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The Eliassen–Palm flux tensor
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The aim of this paper it to derive general coordinate-invariant forms of the
Eliassen–Palm flux tensor and thereby characterize the true geometric nature of the
eddy–mean-flow interaction in hydrostatic Boussinesq rotating fluids. In the quasi-
geostrophic limit previous forms of the Eliassen–Palm flux tensor are shown to be
related to each other via a gauge transformation; a general form is stated and its
geometric properties are discussed. Similar methodology is applied to the hydrostatic
Boussinesq Navier–Stokes equations to re-derive the residual-mean equations in a
coordinate-invariant form. Thickness-weighted averaging in buoyancy coordinates is
carefully described, via the definition of a volume-form-weighted average, constructed
so as to commute with the covariant divergence of a vector. The procedures leading to
the thickness-weight averaged equation are discussed, and forms of the Eliassen–Palm
flux tensor which arise are identified.
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1. Introduction
Residual-mean theory enables one to recast the directionally averaged

thermodynamic and momentum equations so that only diabatic eddy buoyancy fluxes
appear in the thermodynamic equation, and the eddy interaction in the momentum
equation appears as the divergence of an Eliassen–Palm flux vector (Eliassen & Palm
1961; Andrews & McIntyre 1976). The approach yields a simple geometric description
in terms of a vector eddy flux of horizontal momentum, and has been successful
in describing and generalizing earlier theoretical results concerning eddy–mean-flow
interaction (Andrews & McIntyre 1978; Andrews, Holton & Conway 1987). In
particular, the Eliassen–Palm flux vector sets both interaction properties, appearing
as a momentum stress, and eddy propagation properties, appearing as a flux of a wave
activity.

A range of approaches have been suggested in order to extend residual-mean theory
to more general averages, with three-dimensional averaged fields. In the context of
the hydrostatic primitive equations one traditionally introduces two Eliassen–Palm flux
vectors, one for each component of the horizontal velocity (see, for example, Gent
& McWilliams 1996; Smith 1999; Young 2012). Subject to an appropriate definition
of a residual circulation one may, as in the directionally averaged case, remove eddy
interaction terms from the thermodynamic equation. This yields a description in which
only diabatic eddy buoyancy fluxes appear explicitly in the thermodynamic equation,
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and in which eddy terms appear in the residual-mean horizontal momentum equations
as the divergence of the two Eliassen–Palm flux vectors. In Cronin (1996) a rank-
two Eliassen–Palm flux tensor is derived for the statistically steady quasi-geostrophic
equations. More generally, in Miyahara (2006) an Eliassen–Palm flux tensor is derived
for the Boussinesq momentum equations.

When averaging the buoyancy equation a diabatic eddy diffusivity may emerge, even
after defining a residual-mean advection. Higher-order residual-mean velocities can be
defined to form a diffusivity that is dependent only upon the true diabatic forcing
(Eden, Greatbatch & Olbers 2007), although a dynamical equation for the resulting
transport velocity appears obscure. The diabatic fluxes can instead be removed by
considering an average based upon flow fields and, in particular, by considering
an average at fixed buoyancy (Andrews 1983; de Szoeke & Bennett 1993). Only
true diabatic forcing remains in the average buoyancy equation and apparent diabatic
forcing, due to averaging, is entirely avoided. Averaging in this manner can preserve
sharp, but moving, buoyancy gradients in the averaged system.

A particularly general treatment of this type of averaging is presented in Young
(2012), which extends the thickness-weighted-average description of Andrews (1983)
and de Szoeke & Bennett (1993) (see also Tung 1986; Lee & Leach 1996; Smith 1999
for similar approaches). It is shown that thickness-weighted averaging the Boussinesq
hydrostatic primitive equations in buoyancy coordinates yields a set of equations
from which one may, by inspection, identify Eliassen–Palm flux vectors. Initial steps
are made towards a more geometric treatment of the problem, with more formal
coordinate-invariant operators defined.

The details of the formulation of the residual-mean equations are of particular
importance in the context of mesoscale eddy parameterization in the ocean. The
widely used Gent and McWilliams parameterization (Gent & McWilliams 1990; Gent
et al. 1995) can be considered a parameterization constructed in a residual-mean
context (Greatbatch & Lamb 1990; Gent & McWilliams 1996). The scheme forms a
closure for the adiabatic eddy buoyancy fluxes, which directly yields the residual-mean
velocity. This is typically described as a modification of the Eulerian-mean tracer
advection terms by an eddy-induced velocity, yielding a residual-mean tracer advection.
Alternatively, one may formulate a model entirely in terms of residual-mean quantities,
as in Ferreira & Marshall (2006) and Zhao & Vallis (2008).

In Marshall, Maddison & Berloff (2012) it is shown that, by constructing a
geometric decomposition of the Plumb (1986) quasi-geostrophic momentum flux
matrix, whose divergence is the eddy potential vorticity flux, one can construct
a framework for eddy parameterization which conserves momentum and observes
energetic constraints. Key to the enforcement of the conservation principles is an
identification of the fundamental geometric object describing the nature of the
eddy–mean-flow interaction as a rank-two momentum flux tensor. This contrasts with
the more conventional picture, such as is assumed by a down-gradient potential
vorticity flux closure, classifying the interaction in terms of a rank-one potential
vorticity flux vector. The former satisfies momentum conservation while the latter, in
general, does not (Welander 1973; Stewart & Thomson 1977; Marshall 1981). This can
be viewed as an extension of the Prandtl ‘momentum mixing’ versus Taylor ‘vorticity
mixing’ debate (Taylor 1915, 1932; Prandtl 1942). The vorticity approach is naturally
free of complications associated with the pressure field, at the cost of the introduction
of an implicit dynamical constraint, associated with momentum conservation, on the
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eddy vorticity fluxes. In the momentum approach the eddy vorticity fluxes are a
derived quantity, and momentum conservation can be satisfied by construction, but the
situation is complicated by the appearance of a greater number of tensor components,
combined with the dynamical influence of the pressure field. A resolution of this
lengthy discussion is not provided here; rather, the aim is to yield an appropriate
description of the relationship between the two approaches.

The purpose of this paper is to describe the fundamental geometric nature of the
eddy–mean-flow interaction. Specifically, residual-mean theory and thickness-weighted
averaging in buoyancy coordinates are described using a geometric formalism, and
in several cases the approaches are generalized. It follows that the fundamental
object describing the eddy–mean-flow interaction is a rank-two momentum flux tensor,
termed here the ‘Eliassen–Palm’ flux tensor. Possible forms for the Eliassen–Palm
flux tensor are derived for the quasi-geostrophic equations and for the hydrostatic
Boussinesq primitive equations. Combined, these descriptions generalize the geometric
picture of the eddy–mean-flow interaction provided by Marshall et al. (2012).

The Eliassen–Palm flux tensor is here referred to as the momentum flux tensor
appearing in the horizontal momentum equation, consistent with a modification of an
equation for a tracer γ (which may correspond to the density, the neutral density, or
the buoyancy), via a redefinition of the advection operator or the averaging operator.
Furthermore, in all cases, in the absence of mechanical forcing and γ forcing, the
Eliassen–Palm flux tensor, combined (where required) with a residual eddy γ flux
(which may for example correspond to a diabatic eddy buoyancy flux) completely
describes the influence of the eddies on the averaged flow. In the case of directional
averaging the Eliassen–Palm flux vector additionally appears in the Eliassen–Palm
relation as a flux of a wave activity, and leads to the Eliassen–Palm theorem,
stating that the Eliassen–Palm flux vector has zero divergence for small-amplitude
conservative waves. A corollary of this theorem is the non-acceleration theorem, which
states that small-amplitude conservative waves do not accelerate the directionally
averaged flow field (Charney & Drazin 1961). The relationships of specific forms
of the Eliassen–Palm flux tensor to generalized forms of the Eliassen–Palm relation are
described in Plumb (1986), Cronin (1996) and Miyahara (2006). The Eliassen–Palm
theorem and non-acceleration theorem have not been extended for more general
averaging operators (McDougall & McIntosh 2001; Young 2012). As a result of
this it has been suggested that one should refrain from the use of the term
‘Eliassen–Palm flux’ when discussing more general averaging operators (McDougall
& McIntosh 2001). A complete generalization of these theorems is not shown in
this paper although, in a quasi-geostrophic context, there is some discussion of
propagation properties. In particular, the Eliassen–Palm flux tensor is associated with
eddy propagation properties, and the Eliassen–Palm and non-acceleration theorems
appear when taking appropriate limits.

The paper proceeds as follows. In § 2 the Eliassen–Palm flux tensor subject to the
quasi-geostrophic approximation is derived. We further discuss the relationship to the
Plumb (1986) flux matrix, the Marshall et al. (2012) geometric description, and the
Eliassen–Palm flux vector that arises subject to a directional average. In § 3 forms of
the Eliassen–Palm flux tensor for the Boussinesq hydrostatic primitive equations are
derived. These are considered initially via Eulerian averaging and residual-mean theory.
A very general averaging operator is then considered, and the thickness-weighted-
average treatment is shown to arise when applying this operator to the Boussinesq

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

25
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.259


72 J. R. Maddison and D. P. Marshall

hydrostatic primitive equations. The paper concludes in § 4, including a discussion of
the relevance of the Eliassen–Palm flux tensor when developing a physically consistent
eddy closure.

2. Quasi-geostrophic case
In this section the quasi-geostrophic Eliassen–Palm flux tensor is described. The

quasi-geostrophic equations are stated in a slightly modified form in § 2.1, by deriving
an equation whose divergence is the quasi-geostrophic potential vorticity equation.
This is restated in a coordinate-invariant form in § 2.2. An Eulerian averaging operator

is defined in § 2.3, and this is used to derive the eddy momentum flux tensor in § 2.4.
Gauge freedom is exploited in § 2.5 to derive the quasi-geostrophic residual-mean
equations and forms of the quasi-geostrophic Eliassen–Palm flux tensor. In § 2.6 the
geometric nature of the flux tensor is exploited to derive a geometric decomposition
as per Marshall et al. (2012). Finally, in § 2.7, the relationship to the traditional
Eliassen–Palm flux vector, arising from a directional average, is discussed.

