (2.2)

where γi=ω(xi)1x1y is the circulation of fluid element i with side lengths of 1x and
1y. The superposition of the induced velocity from all other fluid elements provides
the advective velocity of the fluid element. Detailed discussions on using point vortices
to develop the network-theoretic framework for describing unsteady vortical flows can
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Network structure of two-dimensional decaying isotropic turbulence

FIGURE 1. Interaction of fluid elements in two-dimensional turbulence. The strength of
the vortical interaction between elements i and j having vorticity ωi and ωj is quantified
through the induced velocities ui→j and uj→i, respectively. For discretizing the Cartesian
domain, we take nx and ny points in the horizontal and vertical directions, respectively,
providing the adjacency matrix A of size n× n with n= nxny. Shown in the background
with a contour plot is the corresponding vorticity field with initial Re(t0)= 814 at t= 18.

be found in Nair & Taira (2015). Note that adjacency matrices are commonly defined
with positive weights as considered here, but they can be relaxed to accommodate
positive and negative weights within the context of vortical interactions. This point
will be revisited later.

To assess and describe the vortical interactions in the flow field, we utilize a
weighted network (graph). The definition of a network (graph) G requires sets of
vertices (nodes) V , edges E , and weights W (Newman 2010). With these three
components defined, a graph can be uniquely determined, i.e. G = G (V , E , W ).
The nodes V in this study are taken to be the vortical elements residing within
the Cartesian cells, while the edges E represent the vortical interactions between
those vortical elements. The edge weights W quantify the strengths of the vortical
interactions. Given n nodes, a collection of the weights wij in the form of a matrix
A ∈Rn×n with

Aij =
{

wij if (i, j) ∈ E

0 otherwise,
(2.3)

is called the adjacency matrix and is used to describe the network connectivity. In the
above definition, Aij is set to the edge weight wij if there exists an edge (interaction)
between nodes i and j. Details on the fundamental concepts involved in network theory
can be found in Dorogovtsev (2010) and Newman (2010), with descriptions of vortical-
interaction networks in Nair & Taira (2015).

Based on (2.2), we define the network adjacency matrix as the average induced
velocity

Aij =
{

1
2(ui→j + uj→i) if i 6= j
0 otherwise

(2.4)

to quantify the magnitude of interaction between fluid elements i and j (Nair & Taira
2015). Note that an element cannot impose velocity upon itself, which is captured by
the null entry along the diagonal of the adjacency matrix. In the present study, the
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influence from the neighbouring periodic vortex images are also accounted for in the
analysis. This formulation yields a full matrix, except for its diagonal entries, which
are identically zero. In assessing the strength of the vortical interaction between two
fluid elements, we utilize (2.4) to perform network analysis to extract the spatial
connectivity structure. This approach has been successful in capturing the nonlinear
vortex dynamics and modelling the trajectories of vortex clusters (Nair & Taira 2015).
The adjacency matrix considered here is symmetric to quantify the average interaction
strength. Note that the geometric mean can be alternatively chosen and yields
similar results. In general, the adjacency matrix can be formulated in an asymmetric
manner:

Aij =
{
φui→j + (1− φ)uj→i if i 6= j
0 otherwise.

(2.5)

Here the parameter φ takes a value between 0 and 1. For the aforementioned
symmetric formulation in (2.4), φ is selected as 1/2. When φ= 0 and 1, the adjacency
matrix Aij are defined by the velocity imposed to the other elements (Aij = uj→i) and
upon themselves (Aij = ui→j), respectively, for i 6= j. We mainly focus on the use
of the symmetric adjacency matrix in this work, but will consider the asymmetric
formulation briefly to highlight the difference from a physical point of view in the
next section. We note in passing that the theoretical tools for symmetric adjacency
matrices are more widely available compared to the asymmetric matrices.

The flow field analysed in this study is obtained from direct numerical simulation
on a square biperiodic computational domain (x, y) ∈ [0, L] × [0, L] with a grid size
of mx × my = 1024 × 1024. The unforced two-dimensional incompressible isotropic
turbulent flow is simulated by numerically solving the two-dimensional vorticity
transport equation

∂ω

∂t
+ uj

∂ω

∂xj
= 1

Re
∂2ω

∂xj∂xj
, (2.6)

where u and ω are the velocity and vorticity variables, respectively. The simulation
is performed with the Fourier spectral method and the fourth-order Runge–Kutta
time integration scheme (Canuto et al. 1988). The vorticity field is initialized with
a smooth distribution comprised of a large number (≈100) of superposed vortices
(Taylor 1918) with random strengths, core sizes, and locations chosen such that the
kinetic energy spectra satisfies E(k) ∝ k exp(−k2/k2