2.1. Quasi-geostrophic equations
The quasi-geostrophic equations arise from an asymptotic expansion of the primitive
equations, retaining terms of up to first order in Rossby number (Pedlosky 1987). The
quasi-geostrophic horizontal momentum equation is:

(∂t + ug∂x + vg∂y)ug − f0vag − βyvg =− 1
ρ0
∂xpag + Fx, (2.1a)

(∂t + ug∂x + vg∂y)vg + f0uag + βyug =− 1
ρ0
∂ypag + Fy, (2.1b)

where ug and vg are the zonal and meridional components of the velocity to leading
order in Rossby number, (ug + uag) and (vg + vag) are the zonal and meridional
components of the velocity retaining contributions up to first order in Rossby number,
pag is the ageostrophic pressure, ρ0 is a constant reference density, f = f0 + βy is
the Coriolis parameter subject to the β-plane approximation, Fx and Fy are additional
forcing, x and y are the zonal and meridional coordinates respectively, and t is time.
The quasi-geostrophic buoyancy (thermodynamic) equation is:

(∂t + ug∂x + vg∂y)b+ N2
0 wag = B, (2.2)

where b is the buoyancy, wag is the vertical component (z-component) of velocity
retaining contributions up to first order in Rossby number, N0 is the buoyancy
frequency, and B represents additional buoyancy forcing. We now note that since
the two asymptotic components of the velocity, ug and uag, are formed from an
asymptotically expanded vector, they are each formal three-dimensional vectors which,
expressed in the x, y, z coordinate system, have components:

ug =

ug

vg

0

 , uag =

uag

vag

wag

 . (2.3)

These are each non-divergent:

∇ ·ug = 0, ∇ ·uag = 0. (2.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

25
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.259


The Eliassen–Palm flux tensor 73

By re-arranging (2.1) and (2.2) for f0uag one can identify a third vector which,
expressed in the x, y, z coordinate system, has components:

D=


vg

−ug

f0

N2
0

b

 , (2.5)

with dynamical equation:

∂tD+ (ug ·∇)D+ f0uag + βyug = 1
ρ0

ẑ×∇pag + R, (2.6)

where ẑ is the unit vertical vector and, in the x, y, z coordinate system:

R=


Fy

−Fx

f0

N2
0

B

 . (2.7)

The divergence of D is the relative quasi-geostrophic potential vorticity:

∇ ·D= q− βy, (2.8)

where q is the quasi-geostrophic potential vorticity (QGPV). This vector is directly
related to the vector D that appears in the field equation description in Schneider, Held
& Garner (2003). Utilizing the analogy with Maxwell’s equations drawn in Schneider
et al. (2003) D is here referred to as the ‘QGPV induction vector’. A form of this
vector also appears in Muraki, Snyder & Rotunno (1999), in which a Helmholtz
decomposition of the corresponding vector is used to derive higher-order asymptotic
extensions to the quasi-geostrophic equations. The QGPV induction equation (2.6)
encapsulates both components of the horizontal momentum equation as well as the
buoyancy equation. In addition, taking the divergence of the QGPV induction equation
(2.6) yields the QGPV equation:

∂tq+∇ · (ugq)=∇ ·R. (2.9)

2.2. Coordinate-invariant quasi-geostrophic equations
We now write the QGPV induction equation (2.6) in a coordinate-invariant form
using tensor calculus notation. While such a formalism may not strictly be required
here, it will be necessary in the more general cases to follow in § 3. In this section
only coordinate systems which are fixed in time are considered, and hence time is
not treated as a coordinate. Subscripts already have a well-established meaning in
geophysical fluid dynamics. In order to avoid confusion non-index subscripts and
superscripts will be enclosed within square brackets.

The QGPV induction equation (2.6) can therefore be written:

∂tD
a + ([ug]bDa);b + [f0][uag]a + [f1][ug]a = 1

[ρ0]ε
abcZb[pag],c + Ra, (2.10)

where [f1] = βy, Za denotes the unit vertical vector, a comma indicates a partial
derivative with respect to the indexed coordinate, a semi-colon indicates a covariant
derivative with respect to the indexed coordinate, and Einstein summation convention
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is assumed; εabc denotes the three-dimensional contravariant Levi–Civita tensor:

εabc = 1√
G
εabc, (2.11)

where G is the determinant of the covariant metric tensor:

G= |gab|, (2.12)

and where εabc is the three-dimensional Levi–Civita symbol:

εabc =


0 if any indices are equal
+1 if abc is an even permutation of 123
−1 if abc is an odd permutation of 123.

(2.13)

[f0], [f1], and [ρ0] are treated as scalars (invariants). The continuity equation (2.4)
becomes:

[ug]a;a = 0, [uag]a;a = 0. (2.14)

It follows from the definition of the QGPV induction vector that the QGPV is an
invariant:

q= Da
;a + [f1]. (2.15)

2.3. Averaging and eddy operators
We introduce coordinate-invariant averaging and eddy operators. For the discussion
of § 3 a particularly careful definition is required, and hence this section provides a
precise definition of the averaging and eddy operators and their required properties. On
a first reading one may wish to move directly to § 2.4. Note that these properties
are typically assumed implicitly when deriving averaged equations, particularly
when performing more general averaging such as in the thickness-weighted-average
formulation of Andrews (1983), de Szoeke & Bennett (1993) and Young (2012).

The averaging operator (· · ·) is understood to be a projection operator for an
arbitrary tensor from a higher dimensional space onto a space of equal or lower
dimension. The former is termed the ‘unaveraged space’ and the latter the ‘averaged
space’. Conversely, the operator (̂· · ·) is understood to be an extrusion operator for an
arbitrary tensor from the averaged space to the unaveraged space. The eddy operator is
thus defined as:

φ
i1i2...
j1j2...

′ = φi1i2...
j1j2...
− ̂
φ

i1i2...
j1j2...

, (2.16)

where φi1i2...
j1j2...

is an arbitrary tensor in the unaveraged space. Tensors in the averaged
system with no overbar are understood to be tensors for which (· · ·)′ = 0. As a special
case, the metric tensor in the averaged system may be denoted [gA]ab if it is distinct
from gab.

It is assumed that the averaging operator and the extrusion operator commute with
differentiation with respect to time and with the covariant divergence:

∂t(φ
i1i2...
j1j2...

)= ∂t(φ
i1i2...
j1j2...

), (φ
i1i2...in...
j1j2...

);in = (φ
i1i2...in...
j1j2...

);in, (2.17a)

̂
∂t(φ

i1i2...
j1j2...

)= ∂t(
̂
φ

i1i2...
j1j2...

),
̂

(φ
i1i2...in...
j1j2...

);in = (
̂
φ

i1i2...in...
j1j2...

);in . (2.17b)
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The following properties are also assumed, where a is a general constant and φ
i1i2...
j1j2...

and ψ i1i2...
j1j2...

are general tensors of the same type:

̂
φ

i1i2...
j1j2...
= φi1i2...

j1j2...
, φ

i1i2...
j1j2...

′ = 0, (2.18a)

aφi1i2...
j1j2...
= aφi1i2...

j1j2...
, φ

i1i2...
j1j2...
+ ψ i1i2...

j1j2...
= φi1i2...

j1j2...
+ ψ i1i2...

j1j2...
, (2.18b)

̂
aφi1i2...

j1j2...
= a

̂
φ

i1i2...
j1j2...

,
̂

φ
i1i2...
j1j2...
+ ψ i1i2...

j1j2...
= ̂
φ

i1i2...
j1j2...
+̂
ψ

i1i2...
j1j2...

. (2.18c)

We now insist that gab′ = 0 and [gA]ab = gab. One may, for example, consider (· · ·)
to be an ensemble average, where the average is taken at a fixed point in space and at
a fixed time (an Eulerian average):

φ
i1i2...
j1j2...
= [φα]i1i2...

j1j2...
= 1

N

N∑
α=1

[φα]i1i2...
j1j2...

, (2.19a)

α

̂
φ

i1i2...
j1j2...
= φi1i2...

j1j2...
. (2.19b)

Here [φα]i1i2...
j1j2...

corresponds to a general tensor for ensemble member α of an

N-member ensemble, contrasting with φ
i1i2...
j1j2...

which represents the tensor for all

ensemble members (the full unaveraged space). Similarly
α

(̂· · ·) denotes the extruded
tensor for a particular ensemble member α, contrasting with (̂· · ·) which denotes
the extruded tensor over all ensemble members. The extrusion operator appears
somewhat redundant here, although this will not be the case in later discussions.
The averaging operator (2.19a) and the associated eddy operator satisfy the properties
(2.18). The averaging operator also commutes with partial derivatives with respect
to the coordinates in any coordinate system, and hence the operator commutes with
respect to the covariant divergence. The operator further commutes with differentiation
with respect to time.

2.4. Quasi-geostrophic momentum flux tensor
Applying the operator defined in the previous section to the QGPV induction equation
(2.10), and assuming [f0]′ = 0, [f1]′ = 0 and Za′ = 0 (as is the case for the ensemble
average defined above), yields the average QGPV induction equation:

∂tDa + ([ug]b Da);b + [f0][uag]a + [f1][ug]a = 1
[ρ0]ε

abcZb[pag],c + Ra − Tab
;b , (2.20)

with continuity equations:

[ug]a;a = 0, [uag]a;a = 0, (2.21)

and where a QGPV induction eddy flux tensor has been introduced:

Tab = [ug]b′Da′. (2.22)

It follows that the average QGPV equation is:

∂tq+ ([ug]a q);a = Ra;a − Tab
;ab. (2.23)
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Since the double divergence of the eddy flux tensor Tab
;ab is the eddy QGPV tendency,

the divergence of the eddy flux tensor Tab
;b is equal to the eddy QGPV flux plus a

rotational term.
In the x, y, z coordinate system the eddy flux tensor Tab has components:

Tb
a = gacT

cb =

 N M − K R
M + K −N S

0 0 0

 (2.24)

where the contravariant index indicates the row and the covariant index the column,
and where:

M= 1
2
([vg]′2 − [ug]′2), N = [ug]′[vg]′,

K = 1
2
([vg]′2 + [ug]′2),

R= [f0]
[N0]2 [ug]′b′, S= [f0]

[N0]2 [vg]′b′.


(2.25)

M and N are the eddy Reynolds stresses (the horizontal fluxes of horizontal
momentum), R and S are (proportional to) the eddy buoyancy fluxes, and K is the
eddy kinetic energy.

2.5. Eliassen–Palm flux tensor
Since the eddy tendency in the QGPV equation appears as the double divergence of
the eddy flux tensor Tab, two forms of gauge freedom may be exploited. In particular,
one may add rotational terms to either the columns or rows of the component
expansion (2.24). Hence Tab can be replaced with [T∗]ab where:

[T∗]ab = Tab + εacdUb
d;c + εbcdVa

d;c, (2.26)

where Ua
b and Va

b are arbitrary mixed-type tensors. Gauge freedom can, for example,
be exploited to move eddy momentum fluxes between the momentum and buoyancy
equations, and thereby replace horizontal momentum fluxes with horizontal buoyancy
fluxes. Note that one may not, in general, delete the horizontal eddy momentum fluxes
from the momentum equation without permitting an (arguably non-physical) eddy
momentum flux through either the upper or lower boundaries.

In particular, the QGPV equation, and the resulting dynamics, are entirely unaffected
by the addition of any antisymmetric components to the eddy flux tensor Tab:

∂tq+ ([ug]a q);a = Ra;a − [T∗]ab
;ab, (2.27)

where:

[T∗]ab = Tab + Aab, (2.28)

and where Aab is any antisymmetric tensor, Aab = −Aba. This introduces a non-
divergent (rotational) term into the QGPV induction equation. For any Aab the
divergence of the eddy flux tensor Tab

;b is the eddy QGPV flux, plus a rotational
term. One may define a residual-mean ageostrophic velocity:

[u∗ag]a = [uag]a − 1
[f0]A

ab
;b , (2.29)
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where the second term corresponds to a curl of a vector in Cartesian coordinates. The
QGPV induction equation therefore becomes:

∂tDa + ([ug]b Da);b + [f0][u∗ag]a + [f1][ug]a = 1
[ρ0]ε

abcZb[pag],c + Ra − [T∗]ab
;b . (2.30)

In the following subsections a number of natural gauge choices are described.

2.5.1. Residual-mean momentum flux tensor
If a tensor Aab is chosen appropriately then [T∗]abZa = 0, and the buoyancy equation

will contain no eddy contributions. In particular, one may choose:

Aab = [AR]ab = Tba − Tab, (2.31)

leading to:

[T∗]ab = [T∗R]ab = Tba

= [ug]a′Db′. (2.32)

In the x, y, z coordinate system this has components:

[T∗R]ba = gac[T∗R]cb =

 N M + K 0
M − K −N 0

R S 0

 . (2.33)

Hence one may, in the average QGPV induction equation (2.20), replace the eddy
flux tensor Tab with its transpose. This moves the eddy buoyancy fluxes from
the buoyancy equation to the horizontal momentum equation, yielding a system of
dynamical equations in which no eddy terms appear in the buoyancy equation. With
this choice for Aab the averaged horizontal momentum equation becomes (reached by
taking the cross-product of the averaged QGPV induction equation with −Za):

∂t[ug]a + ([ug]b [ug]a);b − [f0]εabc[u∗ag]bZc − [f1]εabc[ug]bZc

= − 1
[ρ0]h

ab[pag],b + Fa − [ER]ab
;b , (2.34)

where hab = gab − gcbZcZa, while the averaged buoyancy equation, scaled by [f0]/[N0]2,
can be written (reached by taking the inner product of the averaged QGPV induction
equation with Za):

∂t(DbZb)+ ([ug]a DbZb);a + [f0][u∗ag]aZa = RaZa, (2.35)

where [ER]ab is the Eliassen–Palm flux tensor:

[ER]ab =−εacdgce[T∗R]ebZd. (2.36)

In the x, y, z coordinate system the Eliassen–Palm flux tensor has components:

[ER]ba = gac[ER]cb =

−M − K N 0
N M − K 0
−S R 0

 . (2.37)

Hence, for the quasi-geostrophic equations, the residual-mean equations are reached
via a transpose of the eddy flux tensor Tab.
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2.5.2. Cronin (1996) momentum flux tensor
One may also choose Aab such that, in the x, y, z coordinate system, the eddy flux

tensor [T∗]ab = [T∗C]ab and has components:

[T∗C]ba = gac[T∗C]cb

 N M − K 0
M + K −N 0

R S 0

 . (2.38)

In this case the Eliassen–Palm flux tensor [ER]ab is replaced by a tensor with
components, in the x, y, z coordinate system:

[EC]ba = gac[EC]cb =

−M + K N 0
N M + K 0
−S R 0

 . (2.39)

In Cronin (1996) an Eliassen–Palm flux tensor of this form is derived by applying
residual-mean theory directly, with the exact form differing only in that in Cronin
(1996) rotational buoyancy fluxes are removed (equivalent to a slightly modified gauge
choice).

2.5.3. Plumb (1986) momentum flux tensor
Alternatively, one may choose Aab such that, in the x, y, z coordinate system, the

eddy flux tensor [T∗]ab = [T∗P]ab and has components:

[T∗P]ba = gac[T∗P]cb

 N M − P 0
M + P −N 0

R S 0

 (2.40)

where P = b′2/(2[N0]2) is the eddy potential energy. This is exactly the Plumb (1986)
flux matrix, and the divergence [T∗P]ab

;b = [ug]a′q′ is exactly the eddy QGPV flux. The
Plumb (1986) flux matrix is itself a version of the Taylor–Bretherton identity (Taylor
1915; Bretherton 1966), relating eddy momentum fluxes to eddy vorticity fluxes.

In this case the Eliassen–Palm flux tensor [ER]ab is replaced by a tensor with
components, in the x, y, z coordinate system:

Eb
a = gacE

cb =

−M + P N 0
N M + P 0
−S R 0

 . (2.41)

2.5.4. Hoskins, James & White (1983) E-vector
The Hoskins et al. (1983) E-vector is arrived at by choosing Aab such that, in the x,

y, z coordinate system, the eddy flux tensor [T∗]ab = [T∗H]ab and has components:

[T∗H]ba = gac[T∗H]cb

N 2M 0
0 −N 0
R S 0

 . (2.42)
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The Hoskins E-vector is then the y-component of this tensor:

[EH]a =

2M
−N
S

 . (2.43)

In Hoskins et al. (1983) the limiting case ∂xN + ∂zR ≈ 0 is considered, in which case
the E-vector captures the dynamically significant components of the eddy flux tensor.
Since the Hoskins et al. (1983) E-vector is formed from a component of the tensor
[T∗H]ab it is not a formal vector. It is noted in Hoskins et al. (1983) that the E-vector
fails to transform as a vector, and hence it is termed a ‘quasi-vector’. The correct
geometric object characterizing the eddy–mean-flow interaction is the full rank-two
tensor.

2.5.5. Symmetric momentum flux tensor
Finally, one may choose:

Aab = [AS]ab = 1
2(T

ba − Tab), (2.44)

leading to:

[T∗]ab = [T∗S ]ab = 1
2(T

ab + Tba). (2.45)

In the x, y, z coordinate system this has components:

[T∗S ]ba = gac[T∗S ]cb =

 N M 1
2 R

M −N 1
2 S

1
2 R 1

2 S 0

 . (2.46)

Hence one may, in the average QGPV induction equation (2.20), replace the eddy flux
tensor Tab with its symmetric part. This ‘half-residual-mean’ formulation, in which
half of the buoyancy fluxes are transferred to the momentum equation and half are
retained in the buoyancy equation, filters out trivially rotational eddy QGPV fluxes,
and yields a QGPV induction eddy flux tensor with (among the possibilities associated
with choices of Aab) minimum Frobenius norm.

2.6. Geometric decomposition

The QGPV induction eddy flux tensor Tab is an inherently geometric object. Hence
this represents an entirely geometric description of the influence of the eddies on the
mean flow. This is necessarily equivalent to the geometric description in Marshall et al.
(2012).

In order to demonstrate this, first identify two invariants, the eddy kinetic energy:

K = 1
2 [ug]a′[ug]′a, (2.47)

and a weighted sum of the eddy kinetic and the eddy potential energies:

L = 1
2 Da′D′a

= K + [f0]2
[N0]2 P. (2.48)
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Proceeding in a similar manner to Marshall et al. (2012) one can derive, via the
triangle inequality:

[ug]a′[ug]b′ [ug]′a[ug]′b 6 4K2, (2.49a)

[ug]a′Db′ [ug]′aD′b − [ug]a′[ug]b′ [ug]′a[ug]′b 6 4
[f0]2
[N0]2 KP. (2.49b)

Hence one may define two additional invariants via:

[ug]a′[ug]b′ [ug]′a[ug]′b = 4[γ ∗m]2K2, (2.50a)

[ug]a′Db′ [ug]′aD′b − [ug]a′[ug]b′ [ug]′a[ug]′b = 4[γ ∗b ]2
[f0]2
[N0]2 KP, (2.50b)

where [γ ∗m] and [γ ∗b ] are non-dimensional and bounded between zero and unity. In
the x, y, z coordinate system this leads directly to a general decomposition for the
components of the Eliassen–Palm flux tensor:

M =−L[γ ∗m]cos2[λ∗] cos 2[φm], N = L[γ ∗m]cos2[λ∗] sin 2[φm],
R= L[γ ∗b ] sin 2[λ∗] cos[φb], S= L[γ ∗b ] sin 2[λ∗] sin[φb],

K = Lcos2[λ∗], [f0]2
[N0]2 P= Lsin2[λ∗].

 (2.51)

[λ∗] is an invariant expressing the partitioning between eddy kinetic and eddy potential
energies, and [φm] and [φb] are coordinate-dependent angles expressing the orientation
of the Eliassen–Palm flux tensor: [φm] is the Reynolds’ stress angle and [φb] is the
eddy buoyancy flux angle.

In the context of the atmosphere or ocean the vertical coordinate is typically given
a special status. The coordinate system is often identified purely by the choice of
the vertical coordinate, and some orthonormal coordinate system in the horizontal
is assumed. Hence it is meaningful to consider the case in which only horizontal
transformations are considered, and in which x3 = z (a ‘z-coordinate’ system). Subject
to this constraint one can consider the scaled eddy flux tensor (a tensor under
horizontal transformations) which, in the x, y, z coordinate system, has components:

[TW]ba = gac[TW]cb =


N M − K

[N0]
[f0] R

M + K −N
[N0]
[f0] S

0 0 0

 . (2.52)

Proceeding as before leads directly to the Marshall et al. (2012) geometric
decomposition:

M =−E[γm]cos2λ cos 2[φm] N = E[γm]cos2λ sin 2[φm],

R= [f0]
[N0]E[γb] sin 2λ cos[φb], S= [f0]

[N0]E[γb] sin 2λ sin[φb],

K = Ecos2λ, P= Esin2λ,

 (2.53)

where E = K + P is the total eddy energy and λ expresses the partitioning between
eddy kinetic and eddy potential energies.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

25
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.259


The Eliassen–Palm flux tensor 81

The geometric decomposition (2.51) can be further related to the Eliassen–Palm flux
tensor (2.41) by noting that the singular-value decomposition of this tensor can be
represented by an oriented ellipse. The (squared) Frobenius norm EabEab is bounded
above by (2K2 + 2P2 + 4([f0]2/[N0]2)KP). This yields one dimensional parameter and
one non-dimensional parameter E bounded between zero and unity and defined such
that EabEab = E 2(2K2 + 2P2 + 4([f0]2/[N0]2)KP). Given the two largest singular values
of Eab, [σ1] and [σ2], with |[σ1]| > |[σ2]|, one can define an eccentricity that is
non-dimensional and bounded between zero and unity:

e= |[σ1]| − |[σ2]|
|[σ1]| + |[σ2]| . (2.54)

Finally the singular vectors of Eab define directions. Since they are orthogonal for
distinct singular values the singular vectors are associated with three independent
angles. As in the geometric decomposition (2.51) the singular-value decomposition of
Eab is associated with six free parameters: one dimensional and five non-dimensional
and bounded in magnitude.

A key parameter that arises in the singular-value decomposition of Eab is the
determinant of the symmetric eddy flux tensor [T∗S ]ab. Expressed in terms of the
decomposition (2.51) this is given by:

|[T∗S ]ab| = 1
4 L3[γm][γb]2cos2[λ∗]sin22[λ∗] sin 2([φm] − [φb]). (2.55)

This signed quantity is an inherently three-dimensional property of the eddy
interaction. A positive value indicates that the eddy Reynolds stress angle [φm] is
oriented to the left of the eddy buoyancy flux angle [φb].