0), where k0 = 26.5, following the
set-up by Kida (1985) and Brachet, Meneguzzi & Sulem (1986). The initial core sizes
are selected to be sufficiently small compared to the size of the computational domain
(McWilliams 1984) arranged in random positions. The velocity variable is normalized
by the square root of the spatial average of the initial kinetic energy u∗(t0)≡[u2(t0)]1/2,
where the overline denotes the spatial average. The spatial length and time scales are
non-dimensionalized by the initial integral length scale l∗(t0)≡ [2u2(t0)/ω2(t0)]1/2 and
the initial eddy turnover time t∗0 ≡ l∗(t0)/u∗(t0), respectively. The Reynolds number is
defined accordingly as Re≡ u∗l∗/ν, where ν is the kinematic viscosity. In this study,
turbulent flows with initial Reynolds numbers of Re(t0) = 75, 439, 814, 1607 and
2485 are selected.

3. Results

3.1. Network-based characterization
We identify the underlying network structure and characteristics of two-dimensional
turbulence based on the aforementioned symmetric adjacency weights. The time-
evolving vorticity field is obtained from a two-dimensional incompressible biperiodic
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direct numerical simulation (Canuto et al. 1988) for unforced isotropic turbulence.
Given the vorticity field over a Cartesian grid, each fluid element is considered to be
connected to all other elements through vortical network edges. The resulting fluid
flow network can in fact be described by a complete graph with a range of weights.
Next, we visualize the network edges with a transparent grey scale corresponding
to the adjacency weight, as shown in figure 2(a). The captured structure reveals
the turbulent network. Some regions in the flow have a large number of strong
connections, corresponding to larger stronger vortices seen in red, serving as primary
network hubs. Note that these strong vortices induce velocities over long distances.
Moderate size vortices that act as secondary hubs also possess dominant connections
to primary hubs and other secondary hubs. In contrast, fluid elements corresponding to
smaller, weaker eddies, shown in blue, generally have influence only in their vicinity.
The node strength distribution (si =

∑
j Aij) over space shows that the vortices with

large circulation have larger strength, as illustrated in figure 2(b). The node strength
distribution over space enables us to distinguish secondary and primary hubs, which
may not be easily differentiated from simply visualizing the vorticity field or the Q
criterion in a traditional manner. For instance, see the green vortices in figure 2(b),
which can appear similar to primary ones in vorticity level.

Plotting the probability of the strength distribution P(s) over the strength s of
fluid elements in figure 2(c), we find that two-dimensional isotropic turbulence
network has a power-law distribution P(s) ∼ s−γ , with γ = 2.7, at the time shown.
This tells us that the vortex interactions in turbulence can be characterized by a
weighted scale-free network. This realization enables the interaction-based analysis
of turbulent flows from a new perspective through network theory (Cohen & Havlin
2010; Newman 2010). In particular, this type of network is known to have certain
resilience properties, as we will explore later in this section. Also shown in figure 2(c)
in grey are the degree distributions for asymmetric adjacency formulations. The out-
and in-degree distributions can be found by setting φ= 0 and 1, respectively, in (2.5).
It can be observed that the scale-free symmetric distribution is mostly comprised
of the out-degree components, which describe how each vortical element influences
all other elements (i.e. uj→i). In contrast, we find that the in-degree distribution
has a single peak, which conveys that all fluid elements receive a similar amount
of collective influence from vortices in the flow field. We have found that the
scale-free property of two-dimensional isotropic turbulence is most well captured by
the symmetric weights compared to the other asymmetric formulations. It is also
possible to examine the strength distribution taking positive and negative values
of circulations, as we have briefly discussed in § 2. Utilizing positive and negative
weights, their strength distribution can also exhibit a scale-free behaviour, but with
network strength having both negative and positive values. This leads to a symmetric
strength distribution over the strength, with a resemblance to the probability density
function of scaled displacements (Weiss, Provenzale & McWilliams 1998). In what
follows, results based on the symmetric adjacency matrix (using the magnitude of
induced velocity) are presented.