2.7. Eliassen–Palm flux vector

Let (· · ·) correspond to a directional average and, without loss of generality, let
the average be taken along the x-direction. Then averaged quantities have no x-
derivative and, subject to zero-flux boundary conditions, the y-component of the
velocity vanishes. Hence the residual-mean eddy flux tensor [T∗R]ab can be replaced
with a tensor which, in the x, y, z coordinate system, has components:

[̂T∗R]
b

a = gac[̂T∗R]
cb =

0 0 0
0 −N 0
0 S 0

 . (2.56)

The second column of this tensor is the Eliassen–Palm flux ‘vector’. Since this appears
as a component of a rank-two tensor, the Eliassen–Palm flux vector is not, here, a
formal vector. A formal vector emerges if considering only transformations of the
y-coordinate, or if one considers the inner product of [T∗R]ab with a unit vector in the
y-direction.

A key feature of the Eliassen–Palm flux vector that arises when considering
directional averaging is that it describes both the eddy interaction and the eddy
propagation properties. The Eliassen–Palm flux vector acts both as a momentum
flux and, via the Eliassen–Palm relation, as a flux of wave activity Λ/∂yq with
2Λ= q′q′. A consequence of the Eliassen–Palm relation is the Eliassen–Palm theorem:
for a steady eddy field of small amplitude and neglecting mechanical or diabatic
forcing the Eliassen–Palm flux vector has zero divergence. A direct extension of
the Eliassen–Palm relation to more general averages appears elusive and, indeed,
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appears as something of a contradiction: the eddy momentum stress appearing in
the momentum equation must necessary be a rank-two tensor, while the flux of any
scalar wave activity must necessarily be rank one.

Nevertheless, some general eddy propagation properties can be identified. Consider,
for example, the eddy enstrophy equation:

∂tΛ+ ([ug]aΛ);a + ([ug]a′Λ);a =−[ug]a′q′ q,a + Ra
;a
′q′. (2.57)

Utilizing the Plumb (1986) gauge choice (2.40) this can be written:

∂tΛ+ ([ug]aΛ);a + ([ug]a′Λ);a =−([T∗P]acq,a);c + [T∗P]acq;ac + Ra
;a
′q′. (2.58)

Hence the flux tensor [T∗P]ab (related to the Eliassen–Palm flux tensor via E =−εacdgce

[T∗P]ebZd) leads to an eddy enstrophy flux term (the first right-hand-side term in
(2.58)) and a term corresponding to conversion between mean and eddy enstrophy (the
second right-hand-side term in (2.58)). Note that, due to the symmetry of the Hessian
tensor q;ab, the conversion term is invariant under the addition of any antisymmetric
components to the stress tensor. Hence, more generally:

∂tΛ+ ([ug]aΛ);a + ([ug]a′Λ);a =−([T∗P]acq,a);c + [T∗]acq;ac + Ra
;a
′q′, (2.59)

where, as before, [T∗]ab = Tab + Aab, Tab = [ug]b′Da′, and Aab = −Aba is an
antisymmetric tensor. The eddy enstrophy flux term is not invariant under such a
transformation. In the linear limit and with a constant stratification it follows that:

[T∗P]baq,b = (ca − [ug]a)Λ, (2.60)

where ca is the group velocity (see also Hoskins et al. 1983; Plumb 1985, 1986 for
related discussions).

Hence while no generalization to the Eliassen–Palm theorem is derived here, the
Eliassen–Palm flux tensor does describe both eddy interaction and eddy propagation
properties. The Eliassen–Palm flux vector appears in an appropriate limit, and hence
the Eliassen–Palm relation, Eliassen–Palm theorem, and non-acceleration theorem also
emerge in an appropriate limit.

3. Primitive equation case
In this section the coordinate-invariant residual-mean equations are derived. The

general approach encapsulates a number of previous residual-mean formulations,
and allows the associated Eliassen–Palm flux tensors to be identified and formally
defined. This provides a precise definition of the fundamental geometric nature of the
eddy–mean-flow interaction. Section 3.1 describes the coordinate-invariant form of the
Boussinesq hydrostatic primitive equations. Section 3.2 details the application of an
Eulerian average. A very general averaging operator is then considered in § 3.3, and
the thickness-weighted average approach is shown to arise when applying this operator
to the Boussinesq hydrostatic primitive equations in §§ 3.4 and 3.5.

3.1. Coordinate-invariant primitive equations
In this and the following subsections time-dependent coordinate transformations are
considered, and hence time is treated as an independent coordinate. The coordinate-
invariant Boussinesq hydrostatic momentum equation is:

(ubva);b + εabcdfbvcTd =− 1
[ρ0]h

abp,b + ρ

[ρ0]h
abΦ,b + Fa, (3.1)
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where the velocity is assumed to be incompressible:

ua
;a. (3.2)

In the x, y, z, t coordinate system, where x is the zonal coordinate, y is the meridional
coordinate, z is the vertical coordinate, and t is the time coordinate, the velocity vector
has components:

ua =


u
v

w
1

 . (3.3)

For full dimensional consistency one may scale the time component of ua by an
arbitrary constant velocity scale. The factors that emerge from such a scaling are
neglected here. Also, va is the horizontal velocity, va = ua − ubZbZa, where Za is the
unit vertical vector; gab is the metric tensor. For simplicity gab = δab in the x, y, z, t
coordinate system is assumed. The four-dimensional contravariant Levi–Civita tensor
is εabcd :

εabcd = 1√
G
εabcd, (3.4)

where G is the determinant of the covariant metric tensor:

G= |gab|, (3.5)

and where εabcd is the four-dimensional Levi–Civita symbol:

εabcd =


0 if any indices are equal
+1 if abcd is an even permutation of 1234
−1 if abcd is an odd permutation of 1234.

(3.6)

Also, in (3.1) f b is the Coriolis vector, ρ is the density, [ρ0] is a constant reference
density, p is the pressure, Φ is the gravitational potential, Ta is the unit time vector,
and Fa includes additional forcing. Fa has no vertical or time components, with
FaZa = 0 and FaTa = 0. In addition, hab is defined to be hab = gab − gcbTcTa, so that
the time component of (3.1) is the continuity equation (3.2) (i.e. (3.2) is arrived at by
taking the inner product of (3.1) with Ta). Note that here the (ubva);b term represents
the full material derivative, including the time derivative. For example, in the x, y, z, t
coordinate system:

(ubva);b = ∂tv
a + u∂xv

a + v∂yv
a + w∂zv

a. (3.7)

A further equation for some scalar tracer γ is assumed:

(uaγ );a =Θ, (3.8)

where Θ includes additional forcing. This equation could correspond to an evolution
equation for the buoyancy b, or more rigorously for the neutral density (Jackett &
McDougall 1997). For generality the scalar γ is, at this stage, left unspecified.

3.2. Eulerian averaging and the Eliassen–Palm flux tensor
In this section the Eliassen–Palm flux tensor arising from an Eulerian average is
derived. The derivation follows Gent & McWilliams (1996) and Nurser & Lee
(2004), although here emphasis is placed on a general coordinate-invariant geometric
formalism. A similar development is also presented in Plumb & Ferrari (2005).
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We again make use of the coordinate-invariant averaging operator (· · ·) and the
coordinate-invariant eddy operator (· · ·)′ defined as per (2.16). It is assumed that the
averaging operator and the extrusion operator commute with respect to the covariant
divergence:

(φ
i1i2...in...
j1j2...

);in = (φ
i1i2...in...
j1j2...

);in,
̂

(φ
i1i2...in...
j1j2...

);in = (
̂
φ

i1i2...in...
j1j2...

);in, (3.9)

where φi1i2...
j1j2...

is any tensor. The properties (2.18) are also assumed and, as before, it is
assumed that gab′ = 0 and [gA]ab = gab. One may, for example, consider (· · ·) to be an
ensemble average taken at fixed point (an Eulerian average), as per (2.19a). Assuming
f a′ = 0 and Φ ′ = 0, the average momentum equation is:

(ub va);b + εabcdfbvcTd =− 1
[ρ0]h

abp,b +
ρ

[ρ0]h
abΦ,b + Fa − (ub′va′);b, (3.10)

and the average tracer equation is:

(ua γ );a =Θ − (ua′γ ′);a. (3.11)

Introduce the residual-mean velocity:

[u∗]a = ua − [uR]a, (3.12)

where:

[uR]a = [ΨR]ab
;b , (3.13a)

[ΨR]ab = ua′γ ′
Hb

Hcγ ,c
− ub′γ ′

Ha

Hcγ ,c
. (3.13b)

It is assumed that the [ΨR]ab thus defined is finite. Ha is an as-yet-unspecified vector
field which may vary in space and time. Note that in Cartesian coordinates, and if
HaTa = 0, (3.13) states that:

uR =∇ ×
(
u′γ ′ × H

H ·∇γ

)
. (3.14)

By definition [u∗]a and [uR]a are non-divergent. Via the identity (A 4) derived in
appendix A it follows that, for any vector field Ha:

ua′γ ′ = ([ΨR]abγ );b − [uR]aγ + ub′γ ′ γ ,b
Ha

Hcγ ,c
. (3.15)

Hence the eddy flux can be decomposed into a non-divergent component, an advective
component, and a residual component in the direction of Ha (see Nurser & Lee 2004,
particularly figure 2 and § 2). Taking the divergence leads to:

(ua′γ ′);a =
(

ub′γ ′ γ ,b
Ha

Hcγ ,c

)
;a
− ([uR]aγ );a. (3.16)

The average tracer equation (3.11) can therefore be written:

([u∗]aγ );a =Θ −
(

ub′γ ′ γ ,b
Ha

Hcγ ,c

)
;a
. (3.17)
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Note that the above analysis makes no assumptions regarding the time component
of Ha. Hence one can consider ‘space–time residual-mean’ formulations in which
[u∗]aTa 6= 1. In this case the full material derivative operator is modified, including the
time derivative. Note that this terminology should not be confused with the ‘temporal-
residual mean’ formulations of McDougall & McIntosh (1996) or McDougall &
McIntosh (2001), which specifically refer to the use of a time average.

The residual-mean momentum equation is therefore:

([u∗]b[v∗]a);b + εabcdfb[v∗]cTd =− 1
[ρ0]h

abp,b +
ρ

[ρ0]h
abΦ,b + Fa − Eab

;b , (3.18)

where the Eliassen–Palm flux tensor is given by:

Eab = ub′va′ + ub[vR]a + [uR]b[v∗]a + εacdefcgdi([ΨR]ib − [ΨR]jbZjZ
i)Te, (3.19)

and where:

[v∗]a = va − [vR]a
= [u∗]a − [u∗]bZbZa (3.20)

is the horizontal component of the residual-mean velocity. Equation (3.18) follows
directly from the average momentum equation (3.10) and the definition of the residual-
mean velocity (3.12), together with Ta;b = 0, gab:c = 0, Φ ′ = 0, and the assumption
that:

εacdefc;bgdi([ΨR]ib − [ΨR]jbZjZ
i)Te = 0. (3.21)

This residual-mean formulation yields a residual-mean tracer equation (3.17) in which
only eddy fluxes in the Ha direction appear explicitly, and a residual-mean momentum
equation (3.18) in which the eddy forcing appears as the divergence of a rank-two
Eliassen–Palm flux tensor.