Let us further examine the time-varying properties of the turbulent network. In
unforced turbulence, the kinetic energy of the flow decreases over time due to viscous
dissipation, as shown in figure 3(a). The strength distribution P(s) of the turbulence
network and the corresponding flow field snapshots are presented in figure 3(b).
Turbulent flow is comprised of vortical structures over a wide range of spatial scales
initially. The distribution P(s) exhibits scale-free characteristics with P(s)∼ s−γ , where
γ ≈ 2.7, when the kinetic energy spectra exhibits the k−3 profile for t . 30. For the

795 R2-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

23
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.235


K. Taira, A. G. Nair and S. L. Brunton

(a) (b)

(c)

Hubs
(primary)

Hubs
(primary)

Out-degree
In-degree

Low-linked
elements

Hubs
(secondary)

Hubs
(secondary)

100

10–1

P
(s

)

s

10–2

10–3

10–4

102 103

FIGURE 2. The scale-free network of vortical interactions in two-dimensional turbulence
with initial Re(t0) = 814. (a) Turbulent network structure overlaid on the vorticity
field, with the darkness of the network edges corresponding to the values of the
adjacency weights (t = 18). (b) Contour plot of the node strength s distribution. Vortex
cores having high degree of connectivity act as hubs in the turbulent vortical network.
(c) The corresponding node strength probability distribution, exhibiting the scale-free
characteristics with P ∼ s−2.7. The same contour level is shared by (b,c). Also shown
in the background of (c) in grey are the out and in-degree distributions (φ = 0 and 1,
respectively). The network visualized in (a) does not show interactions from periodic
images, and uses 32× 32 nodes for graphical clarity.

flow under consideration, a bend in the strength distribution appears for t & 30 as
the system starts to exhibit scale separation and loses the k−3 energy spectra. This
is caused by the diffusion of smaller-scale structures and their merging with other
structures. Over time, viscous dissipation removes kinetic energy through the smaller
eddies and leaves only the larger vortices. This behaviour can be described by two
power laws, P(s) ∼ s−γ1 and P(s) ∼ s−γ2 , which capture the weaker fluid elements
and the larger stronger vortices, respectively. The bifurcation of these power laws is
shown in figure 3(c), indicated by the vertical dashed line. We note that, regardless
of the initial condition used, the turbulent interaction network maintains the scale-free
behaviour in the present investigation as long as the energy spectra relaxes to the k−3

profile (Kida 1985; Brachet et al. 1986; Benzi et al. 1990). This scale-free behaviour
may be observed during the initial transient, but is not a guaranteed common feature
without the k−3 energy spectra being present.
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FIGURE 3. The dynamics of a turbulent network with Re(t0)=814. (a) Kinetic energy and
(b) strength distribution of two-dimensional isotropic turbulence for t=15, 30, 75, 150 and
300 (line colours represent time). The inset plots in (b) show the corresponding vorticity
fields. The kinetic energy E(k) is shown over the wavenumber k, exhibiting the asymptotic
profile of E(k) ∼ k−3. The strength distribution P(s) displays the scale-free property of
P(s)∼ s−γ over node strength s. (c) The corresponding exponents γ , γ1 and γ2 are shown.
Later in time the strength distribution exhibits the emergence of two distributions, P(s)∼
s−γ1 and s−γ2 .

We have considered a range of Reynolds numbers and observed that γ takes values
of γ = 2.7 ± 0.5. The variations observed in γ , γ1 and γ2 shown in figure 3(c) are
influenced by the chaotic nature of turbulence. These parameters, however, appear
to exhibit a coalescing behaviour when they are plotted over the product of the
characteristic velocity and length, u∗(t)l∗(t). Here, we interpret u∗(t)l∗(t) as the
circulation of vortices that have the characteristic velocity and length scales. As
shown in figure 4, we observe that the turbulence network shows coalescence of
the scale-free parameter γ to γcr ≈ 2.7 over time for different cases of turbulent
flows. Once the flows reach a state where the characteristic strength of vortices is
(u∗l∗)cr ≈ 0.063, the network distribution bifurcates to display two different slopes
with γ1 and γ2, as previously illustrated in figure 3. This observation reveals that a
scale-free turbulent network is present until the unforced turbulent flow field loses
the smaller-scale vortices, and mostly contains vortices with strengths larger than the
critical value of (u∗l∗)cr.

3.2. Resilience of turbulence networks
Characterizing turbulent flow with a scale-free network enables us to view turbulent
interactions in a systematic manner, and provides insights into how vortical structures
influence each other. It is known from network analysis that scale-free networks
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FIGURE 4. Exponent γ for the network strength distribution P(s) ∼ s−γ plotted over
u∗(t)l∗(t) with different initial Reynolds numbers (green: Re(t0)= 75, purple: Re(t0)= 439,
yellow: Re(t0)= 814, red: Re(t0)= 1607, and blue: Re(t0)= 2485). Scale-free distributions
are observed with γ coalescing to γcr ≈ 2.7 up until a bifurcation at (u∗l∗)cr ≈ 0.063. The
grey box shows γ = 2.7± 0.5 as reference.

are resilient to random perturbations, but attacks towards network hubs can affect
network dynamics in a detrimental manner (Albert et al. 2000). Network resilience
for fluid flow translates to the difficulty of modifying the vortical-interaction network
and, consequently, the collective behaviour of the vortices over time. To measure
the change in vortical interaction caused by network disturbance, we can consider
how the removal of turbulence network nodes (percolation) modifies the characteristic
network length

lnetwork ≡ 1
n(n− 1)