The usual form of the residual-mean equations, for example as discussed in Gent &
McWilliams (1996) and McDougall & McIntosh (1996), is reached if one chooses Ha

to be equal to the unit vertical vector Ha = Za. This yields a residual-mean velocity
with components in the x, y, z, t coordinate system:

[u∗]a =



u− ∂z

(
u′γ ′

∂zγ

)
v − ∂z

(
v′γ ′

∂zγ

)
w+ ∂x

(
u′γ ′

∂zγ

)
+ ∂y

(
v′γ ′

∂zγ

)
1


. (3.22)

With Ha = Za, γ = b, and ∂zb= [N0]2, the Eliassen–Palm flux tensor (3.19) reduces to
(2.39) in the quasi-geostrophic limit (Gent & McWilliams 1996).

The choice Ha = Za can lead to an ill-defined residual-mean velocity where the
vertical gradient of γ is small. One may reduce such issues by, as in Andrews &
McIntyre (1978) and Holton (1981), choosing Ha to be equal to the average (spatial)
gradient of γ , Ha = habγ ,b. With this choice the average tracer equation (3.17) takes
the form:

([u∗]aγ );a =Θ + (κhabγ ,b);a, (3.23)
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where the eddy diffusivity is given by:

κ =− ua′γ ′ γ ,a
hbcγ ,bγ ,c

. (3.24)

While such a diffusivity may be defined in principle (and, in the higher-order
formulation of Eden et al. 2007, higher-order diffusivities may be defined similarly),
this does not imply that the diffusivity is well behaved or that this is a useful
interpretation of the residual flux.

In general one can encounter problems if, at domain boundaries, Ha is not
perpendicular to the boundary normal na. At the boundary the normal component
of the eddy flux vanishes. Hence, on domain boundaries, one has from (3.15):

0= [([ΨR]abγ );b − [uR]aγ
]

na + ub′γ ′ γ ,b
Hana

Hcα,c
. (3.25)

As discussed in detail in Nurser & Lee (2004) and Plumb & Ferrari (2005), if
Hana 6= 0 then this constraint can lead to non-trivial boundary conditions for the
residual-mean velocity. For example, in Held & Schneider (1999) Ha is chosen to be
equal to the unit meridional vector precisely in order to align with the lower boundary
of the atmosphere. However, as noted by Nurser & Lee (2004) and Plumb & Ferrari
(2005), one has complete freedom in the choice of Ha and hence one can, locally at
domain boundaries, enforce Hana = 0.

In the case of a directional average, for linearized perturbations and in steady state,
the remaining right-hand-side eddy term in (3.17) can be shown to vanish when
Θ = 0 (Holton 1981). For more general averaging operators this result need not hold
(McDougall & McIntosh 1996). This issue can be addressed by defining a higher-order
residual-mean velocity as per the temporal-residual-mean I formulation of McDougall
& McIntosh (1996) or the arbitrary-order residual-mean formulation of Eden et al.
(2007), and such formulations are described in appendix B. However, while one can
construct a residual-mean tracer equation to higher-order in perturbation amplitude,
attempting to derive an associated residual-mean momentum equation is troublesome.
Additional terms involving time derivatives arise, meaning that it is unclear how one
derives a useful dynamical equation for the higher-order residual-mean velocity. This
motivates the development of the thickness-weighted-average formulation of Andrews
(1983), de Szoeke & Bennett (1993) and Young (2012), utilized in the temporal-
residual-mean II formulation of McDougall & McIntosh (2001) and described in the
following sections.

3.3. Volume-form-weighted averaging

In previous sections only averaging operators with gab′ = 0 and [gA]ab = gab have
been considered, such as arise from an Eulerian average. These assumptions are
now relaxed, and somewhat more general averaging operators are considered. The
motivation for this treatment is to formalize and generalize averaging in coordinates
based upon non-averaged fields, and in particular to generalize the thickness-weighted
average of Andrews (1983), de Szoeke & Bennett (1993) and Young (2012). Key to
the discussions of the previous sections have been the properties of the averaging
operator (2.18), and commutation of the averaging operator with the covariant
divergence (3.9). We therefore seek an averaging operator which preserves these
properties. In particular, as in the discussion of Young (2012), we seek to define a
single averaging operator which can be applied consistently to both the momentum
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and thermodynamic equations. This is a departure, for example, from the approach of
Lee & Leach (1996) and Smith (1999).

Consider an N-member ensemble, and for each ensemble member α define an
independent coordinate system [x̆α]a. From a coordinate system x̃a let the contravariant
transformation matrices to the [x̆α]a coordinate systems be given by [Λα]ab, which are
assumed non-singular, and let the corresponding covariant transformation matrices be
given by [Mα]ab:

[Λα]ab =
∂[x̆α]a
∂ x̃b

, [Mα]ab =
∂ x̃a

∂[x̆α]b
. (3.26)

Define an ensemble average for an arbitrary quantity F such that, in the x̃a coordinate
system:

〈F 〉|x̃1,x̃2,... = 〈[Fα]〉|x̃1,x̃2,... =
1
N

N∑
α=1

[Fα]|[x̆α ]1=x̃1,[x̆α ]2=x̃2..., (3.27)

where [Fα] indicate the values of F for each ensemble member α and where the
summation argument is evaluated at the indicated locations. It follows by definition
that in the x̃a coordinate system and for an arbitrary contravariant tensor φi1i2...:

∂

∂ x̃a

〈
[Λα]i1j1[Λα]i2j2 . . . [φα]j1j2...

〉
=
〈

∂

∂[x̆α]a ([Λα]i1j1[Λα]i2j2 . . . [φα]j1j2...)

〉
. (3.28)

Hence:

1√
G̃

∂

∂ x̃a

(√
G̃φi1i2···

)
= [Mα]i1j1[Mα]i2j2 · · ·

1√
[Ğα]

∂

∂[x̆α]a
(√
[Ğα][Λα]j1k1

[Λα]j2k2
· · · [φα]k1k2...

)
, (3.29)

where (· · ·) is a volume-form-weighted average, defined for an arbitrary mixed-type
tensor φi1i2...

j1j2...
such that, in the x̃a coordinate system:

φ
i1i2...
j1j2...
= [φα]i1i2...

j1j2...
= 1√

G̃

〈
[Λα]i1k1

[Λα]i2k2
. . . [Mα]l1j1[Mα]l2j2 . . .

√
[Ğα][φα]k1k2...

l1l2...

〉
. (3.30)

√
G̃ is the square root of the determinant of the covariant metric tensor in the x̃a

coordinate system and
√
[Ğα] is the square root of the determinant of the covariant

metric tensor in each coordinate system [x̆α]a (the volume forms for the coordinate
systems x̃a and [x̆α]a). It follows from (3.29) that for a contravariant vector:

1√
G̃

∂

∂ x̃i

(√
G̃φi

)
= 1√
[Ğα]

∂

∂[x̆α]i
(√
[Ğα][Λα]ij[φα]j

)
, (3.31)

and hence that any volume-form-weighted average operator commutes with the
covariant divergence of a vector:

(φi);i = (φi);i. (3.32)
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Finally, define an extrusion operator (̂· · ·) such that, for each ensemble member α, and
in each [x̆α]a coordinate system:

α

̂
φ

i1i2...
j1j2...

∣∣∣∣
[x̆α ]1,[x̆α ]2,...

=
{
[Mα]i1k1

[Mα]i2k2
. . . [Λα]l1j1[Λα]l2j2 . . . φ

k1k2...
l1l2...

}∣∣∣
x̃1=[x̆α ]1,x̃2=[x̆α ]2...

, (3.33)

and thus define an eddy operator:

φ
i1i2...
j1j2...

′ = φi1i2...
j1j2...
− ̂
φ

i1i2...
j1j2...

. (3.34)

Any volume-form-weighted average operator (3.30) and the associated eddy operator
also satisfy the properties (2.18). For following discussions it is useful to also define
an operator (· · ·)# such that, for an arbitrary quantity F and in each [x̆α]a coordinate
system:

[F #
α ]|[x̆α ]1,[x̆α ]2,... = [Fα]|[x̆α ]1,[x̆α ]2,... − 〈Fα〉|x̃1=[x̆α ]1,x̃2=[x̆α ]2..., (3.35)

where [F #
α ] indicates the values of F # for each ensemble member α.

Hence a volume-form-weighted average is a linear projection operator that, for a
contravariant vector, commutes with the covariant divergence. It is important to note
that these properties are preserved for any choice of coordinate systems [x̆α]a and x̃a

(for which the [Λα]ab are non-singular). Eulerian averaging appears as a special case
with [x̆α1]a = [x̆α2]a = x̃a ∀α1, α2 ∈ {1 . . .N}. One may restrict the choice of coordinate
system by insisting that the volume-form-weighted average of a constant scalar yields
the same constant scalar. By considering the definition (3.30) for a unity-valued scalar
this leads to the requirement that:√

G̃=
〈√
[Ğα]

〉
. (3.36)

Since the properties (2.18) and the commutation relation (3.32) are satisfied by a
volume-form-weighted average, one may generalize the residual-mean tracer equations
defined in the previous section to the application of a volume-form-weighted average.
However, while a volume-form-weighted average commutes with the divergence of
a contravariant vector, the average will in general not commute with the divergence
of higher-order tensors (the relevant Christoffel symbol terms will not in general
vanish: see example 23 of De, Shaikh & Sengupta 2005). Hence the residual-mean
momentum equations derived in previous sections, containing the divergence of rank-
two tensors with symmetric components, do not generalize directly to an arbitrary
volume-form-weighted average. Furthermore, the geometrical contortions involved in
defining a volume-form-weighted averaging operator mean that the metric tensor can
have a non-zero eddy component, gab′ 6= 0, and that the average of the metric tensor
need not be the metric tensor in the averaged system [gA]ab 6= gab.

3.4. Thickness-weighted averaging in buoyancy coordinates
When specializing the volume-form-weighted average operator to thickness-weighted
averaging in buoyancy coordinates then one arrives at the thickness-weighted-average
formulation of de Szoeke & Bennett (1993) and Young (2012). The remaining steps
required to derive the resulting Eliassen–Palm tensor, which we sketch here, are
described in detail in Young (2012).

Start with the Boussinesq hydrostatic primitive momentum equation (3.1). Choose
the [x̆α]a so that they form a set of buoyancy coordinates in each ensemble member,
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with [x̆α]1 = [x̆α] = x, [x̆α]2 = [y̆α] = y, [x̆α]4 = [t̆α] = t, and [x̆α]3 = [z̆α] = [bα]. This
choice requires that the buoyancy varies monotonically with height in all ensemble
members. Also choose x̃1 = x̃ = x, x̃2 = ỹ = y, x̃4 = t̃ = t, and x̃3 = z̃ = b = b. By the
condition (3.36) the vertical coordinate in the averaged system is defined such that
z= 〈ζ 〉, where ζ is a scalar defined such that [ζα] = [zα]. The volume forms become:√

[Ğα] = 1
∂z[bα] = ∂[z̃α ][ζα],

√
G̃= 1

∂zb
= ∂z̃〈ζ 〉, (3.37)

and the volume-form-weighted average now takes the form of a thickness-weighted
average.

In de Szoeke & Bennett (1993) and Young (2012) physical quantities are thickness-
weight averaged in density or buoyancy coordinates, while the vertical coordinate is
defined via an unweighted average. In McDougall & McIntosh (2001) it is shown that
such a definition of the averaged vertical coordinate allows one to relate the thickness-
weight-averaged velocity to the Eulerian-averaged velocity, with the difference defining
a ‘quasi-Stokes stream function’. Here this definition for the vertical coordinate arises
directly from the definition of the volume-form-weighted average, combined with the
constraint (3.36).

Let [εA]abcd be the Levi–Civita tensor in the averaged system. Then although
εabcd = [εA]abcd, nevertheless εabcd ′ 6= 0. Hence the thickness-weighted average in
buoyancy coordinates does not commute with the cross-product or curl operators.
Similarly, if [ZA]a and [TA]a are the unit vertical and time vectors in the averaged
system, then Za = [ZA]a and Ta = [TA]a, but Za′ 6= 0 and Ta′ 6= 0.

Choose γ = b with (ρ/[ρ0])hacΦ,c = bZa, where it is assumed that a dynamical
equation for the buoyancy exists:

(uab);a =Θ. (3.38)

Then applying the thickness-weighted average with the coordinate systems as defined
above, b′ = 0 by definition, and the average buoyancy equation becomes:

(uab);a =Θ. (3.39)

No eddy terms appear in the average buoyancy equation, and hence no additional
residual-mean velocity need be defined. The average continuity equation is:

ua;a = 0. (3.40)

To derive the thickness-weight-averaged momentum equation, consider the covariant
momentum equation:

(ucva);c + gacε
cdeifdveTi − Fi =− 1

[ρ0]gach
cdp,d + bZa. (3.41)

While the thickness-weighted average operator does not commute with the divergence
of a general rank-two tensor, the average operator does commute with the divergence
of a mixed-type tensor φa

b provided φa
bZb = 0:

φa
bZb = 0 ⇒ (φa

b;a)= (φa
b);a. (3.42)

In particular uavbZb = 0. Hence the thickness-weight-averaged covariant momentum
equation becomes:

(uc va);c + [gA]ac[εA]cdeifdve[TA]i − Fi =− 1
[ρ0] [gA]ac[hA]cdp,d + bZa − (uc′va

′);c. (3.43)
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Taking the inner product with [ZA]a yields the hydrostatic balance relation:

0=− 1
[ρ0] 〈p〉,a[ZA]a + b. (3.44)

Evaluating the x̃ and ỹ components and applying the hydrostatic balance relation then
leads to the result:

(uc va);c + [gA]ac[εA]cdeifdve[TA]i − Fi

=− 1
[ρ0] [gA]ac[hA]cd〈p〉,d + b[ZA]a − [gA]acE

cd
;d , (3.45)

where the Eliassen–Palm flux tensor is given by:

Eab = ub′va′ + Pab, (3.46)

and where Pab has components, in the x̃, ỹ, z̃, t̃ coordinate system:

Pb
a = [gA]acP

cb = 1

[ρ0]
√

G̃


1
2 [ρ0]〈ζ #ζ #〉 0 0 0

0 1
2 [ρ0]〈ζ #ζ #〉 0 0

〈ζ #∂[x̆α ]m
#〉 〈ζ #∂[y̆α ]m

#〉 0 0
0 0 0 0

 , (3.47)

where m is the Montgomery potential m = p − ρ0bζ . The columns of this tensor are
exactly the Eliassen–Palm flux ‘vectors’ derived in Young (2012); these vectors form
the components of a mixed-type rank-two tensor.

The Eliassen–Palm flux tensor thus derived can be directly related to the flux of
potential vorticity. Taking the cross-product of the average momentum equation with
the average buoyancy gradient (applying the operator [εA]acde . . . b,d[TA]e), assuming
f a is parallel to Za, and then applying standard vector calculus identities, yields a
form of the potential vorticity induction equation (the Boussinesq primitive equation
generalization of (2.10)). Taking the divergence then yields an equation for the
potential vorticity substance (Haynes & McIntyre 1990) q∗ associated with the average
dynamics:

(uaq∗);a = Q− ([εA]acde[gA]ciE
ij
;jb,d[TA]e);a

= Q− [εA]acde[gA]ciE
ij
;jab,d[TA]e, (3.48)

where q∗ is given by

q∗ = ([εA]acdevcb,d[TA]e + f ab);a

= [εA]acdevc;ab,d[TA]e + f ab,a, (3.49)

and the mechanical and diabatic forcing Q is given by:

Q= ([εA]acdeFcb,d[TA]e + [εA]acdevcΘ ,d[TA]e + f aΘ);a. (3.50)

Hence [εA]acde[gA]ciE
ij
;jb,d[TA]e is equal to the eddy flux of potential vorticity substance

q∗, plus a rotational term. Since the thickness-weighted average does not commute
with the cross-product operator, the potential vorticity associated with the average
system is not equal to the average of the potential vorticity associated with the
unaveraged system.
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Finally, the Eliassen–Palm flux tensor (3.46) is related to the quasi-geostrophic flux
tensors described in § 2.5. Consider the geostrophic limit where:

∂xp= ∂x̃m= [ρ0][f0]v, ∂yp= ∂ỹm=−[ρ0][f0]u, w= 0. (3.51)

Assume that the perturbations ζ # are small so that the Eulerian buoyancy anomaly at
the height ζ can be approximated by:

b[ =−∂zz̃ζ
#. (3.52)

Also assume that ∂x̃z = ∂ỹz = 0, corresponding to an assumption of small dynamical
aspect ratio. This latter approximation certainly holds in the quasi-geostrophic
approximation. Then, to leading order in Rossby number and aspect ratio, the
Eliassen–Palm flux tensor (3.46) has components, in the x, y, z, t coordinate system:

Eb
a = gacE

cb =



u′u′ + 1

2[N0]2 〈b
[b[〉 u′v′ 0 0

u′v′ v′v′ + 1

2[N0]2 〈b
[b[〉 0 0

− [f0]
[N0]2 〈v

#b[〉 [f0]
[N0]2 〈u

#b[〉 0 0

0 0 0 0


, (3.53)

where [N0]2 = ∂zz̃ = ∂zb. This corresponds to a combination of the gauge choices
leading to the quasi-geostrophic Eliassen–Palm flux tensors (2.39) and (2.41). Hence,
to leading order in Rossby number and aspect ratio, one can derive an energy which
bounds the Frobenius norm of the Eliassen–Palm flux tensor (3.46).

3.5. Generalized thickness-weighted averaging
The thickness-weighted-average formulation can be generalized via a redefinition of
[z̆α] and z̃, with an associated redefinition of the average and eddy operators. In the
general case diabatic eddy fluxes once again appear in the buoyancy equation:

(ua b);a =Θ − (ua′b′);a, (3.54)

while the average momentum equation becomes:

(uc va);c + [gA]ac[εA]cdeifdve[TA]i − Fi

=− 1
[ρ0] [gA]ac[hA]cd〈p〉,d + b[ZA]a − [gA]acE

cd
;d , (3.55)

with Eliassen–Palm flux tensor:

Eab = ub′va′ + Pab, (3.56)

and where Pab now has components, in the x̃, ỹ, z̃, t̃ coordinate system:

Pb
a = [gA]acP

cb

= 1

[ρ0]
√

G̃


1
2 〈p#∂[z̆α ]ζ

# − ζ #∂[z̆α ]p
#〉 0 0 0

0 1
2 〈p#∂[z̆α ]ζ

# − ζ #∂[z̆α ]p
#〉 0 0

1
2 〈ζ #∂[x̆α ]p

# − p#∂[x̆α ]ζ
#〉 1

2

〈
ζ #∂[y̆α ]p

# − p#∂[y̆α ]ζ
#
〉

0 0
0 0 0 0

 . (3.57)
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This form for the Eliassen–Palm flux tensor is derived in appendix C. Diabatic eddy
fluxes of buoyancy are (in general) introduced into regions wherever the average
deviates from a thickness-weighted average in buoyancy coordinates. Where the
buoyancy varies non-monotonically with height one typically considers a two-step
averaging approach as described by de Szoeke & Bennett (1993), where monotonicity
is enforced via a preliminary averaging step. However, in principle at least, one may
instead redefine [z̆α] and z̃ in regions where buoyancy varies non-monotonically with
height, thereby (in general) introducing diabatic eddy fluxes where this redefinition
differs from thickness-weighted averaging in buoyancy coordinates. One may further
transition from an average in buoyancy coordinates in the interior to an average
in Eulerian or surface-following coordinates at upper and lower boundaries. These
conceptual steps enable one, for example, to interpret an ocean model containing
adiabatic eddy processes in the interior as a representation of the dynamics subject to
thickness-weighted averaging in buoyancy coordinates (as described by McDougall &
McIntosh 2001), except where fundamentally diabatic processes are active.

4. Conclusions
The purpose of residual-mean theory is to reduce the magnitude of the explicit

eddy fluxes in a prognostic tracer equation (for example the eddy buoyancy flux in
the thermodynamic equation) via a modified advection. Physically this is achieved by
recognizing that the eddy fluxes are both advective and diffusive in nature, and by
decomposing the eddy flux accordingly. Further approaches seek to reduce the eddy
buoyancy fluxes to zero by an appropriately defined averaging operator. By either
redefining the advection operator, as in the former case, or redefining the averaging
operator, as in the latter, one must also modify the momentum equation, and thereby
produce modified eddy momentum flux tensors. This has previously been described
in terms of varying forms of Eliassen–Palm flux vectors, or occasionally in terms
of rank-two Eliassen–Palm flux tensors. In this paper the eddy–mean-flow interaction
problem has been treated using a geometric formalism. This has enabled the explicit
identification of forms of the rank-two Eliassen–Palm flux tensor.

In the quasi-geostrophic limit the eddy–mean-flow interaction is conveniently
explored by deriving a new equation, whose divergence is the quasi-geostrophic
potential vorticity equation. This enables one to characterize the eddy–mean-flow
interaction via a momentum flux tensor with two forms of gauge freedom and
whose divergence is the eddy quasi-geostrophic potential vorticity flux plus a rotational
flux. Particular choices for the momentum flux tensor yield the residual-mean quasi-
geostrophic equations, from which one may identify corresponding Eliassen–Palm flux
tensors.