∑
i6=j

min d(i, j), (3.1)

which is the average shortest network distance d(i, j) between any two nodes on a
network. Here, we perform node percolation by setting the vorticity values at the
chosen nodes to be zero. The above metric quantifies how well vortical elements are
connected within a turbulent network. Note that the distance here refers to network
distance based on the adjacency matrix, and not the spatial distance. In particular, we
take the inverse of each adjacency weight 1/aij and evaluate the minimal sum

d(i, j)= 1/aik1 + 1/ak1k2 + · · · + 1/akmj (3.2)

over a network path that connects nodes i and j for this metric (Rubinov &
Sporns 2010). This metric lnetwork can be thought of as the average of the minimal
characteristic advective (commute) time per unit length between every pair of fluid
elements in the domain. This minimal network distance is determined using the
Floyd–Warshall algorithm (Floyd 1962).

The changes in the turbulence network characteristic length lnetwork when network
nodes are removed in a random fashion and a coordinated manner targeting hub nodes
are summarized in figure 5. Here, the changes in the normalized characteristic network
length

1l̃network ≡ lnetwork(t, f )− lnetwork(t, f = 0)
lnetwork(t, f = 0)

(3.3)

for varied fraction of node removal f are shown. While it would be difficult to
completely remove nodes, as we have performed in this investigation, the present
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10–3 10–2 10–1

FIGURE 5. The resilience of turbulence network against fraction of node removals, f , for
t = 15, 30 and 75, with Re(t0) = 814. Shown are relative changes in the characteristic
network length 1l̃network of turbulent flow for random node and hub node removals. The
colours of the curves represent the time when node removal is considered, and follows
figure 3.

analysis sheds light on how external forcing or perturbations can alter the turbulent
flow from an interaction-based analysis. We observe that turbulent flow is resilient
against random forcing, as evident from the characteristic network length being
unaffected even for a large fraction f of nodes being removed. This behaviour
is consistently observed over time. On the other hand, we find that the global
vortical-interaction network can be greatly modified by targeting large vortex cores
(hubs), as exhibited by the substantial change in the characteristic length. It may
be more energetically expensive to remove well-connected hub nodes, which often
correspond to regions of concentrated vorticity. However, it is clear from figure 5 that
even the smallest fraction of hub node removal can influence the overall interaction,
which suggests that hub removal still provides a more effective and efficient way to
modify the flow than random node removal.

When the vortical-interaction network is grossly altered, the dynamics of the
collection of vortices would be significantly modified (Nair & Taira 2015). These
observations also agree with past studies in flow control that identified effective
actuation frequencies to be associated with the length scale of the large coherent
structures in turbulent flows (Gad-el-Hak 2000; Joslin & Miller 2009). With increasing
time, we can further notice that network connectivity decreases with hub removal, due
to viscous dissipation of smaller vortical structures, and the influence of removing
the core structures becomes more evident. The present network-based understanding
reveals which types of flow structure should be targeted with flow control if we aim
to alter the behaviour of the turbulent flow field in a global manner.

4. Concluding remarks

The approach presented in this paper is the initial effort in performing network-
based analysis of complex turbulent flows. Using the mathematical toolsets from
network theory, we have identified that the vortical interactions in two-dimensional
decaying isotropic turbulence have a scale-free network structure. We have been
able to reveal the structure by taking a continuous representation of the flow field
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and quantifying the network using a Cartesian discretization. For two-dimensional
isotropic turbulence, the node strength distribution was uncovered to be P(s) ∼ s−γ ,
where γ =2.7±0.5. Furthermore, we have found that the unforced turbulent flow field
possesses an underlying scale-free network structure until the circulation of vortices
with characteristic velocity and length scales reach (u∗l∗)cr ≈ 0.063. By noticing that
the turbulence network has scale-free characteristics, we were able to systematically
show that the turbulence network is resilient against random perturbations, but
vulnerable against coordinated forcing on the hub vortices. It should be noted that
estimating and controlling each and every vortical structure in a turbulent flow is
most likely improbable and impractical. Instead, network analysis may provide a
refreshing view point on how one can predict and modify the collective dynamics
of vortices in the turbulent flow fields. We believe that network-based analysis and
control (Mesbahi & Egerstedt 2010; Liu et al. 2011; Cornelius, Kath & Motter 2013;
Kaiser et al. 2014; Yan et al. 2015) will provide a novel mathematical fabric for
paving the path towards network-based modelling and control of turbulent flows,
which can potentially impact a wide spectrum of problems.
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