Forms of the Eliassen–Palm flux tensor were derived for the more general
Boussinesq hydrostatic primitive equations. The residual-mean velocity was left in
a general form, allowing one to consider alternative decompositions of the eddy
fluxes as described by Nurser & Lee (2004) and Plumb & Ferrari (2005). The
precise form of the resulting Eliassen–Palm flux tensor was explicitly identified.
The general approach permitted ‘space–time residual-mean’ formulations, modifying
the full material derivative (including the time derivative). This was utilized (in
appendix B) to derive the higher-order residual-mean formulation of Eden et al.
(2007).

A volume-form-weighted average was introduced, constructed such that the
averaging operator commutes with the covariant divergence of a vector. The thickness-
weighted-average approach of de Szoeke & Bennett (1993) and Young (2012) arises
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from a particular choice of volume-form-weighted average when applied to the
Boussinesq hydrostatic primitive equations. The procedure of ‘averaging in buoyancy
coordinates’ implicitly involves the definition of a complicated averaging operator,
involving transformation of tensors into coordinates in which to perform averaging,
and the implicit definition of an averaged coordinate system. This paper describes the
detailed steps which such a procedure involves, and identifies the geometric objects
which result when applying this procedure to the hydrostatic Boussinesq primitive
equations. While the averaging operator commutes with the covariant divergence
operator, it does not commute with the cross-product or curl operators. As a result the
average of the potential vorticity is not equivalent to the potential vorticity associated
with the averaged system.

A correct physical interpretation of the eddy–mean-flow interaction problem is
crucial if one wishes to construct an eddy parameterization. A vector flux of a scalar
is physically a very different quantity from a tensor flux of a vector. Difficulties
arising from an incorrect characterization of the eddy–mean-flow interaction problem
are acute in the context of the quasi-geostrophic equations. Attempting to parameterize
the eddy quasi-geostrophic potential vorticity fluxes (a vector quantity), as is implied
by assuming a down-gradient eddy flux of potential vorticity (Green 1970; Rhines &
Young 1982), violates momentum conservation in general (Marshall 1981). Indeed,
attempting to parameterize the eddy quasi-geostrophic potential vorticity tendency
(a scalar quantity) violates both potential vorticity conservation and momentum
conservation in general. Implicit physical constraints appear in a down-gradient
potential vorticity closure, and hence one is unlikely to preserve the true geometric
nature of the eddy–mean-flow interaction with such an approach. Preservation of the
geometric structure of the eddy interaction, as well as conservation of both momentum
and potential vorticity, can be achieved by instead forming a parameterization for
the rank-two Eliassen–Palm flux tensor itself (Marshall et al. 2012), and not its
divergence.

Since the Eliassen–Palm flux tensors thus derived are inherently geometric objects,
one may decompose the tensors and construct geometric frameworks characterizing
the eddy–mean-flow interaction. In particular, in a quasi-geostrophic context, geometric
decompositions of the flux tensors are equivalent to the geometric parameterization
framework of Marshall et al. (2012). For the more general Boussinesq momentum
and hydrostatic primitive equations the Frobenius norm of the Eliassen–Palm flux
tensor always has the dimensions of energy per mass, and one may always consider a
singular-value decomposition of the tensor. Such a decomposition could be useful in
interpretation of model and observational data, or in the construction of more general
geometric parameterization frameworks. In particular, a general and fundamental
picture of the true nature of the eddy–mean-flow interaction problem is essential if
one wishes to construct a physically consistent eddy closure.
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Appendix A. Tensor calculus identities
Given two vectors Aa and Bb and a scalar α, define a rank-two antisymmetric tensor:

Ψ ab = Aa Bb

Bcα,c
− Ab Ba

Bcα,c
, (A 1)

where it is assumed that this tensor is finite. Thus define a non-divergent vector:

ua = Ψ ab
;b . (A 2)

Then, by definition:

uaα = Ψ ab
;b α

= (Ψ abα);b − Aa + Abα,b
Ba

Bcα,c
. (A 3)

Hence, via re-arrangement, one arrives at the identity:

Aa = (Ψ abα);b − uaα + Abα,b
Ba

Bcα,c
. (A 4)

This can be expressed:

Aa = Sa + Abα,b

Bcα,c
Ba, (A 5)

where Sa is defined:

Sa = (Ψ abα);b − uaα

= Ψ abα,b. (A 6)

Note that, by the antisymmetry of Ψ ab:

Saα,a = Ψ abα,aα,b

= 0, (A 7)

and hence Sa is perpendicular to the gradient of α. Hence a vector Aa can be
decomposed into two components: a component Sa which is perpendicular to the
gradient of α, and a component in the direction of Ba. The former further decomposes
into a non-divergent vector field and the product of α with a non-divergent vector field.
This is a tensor calculus generalization of the decomposition of § 2 of Nurser & Lee
(2004).

Taking the divergence of (A 4) leads to the identity:

Aa
;a =

(
Abα,b

Ba

Bcα,c

)
;a
− (uaα);a. (A 8)

Hence the divergence of a vector Aa can be decomposed into a term which takes the
form of a non-divergent advection of a scalar α, combined with a term that is the
divergence of a field oriented in the direction of Ba.

A corollary to the identity (A 8) is that, if a vector field Ra is non-divergent, Ra
;a = 0,

then: (
(Rbα);b

Ca

Ccα,c

)
;a
= (vaα);a, (A 9)
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where va is a non-divergent vector field defined via:

va =
(

Ra Cb

Ccα,c
− Rb Ca

Ccα,c

)
;b
, (A 10)

where Ca is some given vector field and where it is assumed that va is finite.

Appendix B. Residual-mean tracer equation to arbitrary order
In this appendix the residual-mean formulation of Eden et al. (2007) is derived,

yielding a residual-mean tracer equation to arbitrary order in perturbation amplitude.
Start with the dynamical equation for a scalar tracer γ of the form:

(uaγ );a =Θ, (B 1)

where Θ is a given scalar and ua is a non-divergent velocity with ua
;a = 0. The velocity

ua may be considered to be the four-dimensional velocity with uaTa = 1, where Ta is
equal to the unit time vector, although one may consider more general non-divergent
velocity vectors. Introduce the averaging operator (· · ·), and the associated projection
operator (̂· · ·) and eddy operator (· · ·)′, which satisfy the properties (2.18), and the
commutation relation (3.9) (see § 2.3). Then (B 1) can be written:

uaγ̂ ,a + (uaγ ′);a =Θ. (B 2)

Let non-index subscripts and superscripts be contained within square brackets. One
can define a series of scalar quantities [Π n] via:

n[Π n] = (γ ′)n, (B 3)

where, on the right-hand side of (B 3), n is used as an exponent, and where n is a
positive integer. Then multiplying (B 2) by n[Π n] and applying the averaging operator
leads to:

nua[Π n] γ ,a + (ua[Π n+1]);a = nΘ[Π n]. (B 4)

Hence:

ua[Π n] γ ,a =Θ[Π n] −
(

1
n

ua[Π n+1]
)
;a
. (B 5)

Introduce a series of vectors [Hn]a associated with each scalar [Π n] for each n. Thus
define a series of rank-two antisymmetric tensors [Xn]ab for each n> 1:

[Xn]ab = 1
n− 1

ua[Π n] [H
n]b

[Hn]cγ ,c
− 1

n− 1
ub[Π n] [H

n]a
[Hn]cγ ,c

, (B 6)

and non-divergent vectors [vn]a:

[vn]a = [Xn]ab
;b , (B 7)

where it is assumed that all [Xn]ab thus defined are finite. Then, via the identity (A 8),
(B 5) becomes:

ua[Π n] γ ,a =Θ[Π n] −
(

1
n

ua[Π n+1] γ ,a
[Hn+1]b
[Hn+1]cγ ,c

)
;b
+ ([vn+1]aγ );a. (B 8)
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Also, applying the averaging operator to (B 1) yields:

(ua γ );a =Θ − (ua′γ ′);a. (B 9)

Via the identity (A 8), this leads to the residual-mean formulation (Andrews &
McIntyre 1976, 1978; Holton 1981; Nurser & Lee 2004):

(
(ua − [u1

R]a)γ
)
;a =Θ −

(
ua′γ ′ γ ,a

[H1]b
[H1]cγ ,c

)
;b
, (B 10)

where:

[u1
R]a = [Ψ 1

R ]ab
;b , (B 11a)

[Ψ 1
R ]ab = ua′γ ′

[H1]b
[H1]cγ ,c

− ub′γ ′
[H1]a
[H1]cγ ,c

. (B 11b)

Hence: (
(ua − [u1

R]a)γ
)
;a =Θ + O(e2), (B 12)

where O(en) denotes a quantity of order n or greater in perturbed quantities.
Substituting (B 8) with n= 1 into (B 10) gives:(

(ua − [u1
R]a)γ

)
;a =Θ −

(
Θγ ′

[H1]a
[H1]bγ ,b

)
;a

+
((

ua[Π 2] γ ,a
[H2]b
[H2]cγ ,c

)
;b

[H1]d
[H1]eγ ,e

)
;d
−
(
([v2]aγ );a

[H1]b
[H1]cγ ,c

)
;b
. (B 13)

Since [v2]a is non-divergent one can apply the identity (A 9) to the final term in this
equation, leading to:(

(ua − [u1
R]a − [u2

R]a)γ
)
;a =Θ −

(
Θγ ′

[H1]a
[H1]bγ ,b

)
;a

+
((

ua[Π 2] γ ,a
[H2]b
[H2]cγ ,c

)
;b

[H1]d
[H1]eγ ,e

)
;d
, (B 14)

where:

[u2
R]a = [Ψ 2

R ]ab
;b , (B 15a)

[Ψ 2
R ]ab =−[v2]a [H

1]b
[H1]cγ ,c

+ [v2]b [H
1]a

[H1]cγ ,c
. (B 15b)

Note that, as defined, if ua is considered to be the four-dimensional velocity with
uaTa = 1, then [u2

R]aTa 6= 0. Hence this forms a space–time residual-mean formulation.
Equation (B 15) is a space–time residual-mean version of the formulation of Medvedev
& Greatbatch (2004). Medvedev & Greatbatch (2004) choose [H1]a and [H2]a to
be equal to the (spatial) gradient of γ . A space–time residual-mean version of the
temporal-residual-mean I formulation of McDougall & McIntosh (1996) is arrived at
by replacing ua[Π 2] with uaΠ in both (B 14) and the definition of [X2]ab (and hence
the definition of [v2]a), combined with a substitution using (B 5) for n= 2.
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Via repeated substitution of (B 8) with increasing values of n, and with repeated
application of the identity (A 9), one arrives at:(
(ua − [u1

R]a − [u2
R]a − · · · − [uN

R ]a)γ
)
;a = [Ξ 1] + [Ξ 2] + · · · + [ΞN] + O(eN). (B 16)

The [Ξ n] are defined via:

[Ξ 1] =Θ, (B 17a)

[Ξ n] = [ξ n−1,n−1] for n > 2, (B 17b)

with:

[ξ p,1] = −
(
Θ[Π p] [H

p]a
[Hp]bγ ,b

)
;a
, (B 18a)

[ξ p,q+1] = − 1
p− q

(
[ξ p,q] [H

p−q]a
[Hp−q]bγ ,b

)
;a

for p > 2, 1 6 q< p. (B 18b)

The [un
R]a are defined via:

[un
R]a = [Ψ n

R ]ab
;b , (B 19)

where:

[Ψ 1
R ]ab = ua′γ ′

[H1]b
[H1]cγ ,c

− ub′γ ′
[H1]a
[H1]cγ ,c

, (B 20a)

[Ψ n
R ]ab = [sn−1,n−1]ab

for n > 2, (B 20b)

and where:

[sp,1]ab =−[vp+1]a [H
p]b

[Hp]dγ ,d
+ [vp+1]b [H

p]a
[Hp]dγ ,d

, (B 21a)

[sp,q+1]ab =− 1
p− q

[sp,q]ac
;c
[Hp−q]b
[Hp−q]dγ ,d

+ 1
p− q

[sp,q]bc
;c
[Hp−q]a
[Hp−q]dγ ,d

for p > 2, 1 6 q< p. (B 21b)

Hence one may formulate a residual-mean tracer equation to arbitrary order in
perturbation amplitude. Note that all [Ξ n] depend upon Θ , and in particular vanish
when Θ = 0. This is the space–time residual-mean formulation of the expansion of
Eden et al. (2007). Eden et al. (2007) choose all [Hn]a to be equal to the (spatial)
gradient of γ . The convergence properties of this expansion are not explored here,
although it is noted that, should the expansion fail to converge, one can locally
terminate the expansion at arbitrary order by locally choosing [Hn] = ua[Π n].

Appendix C. Thickness-weighted averaging with a general vertical coordinate
In this appendix the thickness-weight averaged primitive equations are derived. This

appendix makes no use of tensor calculus notation, and hence square brackets around
non-index subscripts and superscripts are removed.

First, express the hydrostatic Boussinesq primitive equations in a coordinate system
x̆ = x, y̆ = y, t̆ = t, and with z̆ left unspecified, where it is assumed that the
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transformation from the x̆, y̆, z̆, t̆ coordinate system to the Cartesian x, y, z, t
coordinate system is non-singular. The equations (which arise directly from the
covariant momentum equation (3.41)) are:

∂zz̆(∂t̆(∂z̆zu)+ ∂x̆(∂z̆zux̆u)+ ∂y̆(∂z̆zuy̆u)+ ∂z̆(∂z̆zuz̆u))− fv =− 1
ρ0
∂x̆p+ b∂x̆ζ + Fx̆,

(C 1a)

∂zz̆(∂t̆(∂z̆zv)+ ∂x̆(∂z̆zux̆v)+ ∂y̆(∂z̆zuy̆v)+ ∂z̆(∂z̆zuz̆v))+ f u=− 1
ρ0
∂y̆p+ b∂y̆ζ + Fy̆,

(C 1b)

0=− 1
ρ0
∂z̆p+ b∂z̆ζ, (C 1c)

∂zz̆(∂t̆(∂z̆z)+ ∂x̆(∂z̆zux̆)+ ∂y̆(∂z̆zuy̆)+ ∂z̆(∂z̆zuz̆))= 0. (C 1d)

Here, u, v and w are the components of an incompressible velocity in the x, y, z, t,
coordinate system, and ux̆, uy̆ and uz̆ are the corresponding (contravariant) components
in the x̆, y̆, z̆, t̆ coordinate system. It follows by direct evaluation that u = ux̆ and
v = uy̆. Also, f is the Coriolis parameter, ρ0 is a reference density, p is the pressure,
ζ is a scalar field equal to the value of the z coordinate, and Fx̆ and Fy̆ are x̆ and y̆
components of additional terms. It again follows by direct evaluation that Fx̆ = Fx and
Fy̆ = Fy, where Fx and Fy are the x and y components of additional terms.

Now consider a volume-form-weighted average of these equations. Specifically, an
ensemble of systems is defined, where each ensemble member α defines its own
coordinate system x̆α, y̆α, z̆α, t̆α. Introduce an ensemble-average operator 〈· · ·〉 defined
as per (3.27). Define an averaged coordinate system x̃ = x, ỹ = y, t̃ = t, and with z̃
defined such that 〈ζ 〉 = z. The ensemble-average operator 〈· · ·〉 commutes with respect
to derivatives in the following sense:

〈∂x̆αFα〉 = ∂x̃〈Fα〉, 〈∂y̆αFα〉 = ∂ỹ〈Fα〉, (C 2a)
〈∂z̆αFα〉 = ∂z̃〈Fα〉, 〈∂t̆αFα〉 = ∂t̃〈Fα〉, (C 2b)

where Fα is an arbitrary quantity for each ensemble member α. Thus introduce
a volume-form-weighted average operator (· · ·) defined as per (3.30), where here√

Ğα = ∂z̆αζα and
√

G̃ = ∂z̃z. The volume-form-weighted average operator is therefore
a thickness-weighted average operator. Define also an eddy operator (· · ·)′ associated
with (· · ·) as per (3.34), and an eddy operator (· · ·)# associated with 〈· · ·〉 as per (3.35).
For notational convenience, let 〈F 〉 = 〈Fα〉 and F =Fα.

In this context the thickness-weight-average operator can be considered an operator
which, given a series of equations written, for each ensemble member α, in the x̆α,
y̆α, z̆α, t̆α coordinate system, yields a single averaged equation written in the x̃, ỹ, z̃, t̃
coordinate system. If it understood that a quantity F is expressed in the x̆α, y̆α, z̆α, t̆α
coordinate system, one can write:

F = ∂zz̃〈∂z̆αζαFα〉, (C 3)

where 〈· · ·〉 is an ensemble average of an arbitrary quantity. Particular caution is
required when defining the thickness-weighted average of tensor components: in this
case Fα is understood to correspond to the tensor component in the x̆α, y̆α, z̆α, t̆α
coordinate system, and F is then a corresponding tensor component in the x̃, ỹ, z̃, t̃
coordinate system.
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The thickness-weighted average of (C 1d) yields simply:

∂zz̃(∂t̃(∂z̃z)+ ∂x̃(∂z̃zu)+ ∂ỹ(∂z̃zv)+ ∂z̃(∂z̃zuα,z̆α ))= 0, (C 4)

which is a consequence of the fact that the thickness-weighted average commutes with
the covariant divergence.

The thickness-weighted average of (C 1c) yields:

0=− 1
ρ0
∂zz̃〈∂z̆αpα∂z̆αζα〉 + ∂zz̃〈bα∂z̆αζα∂z̆αζα〉, (C 5)

which becomes:

0=− 1
ρ0
∂z̃〈pα〉 + 〈bα∂z̆αζα〉 + ∂zz̃

〈(
− 1
ρ0
∂z̆αp#

α + (bα∂z̆αζα)
#

)
∂z̆αζ

#
α

〉
, (C 6)

where ρ#
0 = 0 has been assumed. Considering the application of the (· · ·)# operator to

(C 1c):

0=− 1
ρ0
∂z̆αp#

α + (bα∂z̆αζα)
#, (C 7)

the final term in (C 6) vanishes. This leads to the thickness-weight averaged
hydrostatic balance relation.

0=− 1
ρ0
∂z̃〈p〉 + b∂z̃z. (C 8)

Now consider the thickness-weighted average of (C 1a). First, it follows immediately
that the material derivative term becomes:

1
∂z̆αζα

(∂t̆α (∂z̆αζαuα)+ ∂x̆α (∂z̆αζαuα,x̆αuα)+ ∂y̆α (∂z̆αζαuα,y̆αuα)+ ∂z̆α (∂z̆αζαuα,z̆αuα))

= ∂zz̃(∂t̃(∂z̃zu)+ ∂x̃(∂z̃zu u)+ ∂ỹ(∂z̃zv u)+ ∂z̃(∂z̃zuα,z̆α u))

+ ∂zz̃(∂x̃(∂z̃zu′u′)+ ∂ỹ(∂z̃zv′u′)+ ∂z̃(∂z̃zu′α,z̆αu′)). (C 9)

Assuming f ′ = 0, the Coriolis term becomes simply:

− fαvα =−fv. (C 10)

The pressure gradient and buoyancy terms require more careful treatment. Assuming
ρ#

0 = 0, these can be expressed:

− 1
ρ0
∂x̆αpα + bα∂x̆αζα =−

1
ρ0
∂x̃〈pα〉 + ∂zz̃〈bα∂z̆αζα〉∂x̃z

− 1
ρ0
∂zz̃〈∂x̆αp#

α∂z̆αζ
#
α 〉 + ∂zz̃〈(bα∂z̆αζα)

#∂x̆αζ
#
α 〉. (C 11)

Via the definition of the thickness-weighted average of bα, and using (C 7), this leads
to:

− 1
ρ0
∂x̆αpα + bα∂x̆αζα =−

1
ρ0
∂x̃〈pα〉 + bα∂x̃z

− 1
ρ0
∂zz̃〈∂x̆αp#

α∂z̆αζ
#
α − ∂z̆αp#

α∂x̆αζ
#
α 〉, (C 12)
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which can be expressed as:

− 1
ρ0
∂x̆αpα + bα∂x̆αζα =−

1
ρ0
∂x̃〈p〉 + b∂x̃z

− 1
ρ0
∂zz̃

〈
∂x̆α

(
1
2

p#∂z̆αζ
# − 1

2
ζ #∂z̆αp#

)
+ ∂z̆α

(
1
2
ζ #∂x̆αp# − 1

2
p#∂x̆αζ

#

)〉
. (C 13)

This leads to the thickness-weight averaged equation:

∂zz̃(∂t̃(∂z̃zu)+ ∂x̃(∂z̃zu u)+ ∂ỹ(∂z̃zv u)+ ∂z̃(∂z̃zuα,z̆α u))− fv

=− 1
ρ0
∂x̃〈p〉 + b∂x̃z+ Fx

− ∂zz̃

(
∂x̃

(
∂z̃z

(
u′u′ + 1

ρ0∂z̃z

〈
1
2

p#∂z̆αζ
# − 1

2
ζ #∂z̆αp#

〉))
+ ∂ỹ(∂z̃zv′u′)

+ ∂z̃

(
∂z̃z

(
u′α,z̆αu′ + 1

ρ0∂z̃z

〈
1
2
ζ #∂x̆αp# − 1

2
p#∂x̆αζ

#

〉)))
. (C 14)

The thickness-weighted average of (C 1b) follows similarly. Upon identifying the
divergence of a mixed-type rank-two tensor, one arrives at the thickness-weight-
averaged momentum equation (3.55) with Eliassen–Palm flux tensor (3.56).
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